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UAV-IoT for Next Generation Virtual Reality

Jacob Chakareski

Abstract— We investigate UAV-IoT data capture and network-
ing for remote scene virtual reality (VR) immersion. We char-
acterize the delivered immersion fidelity as a function of the
assigned UAV-IoT capture/network rates and study the opti-
mization problem of maximizing it, for given system/application
constraints. We explore fast reinforcement learning to discover
the best dynamic UAV-IoT network placement over the scene
of interest to maximize the expected remote immersion fidelity.
We design scalable source-channel viewpoint coding to maximize
the expected reconstruction fidelity of the data captured at every
UAV location at the ground-based aggregation point. Finally,
we explore layered directional networking and rate-distortion-
power optimized embedded scheduling methods to effectively
transmit the encoded data and overcome network transients
that lead to packet buffering, which represent the fourth system
component of our framework. Experimental results demonstrate
considerable performance efficiency gains enabled by each system
component over the respective state-of-the-art reference methods,
in delivered VR immersion fidelity, application interactivity/play-
out latency, and transmission power consumption.

Index Terms—UAV-1oT data capture and networking, virtual
reality, reinforcement learning, remote immersion.

I. INTRODUCTION

YBER-PHYSICAL systems (CPS) and the Internet-of-
Things (IoT) are set to play an increasingly prominent
role in our society, advancing research and technology across
diverse disciplines, at the same time. Virtual Reality (VR) and
Unmanned Aerial Vehicles (UAV) are two emerging CPS tech-
nologies of prospectively broad societal impact. VR suspends
our disbelief of being at a remote location (virtual or actual),
akin to virtual human teleportation [1]. The flurry of related
devices, services, and platforms will play a major role in
charting the emerging global IoT framework [2] that aims
to integrate online real-time sensor measurements and device
control in diverse industrial, commercial, and societal appli-
cation domains. Networked VR applications are expected to
represent the bedrock of the anticipated 5G tactile Internet
ecosystem [3]. UAV-IoT can have a similar transformative
impact on remote monitoring/data acquisition applications,
by lowering their cost and extending their scope [4].
The paper investigates a system framework for UAV-IoT
networking for remote VR immersion, as illustrated in
Figure 1. The UAV-1oT network is spatially distributed over
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Fig. 1. UAV-IoT networking for next generation VR applications.

the remote scene of interest, capturing different viewpoints

V; of it. The UAVs are linked to a ground/air-based station

over direct network links of shared aggregate data rate C.

The links relay the captured data towards the aggregation

point and control information towards the drones. A powerful

server computer located at the aggregation point constructs a

viewport-driven immersive representation of the remote scene

for a VR user, from the incoming data, and streams select

VR views from it to the user, according to his viewport

navigation actions. The immersion fidelity delivered to the

user will depend on the space-time position of the UAV-

IoT network, the network/acquisition rates R; at which the

data is captured/transmitted, and the user navigation actions.

Maximizing it for the given system and application constraints

raises multiple technical challenges due to present technology

limitations [5] and requires devising novel holistic approaches
to capture, coding, networking, and reconstruction of VR data.

The proposed system framework comprises four integrated

components that advance the state-of-the-art in UAV network-

ing in their domains of operation and collectively extend its
scope towards next generation applications, as follows:

(1) Formulation of the user viewport-driven remote scene
VR immersion fidelity as a function of the assigned
UAV-IoT capture/network rates, for given spatial UAV
positions, and the optimization problem of maximizing
it, given an aggregate network capacity C and VR appli-
cation latency/interactivity constraints.

« Analysis that shows how the latter can be reformulated
and solved efficiently as a convex optimization problem.

(2) Exploration of efficient reinforcement learning that dis-
covers the best dynamic UAV-IoT network placement
over the scene of interest, to maximize the expected
VR immersion fidelity delivered over time.

« Analysis that enables the learning to balance effectively
the exploration of new UAV network positions and the
exploitation of already examined positions, in the search
for an optimal dynamic UAV placement policy, to ensure
its rapid convergence and maximization of the immersion
fidelity reward it pursues.

1057-7149 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0003-2428-9518

5978

(3) Scalable joint source-channel viewpoint coding that max-
imizes the expected reconstruction fidelity of the data
captured by each UAV, at the aggregation point.

(4) Layered directional networking and rate-distortion-power
optimized embedded scheduling for effective transmis-
sion of the encoded data.

The remainder of the paper is organized as follows. First,
we review related work in Section II. Then, we outline our
system framework in Section III and describe in detail its four
major components in Sections IV-VIIIL. Finally, we carry out
an experimental evaluation in Section IX, outline future work
in Section X, and conclude in Section XI.

II. RELATED WORK

UAV IoT networking for remote VR immersion is a
new topic. Related areas include ground-based multi-view
sensing [6], immersive telecollaboration [7], multi-view
video coding/communication [8]-[11], 360° on-demand video
streaming [12]-[14], and online gaming [15], [16].

In particular, in ground-based multi-view sensing a scene of
interest is captured from multiple collocated static cameras,
to enable a remote user to dynamically switch between the
different camera viewpoints and enhance his quality of expe-
rience. In immersive telecollaboration, a user is being sent a
3D view of the person(s) on the other end, captured by a static
stereo-camera. In multi-view coding, multi-perspective data
is compressed by leveraging the spatial correlation existing
between the different capture locations. In 360° on-demand
video streaming, a remote scene is captured off-line by an
omnidirectional camera. The content is then streamed on-
demand to provide a user with a 360° look-around of the
scene on his VR headset. In online gaming, synthetic computer
generated content is delivered to the user, who can experience
it on a traditional 2D display or a VR device.

Our setting involves aerial multi-camera capture enabled by
a dynamic UAV IoT network, to synthesize online a remote
scene VR immersion for a user. Thus, our system setting
and application constraints are different and more restrictive,
involving more limited resources (e.g., network bandwidth)
and higher application requirements (e.g., latency). To high-
light this, we note that conversational video requires a 150ms
round-trip-time interactive latency, while online VR requires
a 20-30ms interactive delay. In our approach, we partially
offset this stringent requirement by streaming from the ground-
based server a temporal segment of data that integrates select
VR views most likely navigated by the user over that segment.

Ensuring area coverage via aerial sensors has been studied
for surveillance/exploration in the control/robotics community,
e.g., in [17], aiming to have a sensor at every location
of interest or minimize the sensor travel time across them.
UAV-enabled network access over an area represents another
instance of such a coverage problem [18]. More recent cov-
erage work considers imaging aspects, e.g., the number of
acquired pixels per unit area covered [19]. In contrast, our
objective is different and more challenging: To select, capture,
and network over space and time the best scene viewpoints for
remote VR immersion. Similarly, weighted random walks have
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Fig. 2. System architecture: Main component blocks.

been used in robotics before [20]-[22]. However, the present
study is the first to formally characterize/control the trade-
off between achieved expected reward and policy convergence
time of reinforcement learning decision policies in this context.

Advances have been made in video streaming in the areas
of packet scheduling, multi-path routing, error resilience,
proxy caching, and network multi-cast/broadcast [23]-[31]
with more recent attention on buffer management for MPEG
DASH [32], [33], the current streaming standard. Our paper
leverages video streaming concepts, however, under new and
more challenging operation settings and application objectives,
as noted earlier.

Finally, the present paper is motivated by an earlier pre-
liminary study we carried out in [34]. Much more exten-
sive analysis, modeling, results/insights, and experimentation,
as well as new system components of scalable joint source-
channel viewpoint coding, layered directional networking, and
rate-distortion-power optimized embedded scheduling, intro-
duced for further performance enhancement, are some of the
advances that the present paper introduces relative to [34].

III. SYSTEM FRAMEWORK OUTLINE

Our framework comprises four integrated components,
as illustrated in Figure 2. Efficient online learning decides on
the optimal dynamic placement of the UAV-IoT network over
the scene of interest that maximizes the immersion fidelity
delivered to the VR user, for the given system resources and
application constraints. The learning interacts closely with
another system component that selects the optimal UAV data
capture rate over time and considered spatial locations. The
acquired data is efficiently represented using joint source-
channel viewpoint coding to maximize its reconstruction
fidelity at the aggregation point. Finally, the encoded data
is effectively transmitted using layered directional networking
and rate-distortion-power optimized transmission scheduling,
which represent the fourth system component of our architec-
ture, as illustrated in Figure 2.

In the following, we describe in detail each system compo-
nent and the related analysis and optimization techniques that
we formulate therein.

IV. SPACE-TIME VIEW CAPTURE

Let V = {V1,..., Vn} be the collection of aerial viewpoints
captured by the UAV IoT network. For every UAV i (the
association between a captured viewpoint V; and UAV i is
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unique), let R; denote its assigned network rate, i.e., the data
rate at which UAV i can transmit its data. Note that R; also
represents the temporal (data) sampling rate that UAV i uses to
capture the respective viewpoint V;. The aggregate transmis-
sion capacity the UAV network can use to send the captured
data is C. Similarly, there are transmission rate constraints
Rf, ie., R; < R;,Vi, which stem from the individual UAV
locations relative to the back-end station towards which the
captured data is relayed. A powerful server computer located at
the back-end station aggregates the incoming data to construct
a VR representation of the scene, denoted as V, from which
select viewpoints are streamed to the user, according to his
navigation patterns. V' comprises V, i.e., V C V, as well
as additional virtual (non-captured) viewpoints of the remote
scene that are synthesized for the user from the captured
data, i.e., V. The synthesis process is carried out by the
server using geometric signal processing,! i.e., a procedure
known as depth-image-based rendering (DIBR) [37]. Finally,
let R = (Ry, ..., Ry) denote the aggregate capture rate vector
for the UAV-IoT network.

Next, we formulate the expected viewport-driven immersion
fidelity delivered to the user, as our optimization objective.
In particular, let @, denote the reconstruction fidelity/quality
of an arbitrary viewpoint » € V (virtual or captured), and
let y, denote the respective likelihood of the user access-
ing/requesting this viewpoint during his/her navigation of
the remote scene.? We can then characterize the expected
VR immersion fidelity of the remote scene, as experienced
by the user, as Q1 = [, .y, 7 Qv(R).

The problem of interest can then be formulated as

max 0y, subject to: ZR,' <C,Ri <Rf, Vi,A, (1)

where A captures the VR application play-out and interac-
tivity delay constraints. Note that R in essence captures the
viewpoint locations V' across time and space, simultaneously.
In particular, R; = 0 signifies that signal/location V; is not
captured (at all).

V. ANALYSIS AND OPTIMIZATION

Let v denote a virtual viewpoint that the back-end server
can synthesize for the user and let V; and V; denote the two
captured viewpoints closest to v in the aggregate view space V.
The application server will synthesize v from V;, V; € V using
DIBR, as explained earlier.® Leveraging our recent work [9],
we characterize the inverse of Q, (R), i.e., the reconstruction
error/distortion D, (R)4 for virtual viewpoints v € V and a
given capture/network rate vector R, as a linear function of
Dy, (R;) and Dy;(R;), the reconstruction errors/distortions of
viewpoints V; and V;, each multiplied by polynomial powers
of x, the relative position of v with respect to V; and V; in

I'This operation requires scene depth signals that can be captured via IR
sensors [35] or estimated from the captured viewpoints (color signals) [36].

2This quantity stems from the user view navigation patterns.

3 A higher number of captured views can be used to synthesize v, however,
the synthesis gains rapidly diminish after two, as shown in [38].

4There is a one-to-one mapping between Q,(R) and D, (R).
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Fig. 3. Reconstruction error of virtual viewpoints Dy, (x): Actual and modeled
values (according to the polynomial model).

the view space V, as follows:

3
D,(R)= > ak,nx”) Dy, (R), @

keli,j} \n=0

where a n, for k € {i, j}, denote the respective polynomial
model coefficients for the captured viewpoints V; and V;.

In Figure 3, we show two examples of the reconstruction
error D, (R), for virtual views v synthesized at different rela-
tive locations x, in the case of two different pairs of captured
views V; and V;, selected to be used in the synthesis process
via DIBR. We can see a close agreement between the actual
values and the values predicted by the polynomial model. The
coefficients ay , are computed such that the prediction error
(the squared error between the actual and modeled values) is
minimized, using linear least-squares estimation.

Leveraging this advance, we can then reformulate (1) into
an equivalent minimization problem, as follows

min Dy =min [ 7uDu(R) = min 3 i Di(R), (3)
I

ve

subject to: ZR,' <C,R; < R{,Vi, A,
i

where to simplify the notation, we used D;(R;) = Dy, (R;)
(the reconstruction error of captured viewpoint V;). The last
equality in the objective in (3) is enabled by our polynomial
model for D,(R) in the case of virtual viewpoints v € V.
In particular, the coefficients a; > 0 in the resulting expression
therein are obtained by grouping terms multiplying each factor
Dy, (R;), when the model for D, (R) is introduced into the
expression preceding that equality.

Finally, our last analytical advance here is to charac-
terize the functions D;(R;) as exponential functions, i.e.,
D;(R;) = a;ePRi. The accuracy of this approximation is
shown in Figure 4 for three different captured viewpoints
Vi, Vi, Vi; € V. Modeling D;(R;) via exponential depen-
dencies is intuitive and meets fundamental coding theory rate-
distortion postulates.

The model parameters a; and b; are computed such that the
squared fitting error is minimized. It can be seen from Figure 4
that this analytical model for D;(R;) is quite accurate.

Finally, armed with this last advance, we can solve (3)
using efficient convex optimization methods [39]. In particular,
we introduce the model D;(R;) into the last objective function
in (3) to transform it into a convex function, since the coeffi-
cients a; are non-negative and a sum of non-negative weighted
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convex functions is convex [39]. Moreover, the constraints in
(3) are linear functions,” hence they are also convex. Thus,
(3) becomes a convex optimization problem.

VI. DynaMic UAV IOoT NETWORK PLACEMENT

We consider that the UAVs can capture viewpoints of
the remote scene of interest from a collection of locations
(way-points) {p;} that we model as a graph, as illustrated
in Figure 5. Due to the scene characteristics and topology,
we assume there is a non-uniform cost ¢;; of traversing the
link between every two adjacent locations p; and p;.

We discretize time and consider that at every time slot f,
a drone can either stay at its current position (hover) or move
to one of the neighboring locations (transition). Let S; denote
the current configuration (state) of the UAV network across the
graph. At the onset of the next time slot # + 1, the UAVs can
collectively transition into another state denoted as S;41. The
values that S;;; can attain depend on S;. Let a : §; > S;31
denote the state transition action the UAV network will take
at time t 4+ 1. Furthermore, let r(S;, a) denote the reward the
network will earn at time f + 1 by carrying out a, given §;.
We formulate r(S;, a) as u(S;, a) — pc(S;, a), where u(S;, a)
represents the utility the network will achieve by taking action
a, given the current state S;, and c(S;, @) denotes the respective
cost, accounted for as the sum of all cost factors ¢;; activated
by executing a, given S;. Finally, the parameter f trades
achieved utility for induced cost.

In our case, c(S;, a) captures the energy the network will
expend to move from state S; to state S;41 over the scene. The
utility u(S;, a) represents the resulting VR immersion fidelity
delivered to the user, as introduced earlier, i.e., u(S;,a) =
fvev 7v Qv (St+1, R). The state-space comprising every pos-
sible UAV network configuration can be designed such that
it excludes undesirable or unfeasible states S, e.g., featuring
multiple UAVs occupying the same spatial position.

We are interested in finding the dynamic network placement
policy = : S; + a that maximizes the cumulative reward

Snclusive of A, which can be represented as a set of linear constraints.
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Fig. 5. Dynamic UAV IoT network placement.

p(r) = >,r(S;,a). One major challenge in identifying
such a policy is the necessarily online nature of x, which
will have to explore unvisited network configurations for new
information (reward values) and exploit already gathered infor-
mation (known reward values), at the same time. In particular,
leveraging only already-visited states may give us a certain
level of guaranteed reward and performance, however, at the
prospective penalty of missing out on unvisited states that
may lead to even higher rewards. Simultaneously, exploring
new states also carries out the risk of encountering lower
reward values, which would degrade performance instead.
Thus, an effective balance between information exploitation
and exploration will need to be integrated into the search
for m. This necessitates leveraging online machine learning
denoted as reinforcement learning [40], which provides a
natural paradigm for addressing problems of this nature.

Another major challenge that arises here is the discrete
complex nature of this problem, characterized by an excessive
search space. To address these challenges more effectively,
we design 7w as a probabilistic policy, where every prospective
action a is selected with probability p, £ p(a|S;) (having
an expected reward objective E[p(x)] = >, >, Par(5;, @)).
This will enable us to explore a richer policy space for «
and pursue an effective solution that leverages concepts from
reinforcement learning, random walks, spectral graph theory,
and convex optimization, as follows.

Let G = (8, €) denote the state-space graph of the problem,
where S denotes the set of all (possible) UAV network
states over the scene and &£ denotes the state-space graph
edges that indicate the prospective transitions between any
two states 5; and s; in S. Stochastic control problems of
this nature are typically investigated within the framework of
Markov Decision Processes (MDP), where one formulates a
state-value function V*(s),V¥s € S, and a decision policy
x. In our case, V*(s) = Elp(x)l = 2,2, Par(S:,a).
The optimal state-value function V*(s) needs to satisfy the
Bellman equation [41], which in our case, we formulate as

V*(s) = max (Z plals)(r(s,a) + V*(a))), @
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where the optimal stochastic policy =7 : s = p(-|s) is the
argument that maximizes the right hand side in (4). There
are algorithms to solve (4) such as Policy Iteration or Value
Iteration [42]. However, they assume a priori knowledge of
the reward function r (s, @), Vs, a, which in our case does not
hold. Thus, we need to solve (4) in an online fashion, taking
actions in parallel as we learn the reward function and the
optimal decision policy. We carry this out using the paradigm
of reinforcement learning (RL) [40], as follows.

First, we can show that = is equivalent to a non-negative
symmetric weight matrix W that defines a weighted random
walk on G. We can also show that W in turn induces a
corresponding reversible Markov chain on G. To conserve
space, we omit the derivation of these results here and refer
the reader to [43] for its details.® Thus, finding the optimal
m is equivalent to finding the corresponding W. To avoid
the challenges of intractability and lack of performance guar-
antees, arising if solving for W directly, we leverage the
approach of parameterized policy gradient [40], to parame-
terize W using a vector 8 = (0y,...,0,) and a dictionary
of symmetric weight matrices W;, such that W = Zl- o;W;,
where > ;6; = 1. This will then enable us to solve the
problem under consideration exactly, by utilizing derivatives
and a reformulation, as described in the following. Let the
expected reward associated with the decision policy induced
by & be denoted as p(6).

Conventional MDP theory requires an infinite execution
time for an optimal policy so that an expected reward
maximization is ensured [42]. Similarly, state-of-the-art RL
techniques are typically very slow to converge to the optimal
policy of interest [40], [46], [47]. In our case, we want to
compute ¢ that maximizes p(#) as quickly as possible, due to
the interactive low-latency nature of the VR application and
for faster scene dynamics adaptation. Moreover, we want to
be able to formally characterize/control the trade-off between
tolerable policy convergence time and approximate maximum
expected reward earned, which is induced thereby. Let Py
denote the transition probability matrix of the equivalent
Markov chain induced by W. How quickly our policy achieves
the maximum expected reward is equivalent to how quickly
the chain converges to its stationary distribution 7y over S.

We quantify the latter precisely via the mixing time fmix
of the chain, which represents the smallest number of steps
n to run the chain over G to achieve an e-approximation of
g [43]. In turn, fnix is upper bounded by the second largest
magnitude eigenvalue of the transition matrix Py denoted as

1(Py), as tmix(€) < l—tff}’s) [43], where x(€) is a constant.

For simpler notation, we define x(#) £ u(Ps) and use it
going forward, to denote this quantity. Thus, (@) governs for
how long our policy needs to run to achieve the maximum
reward. Hence, we can effectively control the latter via the
former. Given these advances, we can formulate in two ways
our decision policy optimization:

P1: Maximize: p(@), (5)

6When the optimal policy = does not fall into the class of reversible
policies, matrix reversibilization can be leveraged to approximate m with
strong probabilistic bounds [44], [45].
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subject to: u(0) < 4,

6; =0, iﬂ,’ =3[
i=1

P2: Maximize: p(@) — Au(0),

(6)

subject to: 6; > 0, > 6; =1, 7
i=1

where in P1, (6) ensures that the computed policy is suffi-

ciently fast. Our objective in P2 is to use 4 to control the

trade-off between the achieved expected reward and policy

convergence rate, for effective adaptation to scene dynamics

and meeting tight application constraints.

Next, we derive expressions for p(0) and x(0). Let pg(s, i)
be the probability that we select policy W; at state s, given 6.
Then, ps(s, i) can be computed as
OiHi(s) |, .

? VSJ IJ
H(s)

where Hi(s) = > Wi(s, j), H(s)= > W(s, j). (8)
j j

po(s,i) =

Since an action a may appear in multiple policies W;,
given state s, the probability that it is selected can be com-
puted as dg(s,a) = 2 ..., Pa(s,i). Similarly, we formulate
ma(s) = H(s)/ > ,c.s H(s). Consequently, the expected
reward can be computed as:

pO) =D ma(s) D do(s,a)r (s, a). ©
5 a

Furthermore, we formulate (@) leveraging the following
properties from matrix theory [48]. x (@) is the second largest
magnitude eigenvalue of the matrix Py, whose (first) largest
magnitude eigenvalue is 4;1(Pp) = 1, with a corresponding
eigenvector 1. We construct the symmetric matrix A =
D‘.ET]/Z‘lv‘VDg_]/2 = ,/n_g,/Jr_T, where Dy is a diagonal matrix
with diagonal elements taken from the stationary distribution
mg. Then, x(0) also represents the (first) largest magnitude
eigenvalue of A and we can compute it as the spectral norm
|-, or maximum singular value of A, since A is a symmetric
matrix [49]. Thus, we write

n@ =110, *wD;'"? — Jmgyme . (10)

Finally, we can show that p(f) and u(@) are convex
functions of @. In particular, p(#) is a linear function of
0, hence, it is convex. Similarly, from (10), it follows that
((0) is the norm of an affine function of @, hence, it is also
convex [39]. Thus, we can solve P1 and P2 efficiently using
tools from convex optimization [39].

We integrated our analytical advances into an effective
reinforcement learning framework that updates the policy &
as new knowledge (reward values r(s,a)) is acquired via
exploration. The learning is carried out in batches (learning
epochs) comprising N policy execution steps followed by
one policy update step, which are repeated until convergence.
In particular, we designed a gradient descent with projection
onto convex sets algorithm (FEEL) to solve P2, shown in
Algorithm 1. As the gradients Vp(#) and Vu (@) can be
computed in closed form, FEEL is implemented effectively.
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Algorithm 1 Fast Explore and Exploit Learning (FEEL)
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Require: 6°,a, \, k = 0, ¢, initial state sq
1: repeat
2:  Execute the parameterized policy W for N epochs.
3:  Observe and update the earned reward r(s,a).
4:  Compute Vp(8)|g= and Vp(8)|gx
5 Update #5+1 = g% — oy, (Vp(8)|gr — AV uu(0)]gx)
6: Increment iteration counter k = k + 1
7. Project 0% back to feasible set (if necessary).
8: until convergence (Change in objective function < €)

Aggregate rate

YRl = R
Ri R} R R
S led
| [ — TP
viewpointV;
Layer 1 2 Yo (| ooc L

Fig. 6. Scalable captured viewpoint V; data coding.

ayj in Line 5 represents the learning rate of the algorithm that
can be adapted over time (iterations).

Moreover, the regularizer A; is systematically updated at
every iteration k such that it emphasizes reward structure
exploration initially and gradual transition to reward maxi-
mization subsequently, for fast policy convergence. In particu-
lar, A is set to large values early on, to encourage exploration,
and is then decreased over time to ensure Algorithm 1 returns
an optimal policy @ that maximizes the expected reward p ().

We rigorously derive the necessary conditions on aj and Ax
to ensure convergence of Algorithm 1. We omit the details of
the derivation here to conserve space. In brief, they need to
meet the following conditions: 0 < ey = a < 1/L (a constant
learning rate is sufficient) and A > 0, ZEO Ar < co. L here
denotes the Lipschitz constant for the gradient Vp (@) [50].
One option for the regularizer that we have examined in our
experimentation is a/k2, for a small constant a.

VII. SCALABLE SOURCE-CHANNEL VIEWPOINT CODING

To address the impact of unreliable/dynamic aerial network
links, we design an efficient scalable source-channel viewpoint
coding for the collection of viewpoints {V;} captured by the
UAV IoT network, as follows. First, the captured V; data is
encoded by the respective UAV into a set of embedded layers,
illustrated in Figure 6, featuring incrementally increasing lev-
els of data fidelity with the layer index [ [51]. This will allow
for inherent adaptation of the transmitted data to prospective
bandwidth variations on the aerial network links, as the former
is communicated towards the aggregation point.

Second, to protect against prospective transmission errors
(packet loss) on the aerial links, each UAV applies efficient
rateless random linear coding [52] to its encoded viewpoint
data, using the construction procedure from Figure 7.7

In particular, L transmission windows are constructed,
where window ! represents the aggregate collection of the first

TDeveloped using a related illustration from [11], courtesy of the authors.
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Fig. 7. Rateless random linear source-channel view coding.

I layers of the encoded captured viewpoint. Coded symbols
are constructed from each window using random linear com-
binations of the source symbols. Finally, a coded symbol is
selected for transmission from window [/ with probability 4;.
Our embedded signal representation offers three advantages:
inherent adaptability to dynamic network links, minimum
required redundancy (to overcome transmission loss),® and
inherent unequal error protection, all due to its design. The
optimization problem that each UAV i will consider here is

I
min > E[D;(Q R, (i},
k=1

RiLi

subject to: Z RS < R;and 22; =1, Vk,
] 1

an

where R! is the data rate of layer / and E[D;(3}_; RF)|{4)]
is the expected reconstruction error of viewpoint V;, when the
first [ layers has been received/decoded at the destination.’
Solving (11) is complex due to its nature. We design a
coordinate descent algorithm to solve it iteratively, at low
complexity. In particular, for fixed {4;}, (11) transforms into

!
min » E[D;(Q_ Rf), {41}], subject to: D" Ri < R;, (12)
R 7 k=1 I
which again is a convex optimization problem that can be
solved efficiently. The algorithm operates by adjusting {4}
iteratively, in between every solution of (12), until conver-
gence. The adjustment is carried out such that the objective
in (12) is minimized, every time {4;} is updated. A formal
description of our algorithm is provided in Algorithm 2.
Convergence of the algorithm is ensured, as the objec-
tive in (11) is positive, bounded from below by zero,
and monotonically decreasing at every iteration. We have
empirically verified that convergence is typically very quick.
Algorithm 2 carries out a coordinate descent search to find the
optimal probability values {4;}, while computing the respective
optimal source coding rates Rf. In comparison to a full-
search approach, it offers practically the same performance,

80ur channel coding approach will allow UAV i to maintain its aggregate
source-channel data rate close to R;, i.e., it will result in very little overhead.
9The probability of this event can be denoted as Py({4;}, R;) [52] and thus

E[DL(S)_y RN = Pi({4g), R)D; (h_y RY).
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Algorithm 2 Low-Complexity Joint Source-Channel View-
point Coding

1: Initialize {\;} = {1,0,...,0}; Compute {R'} from (12)
2: Set AX; Assign Dpua; = objective in (11)
3:fori=1to L—1do

4 FLAG1 =0

5 repeat

6: Ai = A — AX A = A1 + AX
7: Compute {R!} from (12)

8 Assign D = objective in (12)

9: if D < Djnas then

10: Dipar =D

11: FLAGI =1

12: else

13: Ai = M+ AN A1 = A1 — AN
14: break

15: end if

16:  wuntil \; < AX
17: if FLAG1 = 0 then

18: break
19: end if
20: end for

21: Return {\;},{R!}

Vision sensor Buffer

e =

Fig. 8.

Power control

Transmission
scheduling

Forward
channel

h 4

Drone vision sensor transmission system.

for the number of source coding layers L examined in our
experiments. Similar observations have been made in the past
for analogous coordinate descent search algorithms applied to
IPTV streaming and multi-view video coding [9], [28].

VIII. LAYERED DIRECTIONAL NETWORKING
AND PACKET SCHEDULING

We enhance the UAV rate-distortion-power transmission
efficiency via smart multi-beam directional antennas [53], [54]
and layered scheduling. Simultaneously, this will enhance
further the interactivity and quality of experience of the
enabled VR application, as it will reduce its data delivery
latency. Moreover, prospective packet buffering due to network
transients will be overcome more effectively.

We first model the transmission system of a UAV, as illus-
trated in Figure 8. Data captured by its vision sensor is scalable
source-channel encoded, as explained earlier, and queued
for transmission. Power control and transmission scheduling
actions are carried out to decide the scalable packets to be
transmitted next and the amount of transmit power to be used
to carry that out.!'® Via receiver feedback, the transmitter is
aware of the current forward channel quality.

The scalable source-encoded packets exhibit prediction
dependencies, as illustrated in Figure 9, which are induced
on them by the sensor encoder, to increase its compression
efficiency. In particular, let there be K data units currently
enqueued in the transmission buffer. Each data unit k is

10gimultaneously, this will help overcome network transients that may lead
to unwanted packet buffering.
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Fig. 9. Scalable data unit dependencies of an encoded viewpoint.
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characterized with its delivery deadline #; 4, size By in bytes,
reduction in reconstruction error A Dy of the respective view-
point that k£ will contribute to, if received and decoded on time,
and two sets of ancestor and descendant data units {j < k}
and {j > k}, induced by the source encoding prediction
dependency graph. f; 4 represents the latest time by which
k needs to be received, in order to be usefully decoded.

Now, let L denote the number of parallel beams/network
links that the UAV antenna can establish towards its des-
tination. Recall that L also denotes the number of scalable
signal representation layf:rsll constructed in Section VIIL. Let
c; denote the transmit power allocated to send a packet
over link /. Coded packets from transmission window [ in
Section VII are assigned to the corresponding network link
for transmission, as illustrated in Figure 10. Let pr denote
the available transmit power budget of UAV i. We consider
that pr is much larger than the minimum required power
to transmit the aggregate capture rate R; of UAV i. This
is a reasonable assumption that any UAV battery can easily
meet, given its much higher energy volume. In particular,
the energy consumption of UAV propulsion is a few orders
of magnitude greater than the energy a UAV consumes for
data capture/communication [55].

We model the forward channel on each network link / as
a packet erasure channel, with loss probability ¢ £ ¢ (hy, c1),
where h; denotes the current channel state/quality, as informed
by receiver feedback, and transmission delay z;, which may be
non-deterministic, with density p,, £ p,, (h;, c;). We consider
that ¢; can be selected from a finite set of power levels C.

Now, let # = (=1, ..., mg) denote the packet transmission
policy of the UAV, where m; < {{l,0},{f, 1}} indicate the
two possible choices of not sending or sending packet k£ from
scalable layer ! on network link [ at present (current time f).
Similarly, let ¢ = (c1, ..., ck) denote its per-packet transmit
power control policy, where ¢, = 0, for k : =, = {[,0}.
Moreover, let €(xt) = P{t; > fx 4 + a — t} be the expected

1 gelected to match the physical capabilities of the UAVs.
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error of transmitting packet k under policy m; on link [,
where a captures the latency/interactivity requirements of the
VR application. It can be computed as

if = = {1,0},

if 7 = {1, 1). (13

]",
€(mr) =
[EI +(1 _Q)ft:-’;+a—r Pus»

The expected reduction in viewpoint V; reconstruction error
under policy 7= can then be formulated as

Z AD [T (1 —e@y)).

j=k

D(z,c) = (14)

The corresponding transmission rate on each link / can be
formulated as R; j(7) = kak:[“} By.. Finally, let Ej(x, ¢) =
2 km—{1,1) Ck Bk denote the consumed transmit power on net-
work link /. The sender is interested in solving the following
optimization problem

(15)

max D(x, c),
T,c

subject to: Ry ;(z) < R!, VI, Z Ei(r,c) < pr.
!
We study exact and approximate/lower-complexity solution
strategies to solve (15). First, using the Generalized Lagrange
multiplier method [56], we recast the problem as

J(x,c) = min (Do —D(@,0)+ > uRii(x,¢) (16)

1
+ AL+ ZEI(?Tsf)):
!

where Do = >, ADy, 44 > 0, forl =1,..., L + 1, denote
the corresponding Lagrange multipliers, and for mathematical
convenience, we have introduced a minus sign in front of
D(x, c) to replace the max operator from (15) with a min
operator. We can then compute the optimal policy via the
Bellman iteration

(x*,c*)(qi) = argmin D Py o(qis119i) = c* (Git1),

a1 gi+1

a7

where ¢; is a state in the joint policy space of (=, c),
uniquely described by the actions z{, ...,z and c7, ..., c}.
Pr c(gi+1lgi) are state transition probabilities induced by
(7, c), and Jp+ cx(gi41) is the optimal Lagrange cost that can
be backtracked with an equivalent equation.

Second, we explore minimizing J(x,c) iteratively, one
policy pair (mg,cr) at a time. In particular, note that (15)
and (16) represent discrete optimization problems that are
complex to solve, due to their large state-space that requires an
enumeration of the 2X x |C|X choices that (r, ¢) can take on
jointly. Thus, we also design a faster iterative algorithm that
computes an approximate solution at lower complexity, as fol-
lows. Starting from an initial solution for (z, ¢), we iteratively
solve (16) one variable pair (7, cx) at a time, while keeping
the others ((x}, c;), for(} # k) fixed, until convergence.

Precisely, let (z©, c(®) denote an initial choice for the
joint transmission scheduling/power control policy. Moreover,
let n = 1,2,... denote an iteration count. We select one
policy pair (x("), cf’)) to optimize at iteration n, e.g., in a
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Algorithm 3 Optimal Transmission Scheduling Policy

Require: 7, ¢ J© X\, n=0,0
1: repeat
2 n=n+1;k=(n mod K)
3 Solve (18) = 7™, (™
4. Compute new ob]ectwe J™) from (16)
s: until convergence (J=1) — J™ < g)

round-robin fashion, for k =
remaining policy pairs (7: s

.., K. We sel (ﬁx) the
(ﬂ]) ( (’1 ]} ) for

j # k, and compute the values of (x("{, c,(c"]) that solve

(16). We then increment n and move on to the next k, until
J(x®, c™) = J(x @D, D)y,

By grouping terms in (16) associated with (zy, cx), we can
formulate the key step of the iterative optimization as

x,gn) () =argm mln S( De(mx, ck) + Am(2) B,

(18)
where 4 = A; + Ap41cr and Sf‘) captures the overall impact
of packet [ on the reconstruction error of viewpoint V;. Recall
that / denotes the scalable layer/network link associated with
packet k and 7 (2) € {0, 1} indicates the decision to transmit
(or not) this packet over the link, as induced by its policy zj.

We derive S " from (16) as
s =D AD [T —e@™y).
izk m=j
m#=k

The optimization is formally summarized in Algorithm 3.
Its convergence is guaranteed, as the objective function J (x, c)
is bounded from below and is monotonically non-increasing
at every iteration.

IX. EXPERIMENTS
A. Experimentation Methodology and Data Characteristics

We carry out experimental analysis to evaluate the effec-
tiveness of each system component comprising our framework.
The analysis leverages aerial viewpoint data captured in a con-
trolled laboratory setting. We have also densely sampled the
scene underneath using fixed ceiling-mounted vision sensors
and used this data to verify the UAV captured data. In addition,
we have used in our experimentation an aerial viewpoint data
set captured in an outdoor environment [57]. To overcome the
challenge of having remotely collocated camera locations in
this data set, we only used a subset where multiple closely
collocated viewpoints can be identified. Moreover, we have
remedied this further by selecting temporally collocated view-
points from the dataset as spatially adjacent viewpoints to be
captured by the UAVs, as they move from one location to
another, to facilitate view synthesis, assuming a fairly static
remote sensing scene.

For reproducibility and rigorous analysis, our experimen-
tation methodology was designed as follows. In the indoor
setting, viewpoint data was acquired using DJI Matrice
100 UAVs [58] equipped with wide-panorama 4K cameras
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Fig. 11. MDP state transition graph with reward and cost values u;, ¢j;
associated with states and state transitions indicated.

and Wi-Fi dongles, communicating with a ground based Wi-Fi
access point. In the outdoor setting, the UAVs are equipped
with LTE 4G dongles instead, communicating with a ground-
based base station. As this is a proof-of-concept study of
an emerging application, we focused on a one-hop aerial
network in our experiments. In both settings, we also collected
measurements of the aerial wireless link to the ground-based
access point or base station, associated with each prospective
UAV location. These traces and the UAV captured data were
then used to assess our system framework components via
numerical simulations. The viewpoint popularity distribution
y» was compiled based on traces of VR user head movements
that we collected [59], [60].

Our channel coding method, like digital fountain codes,
as well, represents a universal channel coding scheme for
erasure channels [52], [61], [62]. Thus, its performance is
only affected by the long-term average packet loss rate. This
makes it sufficient to examine only the number of received
packets at the receiver for each coding window, and hence
a traditional packet erasure channel model has been used in
our experiments.

In the implementation of Algorithm 2 that solves the optimal
source-channel view coding rate allocation, we set A4l = 0.1
as the step size used to discretize the probabilities 4;. This
was empirically proven to provide a good trade-off between
complexity and performance. The number of scalable content
layers L for an encoded view has been set to three. We also
implemented a full-search method that examines exhaustively
the solution to (11), for every possible triplet {41, 42, 43},
and selects the optimal one. We established that the iterative
local-search low-complexity solution provided by Algorithm 2
always coincides with the optimal solution.

The state transition graph that we used to evaluate the
online learning-based UAV network placement strategy from
Section VI is shown in Figure 11. We developed this graph as
follows. We considered a 2D uniform grid of spatial positions
in which a UAV can be placed, at a given height above the
scene (see Figure 5 for an illustration). Two adjacent grid
points are spaced apart for 50cm along either the x or y
coordinates of the 2D grid. The grid size is 6 x 6.
There are three UAVs moving collectively across
the grid points. We selected a subset of 16 distinct

5985
Time slot ¢ adaptation GOP adaptation
Algorithm 1
Captured views (5;) Navigation

I

l:-li .
A ————————————————— I3

360° viewport

State transition (S, 4) i
Aggregation
point server

Fig. 12. Exchange of data and control information between the UAV network
and the ground-based server that executes Algorithm 1.

configurations (states) that the UAV network can exhibit
over the grid. They represent the states s; of the MDP state
transition graph indicated in Figure 11. To each s;, we assigned
the utility value u; := u(s;), as defined in Section VL.

The utility values of states not visited earlier are learned
by the UAV network through exploration, as explained
in Section VI. We also captured the cost of transition
Cij = c(s;,s;) between states s; and s;, as defined in
Section VI, facilitating data on propulsion energy consumption
for the specific UAVs we used [55]. Similarly, the transi-
tion costs of graph edges not traversed before are learned
by the UAV network during exploration. To facilitate the
numerical evaluation, we normalize the utility and cost values
with their respective maximum values in the state graph.
Together, the utility and cost values comprise the reward values
r(s;,s; — &s;) defined in Section VI. The online learning
optimization is carried out at the aggregation point server
computer attached to the ground-based access point or base
station, as illustrated in Figure 1.

We generate the dictionary weight matrices W; as binary
matrices comprising nonzero entries only at a random subset
of indices ij associated with neighboring states s; and s; in the
state transition graph. We empirically selected the dictionary
size m to identify the best trade-off between performance
and computational complexity. We noted that beyond m = 6,
learning performance did not gain further improvement, while
computing complexity was still fairly modest, as expected,
given the small scale of the state graph.

Given the speed at which our UAVs can move and capture
data (50mph [63], [64]), and the speed at which an update
of the optimal navigation policy € can be computed by Algo-
rithm 1 (<2ms), we selected 200ms as the time slot duration.
The learning is implemented at the aggregation server that
receives captured data from the UAVs at each time slot ¢ and
sends back control information in return that indicates the next
state S;, | the UAV network should transition to. The number
of epochs N for which the policy is executed, between every
two policy updates, as described in Algorithm 1, is set to ten.

Figure 12 shows a high level illustration of the deployment
of Algorithm 1 in our setting. The UAV network sends data
(captured views) associated with its present state S;. The server
in return sends back control information — the new state S,
that the network should take on at the next time slot. For
illustration, Figure 12 also highlights the interaction between
the server and the VR client, where navigation data is sent by
the client, while encoded 360° viewport data is sent by the
server. Here, adaptation is carried out at the GOP-level.

In particular, the server integrates the captured data over
multiple consecutive states S; to construct a viewport-driven
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360° video representation of the scene streamed to the user.
The 360° content is encoded such that it maximizes the
immersion fidelity experienced by the user over each delivered
GOP, given his navigation actions. This is implemented by
leveraging our recent advances in efficient 360° video cod-
ing [59], [65]. The GOP size is set to two seconds.

Indoor vs. outdoor. We generally did not observe notable
differences in the performance of the various system com-
ponents of our framework between the indoor and outdoor
settings, save for a little lower delivered immersion fidelity per
unit of available transmission power, in the latter case, when
the available transmission power is kept uniform across the
two settings. We believe this can be attributed to two factors,
the known higher transmission power efficiency of Wi-Fi vs.
LTE [66], and the slightly lower fidelity of the content that has
been pre-captured outside. The performance analogies between
the two settings are not surprising, given the small scale of our
setups and the generally similar static nature of the content
captured in each case. We also note that it may be misleading
to compare directly (in the absolute sense) some performance
metrics across the two settings, e.g., the delivered immersion
fidelity, as the content is different in each case, and recorded at
slightly different quality levels. Still, to illustrate the observed
parallels, we have included one set of representative results
that places the two settings on one graph.

B. Reference Methods

We have designed a number of reference methods, denoted
henceforth as Reference, to compare against in the evaluation
of the individual system components comprising our frame-
work. In particular, in the assessment of the capture efficiency
of the optimization in (1), we have introduced a reference
method that allocates the available network bandwidth C uni-
formly across all capture locations, as commonly carried out.
Here, we have also implemented another competing strategy
introduced in [67], which employs an information theoretic
metric to allocate C across the capture allocations. We denote
this strategy as Wang2011 in the evaluation. In the assessment
of the reinforcement learning based dynamic UAV network
placement, formulated in Section VI, we compare against
three other competitive methods, denoted as ADP, USP, and
Offline, introduced in detail therein. Finally, in the assessment
of the scalable source-channel viewpoint coding and layered
transmission packet scheduling formulated in Section VII
and Section VIII, we have introduced a reference method
that leverages the latest state-of-the-art High Efficiency Video
Coding (HEVC) standard [68] to compress the captured view-
point data at each drone and hybrid ARQ [69] that integrates
competitive Reed-Solomon channel coding and Automatic
Repeat reQuest (ARQ) scheduling, to stream the data with
protection against packet erasures. Here, we have also imple-
mented another competing strategy introduced in [70], which
studies state-of-the-art network coding for error-resilient video
streaming. Concretely, data packets are network coded before
transmission at the sender, which makes the streaming error-
rate adaptive, as more network coded packets can be trans-
mitted if the error rate increases, and vice versa. We denote
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this strategy as Thomos2011 in the evaluation. Henceforth,
we denote as Optimal, the individual system component of
our framework assessed in a specific evaluation.

C. Ablation Evaluation

In the following, we carry out a number of experiments that
examine a certain analytical aspect of our framework or com-
pare the performance of one of its system components relative
to its alternative (the respective reference method), in their
specific application domain. These latter experiments serve to
provide understanding of the benefits of using that specific
component proposed as part of the overall framework.

Scaling behavior. We first investigate how our characteri-
zation of the VR immersion fidelity delivered to the remote
user as a function of the capture rate R; at every UAV
viewpoint location V;, and the related optimization in (3) that
aims to maximize it, behave as the available network capacity
C is scaled. These results are summarized in Figure 13.
In particular, we record the values of Dy, the objective in
(3), for the optimal capture rate vector R, as we vary C.
We plot the resulting dependency D; versus ||R|| (where
IRI = >;Ri ~ C), parameterized by o, the standard
deviation of the surface f(x, y) representing the remote scene
3D geometry of the area under the UAV network (we can
control this quantity in laboratory settings). We can observe
two distinct operating regimes (modes). For smaller ||R||, Dy
scales as cl(azz)|R|_Q(1/"zz), where c; and ¢; are two constants
that depend on o,. We denote this mode geometry coding,
since the optimal capture policy emphasizes the fidelity of the
representation of f(x,y) here, due to its impact on D;. This
is accomplished by prioritizing capturing more viewpoints
v € V at the expense of the data/temporal capture rate assigned
to each such v. Note that the higher the information rate
(or entropy) of f(x,y) across the multi-view captured area,
as embodied by o, the higher Dy is, as seen from Figure 13.
Once || R|| is sufficiently large and f(x, y) can be represented
at sufficiently high fidelity, we observe a transition to another
operating regime, where D; now scales as c3(g2)| R|~(!/ al),
and c3/c4 are again constants that depend on o, (the standard
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deviation of the scene pixel color values). We denote this mode
texture coding, as the optimization emphasizes here the color
value representation fidelity for every triple (x, vy, f(x,y)).
This is accomplished by emphasizing temporal acquisition
at the expense of the number of captured viewpoints. Still,
the impact of o, is much smaller here and all three D; versus
IR graphs eventually converge.!?

Capture efficiency. In Figure 14, we examine the capture
efficiency of our framework relative to Reference, in each
setting, indoor and outdoor. In particular, we graph the
VR immersion fidelity Qj 13 versus the available network
capacity C, delivered by the two methods under comparison.
It can be seen that Optimal is able to leverage the available net-
work resources much more effectively, enabling considerable
immersion fidelity gains over Reference, for the same C. Fur-
thermore, we can see that Opfimal improves its performance at
a much faster rate as C is increased, relative to Reference. The
same observations regarding the relative performance of the
two methods can be made for both settings, which is expected.
One expected difference is that each method performs better
in the indoor setting, which stems from these two reasons.
The content is slightly more complex in the outdoor setting,
which makes it harder to capture/record at the same quality.
Since most cross-setting results share the same parallels,
to conserve space and focus the discussion, we only include
performance results for the indoor setting in the remainder.

Lastly, we can observe that the second reference method
Wang201 1, evaluated in the indoor setting, outperforms Refer-
ence, as expected, since it takes into account scene information
when allocating capture resources across each sensor location.
However, both reference methods considerably underperform
relative to Opfimal, as seen from Figure 14, since the proposed
method integrates the rate-distortion importance of each cap-
ture location and the impact of the user navigation patterns,
on the delivered immersion fidelity to the user.

Online policy learning. To examine the efficiency of our
online machine learning for dynamic UAV network placement
from Section VI, we implemented Algorithm 1, denoted here

ngQ here is the quantization step size used to encode the captured
viewpoints {V;} [71].
13Recall this is the objective in (1) and the inverse of the objective in (3).
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as Online, and compared its performance relative to those of
ADP (approximate dynamic programming) [72], a state-of-
the-art learning method, and USP (uniform spatial placement),
a traditional UAV coverage method [73]. For further reference,
we implemented an off-line solution that computes the optimal
UAV IoT network placement with a priori reward function
knowledge, denoted here as Offfine. The VR immersion fidelity
enabled for the end user vs. number of elapsed algorithm steps,
in the case of each of these methods, is shown in Figure 15.
Due to its ability to effectively control the trade-off between
exploration and exploitation over time, as introduced in its
design in Section VI, Online delivers considerable perfor-
mance gains over ADP. Similarly, once it quickly explores the
UAV network placement decision policy space, Online lever-
ages that capability to enable more than 10 dB improvement in
immersion fidelity over the conventional USP. This outcome
is particularly noteworthy, as USP represents a state-of-the-art
UAV coverage method introduced in the literature. Moreover,
the relative initial inefficiency of Online with respect to the off-
line performance bound represented by Offline becomes only
marginal, as Online rapidly converges towards its long-term
operational point, as seen from Figure 15.

Note that implementing Algorithm 1 is computationally
very efficient, as it leverages closed form expressions and effi-
cient convex optimization. Depending on the server machine
where it is implemented, one iteration count of the algorithm
consumes as little as 2-3ms. In an ideal prototype development,
which lies beyond the scope of the present study, the speed
factor can be increased further. Still, we note that the selection
of the time slot duration at which Algorithm 1 is paced, in a
decentralized setting as considered here, will be impacted in
major part by the spatial density at which scene viewpoints are
captured, the velocity at which the UAV IoT sensors move, and
the aerial network’s transmission speed.

Viewpoint coding/transmission scheduling efficiency.
We carry out two experiments to evaluate our scalable
source-channel viewpoint coding and transmission packet
scheduling in terms of adaptivity to network/capture rate R;
mismatch and robustness to unreliable transmission over the
respective downlink. In particular, in the first experiment,
we consider that viewpoint {V;} data has been acquired at an
assigned target rate R; (12 MBps here), however, the actual
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Transmission Efficiency: Reconstruction Quality Reduction Vs, Network Rate Mismatch
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Transmission Reliability: Viewpoint Reconstruction Fidelity Vs. Packet Loss Rate
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Fig. 16. Transmission efficiency vs. network rate mismatch AR; (%).

available transmission rate R; at which it can be sent to the
ground-based aggregation point is smaller, due to temporal
network fluctuations. We measure the expected reduction in
reconstruction quality of viewpoint V; for different values of
the mismatch AR;, expressed in percent of R;. These results
are shown in Figure 16. We can see that our approach enables
a graceful reconstruction quality degradation as AR; is
increased. In particular, due to their rate-distortion optimized
design, our viewpoint coding and transmission scheduling
are able to encode the data and select the most important
data units to transmit such that their aggregate transmission
efficiency is consistently maximized across the whole range of
network/capture rate mismatch values A R; we examined. This
in turn minimizes the resulting reduction in reconstruction
quality of viewpoint V; induced by AR;, as evident from
Figure 16. On the other hand, even a small network
rate mismatch can degrade considerably the viewpoint
reconstruction fidelity delivered by Reference, as Figure 16
shows, due to its non-scalable and non-adaptive data-agnostic
design and operation.

In the second experiment, we measure the achieved recon-
struction fidelity of V; as the average packet loss rate € on
the respective network downlink is increased. These results
are shown in Figure 17. We can see that our viewpoint
coding and transmission packet scheduling offer robustness
and graceful performance degradation to increasing packet
loss experienced on the downlink, thereby preventing dramatic
degradation and variations in the reconstruction fidelity of
viewpoint V; delivered to the end user. On the other hand,
Reference exhibits considerable degradation in performance,
featuring a cliff-effect typical for conventional error protection
(FEC) [74], where stable performance is maintained up to the
target error protection rate of the FEC code, beyond which
performance increasingly degrades, as the packet loss rate is
increased, as seen from Figure 17. Moreover, Reference does
not take into account the unequal importance of different data
packets in its operation, which is another shortcoming and
contributing factor. On the other hand, our approach integrates
scalable signal design and error protection rate, and rate-
distortion optimized packet scheduling, which synergistically
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Fig. 17. Transmission robustness vs. packet loss rate € (%).

enable a much higher performance efficiency. We note that
implementing our transmission scheduling on the UAV plat-
form can be computationally efficient, due to the nature of the
iterative optimization it carries out. In particular, we observed
that the scheduling algorithm consistently converges to the
optimal policy within a few iterations only.

Finally, to compare against non-conventional state-of-the-art
error protection methods, in Figure 17, we also evaluate the
performance of Thomos2011. We can see that this reference
methods enables improvement and more graceful degradation
in performance over Reference, due to its error-adaptive design
and operation. However, as Thomos2011 does not integrate any
data-related information, it still considerably under performs
relative to the proposed approach, as seen from Figure 17.

Transmission power/latency reduction. Finally, in our
implementation of the proposed layered directional networking
and packet scheduling from Section VIII, we leveraged
available power consumption data associated with the two
types (Wi-Fi/cellular) of wireless transceivers we considered
[66], [75], to measure the transmission power consumption of
our approach and compare it to that of the reference method.
In particular, we assessed through our experiments that our
approach consumes approximately 30% less transmission
power relative to Reference, due to its optimized data-aware
design, in each setting we considered (outdoor or indoor).
Our findings overlap with earlier results reported in prior
studies involving directional networking [76]. Simultaneously,
we also measured that the VR application interactivity
and play-out latencies have been reduced by 25% due to
the introduced layered directional networking and packet
scheduling, as the client can have VR data associated with
the lower layers [ available to decode and reconstruct sooner.
These advances signify that our system framework can operate
on a considerably smaller energy budget, while still enabling
considerable quality of experience gains for the end user,
in terms of delivered VR immersion fidelity and application
interactivity/play-out latency, at the same time. This outcome
makes our framework very promising for future practical
deployment of the envisioned societal VR applications of the
future.
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X. PRACTICAL CONSIDERATIONS AND FOLLOW-UP WORK

The paper’s main aim is to explore several high-level
system challenges in remote VR immersion via UAV-ToT
networking and reveal novel insights and trade-offs that arise
therein. The proposed system framework represents a proof-of-
concept and bringing it to a practical prototype requires further
development work that lies beyond the scope of the present
paper. Still, the introduced models and analyses are general
and permit follow-up work that can extend them towards
this objective. For instance, the state-space modeling used
in deciding on the dynamic UAV-IoT network placement can
integrate further states that capture the possibility of different
elevation levels and camera angles for the UAVs. Similarly,
in our case, we assumed fixed closely collocated prospective
UAV positions over the scene. A follow-up study could explore
how the viewpoint sampling locations and data rates could be
decided adaptively based on the dynamics of the scene and
the user navigation actions, and what would be the minimum
space-time sampling that could be employed.

XI. CONCLUSION

We investigated UAV-IoT data capture and networking for
remote scene VR immersion, pursuing multiple objectives in
this context. We characterized the delivered viewport-driven
VR immersion fidelity as a function of the assigned UAV-IoT
network/capture rates, and studied the optimization problem
of maximizing it, for the given system/application constraints.
We explored efficient online learning to discover the best
dynamic UAV-IoT network placement over the scene of inter-
est, to maximize the delivered expected immersion fidelity.
We designed novel scalable joint source-channel viewpoint
coding to maximize the reconstruction fidelity of the data
captured at every UAV location, at the ground-based aggrega-
tion point. Finally, we explored layered directional network-
ing and rate-distortion-power optimized embedded scheduling
to effectively transmit the encoded data. Through experi-
ments and analysis, we demonstrated considerable networked
VR performance efficiency gains enabled by each system
component over state-of-the-art reference methods, in deliv-
ered VR immersion fidelity, application interactivity/play-out
latency, and transmission power consumption.
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