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Excited-band Bloch oscillations for precision atom interferometry
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We propose and demonstrate a method to increase the momentum separation between the arms of an atom
interferometer and thus its area and measurement precision, by using Bloch oscillations (BOs) in an excited band
of a pulsed optical standing-wave lattice. Using excited bands allows us to operate at particular “magic” depths,
where high momentum-transfer efficiency (>99.4% per hik, where ik is the photon momentum) is maintained
while minimizing the lattice-induced phase fluctuations (<1 mrad per k) that are unavoidable in ground-band
BOs. We apply this method to demonstrate interferometry with up to 407k momenta supplied by BOs. We discuss
extensions of this technique to larger momentum transfer and adaptations towards metrological applications of
atom interferometry such as a measurement of the fine-structure constant.
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I. INTRODUCTION

Bloch oscillations (BOs) describe the periodic motion of a
particle in a lattice responding to a constant force. While this
behavior emerged as a fascinating prediction of the Landau-
Zener theory of electron conduction in an ionic lattice in the
presence of an external electric field [1,2], BOs remained
only a theoretical construct until first observations in semi-
conductor superlattices [3]. Clean observations of BOs in
neutral systems soon after, using ultracold atoms in an optical
lattice [4-6], provided an early benchmark for the use of
trapped atomic gases as quantum simulators for condensed-
matter systems. Following this early work, BOs have been
adapted into the atom-optics community as a high-efficiency
momentum-transfer tool [7-10] and have been fruitfully uti-
lized in metrological applications ranging from testing quan-
tum electrodynamics [11,12] to measuring local gravity [13]
to testing the equivalence principle [14].

The benefit of high efficiency in transferring momentum,
which has been instrumental in ground-band BO based atom-
optics applications, comes at the cost of uncontrolled phase
shifts on the atomic wave function due to fluctuations in the
lattice potential strength. This has limited the use of BOs as
beamsplitters within phase-stable atom interferometers (Als)
to relatively low momenta in earlier free-space geometries
[15-17].

In this paper, we propose and demonstrate excited-band
Bloch oscillations within an atom interferometer as a tool for
precision measurement which simultaneously exhibits high
efficiency and low lattice-induced phase noise. Our proposal
is based on the observation that, unlike in the case of the
ground band, BOs in an excited band when performed at a
particular “magic” depth become relatively immune to lattice
strength fluctuations. We experimentally establish our magic
depth hypothesis for multiple excited bands by examining
BO-induced phase shifts on one arm of a Mach-Zehnder
interferometer (MZ) operated on a Bose-Einstein condensate
(BEC) atom source. Our implementation is capable of high-
efficiency momentum transfer (>99.4% per /ik where 2k is
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the lattice wave number) at these regions, allowing for inter-
ference signals with 40k momenta supplied by BOs to one Al
arm. Our results point to significant potential improvements in
precision interferometric measurements of the fine-structure
constant & and a concurrent test of quantum electrodynamics,
and can also impact other Al applications such as gravity
measurements.

We first explain our magic depth hypothesis by considering
the lattice-induced phase shift in a Brillouin-zone picture
where BOs correspond to the periodic oscillation of the quasi-
momentum as it gets Bragg reflected at the zone boundary
[Fig. 1(a)]. Such a Bloch-band picture is also useful for the
analysis of Bragg diffraction processes from pulsed lattices in
atom-optics applications [18]. For the linear rate of change of
quasimomentum g relevant to BOs, it is useful to consider the
average (E) of the energy E for a particular band taken over
one Brillouin zone (from g = —7#k to +hk). These are shown
for the first three bands in Fig. 1(b). The average energy (E)
of the ground band is always negative and results in the atomic
phase being strongly sensitive to unavoidable intensity fluctu-
ations of the optical lattice. This behavior can be understood
as arising from level repulsion in second-order perturbation
from higher-lying bands. On the other hand, every excited
band is repelled by bands both above and below. The quadratic
free-space dispersion leads to a positive shift of (E) at low
lattice depths, since the adjacent lower band is closer in energy
than the adjacent higher one. At high lattice depths, these
energy separations start to become comparable and the larger
number of higher-energy bands results in a negative shift
of (E). A key observation from the Brillouin-zone picture
that is central to this paper is that the average energy in an
excited band must feature one local maximum as a function
of lattice depth. When operated at this magic lattice depth,
excited-band BOs feature phase shifts on the atomic wave
function that are first-order insensitive to lattice-induced Stark
shifts.

The rest of this paper is organized as follows. After dis-
cussing relevant technical details of the experiment in Sec. II,
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FIG. 1. (a) Bloch bands (solid lines) for a sinusoidal optical
lattice with a representative depth of Uy = 10 E,, where E, is the
recoil energy. The atomic energies are computed by diagonalizing
the Hamiltonian with 51 states from |—507%k) to |+50%k) in steps
of 2nhk, where 7ik is the photon momentum. Dotted lines represent
the quadratic free-space dispersion. (b) The average energy over one
Brillouin zone (from g = —7hk to +/ik) of the ground and first two
excited bands (E). The magic depth for each excited band is at its
respective local extremum. The ground band does not exhibit any
magic depth feature.

we demonstrate the differences between ground- and excited-
band BOs in Sec. III. In Sec. IV we demonstrate the magic
depth property of excited-band BOs using interferometry in
a Mach-Zehnder geometry. We discuss our implementation
of large momentum transfer (up to 40/k) within an Al using
magic depth excited-band BOs in Sec. V, and also investigate
their scalability towards larger numbers of BOs. Finally, we
provide a summary and outlook for future applications in
Sec. VL.

II. ATOM SOURCE AND LATTICE BEAMS

Similar to earlier work [18,19], we perform our experi-
ments with '7*Yb BECs consisting of 10° atoms, formed by
evaporative cooling in a 532-nm optical dipole trap. After
BEC production, the atoms are released from the trap and
allowed to expand for 3 ms before the first application of a
pulsed optical lattice.

To create the optical lattices for our BOs and other diffrac-
tion pulses, we use two counterpropagating horizontally ori-
ented laser beams which are detuned by A from the inter-
combination transition ('Sy — 3P;) at 556 nm which has
linewidth I' = 27 x 182 kHz. For all experiments reported in
this paper, A/T" = +3500 or 41300, and its value is noted
with each data set presented. The lattice beams have a waist of
1.8 mm, which is large compared to the size of the atom cloud
(<30 um). A small (sub-MHz) relative frequency § between
the two lattice beams is controlled at the sub-Hz level using
direct-digital synthesizers as the radio-frequency sources to
drive the corresponding acousto-optic modulators.

Two kinds of pulsed lattices are used in this paper. In
one, a trapezoidal temporal intensity profile is used for the
BO pulses in which the lattice is first turned on with an
increasing intensity ramp to the desired depth Uy. The value
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FIG. 2. (a) Ground-band and first-excited-band Bloch state tra-
jectories during a BO at Uy = 13.6E,. For the ground band, the
atom starts at 1, traverses the avoided crossing at ¢ = —1/ik, gains
2hk in laboratory-frame momentum, and continues to move at that
momentum for the duration of the BO (2 and 3). For the excited-band
BO trajectory shown (4-6), an atom’s laboratory-frame momentum
increases by 47k as it moves past the ¢ = 0 avoided crossing from 4
to 5, then decreases by 27k at the ¢ = —17ik avoided crossing, such
that it has a net laboratory-frame momentum gain of 2%k by the time
it reaches 6. The mean atomic momentum is plotted as a function
of sweep time (corresponding to a particular final detuning for a
fixed §) for an atom undergoing a partial sweep through the Brillouin
zone in (b) the first-excited band and (c) the ground band. Insets
in (b) and (c) show representative time-of-flight absorption images.
A/T is 43500 and the frequency sweep & is 27 x 83 kHz/ms for
all the data. The intensity ramp times are 300 us for (b) and 600 s
for (c).

of § during this turn-on process is chosen to place atoms
into desired quasimomenta in the lattice frame. A frequency
sweep & at fixed depth Uy then provides the external force
for the BO, following which the lattice is turned off with a
decreasing intensity ramp. Atoms undergo Bloch oscillation
with period Tgo = Swrec/8 during the frequency sweep where
hwee = E, = hzkz/(Zm) is the recoil energy and m is the
mass of the atom. In order to load stationary atoms into
a particular band, the initial relative detuning is chosen as
8 = (b + 0.5)4w.ec Where b is the band number (b = 0 is the
ground band). This ensures lattice loading at quasimomentum
q = +(—)0.5%k, for b = odd (even), away from band gaps to
avoid interband transitions. To load moving atoms into a par-
ticular band, the initial § is adjusted to meet this condition in
the atom frame. The timescales of the two intensity ramps are
equal and chosen to always satisfy the adiabaticity criterion
U%'%' <K |AE|/h where AE is the energy separation from
the eigenstate nearest to the state of interest.

The second kind of pulsed lattices in this paper are Bragg
diffraction pulses with Gaussian temporal profiles character-
ized by rise and fall 1/e times ~ 30 us [18]. For these pulses,
§ is kept at a constant value of 4Ngwy.. to match the resonance
condition for an Npth-order Bragg process [18]. Example
intensity profiles of both kinds of pulsed lattices can be found
in Fig. 3(a).
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FIG. 3. (a) Space-time diagram of the Mach-Zehnder interfer-
ometer (to scale) showing the upper and lower arms (purple and
pink lines, respectively) and atom-optics sequence (green line) for
one BO in either the ground or excited band applied to the upper
arm. The purple (pink) highlight indicates that a particular pulse
affects the momentum of the upper (lower) arm. Pulses which affect
the momentum of both arms are highlighted in gray. (b) Repre-
sentative interferometer signal for one BO in the first-excited band
(Up = 11.2E,). Each data point is the average of three population
measurements. The solid line is the best-fit sinusoid. (¢) Same as
(b) but for b=0 and Uy = 9.7E,. (d) The interferometer phase
shift as a function of lattice depth for one BO in the ground band
(red filled circles) or first-excited band (blue filled triangles) shows
good agreement with Bloch-band calculations (solid lines) for ®go
[Eq. (3)]. (e) Visibilities of the interferometer signals for » = 1 and 0.
The BO parameters are A/T" = 41300, §=2m x 83 kHz/ms, and
intensity ramp times of 300 us for all the data in this figure.

III. BLOCH OSCILLATIONS IN GROUND
AND EXCITED BANDS

To illuminate the differences between ground- and excited-
band BOs, we first present how the atomic momentum.evolves
during such BO processes. The frequency sweep § corre-
sponds to the atom changing its quasimomentum in the lat-
tice frame. In its quasimomentum trajectory, as an atom ap-
proaches and moves past an avoided crossing while remaining
in the same band, its momentum in the laboratory frame
changes in even units of %k [see Fig. 2(a)]. Thus, an atom can
be accelerated to large values in the laboratory frame using
several cycles of BOs.

In the case of ground-band BOs, laboratory-frame ac-
celeration occurs only when an atom traverses the avoided
crossing at a Brillouin-zone boundary at g = F 1%k, where the
quasimomentum changes from F1%k to £1kk. In an excited
band, in addition to the g = F1/k crossing, there is another
avoided crossing at g = 0. Thus, in excited-band BOs, an

atom changes its laboratory-frame momentum twice during
one Bloch period. However, the total change in the laboratory-
frame momentum is always +[2(b + 1)hk — 2bhk] = £2hk
for one Bloch oscillation.

This behavior can be seen in Figs. 2(b) and 2(c) where
the laboratory-frame momenta during Bloch oscillations in
the ground- and first-excited band are shown for frequency
sweeps with varying final quasimomenta. The final momen-
tum distribution was measured using time-of-flight absorption
imaging. The average momentum computed from these im-
ages shows the differences between the ground- and excited-
band BOs described above.

For applications in Als, a high efficiency of Bloch os-
cillation is desirable, which in turn provides high-efficiency
momentum transfer to an atomic wave packet. As the quasi-
momentum is swept using §, atoms can tunnel to other bands
at the locations of avoided crossings, potentially making the
BO process inefficient. The Landau-Zener model gives this
tunneling probability as

7Q?
Pz = exp(—%) (D

where /€2 is the band gap at the avoided crossing and 8 is the
higher of the two band numbers participating in the avoided
crossing [20,21]. P, increases when the band gap is reduced
or when the quasimomentum is swept faster. To successfully
perform a high-efficiency BO, P,z must be small. Even though
there are two avoided crossings for each excited band, the one
at g = 0(£hk) will always be smaller for b odd (even) and will
have a greater contribution to tunneling loss during a BO. For
the parameters of the data in Fig. 2, Pz ~ 107% (1072°) for
the loss probability during one BO in the first-excited (ground)
band.

IV. MAGIC DEPTH BLOCH OSCILLATIONS
IN EXCITED BANDS

To verify the magic depth hypothesis and explore its ap-
plicability in interferometry, we systematically applied BOs
in one arm of a MZ and analyzed the resultant phase shifts
(Fig. 3). The basic beamsplitter-mirror-recombiner pulses of
our MZ consist of 7 /2 — & — 7 /2 third-order Bragg pulses
coupling states |0) and |6/ik).

We first compare the effects of phase shifts from a BO
in b =0 with that in b = 1 within the MZ. The BO pulse
is applied on one arm [upper one in Fig. 3(a)] during the
first half of the MZ, immediately following the beamsplitter
pulse, accelerating the upper arm from the state |6/ik) to the
state |(n + 6)hik). After a short free evolution time [10 us in
Fig. 3(a)], this arm is then decelerated back to |6/ik) with a
Bragg m pulse of order n/2 (n = 2 in the figure). The mirror
pulse then swaps the momenta of the upper and lower arms. In
the second half of the MZ, the |67ik) (lower) arm is accelerated
to |(n + 6)fik) using a Bragg  pulse, and is allowed to evolve
for some time [630 us in Fig. 3(a)] before being decelerated
back to |6fik) with another Bragg m pulse. A final 7 /2
recombiner pulse is applied when the two arms overlap and
the population in each momentum state is measured using
time-of-flight absorption imaging. As the phase ¢, of the
recombiner pulse is varied, the fractional population fgs in
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the |67ik) state oscillates sinusoidally [see Figs. 3(b) and 3(c)].
The phase @ of this oscillation is the difference in the phases
accrued by the two interferometer arms. We determine this
MZ phase by fitting a sinusoid function and observing its
behavior as a function of the BO pulse depth U for the ground
and excited bands [see Fig. 3(d)].

The depth dependence of the MZ phase is well explained
using our Bloch-band model. During the BO pulse, each
interferometer arm is in a particular band of the lattice. As
the depth Uy is varied, the band energies change, resulting in
a phase shift on each interferometer arm given by

h

which is the difference between the band energy
E(q(t),Up(t)) and the free-space energy Er[q(t)], where
Up(t) and ¢(t) are determined by the parameters of the BO
pulse. During the BO pulses, the phase accrual for each
arm can be organized into contributions from the intensity
ramps and the frequency sweep. Since the final MZ phase
is the difference between phases accrued by each arm, the
interferometer phase shift due to a BO pulse can be written as

Do = P11+ D1, — P21 — o 3)

where ¢, ; is the phase accrued by arm i [where i = 1 (2) is
the upper (lower) arm in Fig. 3(a)] during the intensity ramp
and ¢; s is the phase accrued by arm i during the frequency
sweep. Each of these phase shifts is calculated using Eq. (2).

It is important to note that the nonaccelerating arm during
the BO process [lower arm in Fig. 3(a)] can make a non-
negligible contribution in the evaluation of ®po. However,
since this arm is always in a higher band determined by
its speed relative to the lattice frame, it performs Landau-
Zener tunneling transitions across relatively small band gaps
(PLz ~ 1) at each avoided crossing during the BO. Thus the
laboratory-frame momentum of this interferometer arm does
not change during the frequency sweep.

Figure 3(d) demonstrates that in the first-excited band
(b =1) there is a local maximum corresponding to a magic
depth at Uy >~ 10E,, while the ground band (b = 0) exhibits
monotonic behavior. Our observations are well matched by
our calculations based on the Bloch-band picture.

In addition to demonstrating the existence of the magic
depth, Fig. 3 also shows the usefulness of this property for
Als, as evidenced in the signal quality for b =1 versus
b = 0 [Figs. 3(b) and 3(c)]. We define the visibility of such
signals as Vis = ﬁii +ﬁ$ x 100%, where Max and Min refer
to the maximum and minimum of the fitted sinusoid. As
shown in Fig. 3(e), the visibility for b = 1 is around 80%,
dramatically better than the 10% level for b =0 over the
entire range of depths explored. As another measure of the
difference in signal stability and corresponding applicability
for interferometry, the error in the fitted phase §® is 0.073 rad
for b =1 and 1.4 rad for b = 0, averaged over the presented
data sets. These observations clearly show the high sensitivity
of interferometer phase noise to lattice intensity fluctuations
in ground-band BOs. Furthermore, the visibility for the b =
0 data trends downward with increasing depth [Fig. 3(e)],
consistent with an increased value of Uo| [Figs. 1(b)
and 3(d)] leading to greater phase noise.

1
! / LE(ql0), Uoo) = Ey o), @)
pulse

0 10 20 30 0 20 40 60

UO/Er UO/Er

FIG. 4. Magic depths observed as maxima in Mach-Zehnder
interferometer phase shifts as functions of depth for excited-band
BOs. (a) Data for the first-excited band for zero (purple triangles),
one (blue circles), and two (green squares) BOs together with the
Bloch-band calculations (solid lines). Note that the “1 BO” data
are the same as in Fig. 3(d). The dashed line marks Uyp (see
text). (b) Interferometer phases for BOs performed in the second
(yellow) and third (black) excited band. The BO parameters are
A/T = 41300, § = 27 x 83 kHz/ms, and intensity ramp times of
300 us for all the data in this figure.

The magic depth property is ubiquitous to excited-band
BOs and we demonstrate its existence for different numbers
of Bloch oscillations as well as for different excited bands. In
Fig. 4(a) we present measurements of depth-dependent MZ
phase shifts for different numbers of BOs performed in the
first-excited band. For these measurements, an interferometer
geometry similar to Fig. 3(a) was used with either zero,
one, or two BOs (corresponding to n =0, 2, 4) performed
in b =1 in the first half of the MZ, using different ranges
for the frequency sweep. In the zero BO (n = 0) case, only
the intensity ramps were applied during the BO pulse on the
upper arm in the first half of the MZ and no acceleration or
deceleration pulses were applied on the lower arm during the
second half. As can be seen in the figure, there is very good
agreement between our theoretical model and experimental
observations.

We define Uyp as the value of Uy at which the condition
‘3,)(5 = 0 is satisfied. Thus Uyp for a particular band is inde-
pendent of experimental parameters, as shown in Fig. 1(b).
In actual experiments, however, the intensity ramps necessary
to maintain adiabaticity lead to depth values for the condition
3;;}30 = 0 being higher than Uyp. This can be seen in Fig. 4(a)
as the position of the local maximum approaching the dashed
line marking Uyp for b = 1, as the number of applied BOs
increases. Thus Uyp corresponds to the limiting value of the
magic depth as the number of BOs increases and the intensity
ramp time becomes insignificant compared to the frequency
sweep time.

Another feature of the plots in Fig. 4(a) is that they cross
each other at Uy =~ 17 E,. This corresponds to the depth where
the average band energy is equal to the average free-space
(Uy = 0) energy [see Fig. 1(b)], and ®po in Eq. (3) only has
contributions from the intensity ramps, which are the same for
all the data sets.

023614-4



EXCITED-BAND BLOCH OSCILLATIONS FOR PRECISION ...

PHYSICAL REVIEW A 101, 023614 (2020)

b=2 . b=2

o 80 =

3 L;s

o 0.6

Ll 60+

8 0.51

o 401

- (a) 0.4 (b)
20+

1 2 0 5 10
Ty, (units of 2/ _) ¢, (rad)

FIG. 5. (a) The efficiency for ten BOs in b =2 as a function
of the BO period for Uy = 27.5E,. The peak efficiency per %k of
momentum gain was measured to be 99.4%. The thick and the thin
solid lines are theoretical model curves (see text). (b) Interferometer
signal for a sequence consisting of 20 BOs in band 2 with Uy =
27.5E, and Tgo = 120 us. The solid line is the best-fit sinusoid.
A/I" = 43500 and intensity ramp times are 300 us for all the data
in this figure.

In Fig. 4(b), we present measurements of depth-dependent
MZ phase shifts for higher bands (b =2 and 3). For
these measurements, an interferometer geometry identical to
Fig. 3(a) was used and only the initial § of the BO pulse
was adjusted according to the desired band number. Our data
clearly indicate that the magic depth increases with band
number, and again we find very good agreement between our
theoretical model and experimental observations.

V. LARGE MOMENTUM SEPARATION
INTERFEROMETERS WITH EXCITED-BAND
BLOCH OSCILLATIONS

To fruitfully apply the magic depth property towards creat-
ing large momentum separation between interferometer arms,
additional criteria have to be considered. High-frequency
sweep rates are desirable to apply large momentum transfer in
a short time. Furthermore, the decoherence from spontaneous
scattering can start to play a role for large numbers of BOs.
In this section we first demonstrate, in Sec. V A, the role
of spontaneous scattering in determining optimum sweep
rates for BOs. In Sec. V B we investigate how the magic
depth BO operation parameters scale with band number b to
guide future efforts in using this tool towards high-precision
interferometry.

A. Optimum frequency sweep rate for high momentum transfer

The period of the Bloch oscillation, Tgo (equivalently
8), has to be chosen to optimize efficiency, balancing the
considerations that a short To (large §) causes more tunneling
to other bands [Eq. (1)] while a long Tgo (small §) causes
more spontaneous scattering. We demonstrate this behavior
by determining the efficiency of BOs as the fraction of atoms
in the target momentum state in time-of-flight absorption
images. The measured efficiency for a ten BOs (207k) pulse
at Uy = Ump in b = 2 as a function of T [Fig. 5(a)] exhibits
a clear maximum. The general features of our data are well

reproduced by a simple model [thick solid line in Fig. 5(a)]
incorporating P,z and spontaneous scattering in an expression
for the efficiency of n/2 BOs:

(1 = Pu)*[(1 — Piz)exp(—R,Tpo)] "2 (4)

Here P, is the spontaneous scattering probability during
each of the two identical intensity ramps and R, = % %
corresponds to the spontaneous scattering rate [22] during
the frequency sweep, and we have taken the average intensity
experienced by an atom in the standing wave to be one half of
the peak intensity. This parameter-free model reproduces our
observations quite well, exhibiting a maximum at an optimum
sweep time which we label as Tgo,opt.-

We note that while this model reproduces the observed
location of optimum efficiency it slightly underestimates the
value for the peak, which is observed to be 99.4% per k.
We can improve on the model by noting that the atomic wave
function during the BO process is not uniform but localized at
the antinodes of the blue-detuned lattice, which reduces the R,
factor in Eq. (4). Accounting for the reduced average intensity
due to the nonuniform spatial wave function produces the thin
solid line shown in Fig. 5(a), in better agreement with the data
but still slightly underestimating the peak efficiency.

In our theoretical calculations of P;; we have used the
avoided crossing value at the minimum band-gap point, given
by g = £hk for b = 2. At Uy = Uyp, the band dispersion still
has substantial curvature [see Fig. 1(a) where Uy ~ Uyp for
b = 1] and the use of Eq. (1) should be reasonably valid.

By operating magic depth BOs near the optimum time
determined in Fig. 5(a) and extending the overall MZ time,
we demonstrate stable interferometry with the application of
20 BOs (407ik) on the upper arm only. This experiment was
performed in a geometry similar to Fig. 3(a) with n = 20, but
with a decelerating BO pulse replacing the Bragg deceleration
pulse in the upper arm, allowing for a greater number of BOs
to be applied. Even though the second BO pulse reverses the
momentum transfer from the first BO pulse (with 207k each),
the lattice-induced phase shifts from both BOs have the same
sign and add. As shown in Fig. 5(b), we obtain a clear MZ
signal for these conditions. The sinusoidal fit returns a visibil-
ity of 13% and a phase error §& = 0.57 rad. Our current level
of light intensity fluctuations of <2% [19] should contribute
<40 mrad to the phase uncertainty (arising from the local cur-
vature of (E) at Uyp and detailed below) [23]. The lower vis-
ibility and higher phase noise observed in Fig. 5(b) compared
to that in Fig. 3(b) can be explained by noting that the total
interferometer time for the 20 BOs experiment was 6.7 ms,
which is more than twice as long as all other experiments
reported in this paper. The MZ geometry is sensitive to mirror
vibrations which become a significant source of phase fluc-
tuations at long interferometer times [24]. We can thus infer
that vibration noise is the principal contributor to the visibility
reduction at these long interferometer times, consistent with
other reports for vibration-sensitive interferometers [24,25].

While Fig. 5(b) demonstrates that excited-band BOs can be
used to impart large momentum transfer within an interferom-
eter, its full exploitation with the benefits of large n values will
require using an interferometer geometry that is insensitive to
mirror vibrations, such as a contrast interferometer [25,26] or
a simultaneous conjugate interferometer [27].
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UZp for the first ten excited bands.

B. Scaling of magic depth properties with band number

In order to further assess the usefulness of the magic depth
properties towards high-precision interferometry, we analyze
how these properties scale with band number. Our results
can serve as a guide in choosing experimental parameters to
simultaneously optimize for high efficiency and suppression
of lattice-induced phase noise.

Calculated Uyp values and the corresponding (minimum)
band gaps /€2 for excited bands up to b = 10 are shown in
Figs. 6(a) and 6(b). Both Uyp and A2 have the expected
monotonically increasing behavior and show approximately
quadratic and linear scaling with band number, respectively.
Even when operating at the magic depth, residual interfero-
metric phase fluctuations will arise from the local curvature
of (E) at Uyp. Since experimental intensity fluctuations are
usually a fixed percentage of the average intensity, we plot

%| ajl(/? oy X UI\Z/ID in Fig. 6(c) to elucidate this scaling. The
magic depth properties shown in Figs. 6(a)—-6(c) are common
to all systems (provided sinusoidal lattices are used) and can
be used to guide choices for experimental parameters.

As shown in Fig. 5(a), optimum BO efficiency requires
choosing an optimum BO frequency sweep rate, which in turn
depends on the choice of detuning A. Since our Eq. (4) [thick
solid line in Fig. 5(a)] already captures our observations quite
well, we use this approach to evaluate the optimum sweep
time Tpo,ope for a chosen A/T" = 10* [see Fig. 6(d)]. The
corresponding efficiency, which we take to be a conservative
estimate, remains quite high at >~ 99.5% per BO [Fig. 6(¢e)].

The expected phase fluctuations from lattice-induced shifts
L, *
21 9u¢ 'omp
Ugp % 3T50,0pt X (765)* per Jik for a relative intensity noise
of r%. The resulting plot of A® as a function of b [Fig. 6(f),
for r = 1] shows that the expected phase noise grows very
weakly with b and stays below 1 mrad per 7k for b= 1
through 10. While this may suggest that the choice of b is
not very important, the strong dependence of Tgo,op On b
favors using higher b to minimize the time for acceleration
processes and thus allows for longer free evolution time or
interaction time for interferometric sensing. Finally, we note
that the optimum choice for b for a given application will also
depend on the experimentally accessible maximum intensity
for the lattice beams [see Fig. 6(a)].

at Uyp can then be calculated as A® =27 x

VI. OUTLOOK AND SUMMARY

We have proposed and demonstrated the existence of
particular lattice depths in excited-band Bloch oscillations
where the average energy of the band is first-order insensi-
tive to lattice intensity fluctuations. Operation at such magic
depths can be maintained in combination with high efficiency
of BOs, making this property of value to precision atom
interferometry. Using experimentally confirmed operational
characteristics, we have provided projections for scaling up
of this method to very large momentum transfers. In par-
ticular, efficient momentum transfer with several hundred
BOs seems feasible with manageable (<1 rad) lattice-induced
phase fluctuation effects. Our results are presented scaled to
recoil energy and recoil momentum, and should be directly
adaptable to interferometry with other atomic species.

We can assess the improvements that this method can bring
to a fine-structure constant measurement using contrast inter-
ferometry [25]. In recent work, Bragg pulses were employed
for acceleration to an interarm momentum separation of 112
photon recoils [19] within such an interferometer. However,
the performance was limited by the efficiency of momentum
transfer, resulting in signal reduction for large momenta.
Comparing the momentum-transfer efficiency of 98.45% per
hik in [19] with the highest values in Fig. 6(e), we can conser-
vatively expect a fourfold increase in momentum separation
with magic depth excited-state BOs, leading to a 16-fold im-
provement in sensitivity to « for the same interferometer time.
By operating at Tgo,op: for b = 4 to reduce the acceleration
time, and in a vertical geometry to increase the free evolution
time, an overall improvement of more than a factor of 100 is
attainable, allowing for a sub-part-per-billion measurement of
the fine-structure constant and consequent test of QED theory.
Our excited-band magic depth BO technique may also benefit
other Al applications that currently rely on Bragg diffraction
processes for large momentum transfer including gravimetry
[28] and gravity gradiometry [29].
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