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Abstract25

Researchers using geometric morphometric methods can be confronted with a need to combine separate26

landmark configurations from the same research subjects as a more holistic description of organismal27

morphology. Combining configurations might be valid if single configurations represent separate anatomical28

structures that can change position with respect to each other or have been shown to be phenotypically29

integrated, and researchers would prefer to recognize these structures as one set, rather than multiple sets.30

However, generalized Procrustes analysis (GPA) scales separate configurations to unit size, meaning that31

in combination, some attempt to relativize the size of configurations should be made. A few recent studies32

have calculated the relative size of separate configurations in different ways but there has been no formal33

consideration for the implications of a priori judgments for how configuration sizes should be weighted,34

before the synthesis presented here. We offer a general solution for weighting separate configuration centroid35

sizes when combining them, which captures the intention of different methods thus far proposed. We also36

demonstrate that under various conditions, weighting via normalized centroid size is fraught with problems,37

and should be avoided. By contrast, an unweighted approach that seeks to maintain landmark densities38

in separate configurations provides reliable results. Nevertheless, researchers should realize that combining39

configurations creates new configurations with landmark covariances that are arbitrary with respect to any40

real anatomical features. As such, combining landmark configurations should not be a haphazard enterprise41

under any circumstances.42
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Introduction43

In recent decades, deciphering patterns of shape variation in anatomical features in evolutionary biology44

research has become the purview of geometric morphometric methods (GMM; Rohlf and Slice 1990; Adams45

et al. 2013). In GMM, anatomical shape is characterized by a set of landmarks and semilandmarks that46

represent the relative position of points, curves, and surfaces, from which non-shape variation is removed47

(Adams et al. 2013). Typically, each object is represented by a single configuration of points, and the shape48

variables that result from them may be compared statistically, or associated with other variables of interest49

(e.g., size, phylogenetic position, ecological variables, etc.). However, in some instances, the anatomical objects50

may comprise multiple structures, and each may be characterized by its own configuration of landmark points.51

For instance, researchers investigating the ecomorphology of aquatic feeding may quantify the shape of both52

the head (food capture and manipulation) and tail (swimming strategy) of organisms; in which case, each53

specimen is represented by two landmark configurations. For some hypotheses, it may be of interest to combine54

these configurations in some way to arrive at an overall estimate of morphology, especially if the separate55

configurations are shown to be integrated. However, how to accomplish this properly is rarely straightforward.56

57

The need to combine landmark configurations is generally spurred by recognizing that two or more structures58

are important components of a subject’s morphology, but the spatial relationship of the structures is not fixed.59

The aforementioned example with heads and tails of an aquatic organism portray two anatomical features60

that are likely phenotypically integrated (Klingenberg 2010; Olson and Miller 1958) but located at the most61

anterior and posterior portions of the organism, respectively, with considerable body flexibility in between.62

One might also consider two structures like the mandible and cranium of an organism, which are articulated63

but not fixed in one position, yet together are important components of an organism’s morphology associated64

with feeding (see, e.g., Adams 1999). For structures where there are common articulation points between the65

configurations, one may arrive at a common configuration by standardizing the articulation angle between66

them in a plane (Adams 1999), or a set of rotational planes in 3-dimensional space (Vidal-Garcı’a et al.67

2018). Alternatively, one could consider the configurations to be independent, in which case separate sets of68

shape variables could be acquired for analysis. Once obtained, sets of shape variables are concatenated to69

form a single set of variables, with some modification of each structure’s relative size in combination (Adams70

1999; Davis et al. 2016). This latter approach is the only viable approach if structures are not articulated.71

Landmark configurations have also been combined in data sets that have multiple 2-dimensional views of a72

3-dimensional object (e.g., Davis et al. 2016; Profico et al. 2019).73
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74

Recently, how configurations should be scaled when they are combined has been questioned (Profico et75

al. 2019). Indeed, this is an area of consideration that has not received much conceptual development for76

evolutionary biology research, other than Adam’s (1999) theoretical work for articulated structures, over77

two decades ago. In the age of high-dimensional data, whereby large numbers of scanned points might78

be acquired quickly, internally or externally, on different anatomical structures from the same organism,79

revisiting this topic is certainly warranted. In this synthesis, we explore some of the nuances of scaling80

landmark configurations for their combination, consider whether combined configurations require alignment,81

and offer some insights for researchers who might be confronted with such challenges.82

Combining landmark configurations, challenges with scaling83

We start by outlining a discipline standard; the shape of a structure as characterized by a landmark84

configuration is not precisely defined but more readily and easily defined by its difference from other85

configurations of homologous points, sensu D’arcy Wentwoth Thompson’s Theory of Transformations86

(Thompson 1917). As such, shape is the property that remains when a configuration’s size, position, and87

orientation have been rendered constant (Rohlf and Slice 1990). Generalized Procrustes analysis (GPA; Rohlf88

and Slice 1990) is the standard method for generating shape variables, converting landmark configurations to89

unit size, by dividing landmark configurations by their centroid size (the square root of the summed squared90

distances of landmarks to their centroid, Bookstein 1991), centering configurations by their configuration91

centroids, and rotating configurations through a generalized least-squares superimposition, such that variation92

among configurations is minimized. GPA has become entrenched as a fundamental method within GMM but93

any researcher who has performed GPA will attest that defining an appropriate landmark configuration94

is anything but straightforward. Realizing that a full configuration of possible landmarks might comprise95

multiple sub-configurations that would perhaps be better treated with separate GPAs makes an empirical96

challenge even less straightforward.97

98

Here we present an example with larval salamanders (Fig. 1), which clearly illustrates how combining separate99

landmark configurations might be appealing, especially more so than working with single configurations. (In100

this example, the separate sub-configurations are not fixed in terms of their spatial relationship to each other.)101

These data were originally summarized in Levis et al. (2016), and are available in the R package, geomorph102

(Adams et al. 2020). The data consist of landmarks and semilandmarks for both heads (26 points) and tails103
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(64 points) of 114 specimens. These data were digitized on whole organisms, meaning we could just perform104

GPA on single configurations including heads and tails. GPA performed (with sliding of semilandmarks via105

bending energy, see Bookstein 1997) on such configurations (Fig. 1 A-B) reveals variance in the spatial106

relationship between heads and tails that obscures shape variation that is better inferred through separate107

GPAs of these structures (Fig. 1 C-D). Clearly, combining separate configurations from separate GPAs on108

heads and tails would reduce variation found at any one landmark, owing to the separate fixation of head109

and tail positions and alignments, which would be rather difficult to manage with full organisms (whose110

heads and tails can move).111

112

[Insert Fig. 1 here]113

114

When GPA is applied to two or more structures that one wishes to combine, we assume henceforth that115

configurations have been aligned to their principal axes, such that rotational differences between configurations116

are also rendered constant (as in Fg. 1 C-D). Resulting Procrustes residuals of the ith configuration of117

a specimen’s morphology are represented in a pi × k matrix, for the p landmarks in k dimensions of the118

configuration, Zi, and these configurations can be concatenated such that, Z is a (p1 + p2 + ...+ pg) × k119

matrix for the g groups of configurations combined, per specimen. It is critical to recognize that landmark120

configurations combined in this way are new configurations. It might be troubling that the resulting set121

of landmarks will have some landmark covariances that do not correspond to a real spatial distribution of122

points on an anatomical structure but instead the arbitrary alignment of each configuration to their principal123

axes. However, if separate configurations have already been identified to have a problematic association in124

the single configuration that could comprise them, because the configurations are not fixed in position, such125

covariances would never be anatomically reliable. It is also certainly troubling that if each Zi has been scaled126

to unit size, the size of Z is g rather than 1, for each specimen. Combining configurations this way does not127

consider the relative sizes of configurations that have been combined.128

129

This concern can be alleviated by concatenating for each specimen instead, CS′

iZi, where CS
′

i is the relativized130

version of centroid size (CS), found as131

wiCSi√∑g
i=1 wiCS2

i

, (1)
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where wi are a priori weights, and the denominator is the pooled (total) centroid size of combined configu-132

rations. Relative centroid size, CS′ , ranges between 0 and 1 and when employed to scale configurations,133

producing a combined configuration, Z that is unit size. Davis et al. (2016) introduced a method similar to134

equation 1 but did not include weights and used the sum of CSi in the denominator. That approach – used135

only for two configurations – scaled configurations similarly to an unweighted version of equation 1 (all wi are136

equal) but resulting configurations actually would have a pooled CS of 2−1/2 rather than 1. (That method is137

the same as equation 1 multiplied by 2−1/2, and with wi equal to 1 for both configurations.) Profico et. al138

(2019) claimed that such an unweighted approach was not reliable, as CS will be related to the number of139

landmarks and could misrepresent the anatomical size of structures. For example, two structures of similar140

size, one with dense and one with sparse representation of landmarks, will have vastly different CS′ , and141

therefore, misrepresentatively sized configurations once combined. The solution offered by Profico et al. (2019)142

was that wi = (pik)−1/2; i.e., CS should be normalized (Dryden and Mardia 2016) prior to relativization.143

The appeal of normalized CS is that squared distances of landmarks from their centroid are averaged, rather144

than summed, in its calculation. (Note that using k in the calculation is a convention for considering the145

number of variables – rather than the number of landmarks – but when comparing multiple centroid sizes146

for data in the same dimension, is an unnecessary scalar that could be omitted.) Profico et al. (2019) also147

did not use the denominator in equation 1 in their proposed calculations, meaning all resulting combined148

configurations would be scaled as
(∑g

i=1 k
−1p−1

i CS2
i

)1/2, and thus, not the same across specimens; i.e.,149

any analysis with such configurations confounds size and shape (see, e.g., Figs. 2 and 6 in Profico et al. 2019).150

151

Alternatively, the wi in equation 1 could be adjusted by trial and error, in an attempt to produce combined152

configurations that merely seem correct in the eyes of the researcher who has a preference to how large certain153

portions of combined configurations should be with respect to others. This might not seem ideal; but neither154

is normalizing CS a general solution, as we show below.155

Normalized centroid size is not a universal solution156

The proposed solution of normalizing CS from Profico et al. (2019) was offered as a general solution,157

recognizing that objects of similar anatomical size might be described by different numbers of landmarks.158

They provided evidence using circles with uniform points on their circumference. For example, a configuration159

of 10 points (decagon) and a configuration of 100 points (hectogon) should have similar size – despite a160

10-fold difference in the number of points – if placed on the same circle, with same circumference and surface161
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area. We illustrate the concern in Fig. 2 (A-B), with CS′ calculated as in equation 1. Two configurations162

with the same number of points lying on circles with the same radius (and, therefore, same surface area)163

have the same CS′ , whether calculated via standard (unweighted) CS (SCS) or normalized (weighted) CS164

(NCS). (Note that two CS′ , each equal to 0.707 means that the pooled CS is
√

0.7072 + 0.7072 = 1.) This165

should be obvious because each point lies exactly one radius length from the configuration centroid, and166

because the points are uniformly distributed, the configuration centroids and circle centers are identical (Fig.2167

A). Whether summing squared distances (SCS) or averaging them (NCS), the equal number of landmarks in168

both sets makes two CS′ calculations unequivocally the same. However, if we change the landmark densities169

(10 landmarks for circle 1 and 100 for circle 2, both with identical surface area), we see the issue and apparent170

solution revealed by Profico et al. (2019); circles of the same surface area, characterized by a decagon and171

hectogon, respectively, have vastly different CS′ via SCS but retain matching CS′ via NCS (Fig. 2 B).172

173

[Insert Fig. 2 here]174

175

If an evolutionary study required only combining landmark configurations for objects of similar size but176

different densities, and landmarks were uniformly distributed on the object periphery, normalizing CS177

might be seen as a universal solution. However, NCS does not scale geometrically with circle size, as178

can be appreciated with Fig. 2 C. Because using NCS on circles of same size alleviates any concern179

for landmark number, the change in CS
′ is predictable with an isometric change in the size of a circle180

(for uniform points lying on the circumference of the circle). For example, if we measure CS′ via NCS181

of landmark configurations on circles with radius = 1 and radius = 2, the two CS′ calculations of the182

previous illustration change from 0.707 and 0.707 (for two circles with equal radii) to 0.447 and 0.894183

(Fig 2. C). In other words, if we double the radius, we double the relative size. If we change the second184

circle radius to 3, the CS′ calculations become 0.316 and 0.948, or thrice the relative size for the second185

circle. If we change the radius of the second circle to 4, CS′ of 0.2425356 and 0.9701425, or a scaling of186

4× is observed, consistent with the scaling of the radius. Therefore, the ratio of CS′ scales exactly the187

same as the radius, irrespective of the number of landmarks, which is actually unreasonable. The surface188

areas of the circles scale isometrically as 4×, 9×, and 16× the original surface area of π for a circle with189

radius = 1. Volumes of spheres scale 8×, 27×, and 64× for the same 2×, 3×, and 4× increase in ra-190

dius. Thus, relativization via NCS only seems reasonable if size is a first-order attribute, which is impractical.191

192

Alternatively, what if landmark density (number of landmarks per unit area) is maintained in the scaling193
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of circles? This would have no effect for NCS but have an interesting effect on SCS. If we use the same194

example of 10 landmarks for a circle with radius = 1, we would have to use 40, 90, and 160 landmarks to195

maintain the landmarks/unit area density when increasing the radius to, 2, 3, and 4, respectively. The196

ratios of CS′ via NCS, as mentioned above, are 2, 3, 4, in sequence. The CS′ via SCS for beginning and197

enlarged circles are 0.2425356 and 0.9701425 (ratio of 4, Fig. 2 C), 0.1104315 and 0.9938837 (ratio of 9), and198

0.06237829 and 0.9980526 (ratio of 16), for surface areas that increase 4×, 9×, and 16×, respectively. In other199

words, using SCS preserves a 1:1 relationship between surface area and the ratio of CS′ , for a consistent200

landmark density applied to the circles. This relationship is extended for both standard and normalized201

centroid size ratios in Fig. 3, illustrating the pathology of improper geometric scaling with object size for202

NCS. Furthermore, when combining disparately sized objects (which might be common when combining203

landmark configurations), smaller objects will always be more heavily weighted in the final combina-204

tion when using NCS, and this relationship becomes worse as disparity between circle sizes increases (Fig. 3).205

206

[Insert Fig. 3 here]207

208

Scaling issues are also exacerbated if landmarks are not distributed on the periphery of the circle. The209

initial example comparing 10- and 100-landmark configurations on circles of the same surface area gave the210

impression that NCS is not dependent on the density of landmarks. Density-independence is, however, only211

possible with circles if all landmarks lie on the circle circumference (even for real configurations, only having212

landmarks on the periphery of a structure might be impractical). This limitation can be appreciated with213

Fig. 2 D. We might expect with NCS that a landmark configuration with 8 landmarks on the periphery of a214

circle should have the same relative size as another with 8 landmarks on the periphery of a circle of the same215

size (radius and surface area). If one of these configurations has more landmarks in the interior of the circle216

(in this case, 30 uniform points on an interior circle), CS′ via SCS will indeed not match the 0.707:0.707217

expectation for the two circles of same size (0.825 : 0.566 is observed). This was the concern discussed in218

Profico et al. (2019), however, CS′ via NCS does not offer a solution but, in fact, exacerbates the problem.219

NCS inappropriately shrinks the landmark-dense configuration because of a CS′ that is much smaller by220

comparison (0.528 : 0849)! This outcome can be appreciated by greater number of landmarks closer to the221

centroid having large influence on NCS, which averages squared distances of landmarks to the centroid.222

NCS is therefore quite dependent on the density and distribution of landmarks and in certain conditions223

can produce CS′ that are unnaturally disparate, in a direction that is illogical (like making landmark-rich224

configurations exceedingly small).225
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226

This last issue can be further appreciated with another example that illustrates the effect on data following227

GPA. In this example, we simulated two configurations of points (Fig. 4). The first has 30 points uniformly228

distributed on the circumference of a circle with radius = 1 along with 8 points uniformly distributed on229

the circumference of a concentric circle with radius = 2.7. One might imagine the interior and exterior230

edges of orbital bones for this configuration. The second configuration has 8 points uniformly distributed231

on a circle with radius = 1.8. We simulated 100 cases of random multivariate normal, isotropic points232

(µ = [0, 0]; Σ = 0.1I,where I is a 2× 2 identify matrix) as residuals added to each base landmark, performed233

GPA on each subset, and combined the subsets using relativization via SCS and NCS (Fig. 4). The234

results confirm the same important point observed in Fig. 2 D: normalizing CS can arbitrarily and235

inappropriately mischaracterize the relative sizes of configurations, following GPA. The coordinates of the236

smaller configuration corresponded to a relatively larger structure after GPA (CS′ of 0.54 for the smaller237

configuration), resulting in an illogical combination of landmarks (Fig. 4 D). Using SCS appears more238

reasonable, as resulting configurations had the same rank order of size as the initial data (Fig. 4 C). We239

recognize that neither solution is perfect, if the goal is to maintain a ratio of circle surface areas. The ratio of240

relative sizes for the standard scaling of centroid size was 0.65 : 0.35 = 1.86 in this example. If densities of241

landmarks were maintained, precisely, we might expect a ratio of 2.72 : 1.82 = 2.25. While this difference242

might be troublesome (though likely minimal for statistical analyses on resulting coordinates), CS′ via NCS243

actually changed the small configuration to the large configuration (0.46 : 0.54 = 0.79).244

245

[Insert Fig. 4 here]246

247

Thus far our considerations have considered only idealized shapes (circles), with disparate densities of248

uniformly distributed landmarks. Despite the issues we have already highlighted, NCS would seem249

less practical if the number of landmarks of similar anatomically-sized objects were comparable and250

uniformly distributed. For example, if we use used 90 and 100 uniformly distributed landmarks on the251

circumference of same sized circles, CS′ via SCS of 0.688 and 0.725 would be perhaps little cause for252

alarm, not differing much from 0.707 and 0.707. Furthermore, points were equally spaced around circle253

circumferences in our examples. Uniformity could also be achieved by perfect reflection of clustered254

points, such that the configuration centroid is the same as the circle center (Fig. 5 A). In all of our255

examples, if the distributions were substituted with uniform but unequally spaced distributions as in256

Fig. 5 A, the results would be the same. Although uniform configurations with reflections of clustered257
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(but also uniform) points do not keenly resemble a circle as a shape, the center of the configuration and,258

therefore, CS, are unchanged from a configuration with equally spaced points. Uniformity is, thus, a259

property that maintains circle center, irrespective of the spacing of landmarks. The logical next question is,260

therefore, what if landmark configurations are not uniformly distributed on (the periphery of) objects? We261

can entertain this question with the same 10-fold difference in landmark number used on the same sized circles.262

263

[Insert Fig. 5 here]264

265

Goswani et al. (2019) illustrated with their simulations that increasing landmark number on an object266

increases centroid stability, a result that makes sense with respect to the Law of Large Numbers (Hsu and267

Robbins 1947). We illustrate this reality with random samples of points on the circumference of a circle268

(Fig. 5 B). When sampling 100 points, the centroid of the configuration will tend to change little from the269

circle center, but when sampling 10 points, it is more easily possible to obtain a centroid that is displaced270

from the circle center (Fig. 5 B). We have observed already that two circles, each with perfectly uniform271

landmarks (irrespective of the number of landmarks) will have CS′ each equal to 0.707, if estimated via272

NCS (or SCS if the number of points on both circles are the same). If we randomly draw 10 points on the273

circumference of a circle (say from 100,000 uniform points equally spaced around the circle circumference)274

as landmarks, we can measure its CS′ ’ in combination with the “perfect” circle of 100 uniform points as275

landmarks. The expectation from NCS might be that CS′ is 0.707 for both circles, as NCS should mitigate276

the CS′ disparity due to the difference in landmark number. Additionally, we can measure the distance of277

the centroid from circle center as a measure of disuniformity, as a large distance can only be achieved by278

points clustered disproportionately on one side of a circle. We simulated 100,000 such configurations from279

circles (radius = 1, p = 10 landmarks, see Fig. 5 A-B), which revealed that CS′ decreases in a predictable280

manner with increased disuniformity (Fig. 5 C). CS′ via NCS decreased at a higher rate than CS
′ via281

SCS, indicating that larger departures from uniformity were more profound for NCS. Again, this example282

elucidates that NCS cannot universally mitigate concerns about disparate landmark densities and CS′ via283

NCS is indeed dependent on the density and distribution of landmarks. The same is true for CS′ via SCS,284

but NCS has been proposed as a solution to these issues (Profico et al. 2019).285

286

Our examples illustrate that CS′ for configurations are always going to be dependent on the distribution and287

density of landmarks, and that an attempt to weight CS (equation 1), using NCS, rather than an attempt288

to maintain landmark densities might incur some undesirable issues. We summarize three important points.289
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First, normalizing CS can arbitrarily and inappropriately mischaracterize the relative sizes of configurations.290

This was most apparent in the example in Fig. 2 D and Fig. 4. In these examples, the high density of interior291

landmarks of one configuration caused it to be exceedingly small in CS′ via NCS, while SCS produced CS′
292

that were comparatively more logical with respect to circle size. This result is the complete opposite of the293

expected solution of NCS to mitigate CS′ disparity due to disparity in the number of landmarks. Second,294

using NCS does not mitigate disparity in CS′ for landmarks that are not uniformly distributed around the295

object’s periphery. Based on the results shown in Figs. 2 D and 5, one has to wonder if they must first296

confirm that they only have essentially uniform points, and only on an object’s periphery before using NCS297

as a weighting method for calculation of CS′ . Third, the ratios of CS′ do not scale logically when combining298

configurations for structures of different size, as we showed in Fig. 3. This example illustrates that if at299

all possible, maintaining landmark density among configurations might be a better method for assuring300

appropriate relative sizes of configurations than attempting to fix the disparity in landmark densities by301

weighting centroid sizes. We recognize that without having true measures of anatomical surface area or302

volume, maintaining landmark densities (other distributional considerations, notwithstanding) is not really303

possible. However, either recognizing 10-fold differences in landmark numbers or mitigating such differences304

with additional landmarks in depauperate configurations should not be insurmountable challenges in most305

cases.306

307

One might conjecture, especially with the panoply of evolutionary examples that could be considered, that308

finding contrived, extreme examples is sure to reveal atypical results. However, the probative example of309

Profico et al. (2019) using 10 points and 100 points uniformly distributed on a circle, is an extreme example310

that revealed atypical results, and was the sole impetus to offer NCS as a universal solution. To employ311

normalization of CS as a general solution to any combination of separate landmark configurations means312

researchers might inadvertently distort the relative sizes of configurations in an unreasonable way. To illustrate313

this concern with real data, we return to the salamander example (Fig. 1). Using both SCS and NCS in314

the calculation of CS′ yielded quite different results. It is clear that NCS produces combined configurations315

that suggest salamander heads are unnaturally and inappropriately enlarged (Fig. 6). By contrast, CS′ via316

SCS yielded results that more closely match the actual relative sizes of salamander heads and tails (Fig. 1).317

Normalizing CS should not be considered a universal solution, as issues with geometric scaling are inescapable.318

319

[Insert Fig. 6 here]320
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Configuration size is not anatomical size321

One should be reminded that CS is the measure of size used to standardize configurations to unit322

size in GPA (Rohlf and Slice 1990). Additionally, only CS is uncorrelated with shape variables from323

GPA in the absence of allometry, a crucial property for correct and valid shape analysis. All other324

possible size measures, including lengths, extents, areas, and volumes, will generate false allometry325

when used with shape data obtained from GPA (Bookstein 1991). Thus, while some might find areas326

or volumes more “natural” anatomical size measures, analytically they are not, and when used with327

shape data, they are prone to generate false patterns of shape covariation in one’s data. As such, any328

alternative that seeks to approximate one’s preference for “anatomical size” by altering CS should be329

scrutinized. By contrast, in evolutionary studies that examine allometric patterns for the size of anatomical330

features (with respect to orgamism size), using CS as a proxy for anatomical size might be equally ill-advised.331

332

It is easy to embrace the circle example introduced by Profico et al. (2019); it does not make sense that333

two identically sized circles could have such disparate CS′ . However, the shapes used to illustrate the334

problem – which are defined by the set of digitized landmark points – were, in fact, not circles; they were335

decagons and hectogons, and for the purpose of GPA, the hectogon has a much larger size, as it has far336

more landmarks contributing to its generalized least-squares superimposition. An attempt to dismiss the337

precise definition of CS and its importance in GPA in favor of a weighted CS should be scrutinized as338

an unwelcomed analytical vicissitude. When combining landmarks on circles of the same size that have a339

10-fold difference in landmarks, the researcher has decided a priori that the 100-landmark configuration340

is, in fact, larger by virtue of the greater number of landmarks needed to characterize its shape. This341

is not an unfortunate miscalculation; it is an analytical necessity. In other words, configurations with342

more landmarks have implicit greater weight in combination, and this is not an outcome that should be343

challenged so readily. If landmark density disparities present a problem, one should view this as a digitizing344

problem rather than an analytical problem for combining them. A weighting scheme that attempts to fix a345

digitizing problem after superimposition should be done with extreme caution, and one should realize that346

an approach like NCS is not a guaranteed solution. One has to consider, for example, if the number of347

semilandmarks on curves or surfaces could be augmented or culled to achieve more comparable landmark348

densities without compromising the number of landmarks needed to describe shape accurately. Attempting to349

solve a digitizing issue this way might be preferable to seeking a weighting scheme (wi in equation 1) after GPA.350

351
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Should combined configurations be subsequently aligned?352

We have until this point avoided an inconvenience. Because GPA applied to separate configurations renders353

the same centroid of Procrustes residuals for each (e.g., [0, 0] for landmarks in 2 dimensions), which is also354

the centroid of combined configurations, and because scaling each separate configuration by its CS′ causes355

the combined configuration to have unit size, the combined configuration resembles Procrustes residuals, and356

therefore, a configuration that confers shape differences among specimens. Furthermore, the denominator357

of equation 1 is the pooled CS (which if divided by
√
k
∑g

i pi returns the pooled normalized CS.) Does358

this imply that the combined configurations, Z, of all specimens should undergo a generalized least-squares359

superimposition to account for rotational variation?360

361

This is an interesting question to answer in both theoretical and applied contexts. If we can assume that362

individual configurations produce small, isotropic scatter around configuration means, and each configuration363

is aligned to its principal axis, meaning principal axes are parallel among configurations, there should be364

practically no difference between a combined set of scaled configurations and the Procrustes residuals from365

GPA performed on the combined configurations. We could actually measure the outcome of this process.366

If we let M be the p× k matrix of coordinate means for the combined configurations, Zj , fromj = 1 to n367

(specimens), and then subject Zj to GPA, producing newly aligned coordinates, Za
j , with mean, Ma, then we368

can express a vector of residuals of configuration points from configuration means as zj = vec (Zj −M) and369

za
j = vec

(
Za

j −Ma
)
, pre- and post-alignment, respectively. For an entire set of combined configurations, we370

can measure the rotational variance associated with alignment as a fraction of the original variance among371

landmarks; i.e., the proportion of variance in rotation (pV R), as,372

pV R =
∑n

j=1
(
zj − za

j

)T (zj − za
j

)∑n
j=1 zT

j zj
, (2)

where T means vector transpose. We would expect pV R = 0 if GPA does not alter the combined373

configurations. This is of course a limit that is likely not realized, but if pV R is quite small, it suggests that374

combined configurations have all the properties we expect for shape variables.375

376

We can demonstrate this as a concept with the salamander example. Using the means of the head and377

tail configurations, we simulated isotropic residuals from a multivariate normal distribution (µ = [0, 0];378
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Σ = 0.01I), purposely to have fairly small scatter around each landmark, for n = 114, the sample size379

of the empirical data. (We visually verified that the result looked similar to the empirical data). This380

produced pV R = 0.0085; i.e., re-aligning the data with GPA incurred less than a 1% change with respect to381

the variance of points around landmarks. Thus, as expected, the pre- and post-aligned configurations are382

practically the same. However, in doing this with the real data (via SCS), we observed pV R = 0.4555, a383

profoundly different outcome. (We found no qualitative differences between pV R performed on combined384

configurations via SCS or NCS, with simulated data or empirical data.) Contrary to expectations, with real385

data, GPA altered the alignment of combined configurations, substantially. One could perhaps reconcile386

this with different biological explanations, but analytically, the theoretical example breaks down as soon as387

there are covariances among landmarks that differ from isotropic scatter, which with any empirical data is a388

certainty.389

390

More importantly, whether combined data are aligned or not, they are not collectively shape data. We391

demonstrate this in Fig. 7, with a principal component (PC) plot of combined configurations both before392

and after alignment (Fig. 7 A-B). (Note that a two-block partial least squares correlation between pre- and393

post-aligned data was 0.982, which is not surprising, as the relative locations in PC plots of specimens are394

fairly consistent.) Thin-plate spline (TPS; Bookstein 1991) transformation grids reveal the difficulty with395

mapping the mean combined configuration on other combined configurations, as lines in the grid can cross (Fig.396

7 C-D), which would be a strange occurence for the typically subtler shape transformations for real landmark397

configurations. Because points are combined and unconstrained in their spatial arrangement, unlike in original398

configurations, it is possible, for example, for a point in the second configuration to be located “to the right”399

of a reference point from the first configuration, for one specimen after combination, but located “to the left”400

for another. For most anatomical confirgurations, this would not make sense (as if the right eye moved left of401

the nose). Via combination, these relationships are arbitrarily generated but are not true anatomical realities.402

Despite the different PC projections, however, the TPS transformations of the mean configuration were403

indistinguishable (when mapped to the scores of the first two PCs), indicating that shapes map the same in404

PC projections, whether PCA was performed on pre- or post-aligned data even it was not possible to reconcile405

how head and tail shape are changing in any coordinated way. If we separate the combined configurations into406

heads and tails, we also see the consistent TPS mapping, whether data were aligned with GPA or not, but407

also can visualize the coordinated change in head shape and tail shape (Fig. 7 E-H). Therefore, whether data408

are aligned had no impact on reconciling head and tail shapes, even if there are statistical differences between409

the approaches. It might come down to a matter of preference whether to re-align the combined configurations.410
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411

[Insert Fig. 7 here]412

413

This example emphasizes the crucial point that combined configurations characterize an organism’s414

morphology, but not an organism’s shape. By combining configurations, one must realize that the resulting415

variables are a composite of shapes. There might be an interest in having a composite of shapes for statistical416

analyses, especially if shapes are integrated, because one might gain better precision in estimating, e.g., group417

differences in morphology. However, aligning the combined data as if they were shape data from a single418

configuration seems to be an unneeded step. Additionally, the result depends on the covariances between419

landmarks that are now a part of single set, as if they are located in relation to each other on an anatomical420

structure. This means that performing GPA on combined data sets might lead to spurious downstream421

results. More research is needed to fully understand all of the implications of GPA on combined data sets,422

but at this time, we do not recommend it as a necessary step in one’s analytical pipeline, and encourage423

others to think not of combined configurations as shapes, but as composites of shapes that can be disjoined424

for visualizing shape patterns.425

426

Finally, one might wonder then if there is a purpose to combining configurations. We would not dispute427

that it is perfectly reasonable to restrict analyses to the original configurations, as was done by Levis et al.428

(2016), in their original treatment of the data. For these salamander data, this would mean two PC plots and429

two analyses of variance (ANOVA) to test for treatment and allometry effects. Correlations between tail430

shape and swim speed were also considered by Levis et al. (2016.). As a matter of efficacy, single analyses of431

combined configurations with multiple TPS transformation grids to correspond to PC points or fitted values432

from linear models might be preferred, especially if combining multiple configurations would make replicated433

statistical assesments unwieldy.434

Conclusions435

In this paper, we demonstrate that a general equation for calculating the relative centroid sizes of configura-436

tions can be employed for scaling configurations when they are combined. This equation allows a priori437

determination of weights to use in CS′ calculation. We showed that one weighting process, normalizing CS, is438

fraught with issues, and is only appropriate for the limited (and unrealistic) case where one is combining data439
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from two structures of similar size and with uniformly distributed landmarks, primarily around the periphery440

of the object. As such, NCS cannot be viewed as a general solution to the problem. Additionally, NCS does441

not scale reasonably with object size and has the propensity to make relatively smaller anatomical objects442

larger in combination, based on disparate landmark distributions in the configurations that characterize them.443

444

Calculating CS
′ via SCS will sometimes produce undesirable results, but this is more so a digitizing445

problem than an analytical one, arising from disparate landmark densities (landmarks per unit area or446

volume). However, only an unweighted version of equation 1 (all weights equal: i.e., SCS) can guarantee447

that the rank order of CS is preserved across the structures being combined. Additionally, CS is the size448

measure used for standardization of configurations to unit size in GPA and in the absence of allometry,449

is the only size measure that is uncorrelated with shape (Bookstein 1991). These properties should not450

be discarded lightly in favor of one’s notion of an “anatomical” size measure. Rather, one might instead451

be more concerned with the implications of disparate landmark densities arising from configurations452

of similar sized objects for corresponding GPAs, or whether the Procrustes residuals should even be453

merged for downstream analysis. Alternatively, one might consider a digitizing solution to mitigate454

CS
′ disparities, by intensifying or culling landmark or semilandmark densities, rather than seeking a455

weighting solution. Our perspective is that a digitizing solution that seeks to preserve landmark densities456

among configurations, utilized in concert with estimation of CS′ via SCS, is a better strategy than seek-457

ing a weighting scheme that attempts to fix the issues created or ignored in digitizing, after GPA is performed.458

459

Nonetheless, even if after careful consideration, one feels it is imperative to combine landmark configurations460

from disparate landmark densities, the results presented here demonstrate that NCS is not a universal461

solution to the problem. In such cases where equal weighting does not provide a satisfactory solution,462

additional weighting schemes should be envisioned. At present however, we are not aware of any alternative463

weighting scheme beyond the two presented in this paper. To identify other candidates, trial and error may464

be considered (for example, making some weights 0.9 and others 1.1, and contrasting results), but this is465

likely to result in weighting schemes that are not general, and instead are data-specific or restricted to466

particular scenarios (such as demonstrated above for NCS). For this reason we do not advocate this avenue467

of pursuit; preferring instead approaches that are more firmly grounded in statistical theory. For instance, a468

weighting scheme that accounts for landmark variances, much the way weighted least-squares regression is469

used to account for heteroscedasticity, may provide more reasonable performance for a wider set of cases. For470

combining landmark configurations with vastly disparate landmark densities, this may be a fruitful research471
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direction to consider.472

473

Finally, we recommend that empiricists neither perform GPA on combined configurations, nor consider474

combined configurations to be organismal “shape”. Rather, combined configurations are shape composites475

which can be disjoined for the purpose of shape visualization, but used in conjunction for statistical476

analyses. Combining configurations often offers statistical efficacy, and this alone is a valid reason to combine477

configurations for joint-data analysis. But as shown in this paper, such procedures should be considered478

with care. It is our perspective that whether and how to combine landmark configurations is a topic of479

increasing concern in morphometrics, as the advent of more advanced data acquisition pipelines (Bardua et480

al. 2019; Goswami et al. 2019), and automated data collection efficiencies permeate the field and facilitate481

the generation of such datasets. Faced with this inevitability, we anticipate that procedures such as those482

investigated here will only increase in utility. Thus, in this era of big data phenomics, how to best utilize483

morphometric data from distinct substructures will become a pervasive topic in geometric morphometrics for484

the foreseeable future. Our investigations are but the first step in moving this process forward towards a485

general approach. For many cases using SCS will suffice, but for others, additional weighting schemes may486

need to be developed. We hope that our findings regarding SCS, NCS, and configuration weighting, will487

provide food for thought to both empiricists and theorists alike when considering how to combine landmark488

configurations.489
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Figures535

Figure 1. GPA of 114 larval salamanders from Levis et al. (2016) All points and means are showing in536

(A), but just means in (B), revealing relative head and tail size. GPA was performed separately on tails537

(C) and heads (D), illustrating the smaller variance around landmarks for separate GPA analyses.538

Figure 2. Comparisons of CS′ for different distributions of landmarks on circle circumferences. Standard and539

normalized centroid sizes (SCS and NCS, respectively) return the same CS′ for the same distribution540

of landmarks (A) but only NCS produces equal CS′ , irrespective of landmark number (10 versus 100), if541

circles are the same size (B). However, maintaining landmark density (10 versus 40) shows that SCS has542

more reasonable CS′ with respect to circle surface area, when circles are different size (C). Furthermore,543

NCS yields unreasonable results when the distribution of landmarks is not restricted to a uniform544

distribution on the circumference of the circle (D). In (D), each circle has 8 exterior landmarks but one545

has 30 interior landmarks.546

Figure 3. Relationship between the ratio of circle surface areas (large:small) and the ratio of relative centroid547

sizes (large:small) for both standard and normalized centroid sizes.548

Figure 4. An example of landmark configurations (A) with 38 points and 8 points, simulated each with549

random multivariate normal residuals for 100 specimens (B). Following GPA, using standard centroid size550

scaling (C) and normalized centroid size scaling (D), combined configurations reveal concentric circles.551

The inability of NCS to guarantee rank order of CS′ can be appreciated in D.552

Figure 5. Examples of uniform distributions on circles (A) and examples of distributions of landmarks553

randomly drawn from 100,000 uniform points on a circle circumference (B), showing the issue of small554

samples. Repeating this sampling scheme for 10 landmarks over 100,000 simulation runs and comparing555

to a uniform distribution of 100 landmarks affects CS′ in predictable ways (C).556

Figure 6. Means from combined configurations after SCS scaling (A) and NCS scaling (B). See Fig. 1 for557

other information.558

Figure 7. Principal component (PC) plots for combined configurations (A) and combined configurations559

subjected to GPA (B). Panels C, E, and G show TPS transformation grids for combined configurations,560

heads, and tails, respectively, for specimen 20 in the PC plot shown in A. Panels D, F, and H, corre-561

spondingly do the same for the plot in B. All TPS transformation grids are deformations of the means562

with respect to the first two PC scores.563
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Figure 1: GPA of 114 larval salamanders from Levis et al. (2016) All points and means are showing in (A),
but just means in (B), revealing relative head and tail size. GPA was performed separately on tails (C) and
heads (D), illustrating the smaller variance around landmarks for separate GPA analyses.
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Figure 2: Comparisons of CS′ for different distributions of landmarks on circle circumferences. Standard
and normalized centroid sizes (SCS and NCS, respectively) return the same CS′ for the same distribution
of landmarks (A) but only NCS produces equal CS′ , irrespective of landmark number (10 versus 100), if
circles are the same size (B). However, maintaining landmark density (10 versus 40) shows that SCS has
more reasonable CS′ with respect to circle surface area, when circles are different size (C). Furthermore, NCS
yields unreasonable results when the distribution of landmarks is not restricted to a uniform distribution
on the circumference of the circle (D). In (D), each circle has 8 exterior landmarks but one has 30 interior
landmarks.
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Figure 3: Relationship between the ratio of circle surface areas (large:small) and the ratio of relative centroid
sizes (large:small) for both standard and normalized centroid sizes.
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Figure 4: An example of landmark configurations (A) with 38 points and 8 points, simulated each with
random multivariate normal residuals for 100 specimens (B). Following GPA, using standard centroid size
scaling (C) and normalized centroid size scaling (D), combined configurations reveal concentric circles. The
inability of NCS to guarantee rank order of CS′ can be appreciated in D.
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Figure 5: Examples of uniform distributions on circles (A) and examples of distributions of landmarks
randomly drawn from 100,000 uniform points on a circle circumference (B), showing the issue of small samples.
Repeating this sampling scheme for 10 landmarks over 100,000 simulation runs and comparing to a uniform
distribution of 100 landmarks affects CS′ in predictable ways (C).
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Figure 6: Means from combined configurations after SCS scaling (A) and NCS scaling (B). See Fig. 1 for
other information.
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Figure 7: Principal component (PC) plots for combined configurations (A) and combined configurations
subjected to GPA (B). Panels C, E, and G show TPS transformation grids for combined configurations, heads,
and tails, respectively, for specimen 20 in the PC plot shown in A. Panels D, F, and H, correspondingly do
the same for the plot in B. All TPS transformation grids are deformations of the means with respect to the
first two PC scores.
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