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We apply a Bloch-band approach to the analysis of pulsed optical standing wave diffractive elements
in optics and interferometry with ultracold atoms. We verify our method by comparison to a series of

experiments with Bose-Einstein condensates. The approach provides accurate Rabi frequencies for diffraction
pulses and is particularly useful for the analysis and control of diffraction phases, an important systematic
effect in precision atom interferometry. Utilizing this picture, we also demonstrate a method to determine
atomic band structure in an optical lattice through a measurement of phase shifts in an atomic contrast

interferometer.
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I. INTRODUCTION

The motion of electrons in the periodic potential of ionic
crystals is addressable by the celebrated Bloch solutions
which give rise to band structure [1,2]. Periodic potentials
are also common in the arena of ultracold atoms where
gases trapped in optical lattices can serve as a test bed for
questions in many-body physics [3-5]. These scenarios are
amenable to the same band-structure approach.

Pulsed optical lattices are in common use as diffractive ele-
ments in atom optics and interferometry [6] for diverse appli-
cations such as inertial sensing [7-10] and for tests of funda-
mental physics such as the equivalence principle [11-13] and
quantum electrodynamics [14,15]. The atom-optics element
of choice for beam splitters and mirrors—Bragg diffraction—
is traditionally analyzed using the two-state Rabi solution
which predicts oscillatory behavior [16,17]. To address the
regime when the two-state approximation is invalidated for
sufficiently short pulses, a host of numerical work has been
performed [18-20] with the limiting case of Kapitza-Dirac
diffraction allowing an analytic solution [17].

In this work we apply the Bloch-band approach to
atom optics through the performance and analysis of a
series of standing-wave diffraction and interferometry ex-
periments with Bose-Einstein condensates. Our results im-
pact three key directions. First, we experimentally demon-
strate the equivalence between the band gap and the fre-
quency for Bragg pendellosung, and obtain accurate val-
ues distinct from the results of a commonly used formula
for Rabi frequency in Bragg diffraction. Second, we ex-
ploit the Bloch-band approach for direct visualization and
systematic analysis of diffraction phase effects and provide
useful methods for their suppression in precision atom in-
terferometry. Finally, we invert the approach and determine
atomic band structure in a periodic potential from measure-
ments of phase shifts in an atom interferometer, thus in-
troducing a method for analyzing arbitrary periodic optical
potentials.
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II. ATOM OPTICS IN THE BLOCH-BAND PICTURE

Our analysis is based on the Bloch solutions for a neutral
atom interacting with the one-dimensional sinusoidal poten-
tial of an optical standing wave and is related to earlier
theoretical work [21,22]. In accord with parameters used in
typical experiments, we work in a regime where the large
one-photon detuning allows adiabatic elimination of the ex-
cited internal state. The atom-light interaction then reduces
to a conservative (ac Stark shift) potential imposed on the
atoms, which is proportional to the optical intensity [17].
We calculate the Bloch energy bands (Fig. 1) by numerically
diagonalizing the single-particle Hamiltonian for the potential
U = Uy sin®(2kx). The energy and momentum are normalized
to the recoil energy Ey. = /i*k*/2m and recoil momentum
Prec = Bk, respectively, where 7 /k is the spatial periodicity
of the lattice.

In a Brillouin-zone picture, the lattice opens up an avoided
crossing at every intersection of free-particle energy levels,
each of which can be identified with a Bragg diffraction
process and is characterized by an energy gap which increases
monotonically with Up. This band gap is equivalent to %<2,
where Q2 is the Rabi frequency for oscillations between the
two Bragg-coupled states. In addition, there is also an energy
shift 72p of the mean energy of the coupled states away from
the original (unperturbed) crossing point. Both Qg and Qp
can be seen as arising from “level repulsion” in second-order
perturbation (see Fig. 1 inset).

We now turn to determining the Bragg diffraction ampli-
tude and phase in this picture. We explicitly consider an Npth-
order Bragg transition which can be seen as a 2Nz photon
process connecting states |—Nghik) and |+Nghk). Here even
(odd) N corresponds to a crossing at the center (edge) of
the Brillouin zone. In the band picture, the Bragg process
is the behavior of an initially free particle state which is
loaded into the lattice at the Ngth avoided crossing as an
equal superposition of the Nzth and (N — 1)th excited bands
(Bloch states). During the 2Np photon pulse the populations
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FIG. 1. Atomic energy bands in quasimomentum space for a
sinusoidal optical lattice. Solid (dashed) lines are calculated with a
depth, Uy, of 6hiwre: (0hiwye.). The first- through fourth-order Bragg
transitions are indicated by Ny = 1-4. The inset shows a close-up for
Np = 2. Qg and p correspond to the frequencies of Rabi flopping
and diffraction phase evolution, respectively.

in the |£Nphk) states oscillate sinusoidally and out of phase
with each other at angular frequency Qg(¢). Since each of the
|E£Nphk) states spends equal time in each band, we may evalu-
ate the corresponding phase by integrating the average energy
of the two participating Bloch states, characterized by 2p,
over the duration of the pulse. Within an atom interferometer,
diffraction pulses are frequently applied to a superposition of
free particle states separated in momenta by multiples of 27k,
corresponding to different interferometer paths. The different
Qp(t) for different paths during these processes can then
lead to an observable interferometer phase shift called the
diffraction phase.

In order to apply the Bloch-band picture to pulsed stand-
ing waves, the time dependence of Uy(¢) must preserve the
two-state nature of the Bragg process. Practically, the desire
for high diffraction efficiency means experiments work in
exactly this regime, showing the suitability of the Bloch-band
approach.

For a time-varying standing-wave amplitude Up(¢), adia-
baticity mandates ULO%% & AE /K, where AE is the energy
separation from the eigenstate nearest to our two states of
interest. Applying this criterion to the rise and fall times of
a smooth (e.g., Gaussian) pulse shape with width t, resonant
with an Npth-order Bragg process, we arrive at 7 > m,
where wre. = Erec /7 is the recoil frequency. We recognize this
inequality to be equivalent to being in the Bragg regime of
diffraction where states other than |+Np/ik) are not populated.

We compare the Bloch-band picture to both full numerical
time evolution of the Schrodinger equation and experiments.
In Bloch picture simulations, we numerically solve for the
band structure at many different lattice depths. We then use
these saved band structures to numerically integrate 2 and
Qp for any given diffraction pulse profile to obtain population
fraction and diffraction phase predictions. With a single set
of band structures, the effects of any pulse shape or duration
may be quickly calculated, allowing for rapid prototyping of
experimental sequences. These simulations enforce adiabatic-
ity by assuming the atoms’ wavefunctions remain confined to
the two bands corresponding to their free-space momenta. By
contrast, full numerical evolution solves the time-dependent
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FIG. 2. Measurement of band gaps (Rabi frequencies). (a) Sam-
ple pulse profile. (b) Rabi oscillations for Ny = 1 in a 22.7liwye.
lattice; upper panel shows corresponding sequence of time-of-flight
absorption images. The pulse duration is defined as the extent of the
intermediate flat region of the pulse profile. The diffracted fraction
for zero pulse duration is due to the pulse rise and fall. (c) Measured
Rabi frequency for various lattice depths and for Ny =1,2,3,4
(solid circles). Solid (dashed) lines are Bloch-band [right-hand side
of Eq. (1)] predictions.

Schrodinger equation over a large basis of momentum states
and uses the time evolution operator to extract population
transfer and diffraction phase information (see Appendix B).
A full time evolution must be calculated for every pulse shape
or duration considered. Comparing to full time evolution
allows us to quantify the nonadiabatic effects due to other
bands missing from the adiabatic Bloch picture.

We test and verify the validity of the Bloch-band picture
of atom optics in the T 2> 4Nﬂlwm_ “quasiadiabatic” regime (see
Appendix A) and stay within the observed validity range for
all the experimental work presented in this paper. Even when
other states are negligibly populated, their presence has a
significant effect for typical experimental parameters on both
the splitting Q2 and the shift 2 of the two coupled states. We
now examine these effects individually.

III. ACCURATE RABI FREQUENCIES
FOR BRAGG DIFFRACTION

We first report on our measurements of the Rabi frequency
for various Bragg diffraction orders using a Bose-Einstein
condensate (BEC) atom source. Our results experimentally
establish the Bloch-band picture for atom optics and reveal
the shortcomings of a commonly used result in the field (see
Fig. 2).

The experiments reported in this work were carried out
with BECs of 10° ytterbium ('7*Yb ) atoms. We prepared
the BEC in a 532-nm crossed-beam optical dipole trap and
released them from the confinement after reducing the mean
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trap frequency to @ = 2w x 63 Hz [23]. Upon release, the
atoms are given 2 ms to expand before they encounter a
diffraction pulse. The diffraction pulses are formed by a
pair of horizontal, counterpropagating beams with a waist
of 1.8 mm, blue detuned from the 556-nm intercombination
line ('Sy — 3P;) by +3500I", where I' = 27 x 182kHz is
the natural linewidth. The relative detuning between the two
beams is controlled by direct digital synthesis electronics at
the subhertz level. The size of the cloud during all the atom
optics experiments is 34 um, i.e., far less than the size of
the diffraction beams. The depth of the optical lattice formed
by these beams was calibrated with Kapitza-Dirac diffraction
[17]. This method provided a depth calibration accurate at the
+2% level.

We applied diffraction pulses with temporal intensity pro-
files consisting of Gaussian rise and fall 1/e times of 7(/. =
27 ps satisfying 4wt/ = 2.5, with an intermediate flat
profile of variable extent [Fig. 2(a)]. The relative detuning §
of the lattice beams was set to match the Bragg resonance
condition § = 4Npwy... The population in each of the two
coupled states was monitored by time-of-flight absorption
imaging [Fig. 2(b), upper panel]. The fractional population
in the final state oscillates as P(t) = sinz[% jZ] Qf 2 (tdt'),
where QgNB) is the Rabi frequency for an Npth-order Bragg
process [Fig. 2(b)]. As shown in Fig. 2(c), the measured Q;?NB )
is in good agreement with the Bloch-band calculation.

Figure 2(c) also demonstrates the inadequacy of a com-
monly used [17,24-26] generalized Rabi frequency formula
first derived in [16], given by the right-hand side (RHS) of the
inequality below:

[wg]*Ne

283 [(Ng — DIP AN ang ™

Q™ < (1)
Here wg is the single-photon Rabi frequency and A is the
detuning from the excited state. The RHS is a perturbative re-
sult and therefore breaks down at large lattice depth, deviating
significantly from the measured values. It is important to note
that the standard pulse parameters used in Bragg diffraction
experiments are comfortably outside this perturbative regime,
stemming from the favoring of short pulses in experiments in
order to minimize state manipulation time in comparison to
the longer interferometer interaction times.

IV. APPLICATION TO DIFFRACTION PHASES
IN ATOM INTERFEROMETRY

The Bloch-band picture allows a straightforward under-
standing and assessment of diffraction phases in atom inter-
ferometry. In addition to the 72 band gap, the perturbation
of the lattice produces a shift 72y of the mean energy of the
two coupled states [Fig. 1(b)]. In the presence of a lattice of
depth Uy, a particular path within an interferometer is char-
acterized by a particular band number and quasimomentum g,
accumulating an additional phase during a diffraction process:

1 _
bp = / (E(q. Up) — Ef(q))dr. @)
pulse

where E; is the free-particle energy. For an interferome-
ter path at Bragg resonance during the pulse, E(1) = E; +
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FIG. 3. (a) Space-time diagram for a CI with up to 167k mo-
mentum separation between the outer paths and free evolution time,
T = 1ms. (b) Representative readout signal for the CI (20-shot
average) together with fitted sinusoid with a Gaussian envelope.
(c) Varying the peak lattice depth of the mirror pulse changes both the
diffracted fraction and the CI phase ®. The solid red lines show the
corresponding Bloch-band analysis predictions while the blue dashed
lines show the full numerical integration theory, with both methods
displaying good agreement with the data (open circles). The black
dotted line is the prediction from the RHS of Eq. (1).

hQp(t); however, away from a Bragg resonance it is the
energy of the band the path is loaded into. Bragg diffraction
within an atom interferometer thus results in differential phase
shifts between interferometer paths and can lead to an overall
diffraction phase, with important ramifications for precision
measurements [22,27,28].

We perform our experimental work on diffraction phases
in a three-path contrast interferometer (CI) [see Fig. 3(a)]
with a 7*Yb BEC source [23,27]. After release of our BEC
from the trap, atoms are first placed in an equal superposition
of three momentum-states (|+2%k), |0hk), |—2hk)) using a
short standing-wave light pulse operating in the Kapitza-Dirac
regime [17]. The three parts of the wavefunction separate
for time T after which the outer paths have their momenta
reversed by a second-order Bragg m-pulse. The three paths
are again spatially overlapped after an additional time 7. The
contrast of the resulting matter-wave interference pattern is
measured as the Bragg reflection signal of a traveling-wave
light pulse. This readout signal [Fig. 3(b)] has the oscillating
form

@1(t) + P3(2)

_ 2
S(t)=C(t)cos ( 5

- ¢2(t)>, 3)
where ¢; is the phase accrued by path i and C(¢) is an envelope
function determined by the coherence time of the condensate
source [23]. S(t) oscillates at 8wy and is sensitive to the
kinetic energy differences between the interfering paths and
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FIG. 4. Suppression of diffraction phase effects with pulse inten-
sity. Measurements of Uyd ®/dUj at the w-point for different Bragg
acceleration pulses are in agreement with the Bloch-band calculation
(curves). The pulses accelerated the outer paths from |+27ik) to
|£87k) (blue triangles), |+8%k) to |£12hk) (black squares), and
|£8hk) to |E14hk) (red circles).

thus to the photon recoil frequency, and can therefore be used
to precisely measure the fine structure constant [23]. We fit
such signals with the expression C (t,)c08? (4awyrect, + D) + So,
where ¢, is the time from the start of the readout pulse and Sy
is a vertical offset. The momentum separation between outer
paths during free evolution can be increased to nfik by the
insertion of acceleration pulses [Fig. 3(a) shows n = 16] with
the resulting CI phase & = %nza)mT + Dyfreer. Diffraction
phase effects are contained in @, Which we study by keep-
ing T fixed and monitoring ® for varying diffraction pulse
parameters. All acceleration pulses used in this work are either
second- or third-order Bragg pulses with Gaussian-shaped
temporal profiles and are incorporated into the theoretical
model as integrals over a time-varying Uy(¢) in Eq. (2).

As shown in Fig. 3(c) for the Bragg (second-order) mirror
pulse, both the observed phase and the population oscillation
are captured well by the Bloch-band model. While paths 1
and 3 acquire diffraction phase according to Ny = 2, path 2
remains in the lowest band. The observed subunity diffraction
efficiency at the -point (where the 7 -pulse condition is met)
is due to the small but finite velocity width of the sample,
which is not included in the model.

Since interferometry experiments are sensitive to diffrac-
tion phase through intensity noise (i.e., shot-to-shot variations
in Up), we characterize its effect using the measured quantity
UydP/dU at operating conditions, which for the CI geometry
are m-pulses for both mirror and acceleration optics. This
quantity serves as a good figure of merit for the typical
situation where the uncertainty in depth scales with Uj, since
it normalizes the phase fluctuations at each depth. From data
sets similar to Fig. 3(c), we determine the slopes at these
m-points for several different pulse parameters of second-
and third-order Bragg acceleration pulses (see Fig. 4) and
find good agreement with the Bloch-band theory. When the
momentum separation between the paths is large compared to
recoil (i.e., multiband separation), this quantity becomes neg-
ligible except for the path(s) undergoing the Bragg transition.

Our analysis of diffraction phases in the Bloch-band picture
shows that 2 /Q2z monotonically decreases with lattice depth
in Bragg diffraction for Ny > 1 [see Fig. 7(b) in Appendix
C]. This is the reason for the observed decrease of Uyd® /U,
with increasing Uy in Fig. 4.

This result points to an important consequence for preci-
sion interferometry: for high-order Bragg diffraction as com-
monly used for large-momentum-separation interferometers
[23,29], diffraction phase effects are minimized by operating
at as high a lattice depth as possible, as long as additional
states are not populated by the process. This can be understood
as the slowed growth of ©p with Uy from the level repulsion
of higher energy states (see Appendix C). Another result of
our analysis is that the diffraction phase can be significantly
modified by the presence of other interferometer paths in a
nearby band [see Eq. (3)] as can be seen in the difference
between the red and blue data points in Fig. 4. This method
can be used to greatly suppress the diffraction phase effect
(see blue data point at 27 recoils in Fig. 4). We can also see
that certain interferometer geometries are immune to diffrac-
tion phases from the symmetry of pulse application, e.g.,
the symmetric Mach-Zehnder. However, interferometers that
measure the recoil phase accrued between paths are generally
sensitive to diffraction phases [15,23,27,28].

V. DETERMINING BAND STRUCTURE FROM
INTERFEROMETER PHASE

While the earlier discussion is mainly focused on the
application of the Bloch-band picture at avoided crossings,
the picture applies equally well to all other points in quasimo-
mentum space. This approach to atom diffraction and inter-
ferometry can thus naturally lend itself as a tool to determine
band structure due to some unknown periodic potential. The
transient presence of some unknown optical lattice manifests
as an interferometric phase shift with different interferometer
paths evolving phase according to the band number and quasi-
momentum into which they map. By varying these quantities
with the atom optical elements of the interferometer, the
complete band structure due to the unknown potential can be
determined.

A clean implementation of this tool is furnished in the CI,
modified as shown in Fig. 5(a). For demonstration purposes
we determine the ground band structure in a sinusoidal optical
lattice with Gaussian temporal shape and 4w/ = 2.5.
The value of quasimomentum ¢ in the standing-wave frame
is chosen by precisely controlling the relative detuning of
the counterpropagating lattice beams in the laboratory frame.
During the pulse, the middle path is in the bottom band (band
0) and the outer paths are in bands 7 and 8. Diffraction phase
accrued by the outer paths is negligible compared to that
accrued by the middle path. Figure 5(b) shows the measured
CI phase at g = 0 for various lattice depths, in good agreement
with the band theory prediction [30]. As we vary ¢g at a fixed
depth, the measured CI phase converted to an energy shows
the characteristic ground band dispersion [Fig. 5(c)].

The data presented in Fig. 5(c) were obtained through
a series of experiments in which a nondiffracting lattice is
applied within the interferometer at a time highlighted (red
stripe) in Fig. 5(a). Because the relative detuning of the two
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FIG. 5. (a) Space-time diagram for band structure measurement
with a modified n = 16 CI. This is identical to Fig. 3(a) except for
the additional pulsed lattice (dark red stripe) which imparts the band
structure to be determined. (b) CI phase at g = 0 for various lattice
strengths. (¢) The ground band dispersion in a sinusoidal lattice from
diffraction phase measurements. The solid line corresponds to the
theoretical dispersion for a lattice depth of 6.5/iw;e..

lattice beams was chosen such that the middle interferometer
path loaded into the bottom band, the other paths—having
been accelerated—were loaded into much higher bands and
thus contributed negligibly to the total CI phase. The quasi-
momentum g in the standing-wave frame could then be varied
and any phase shift would be an observation of the lattice
energy dispersion. The adiabaticity criterion prevents turning
on a lattice at g near the Brillouin-zone edge without loading
into a superposition of the bottom band and the first excited
band. To measure the energy shift at a particular ¢ value in
only the bottom band, we developed the following procedure:
First we adiabatically turned on a lattice at ¢ = 0, reaching a
depth of 6.5hw. over 150 us with a cubic spline temporal
shape. Next we linearly ramped the relative detuning between
diffraction beams for 56 us until we reached ¢ = —0.957k.
Then we swept the relative detuning at the same rate in
the opposite direction, stopping at the desired g for 100 us,
and eventually reaching g = +0.95%k. Finally, the relative
detuning was brought back to zero and the lattice turned off
with the same cubic spline shape.

This method thus allowed us to directly measure the
diffraction phase ®p as a function of quasimomentum. In
accord with Eq. (2), we converted @, to an energy shift and
then added the calculated free-space energy at each g to obtain
the ground band dispersion. In the experimental sequence the
diffraction phase acquired during each intensity ramp and
frequency ramp was common for all experimental iterations
and resulted in a uniform offset phase in the experiment.
This became an energy offset in the measured ground band
dispersion, which we determined by fitting with one free
parameter (the constant offset) to the calculated ground band
energy dispersion for a 6.5/iw-depth lattice. The obtained
ground band dispersion determined from the data in this
way shows good agreement with the theoretical calculation
[Fig. 5(c)].

VI. DISCUSSION AND CONCLUSIONS

We have investigated a Bloch-band approach to analyzing
atom diffraction and interferometry. Theoretical results for the

amplitude and phase associated with standing-wave diffrac-
tion show good agreement with measurements for arbitrary
lattice strength. Significantly, our results span a range of atom
optics parameters that extend beyond the weak lattice regime
and are thus of practical importance for current atom interfer-
ometry experiments. While analytic formulas for diffraction
amplitude are known from earlier work [16,17] and their in-
adequacy beyond the weak lattice limit is recognized [21,24],
our results constitute an experimental study and its accurate
analysis at arbitrary lattice depth. We have demonstrated the
validity of a Bloch-band approach to diffraction phases by
direct comparison to interferometric phase shifts. Our work
also points out general methods to control diffraction phases,
an important systematic effect in precision measurements.
All our results, presented as scaled to recoil frequency and
momentum, are generally valid for all atom diffraction and
interferometry setups. Our interferometric method of band
structure measurement is complementary to earlier methods
[31,32] and, while demonstrated here only for the ground
band, can be extended to excited bands as well by loading
path 2 into the desired band. Furthermore, the method can
also be adapted to nonsinusoidal periodic potentials, as well
as to higher-dimensional and time-dependent (e.g., Floquet)
lattices [33].
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APPENDIX A: ADIABATICITY CRITERION

The potential from the time-varying diffraction pulse can
be written as U (x, t) = Up(¢)sin®(2kx). From the adiabatic
theorem of quantum mechanics, we can write the adiabaticity
criterion for a time-varying standing-wave amplitude Uy(¢) as

1 90U,
— 2 < AE(Q)/h,

Al
Uy ot (AD)

where AE(q) is the energy separation from the eigenstate
nearest to our two states of interest. For the typical experi-
mental situation of a pulse with smooth rise and fall times
with width t resonant with an Ngth-order Bragg process, the
adiabatic criterion gives T > 4(N,;711)wm ~ gy for Ng > 1,
where wyec = Erec/h is the recoil frequency. For Ng = 1, T >
Sa}m. The adiabatic criterion then is equivalent to being in the
Bragg regime of diffraction where states other than the two
coupled ones are not populated.

The Doppler width from the finite velocity spread Awv
of the atomic source introduces another important timescale
and the corresponding mandate of 7 K ﬁ is met by using
subrecoil clouds of atoms. Additionally, practical considera-
tions in atom optics applications put a premium on diffraction
pulse times seeking to minimize this in favor of interferometer
interaction times. It is thus critical to test the regime of validity
of the Bloch-band picture of atom optics in the regime t 2>
m, or a “quasiadiabatic” regime.

We perform this test by comparing the results for a
Bragg m-pulse evaluated by the Bloch-band picture and a
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Solid lines show the result of the Bloch-band approach while the
thick dashed lines show that of a full numerical integration in the
free-particle basis. The two approaches maintain good agreement
within the quasiadiabatic regime (see text). We note that the phase
shift is common to the initial and the final states.

numerical integration of the problem in the free-particle basis,
as described in earlier work [27] and summarized below. We
use Gaussian pulses with different 1/e radii and observe (see
Fig. 6) that the two calculations agree in both population and
phase for timescales comfortably satisfying the adiabaticity
criterion as well as into the quasiadiabatic regime convenient
for and usually utilized in experiments. The signature of
breakdown of the Bloch-band picture is simultaneous with
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FIG. 7. (a) The frequency €2p associated with the diffraction
phase plotted as a function of lattice depth for the four lowest level
crossings in the band picture corresponding to the four lowest Bragg
diffraction orders. (b) The corresponding variation of 2p/S2g. The
behavior of (c) 2p and (d) Q2% for large lattice depths.

the observation of reduced diffraction efficiency (see green
curves corresponding to the shortest pulses for Ng = 1-4 in
Fig. 6)—a straightforward experimental diagnostic—making
the Bloch-band picture ideally suited for light pulse atom
diffraction and interferometry. As expected, adiabaticity is
restored for larger Ng with the peak diffracted fraction for
the shortest pulses calculated by numerical integration in the
free-particle basis (dashed green lines) reaching 0.92, 0.97,
and 0.99 for Ng = 8, 12, and 16, respectively [the Ng = 16
case is shown in Figs. 6(e) and 6(j)].

APPENDIX B: FULL NUMERICAL INTEGRATION

For the full numerical simulation, we project onto
a momentum-space basis {...,|2%k, g), |iik,e), |Ohk, g),
|—hk,e),|—2hk, g) ...}, where the minimum and maximum
momenta are chosen by testing for convergence. For the pur-
poses of this discussion, we truncate to five states [34]. While
this basis contains both ground and electronically excited
states, we find that the results do not depend on the detuning,
A, of the diffraction beams from the ground to excited state
resonance, so long as the same two-photon Rabi frequency
[w3/(2A)] is used. Utilizing the rotating frame approximation
and transforming to the dressed-state basis gives a Hamilto-
nian of the form

Ahiwree L 0 0
bor e, —hA M 0 0
0 har 0 hox 0
0 0 b e —hA - Ter
0 0 0 LS Hiwrec

043611-6



BLOCH-BAND PICTURE FOR LIGHT-PULSE ATOM ...

PHYSICAL REVIEW A 100, 043611 (2019)

We numerically integrate to obtain the time evolution
operator U for the full diffraction pulse and then extract
the diffraction phase as the phase of the transition matrix
element between two states of opposite momentum. For ex-
ample, to simulate an N = 2 pulse, the phase of the matrix
element (2fik, g| U |—2hk, g) is compared to the phase of
(Ofik, g| U |0fik, g), as would be the case in an interferometer.
For extracting the diffraction phase of a single state we
compare to a much higher momentum state (e.g., 16/k higher
momentum), which should have negligible diffraction phase,
and then confirm that neighboring high-momentum states
give the same results. This removes effects from momentum-
independent ac Stark shifts.

APPENDIX C: PERTURBATIVE SCALINGS FOR
DIFFRACTION PHASE AND DEEP LATTICES

The behavior of the diffraction phase can be straightfor-
wardly determined analytically in the limit of low lattice
depth. Here, Q2 can be taken to be the RHS of Eq. (1)
in the main text, which is inversely proportional to the

m-pulse time. 2 is determined in second-order perturbation

by the first (two-photon) off-resonant transition. For Ng > 1,

2 2
op\2_ 1 _ WU/h) .
Qp & (F) o = N For the simple case of square

pulses, ®p x g‘lz , and this proportionality also indicates the
behavior of ®p for a general pulse shape, with appropriate
integration over the temporal profile of the diffraction pulse.

& L Uo/h 2—Np ] 1 —
Thus, ®p G X Ns( o ) . Qp is negative for Ng = 1,

and ®p x —NLB(I(]U“TT)z’N”. This behavior can be seen in the
weak lattice limit of the curves in Figs. 7(a) and 7(b).

At larger lattice depth, the behavior deviates significantly
from the perturbative expressions with p exhibiting a lo-
cal maximum for all Bragg processes except Ng = 1 [see
Fig. 7(c)]. The locations of these maxima are in the diabatic
regime for Bragg m-pulses.

The deep lattice behavior of the Rabi frequencies or band
gaps is shown in Fig. 7(d). We note that in the limit of
large lattice depth, the Rabi frequencies of all Bragg orders
approach the values for the band gaps in the tight-binding
limit corresponding to the harmonic oscillator spacing of

2/ Upwrec [ hi.
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