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The Kondo-Heinsberg chain is an interesting model of a strongly correlated system which has a broad
superconducting state with pair-density wave (PDW) order. Some of us have recently proposed that this PDW
state is a symmetry-protected topological (SPT) state, and the gapped spin sector of the model supports Majorana
zero modes. In this paper, we reexamine this problem using a combination of numeric and analytic methods.
In extensive density-matrix renormalization group calculations, we find no evidence of a topological ground
state degeneracy or the previously proposed Majorana zero modes in the PDW phase of this model. This result
motivated us to reexamine the original arguments for the existence of the Majorana zero modes. A careful
analysis of the effective continuum field theory of the model shows that the Hilbert space of the spin sector of
the theory does not contain any single Majorana fermion excitations. This analysis shows that the PDW state of
the doped 1D Kondo-Heisenberg model is not an SPT with Majorana zero modes.
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I. INTRODUCTION

In recent years, evidence for nonuniform superconduct-
ing (SC) states has been found in certain high-temperature
superconductors. An example of this appears to occur in
the cuprate La2−xBaxCuO4 (LBCO) [1–3]. At x = 1/8, the
critical temperature Tc for the onset of the Meissner state of
the uniform d-wave superconductivity is suppressed to near
4 K while the resistive transition onsets at 10 K. However,
between 10 K and 16 K, where charge density wave (CDW)
and spin density wave (SDW) orders are both present, there
is a quasi-two-dimensional SC phase, where CuO planes are
SC but the material remains insulating along the c axis. This
dynamical layer decoupling seen in LBCO near x = 1/8, as
well as in La2−xSrxCuO4 (LSCO) and LBCO in magnetic
fields, can be explained if the copper oxide planes have pair-
density-wave (PDW) SC order. In the PDW state, the SC order
parameter oscillates in space with a given wave vector. Further
evidence for the existence of a PDW state has been found
recently in scanning tunneling microscopy experiments in the
“halo” of SC vortices in Bi2Sr2CaCu2O8+δ . [4] A related state
was proposed quite early on by Fulde and Ferrell [5] (FF)
and independently by Larkin and Ovchinnikov [6] (LO), who
showed that it is possible to have a SC state where the Cooper
pairs have nonzero center-of-mass momentum in the presence

of a uniform (Zeeman) magnetic field. In contrast, the PDW
state preserves time-reversal symmetry and is generated by
strong electron correlations instead of a BCS-like mechanism.
This PDW state has also been proposed as a natural competing
state of the uniform d-wave SC state in the pseudogap regime.
An extensive review of the physics of PDW states and their
experimental evidence is given by Agterberg et al. [7].

In previous work, it has been shown that a PDW state is
supported in the doped Kondo-Heisenberg (KH) chain, [8]
which consists of a 1D electron gas (1DEG) coupled to a
quantum Heisenberg antiferromagnetic chain by a Kondo in-
teraction [9], and in an extended Hubbard-Heisenberg model
on a two-leg ladder at certain commensurate fillings [10].
In the PDW phase of the KH chain, the spin degrees of
freedom are gapped, while its single charge mode decou-
ples and remains gapless, and the PDW order parameter has
quasi-long-range order. These results have been confirmed
by using powerful numerical and analytic techniques such
as the density-matrix renormalization group (DMRG) [9] and
Abelian bosonization [8,11,12]. This PDW state is peculiar in
that the only allowed order parameters with quasi-long-range
order are composite operators such asOPDW ∼ Nh · �, where
Nh is the Néel order parameter of the spin-1/2 Heisenberg
spin chain and � is the triplet SC order parameter of the
1DEG. All fermion bilinear observables decay exponentially
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with distance. Because of this feature, this PDW state cannot
be described using the conventional Bogoliubov approxima-
tion, unlike the more conventional FFLO states.

Surprisingly, in a recent publication [13], three of us have
put forth arguments that in the PDW phase, the spin sector
of these systems is topological and supports Majorana zero
modes (MZMs). MZMs have a long history in the study
of topological superconductors. In particular, MZMs are be-
lieved to exist in vortex cores of two-dimensional px + ipy

superconductors [14,15] in quantumwires proximate to super-
conductors [16] and in vortices on the SC surfaces of topolog-
ical insulators [17]. In these examples, the superconductivity
is encoded by use of a BCS mean-field term for the fermions
of the system.

The MZMs proposed to exist in the doped KH chain are
novel in that they originate from solitons of the spin sector of
this strongly correlated system, localized at endpoints of the
chain and at junctions with conventional phases. In particular,
this model cannot be solved within the Bogoliubov mean-field
theory, in which the phase mode of the superconductor is
frozen as in the case of the Kitaev wire [16]. If the arguments
for the topological character of the PDW state of the KH
chain of Ref. [13] were correct, the KH chain would be a
natural place to test for the existence of MZMs in a system
with a dynamical massless charge mode. We should note
that, after the publication of Ref. [13], Ruhman et al. have
constructed a model with protected MZMs in a (uniform) 1D
superconductor with a dynamical massless phase field [18].

In this paper, we reexamine the doped KH model in detail,
using extensive DMRG simulations on long chains (L = 128)
with various boundary conditions. We are able to identify the
1D PDW as was seen in Ref. [8] but do not find evidence of
any MZMs in the PDW phase.

Motivated by the absence of evidence of MZMs in our
numerical results, we turned to non-Abelian bosonization to
reinvestigate analytically the original claims that the PDW
wire is topological. In the non-Abelian bosonization ap-
proach, the effective field theory of this problem consists of
four dynamical Majorana fermionic fields (see also Ref. [19]).
As anticipated in Ref. [10], the effective field theory has two
massive phases separated by a quantum phase transition in the
1 + 1 dimensional Ising universality class in which just one
Majorana fermion becomes massless. In the massive phases,
all four Majorana fields are massive and are distinguished
by the sign of the expectation value of the fermion bilinear
of the light Majorana field. The massive phases are in the
universality class of the O(4) � SU (2) × SU (2) Gross-Neveu
model investigated long ago by Witten [20] and by Shankar
[21]. At the critical point, one Majorana fermion is massless
and the remaining three Majoranas are massive and (with
minor fine tuning) have an effective supersymmetry. [20].

By carefully examining the full Hilbert space of the spin
sector of the theory, the non-Abelian bosonization results
show explicitly that there are no states with odd-fermion
parity in the physical spectrum (a necessary condition for
the existence of MZMs). From this, we conclude that the
previously proposed MZMs do not correspond to physical
operators in the doped KH chain. Of course, this result does
not prove that a PDW state cannot in principle be topological.

A candidate topological PDW state is discussed qualitatively
in the Conclusions of this paper. Whether or not a topological
PDW state is possible in a non-mean-field model with a local
Hamiltonian remains an open question.

This paper is organized as follows. In Sec. II, we present
the model and discuss its phase diagram. In Sec. III, we
present our numeric analysis of the doped KH model, and
the lack of evidence of the MZMs. In Sec. IV, we present
the previously proposed argument for the MZMs by using
non-Abelian bosonization. In Sec. V, we reexamine these
claims and show by careful analysis of the Hilbert space of
the spin model that the MZMs are not physical operators.
We also discuss the possibility of the doped KH model being
a different symmetry-protected topological phase (SPT). We
conclude with a discussion of our results in Sec. VI. Technical
parts of our analysis are presented in several Appendices. In
Appendix A, we determine the renormalization group (RG)
equation for the KH model using non-Abelian bosonization.
In Appendix B, we calculate the “fermion parity” of states
that make up the Hilbert space of the spin sector of the
theory. In Appendix C, we present the continuum limit of the
model using Abelian bosonization. In Appendix D, we use
Abelian bosonization to show that the proposed MZMs are
not physical operators. In Appendix E, we discuss the order
parameters that differentiate the trivial and PDW phases of
the model.

II. MODEL AND PDW STATES

In previous work, it has been shown that a PDW phase
exists in the doped 1D KH ladder [8]. The KH ladder consists
of a 1D electron gas (1DEG) coupled to a Heisenberg spin-1/2
chain via Kondo couplings. The Hamiltonian for this system is

H =He + HH + HK ,

He = − t
∑
j,σ

c†j,σ c j+1,σ + H.c. + U
∑

j

n↑n↓ − μ
∑
j,σ

n j,σ ,

HH = JH

∑
j

S j,h · S j+1,h + J ′
H

∑
j

S j,h · S j+2,h,

HK = JK

∑
j

S j,h · S j,e, (1)

where c†j,σ are the electron creation operators, S j,h are the

Heisenberg spin operators, S j,e = 1
2c†j,σ τσ,σ ′c j,σ ′ are the

electron spin operators, and τ are the Pauli matrices. We
have included additional Hubbard U interactions for the
1DEG and a next-nearest-neighbor spin coupling J ′

H in the
Heisenberg chain. We will consider the case where the 1DEG
electrons have been doped away from half filling. This model
also arises naturally in two-leg Hubbard ladders, where the
bonding band is at half filling [10]. In this case, the Umklapp
process gaps out the charge degrees of freedom in the bonding
band, and the Kondo and Heisenberg couplings for the spin
degrees of freedom are generated perturbatively.
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In terms of the spin and charge currents of the system, the
continuum limit of Eqs. (1) is given by

H =Hc + Hs,

Hc = πvc

2
[Je,RJe,R + Je,LJe,L] + gcJe,RJe,L,

Hs = 2πvs,e

3
Je,RJe,R + 2πvs,h

3
Jh,RJh,R + (R ↔ L)

− gs1[Je,RJe,L + Jh,RJh,L] − gs2[Je,RJh,L + Jh,RJe,L],

(2)

where Je are the electron U (1) charge currents, and Je/h

are the 1DEG and Heisenberg chain SU (2) spin currents,
respectively. The Abelian bosonization of this model and
weak coupling analysis are discussed in Appendix C. The
phase diagram for this system has been previously determined
using Abelian bosonization [10] and is rederived here using
non-Abelian bosonization [22] in Appendix A. Equations (2)
have three fixed points corresponding to (gs1, gs2) = (0, 0),
(−∞, 0), (0,−∞). When (gs1, gs2) = (0, 0), the system is
a Luttinger liquid with one charge degree of freedom and
two spin degrees of freedom (a C1S2 Luttinger liquid in the
terminology of Ref. [23].)

At the (gs1, gs2) = (0,−∞) fixed point, the system is in a
PDW phase, since the PDW order parameter

OPDW = � · Nh

has quasi-long-range order. Here,� is the triplet superconduc-
tivity order parameter of the 1DEG and Nh is the staggered
(Néel) component of the magnetization of the Heisenberg
spins. In addition, the singlet SC order parameter decays
exponentially fast. In the PDW phase, the charge sector re-
main gapless, while the spin sector acquires a gap and the
magnetization vanishes in the ground state, Sz ≡ ∑

j Sz
j,e +

Sz
h,e = 0. At the (gs1, gs2) = (−∞, 0) fixed point, the system

is in a conventional SC phase, since the the singlet SC order
parameter has quasi-long-range order, while the PDW order
parameter decays exponentially fast. In this conventional SC
phase, the charge sector is also free and the spin sector is
gapped with vanishing magnetization. The line gs1 = gs2 < 0
marks a quantum phase transition between the PDW and
trivial SC phases that is in the Ising universality class and can
be described in terms of a free Majorana fermion.

In previous works, it has been argued that in the PDW
phase, the gapped spin sector of the model is topological and
hosts Majorana zero edge modes [13]. The “fermion parity”
associated with a pair of these MZMs corresponds to the
relative spin-parity of the lattice model:

(−1)Q
z
, Qz ≡

∑
j

Sz
j,e − Sz

j,h. (3)

III. NUMERICS

In this section, we will use DMRG [24] to search for
evidence of the Majorana edge modes, eventually concluding
that the numerics do not support the existence of Majorana
edge modes in the PDW phase.
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FIG. 1. Magnitude of the Fourier transform of the PDW correla-
tion function (top) and charge density (bottom) of the ground state.
φPDW was averaged over all possible |i − j|.

We start by considering the Hamiltonian in Eqs. (1) on
a finite ladder with L = 32 − 128 rungs, n = 0.875 filling,
and open boundary conditions. We primarily consider the pa-
rameters t = 1, JH = JK = 2, J ′

H = U = 0 which correspond
to those used in Ref. [8]. We obtain a ground state and first
excited state, keeping up to m = 7200 states with truncation
errors <10−8 and 〈ψ1|ψ0〉 < 10−7.

We first validate that we get the PDW in the ground state.
We measure the order parameters:

φ
†
B,i = 1

2 (c
†
i↑c†i+1↓ − c†i↓c†i+1↑), (4)

φPDW = 〈(−1)|i− j|φ†
BφB(|i − j|)〉. (5)

In Fig. 1, we see the salient features of the PDW quasi-
long-range order—the oscillation of the φB bond singlet order
and an accompanying charge-density wave. Thus, with open
boundary conditions, we’re able to obtain the proper phase.

There are a number of ways to establish the existence of
Majorana zero edge modes. To begin, such a system will
have degenerate energy eigenstates in the thermodynamic
limit. The two degenerate eigenstates will be topological and
naively should have different parity values [Eqs. (3)] as well as
identical local reduced density matrices in the bulk. The edges
of the two eigenstates would naturally show edge modes that
should be visible in the spin order near the location of the
Majoranas. An additional signature of these edge modes is
the existence of degeneracy in the entanglement spectrum [25]
of the ground state. While these attributes typically hold only
for gapped systems, we presume that the gapless charge mode
would sufficiently decouple and not affect these properties.

We begin by searching for the two degenerate states; Ref.
[8] finds a spin gap to other Sz sectors and therefore we would
anticipate that the degenerate state should be in the Sz = 0
sector, although everything in this sector has parity 1. States
which are degenerate in the thermodynamic limit will split
in energy in any finite system. This energy splitting should
(for large enough systems) decay exponentially with system
size. Therefore, to search for the topological pair of states, we
calculate the lowest two Sz = 0 eigenstates and look at the
energy as a function of system size out to L = 128. Instead of
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FIG. 2. Finite size scaling of the energy gap. For each point, we
variance extrapolate near the end of DMRG optimization (see Figs. 7
and 8). The linear fit gives a thermodynamic gap of �E (L = ∞) ∼
0.0007 ≈ 0.

an exponentially decaying gap, we find a gap which is linear
in 1/L extrapolating to zero in Fig. 2; this is exactly what is
expected for the tower of states coming from a gapless charge-
density wave.

In spite of this fact, we can compare these two eigenstates.
We find that the charge density of the two eigenstates look
very different (see Fig. 3) ruling out that they could be
topological pairs.

It is clear then that we don’t find the topological eigenstates
out to this system size. We can also just look at the properties
of only the ground state in the hope that the topological state
is still too high in energy. Similar to a Haldane phase, one
might find spin features localized near the edge/interface or
spin-spin correlations peaked near the edge. In the ground
state, the expectation values 〈Sz

j,e〉 and 〈Sz
j,h〉 are always very

small (less than 10−8 in magnitude), indicating an absence of
any edge mode. In addition, there are no significant edge-edge
spin-spin correlations, as seen in Fig 4. We also can consider
the entanglement spectrum (see Fig. 5) and find that the
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0 25 50 75 100 125
i

0.9

1.0

n
i

FIG. 3. Charge density in the ground state (top) and first excited
state (bottom) for L = 128 and n = 0.875.
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Si,h · Sj,h

Si,e · Sj,e

FIG. 4. Normalized spin-spin correlation between parts of the
ladder for L = 128 ground state. 〈Si · S j〉 was averaged over all
possible |i − j|.

lowest entanglement eigenvalues are nondegenerate, unlike
what would be anticipated for a topological system.

As a final search, we consider sandwiches, where we vary
the value of JK in different sections of the ladder. Sandwiches
have been found to be helpful in identifying nontopological
zero modes in Ref. [26]. Here we considered a sandwich with
PDW in the bulk (JK = 2) and an insulator phase (JK = 10) on
the left and right 16 rungs (see Fig. 6). We maintain doping in
the 1DEG such that the left and right insulators are half filled
and the bulk maintains 〈n〉 ≈ 0.875. We do find PDW in the
bulk as expected and explore for the presence of a Majorana
mode in the interface of our sandwich. We again consider the
ground and excited state. The gap is small (≈0.0395t , which
we choose not to extrapolate for computational considera-
tions), nearly the same as the open boundary condition gap
(≈0.0392t). The charge-density, shown in Fig. 6, looks very
different in the bulk, suggesting the states aren’t topological.
We also consider the entanglement entropy in Fig. 5(b), which

32 64 128
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lo

g(
λ

n
)

0

2

4

−
lo

g(
λ

n
)

(a) Open Boundary

(b) Insulator-PDW-Insulator Sandwich

FIG. 5. Entanglement eigenvalue spectrum between the left and
right half of the system for two boundary conditions: open (top) and
sandwich (bottom).
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FIG. 6. Charge density in the ground state (top) and excited state
(bottom) of the sandwich.

has a nearly identical entanglement spectrum to the open
boundary system.

All the evidence presented does not provide any numerical
evidence of MZMs. Despite clearly finding a PDW for both
open and sandwich boundary conditions, neither the ground
state nor excited state of those systems shows topological
behavior.

IV. PREVIOUSLY PROPOSED MAJORANA ZEROMODES

Due to the lack of numeric evidence of MZMs, we will
reexamine the arguments that the PDW wire is topological.
The original argument was made using Abelian bosonization
and subsequent refermionization [13]. Here, we shall rederive
these results using non-Abelian bosonization, since it is better
suited to study the non-Abelian SU (2) currents of the spin
sector. Similar calculations have been previously done by
Tsvelik [19,27].

There are three currents to study when considering the
KH model. A U (1)2 current describing the charge degrees of
freedom of the 1DEG, a SU (2)1 current describing the spin
degrees of freedom of the 1DEG, and a second SU (2)1 current
describing the Heisenberg spins, leading to a total current
structure of U (1)2 × SU (2)1 × SU (2)1, as shown in Eqs. (2).
Since, in the low-energy limit, the charge and spin sectors
decouple (spin-charge separation), we will only focus on the
spin sector, which corresponds to a SU (2)1 × SU (2)1 Wess-
Zumino-Witten (WZW) model [22]. It will also be useful to
define the following currents:

J±,R = Je,R ± Jh,R,

J±,L = Je,L ± Jh,L. (6)

Here the J+ fields describe the SU (2)2 currents, and J−
describe the remaining SU (2)1 × SU (2)1/SU (2)2 currents. In
terms of these fields, the spin Hamiltonian Hs becomes (after
setting the velocities of the spin modes to be equal to each
other, vs,t = vs,b = vs)

Hs = 2πvs

6
[J+,RJ+,R + J−,RJ−,R]

− g+J+,RJ+,L − g−J−,RJ−,L, (7)

where g± = (gs1 ± gs2)/2.

Using the RG equations for Eq. (7) (see Appendix A),
we can identify the four fixed points (g+, g−) = (0, 0),
(−∞,∞), (−∞,−∞), (−∞, 0). The (g+, g−) = (0, 0)
fixed point corresponds to the C1S2 Luttinger state, the
(g+, g−) = (−∞,∞) fixed point corresponds to the PDW
phase and the (g+, g−) = (−∞,−∞) fixed point corresponds
to the trivial SC phase. The (g+, g−) = (−∞, 0) fixed point
marks the Ising transition between the PDW and trivial SC
phase.

To probe the existence of MZMs, we note that the two
SU (2) currents of the spin sector are equivalent to a single
SO(4) current since SU (2) × SU (2) ∼= SO(4). The SO(4)
current algebra can naturally be expressed in terms of four
Majorana fermions. With this in mind, let us now introduce
the Majorana fermions η0,R(L) and ηa,R(L), where a = 1, 2, 3.
Using them, we can construct the left and right moving
currents J±,R(L) as

Ja
+,R = i

2
εabcηb,Rηc,R,

Ja
−,R = iη0,Rηa,R. (8)

In terms of the Majorana fermions, the spin Hamiltonian
becomes

Hs = ivs

2
(η0,L∂xη0,L − η0,R∂xη0,R)

+ ivs

2

∑
a

(ηa,L∂xηa,L − ηa,R∂xηa,R),

− g+
∑
a>b

(ηa,Rηa,L )(ηb,Rηb,L )

− g−(η0,Rη0,L )
∑

a

(ηa,Rηa,L ).

(9)

which, upon setting g+ = g−, is the Hamiltonian of the
O(4) Gross-Neveu model. Notice that in the full problem of
Eqs. (9), the “light” Majorana field η0 becomes massless at
g− = 0 and decouples from the rest. Due to the single free
Majorana fermion, g− = 0 marks an Ising critical point. We
discuss the associated Z2 symmetry breaking that occurs at
the phase transition in Appendix E.

In addition, this system also has a conserved fermion
parity, which can be expressed as

(−1)Nf = exp(iπ
∫

dx[iη0,Rη3,R + iη1,Rη2,R + (R ↔ L)]).

(10)

In terms of the lattice degrees of freedom, (−1)Nf =
(−1)

∑
j 2Sz

j,e , which reduces to Eqs. (3) in the ground state,
where

∑
j[S

z
j,e + Sz

j,h] = 0.
When g+ is large, we expect that iηa,Rηa,L will gain

an expectation value 〈iηa,Rηa,L〉 = �. With this substitution,
Eqs. (9) becomes

Hs = ivs

2
(η0,L∂xη0,L − η0,R∂xη0,R) + ig−�(η0,Rη0,L ). (11)

Between the PDW phase (g− > 0) and the trivial SC phase
(g− < 0), the mass term for η0 changes signs, and one would
expect for there to be a localized MZM at the open ends of the
system.
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V. ARGUMENTS AGAINST MAJORANA ZEROMODES

As we have shown in the previous section, the spin degrees
of freedom of the doped KH model can be expressed in
terms of four Majorana fermionic fields. Based on this, it is
reasonable to conjecture, as was done in Ref. [13], that there
may be MZMs at interfaces between the PDW and trivial SC
phases. However, as we shall argue below, this is not the case
here, and the doped KH model in the PDW phase does not
host MZMs.

Let us first review several well-known features of SPTs.
First, SPTs are short-range entangled gapped states of matter
that cannot be smoothly deformed into a trivial state while
preserving both symmetries and the bulk gap of the system.
Second, at the interface between an SPT and a trivial state,
there are localized zero energy degrees of freedom. This
leads to a robust ground-state degeneracy for a system with
symmetry-preserving boundaries.

In the case of the fermionized spin sector of the doped
KH model, the localized zero energy modes are MZMs, and
the ground-state degeneracy corresponds to the two fermion
parity sectors. Acting on a ground state with a MZM changes
the fermionic parity of the ground state from ±1 to ∓1.
Importantly, having two distinct fermion parity sectors is a
necessary condition for the existence of MZMs. In reverse, if
all states in a given theory have the same fermion parity, then
a single MZM is not a physical operator.

The underlying question we are asking is if the Hilbert
space of the spin sector of the original model, Eqs. (2), is
the same as that of the fermionized model, Eqs. (9). Clearly,
the Hilbert space of the fermionized model will consist of
states with both even and odd fermion parity. In the following,
we will discuss whether or not both of these fermion parity
sectors exist in the Hilbert space of the original spin model.
We find that all states in the Hilbert space of the spin model
have even fermion parity. This means that the Hilbert space
of the fermionic theory of Eqs. (9) is larger than that of
the spin sector of the KH model. In particular, there are
extra, unphysical states with odd fermion parity, that do not
correspond to any state in the physical Hilbert space of the
spin model. A similar situation is well known to happen in
the quantum Ising chain which is described by the parity even
sector of the fermionized version of the model.

To show this, it will be useful to define the system on a
ring of length L. We are only interested in the topological
features of the spin sector of the theory [Eq. (7)]. To have a
pair of MZMs, we will put half of the ring in the PDW phase
(g− > 0 for 0 < x < L/2) and the other half in the trivial SC
phase (g− < 0 for L/2 < x < L). From our earlier analysis,
we expect that there will be two MZMs located at 0 and L/2.
Since there are two MZMs in this system, we expect that there
will be two degenerate ground states, one with fermion parity
+1 and one with fermion parity −1.

With this system in mind, we now ask if the fermion parity
odd states exist in the Hilbert space of the model described
above. To probe this Hilbert space, it will actually be sufficient
to just probe the Hilbert space of the unperturbed model (g− =
g+ = 0), which is simply the SU (2)1 × SU (2)1 WZWmodel.
If all states in the Hilbert space of the unperturbed model
have the same fermion parity, then all states in the Hilbert

space of the perturbed model will also have the same fermion
parity. This is because turning on a perturbation cannot add
new states to the Hilbert space.

It is well known that the Hilbert space of a 1 + 1D confor-
mal field theory (CFT) can be organized into Verma modules
that are built off of a highest weight state [28]. These highest
weight states are created by acting on the vacuum of the theory
with a primary field. In Appendix B, we explicitly calculated
the fermion parity [Eq. (10)] of all states in all Verma modules
of the SU (2)1 × SU (2)1 WZW CFT. We find that they all
have even fermion parity and, as a result, all states in the
perturbed model must also have even fermion parity. Indi-
vidual MZM operators are therefore not physical operators
since acting on an even fermion parity state with the MZM
operator leads to an odd fermion parity state, the latter of
which we know does not exist in the SU (2)1 × SU (2)1 theory.
Products of an even number of Majorana operators are physi-
cal, as can be seen from examining the SU (2) currents of the
model.

From this analysis, we can conclude that switching from
the spin currents [Eq. (7)] to the fermion representation
[Eqs. (9)] introduces new states into the Hilbert space of the
system. In particular, the fermion parity-odd states are part of
the unphysical fermionic Hilbert space, but not of the physical
spin Hilbert space. So, to move from the expanded fermionic
Hilbert space to the physical spin Hilbert space, the fermionic
Hilbert space must be projected onto the fermion parity even
states (known in string theory as a Gliozzi-Scherk-Olive
(GSO) projection [29]). We present a similar argument using
Abelian bosonization in Appendix D.

We can also consider the possibility that the spin sector of
the doped KH model is another SPT protected by some other
symmetry. The only other symmetry in the model is the total
spin SU (2) ∼= SO(3) symmetry of the model. From cohomol-
ogy classifications, it is known that there is one nontrivial SPT
in 1d protected by the SO(3) symmetry—the Haldane phase
of the spin 1-chain. It is known that in the Haldane phase, the
edge modes carry spin-1/2. In the Majorana representation,
only the fermions ηa (a = 1, 2, 3) carry spin. It is clear that
there are no zero modes for ηa in Eqs. (9) at a boundary
between the PDW and trivial SC phases, since g+ < 0 for both
phases. This indicates that the spin sector of the model is not
in the Haldane phase.

In addition, it is known that the SU (2)1 × SU (2)1 WZW
model enters the Haldane phase when the following interac-
tion is added [30–33]:

Hint = λ

2π

∑
a

tr(geτ
a)tr(ghτ

a), (12)

where ge/h are the WZW g fields of the 1DEG and Heisenberg
spins, respectively (see Appendix A), and λ is negative. In
terms of the fermionic representation, this interaction intro-
duces a negative mass term for ηa and, by extension, three
MZMs at the boundaries of the system. These zero modes
carry spin as expected in the Haldane phase. As shown in
Appendix A, the interaction in Eq. (12) is not present in the
doped KH model. Because of this, we can conclude that the
doped KH model is not in the Haldane phase, and thereby is
not an SPT.
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VI. CONCLUSION

In this paper, we have established, using both numeric and
analytic methods, that the doped KH model does not host
MZMs. Furthermore, it appears that the spin sector of the
model is also not an SPT protected by the SO(3) symmetry
of the model. Based on this, we believe that the doped KH
model is not an SPT of any kind. Our analysis does not
rule out possible SPTs that exist beyond the cohomology
classifications, however, there is no evidence for this, and we
believe that this situation is extremely unlikely.

While our results do show that the PDW state of the
KH model in 1D is not topological, it does not rule out
a topological PDW state in principle. Indeed, it is easy to
imagine a 1D toy model with a properly chosen PDW mean-
field term that would have MZMs analogous to the Kitaev
chain. Since in dimensions d > 1, PDW states generally have
Fermi surfaces of Bogoliubov quasiparticles; in 1D one would
expect that a PDW should have Majorana “zero-modes” along
the length of the state. One such example is a paired p-wave
state whose order parameter changes periodically its sign,
i.e., a PDW relative of the uniform p-wave state. This state
can be viewed as a sequence of regions with local uniform
p-wave order with a periodic arrangement of domain walls
where the sign changes occur. Then, a Jackiw-Rebbi type
argument [34] implies the existence of (Majorana) zero modes
at the location of each domain wall. A related topological
two-dimensional state was recently studied by Santos and
collaborators [35]. Actually, such a p-wave PDW is equiva-
lent to a theory of massless Majorana fermions and is at a
critical point. Subsequent breaking of inversion symmetry (by
a uniform p-wave component) leads to a gapped topological
state. It would be interesting to construct a 1D Hamiltonian
with a state of this type (without resorting to a proximity effect
mechanism).

Moving on to two dimensions, it is not difficult to imagine
a weak-coupling 2D topological FFLO-type state. For exam-
ple, if two spin-filtered Fermi surfaces exist away from the
gamma point, as the Fermi surface of doped transition metal
dichalcogenides, and if there is an intravalley triplet pairing
channel, then its natural ground state should be an intravalley
p-wave SC. Such a state is topological. The resulting topo-
logical content will be Ising × ¯Ising. Note that this state can
melt into the two distinct states, an isotropic 4e SC state
and a CDW state without superconductivity. The topological
nature of these states may be interesting to study in future
work. On the other hand, since non-mean-field 2D models of
PDW systems remain elusive, it is an open question whether
topological PDW states may exist in higher dimensions. An
effective field theory approach using a nonlinear sigma model
may be a promising way to probe this question in future
work.
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APPENDIX A: NON-ABELIAN BOSONIZATION ANALYSIS
OF THE KONDO-HEISENBERGMODEL

Here, we will now study the the problem of the KH model
using non-Abelian bosonization. There are three currents to
study when considering the KH model. A U (1)2 current
describing the charge degrees of freedom of the 1DEG, a
SU (2)1 current describing the spin degrees of freedom of
the 1DEG, and a second SU (2)1 current describing the spin
degrees of freedom of the spin chain of the KH, leading to a
total of current structure of U (1)2 × SU (2)1 × SU (2)1.

The Hamiltonian for the charge degrees of freedom is given
by

Hc = vc

2

[
1

Kc
(∂tθc)

2 + Kc(∂xφc)
2

]
. (A1)

These degrees of freedom are gapless and do not couple to the
spin degrees of freedom.

It is known that the spin currents of this model can be
expressed as a SU (2)1 × SU (2)1 WZW model [37]. The spin
currents, Je(h),R(L), of the SU (2)1 × SU (2)1 WZW model are
defined as

Ja
e,R = − i

2π
tr
(
∂zgeg−1

e τ a
)
, Ja

e,L = i

2π
tr
(
g−1

e ∂z̄geτ
a
)
, (A2)

and similar for e ↔ h. Here, ge/h is a SU (2) matrix valued
field, ∂z ∂z̄ are the derivatives with respect to the holomophic
and antiholophomic coordinates (t ∓ ix), and τ a are the Pauli
matrices. The operator product expansion (OPE) for the spin
currents are given by

Ja
e,R(z)J

b
e,R(w) ∼ 1

(z − w)2
δab + i

(z − w)
εabcJc

e,R(w), (A3)

and similarly for e ↔ h and R ↔ L. The lattice spins of the
system are defined as

S j,e

a
= 1

2π
[Je,R(x) + Je,L(x)] + ei2k f x�etr(geτ),

S j,h

a
= 1

2π
[Jh,R(x) + Jh,L (x)] + (−1)x/a�htr(ghτ),

(A4)

165133-7



JULIAN MAY-MANN et al. PHYSICAL REVIEW B 101, 165133 (2020)

where �e/h are nonuniversal constants. The factor of ei2k f x is
due to the doping of the electron degrees of freedom.

Using the Sugawara construction and ignoring irrelevant
operators, the Hamiltonian for the spin degrees of freedom of
the doped KH model is given by

Hs = 2πvs,e

3
Je,RJe,R + 2πvs,h

3
Jh,RJh,R

− gs1[Je,RJe,L + Jh,RJh,L]

− gs2[Je,RJh,L + Jh,RJe,L]. (A5)

We note here that this model has a discrete symmetry that
sends (ge, gh) → (−ge,−gh). If the electrons were at half
filling (k f = π/2), we would also be able to include the term∑

a tr(geτ
a)tr(ghτ

a). However, due to the electron doping, this
term oscillates as ei(2k f +π )x, and is thereby irrelevant.

We will now determine the RG flow for Hs. To do this, it
will be useful to introduce new variables:

J±,R = Je,R ± Jh,R, (A6)

J±,L = Je,L ± Jh,L. (A7)

Here the J+ fields describe the SU (2)2 currents, and J−
describe the remaining SU (2)1 × SU (2)1/SU (2)2 currents. In
terms of these fields, the the spin Hamiltonian Hs becomes
(setting vs,t = vs,b = vs)

Hs = 2πvs

6
[J+,RJ+,R + J−,RJ−,R]

− g+J+,RJ+,L − g−J−,RJ−,L,

where g± = (gs1 ± gs2)/2. The OPEs for the J± fields are

Ja
+,R(z)J

b
+,R(w) ∼ 2

(z − w)2
δab + i

(z − w)
εabcJc

+,R(w),

Ja
−,R(z)J

b
−,R(w) ∼ 2

(z − w)2
δab + i

(z − w)
εabcJc

+,R(w),

Ja
−,R(z)J

b
+,R(w) ∼ 2

(z − w)2
δab + i

(z − w)
εabcJc

−,R(w),

Ja
+,R(z)J

b
−,R(w) ∼ 2

(z − w)2
δab + i

(z − w)
εabcJc

−,R(w), (A8)

and similar for L ↔ R. Using these OPEs for the J± fields,
we have the beta functions

β(g+) = − 2

π
(g2+ + g2−),

β(g−) = − 4

π
(g+g−). (A9)

Let us examine the β functions near (g+, g−) = (0, 0). For
g− �= 0 or g+ < 0, g+ flows to −∞. For g+ < 0, we can
rewrite the β(g−) as

β(g−) = 4

π
|g+|g−. (A10)

Rewriting g− as ±|g−|, we have that
β(|g−|) = 4

π
|g+||g−|. (A11)

So, for g+ < 0, g− > 0, g− flows to ∞ and for g+ < 0, g− <

0, g− flows to−∞. Using this, we can identify the fixed points
(g+, g−) = (0, 0), (−∞,∞), (−∞,−∞), and (−∞, 0).

APPENDIX B: FERMION NUMBER IN THE
SU (2)1 × SU (2)1 WZWMODEL

Let us consider the SU (2)1 × SU (2)1 WZWmodel defined
on a ring. This is equivalent to defining the WZW model on
the complex plane where the radial direction is time and the
polar angle is space. We can express the SU (2) currents in
terms of Majoranas using

Ja
e,R/L = i

2

(
εabc

2
ηb

R/Lηc
R/L + η0

R/Lηa
R/L

)
, (B1)

Ja
h,R/L = i

2

(
εabc

2
ηb

R/Lηc
R/L − η0

R/Lηa
R/L

)
. (B2)

Let us now define the following charge operator:

Nf = 2

2π i

∮
dz

(
J3

e,R(z) + J3
e,L (z̄)

)
= 1

2π i

∮
dz(η1,R(z)η2,R(z) + η0,R(z)η3,R(z)

+ η1,L(z̄)η2,L(z̄) + η0,L(z̄)η3,L(z̄)), (B3)

where the contour integral is over a circle of constant radius
in the complex plane, i.e., a constant time slice. The charge qA

of a field A(w, w̄) is given by

[Nf , A(w, w̄)] = qAA(w, w̄), (B4)

where [...] is the radially ordered commutator. We find that the
Je,R currents have the following charges:[

Nf , J3
e,R(w)

] = 0, (B5)

[Nf , J±
e,R(w)] = ±2J±

e,R(w). (B6)

The charges of the Je,L are identical. The charge of compo-
nents of the matrix valued WZW field ge are

[Nf , ge(w, w̄)00] = 2ge(w, w̄)00, (B7)

[Nf , ge(w, w̄)01] = [Nf , ge(w, w̄)10] = 0, (B8)

[Nf , ge(w, w̄)11] = −2ge(w, w̄)11, (B9)

where ge(w, w̄)i j are the components of the matrix valued
WZW field ge. The charges of the (sum of) Majoranas are

[Nf , η1,R(w) ± iη2,R(w)] = ±(η1,R(w) ± iη2,R(w)), (B10)

[Nf , η0,R(w) ± iη3,R(w)] = ±(η0,R(w) ± iη3,R(w)). (B11)

The charges of the left-handed Majoranas are the same. Addi-
tionally,[

Nf , Ja
h,R(w)

] = [
Nf , Ja

h,L (w̄)
] = [Nf , gh(w, w̄)i j] = 0,

(B12)
since all the OPEs disappear. From this, we can conclude that
fields Je/h,R/L and ge,h all have charge 0 mod(2). The Majo-
rana fields ημ,R/L have charge 1 mod(2). As such, Je/h,R/L and
ge,h all have even charge parity, (−1)Nf , while ημR/L have odd
charge parity.
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We can also find the charges of the individual modes of
spin currents Je/h,R/L and Majorana currents ημ,R/L analo-
gously. The modes in radial quantization are, respectively,

Ja
n,e,R =

∮
dw

2π i
wnJe,R(w), (B13)

ηn,μ,R =
∮

dw

2π
wn−1/2ημ,R(w), (B14)

and similar for e → h and R → L. Combining Eqs. (B13) and
(B14) with Eqs. (B5)–(B12), we find that all modes Ja

n have
even charge 0 mod(2) and all modes ηn have charge 1 mod(2)
as expected.

Let us now consider the charge of various states in the
Hilbert space of the SU (2)1 × SU (2)1 WZW model. It is
known that the Hilbert space of a CFT can be divided
into Verma modules. The Verma modules are built off of a
highest weight state. In the SU (2)1 × SU (2)1 WZW model
there are four highest weight states. First, there is the trivial
vacuum state which we will label |0〉. Second, there are the
highest weight states that correspond to inserting a primary
field. For the SU (2)1 × SU (2)1 WZW model in radial quan-
tization, the primary fields that are inserted are ge(0, 0)i j ,
gh(0, 0)i j and their product ge(0, 0)i jgh(0, 0)kl . We will label
the corresponding highest weight states as ge,i j |0〉, gh,i j |0〉 and
ge,i jgh,kl |0〉. The descendant states of these highest weight
states are created by acting on the highest weight states with
the operators Ja

−n,e/h,R/L .
Let us now consider the parity of a state in the Hilbert

space. A general state built off the vacuum highest weight
state |0〉 can be written as

Ja
−n1,e/h,L/RJb

−n2,e/h,L/R...|0〉. (B15)

From our earlier analysis, we know that the modes Ja
−n1,e/h,L/R

have charge 0 mod(2). Since the vacuum has charge 0 by
definition, we can conclude that all states built off the vacuum
have even charge, i.e., (−1)Nf = 1 for all states in Eq. (B15).

We will now consider the other states in the Hilbert space
that are built off the ge,i j |0〉 and gh,i j |0〉 and ge,i jgh,kl |0〉
highest weight states. In general, these states can be written
as

Ja
−n1,e/h,L/RJb

−n2,e/h,L/R...ge,i j |0〉,
Ja
−n1,e/h,L/RJb

−n2,e/h,L/R...gh,i j |0〉,
Ja
−n1,e/h,L/RJb

−n2,e/h,L/R...ge,i jgh,kl |0〉. (B16)

As before, we know that the modes Ja
−n1,e/h,L/R have charge

0 mod(2). Our earlier analysis has also shown that ge(0, 0)i j ,
gh(0, 0)i j and their product ge(0, 0)i jgh(0, 0)kl all have charge
0 mod(2). Because of this, (−1)Nf = 1 for all states in
Eqs. (B16). From this, we can conclude that (−1)Nf = 1 for
all states in the Hilbert space of the SU (2) × SU (2) WZW
model.

Let us now consider acting on a given even charge parity
state |ψ〉 with a single Majorana fermion mode η−n,μ,R/L:

η−n,μ,R/L|ψ〉. (B17)

From our earlier result, we know that η−n,μ,R/L has charge
1 mod(2). Since the state |ψ〉 has (−1)Nf = 1, the state in
Eq. (B17) has (−1)Nf = −1. However, we know that all

states in Hilbert space of the SU (2) × SU (2) WZW model
have (−1)Nf = 1. So, the state in Eq. (B17) cannot be a
physical state of the SU (2) × SU (2) WZW model. We can
also consider acting the state |ψ〉 with two Majorana fermion
modes η−n,μ,R/L and η−n′,ν,R/L:

η−n,μ,R/Lη−n′,ν,R/L|ψ〉. (B18)

Since each of the modes have charge 1 mod(2), the state in
Eq. (B18) has (−1)Nf = 1. So this can be a physical state in
the SU (2) × SU (2) WZW model. We can thereby conclude
that a single Majorana mode operator is not a physical op-
erator in the SU (2) × SU (2) WZW model. In other words,
there are no single fermions modes in the spectrum of the
SU (2) × SU (2) WZW model. The fermions only occur as
bilinears.

APPENDIX C: CONTINUUM LIMIT AND ABELIAN
BOSONIZATION

Here, we will now discuss the continuum limit of the lattice
model using Abelian bosonization. In the low-energy limit,
the fermions and spins can be expressed in terms of continuum
current operators:

1√
a

c j,σ → Rσ (x)e
ik f x + Lσ,t (x)e

−ik f x

S j,h

a
→ Jh,R(x) + Jh,L (x) + (−1)x/aNh(x). (C1)

Here, Rσ and Lσ are the right- and left-moving components
of the electron fields, Jh,R and Jh,Lare the slowly varying
components of the spin field, Nh is the rapidly oscillating
(Néel) component of the spin field, and x = ja where a is the
lattice spacing.

The right- and left-moving continuum fields can be
bosonized using the following identifications:

Rσ = :
1√
2πa

e−i
√
2π [φσ +σθσ ] :,

Lσ = :
1√
2πa

ei
√
2π [φσ +σθσ ] :,

Jz
h,R = 1√

2π
∂x[φ̃s − θ̃s],

Jz
h,L = 1√

2π
∂x[φ̃s + θ̃s],

J±
h,R = :

1

2πa
e∓i

√
2π [φ̃s−θ̃s] :,

J±
h,L = :

1

2πa
e±i

√
2π [φ̃s+θ̃s] :, (C2)

where φσ and θσ are the field and dual field of the electrons,
φ̃s and θ̃s are the field and dual field of the spins, and : ... :
indicates normal ordering of the exponential. From here on,
we will leave the normal ordering implicit. In this definition,
we note that the the spin fields are defined such that φ̃s ≡ φ̃s +√
2π .
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It will be useful to decompose the field and dual fields into
spin and charge degrees of freedom using

φc = 1√
2
(φ↑ + φ↓),

φs = 1√
2
(φ↑ − φ↓), (C3)

and similarly for the θ fields.
The dominant interactions will be between the the 1DEG

spins and the Heisenberg spins. In terms of the spin currents
of the 1DEG Je,R = 1

2Rστσ,σ ′Rσ ′ and Je,L = 1
2Lστσ,σ ′Lσ ′ , the

most general interactions consistent with the SU (2) symme-
tries of the model are

Hint = − gs1,eJe,RJe,L − gs1,sJh,RJh,L]

− gs2[Je,RJh,L + Jh,RJe,L]. (C4)

At weak coupling, the relationship between the values of
these coupling constants and those of the microscopic model
Eqs. (1) are gs1,e = U , gs1,s = JH − 6J ′

H , and gs2 = −JK . As
noted before, the microscopic model Eqs. (1) can also arise
as the effective description of a two-leg Hubbard ladder [10].
The relationship between the coupling constants in Eq. (C4)
and the those of the two-leg Hubbard ladder are more complex
and can be found in Ref. [38].

If we set gs1,e = gs1,s ≡ gs1 and define φs,± ≡ 1√
2
(φs ±

φ̃s), and similarly for θs,±, we arrive at the continuum Hamil-
tonian:

H = Hc + Hs,

Hc = vc

2
[Kc(∂tθc,e)

2 + 1

Kc
(∂xφc,e)

2],

Hs =
∑
ε=±

vs,ε

2
[Ks,ε (∂tθs,ε )

2 + 1

Ks,ε
(∂xφs,ε )

2]

+ gs1

2(πa)2
cos(

√
4πφs,+) cos(

√
4πφs,−)

+ gs2

2(πa)2
cos(

√
4πφs,+) cos(

√
4πθs,−). (C5)

It is important to note that since φ̃s ≡ φ̃s + √
2π ,

(φs,+, φs,−) ≡ (φs,+ + √
π, φs,− − √

π ).

APPENDIX D: MAJORANA ZEROMODES USING
ABELIAN BOSONIZATION

The original argument for the existence of MZMs [13]
comes from considering a section of PDW wire ((gK , gSC) =
(−∞, 0)) of length L that is sandwiched in between between
two sections of trivial SC wire ((gK , gSC) = (0,−∞)). So
the wire is in a trivial SC state for x < 0 and L < x, and a
PDW phase for 0 < x < L. In the analysis of the topological
features of the PDW wire, we will only be interested in the
gapped spin sector of the wire [Eqs. (C5)], and not in the
gapless charge sectors. We will also take L to be much greater
than the correlation length of the spin sector. To show the

proposed MZMs which are localized at x = 0 and x = L,
we will refermionize Eqs. (C5) around the Ks± = 1 point.
Assuming that φs+ is pinned to the same minimum throughout
the entire system, the refermionized Hamiltonian is given by

Hs = −ivs(R†∂xR − L†∂xL)
+MUSCR†L + �PDWR†L† + H.c.

R ∼ e−i
√

π (φs,−−θs,− )

L ∼ ei
√

π (φs,−+θs,− ) (D1)

where MUSC ∼ gs1〈cos(
√
4πφs+)〉 and �PDW ∼

gs2〈cos(
√
4πφs+)〉. The fermion number is not conserved in

Eq. (D1), but the fermion parity given by

(−1)Nf = (−1)
∫

dxR†R+L†L (D2)

is conserved.
Decomposing the fermions into Majorana fermions us-

ingR = 1√
2
(η1,R + iη2,R), L = 1√

2
(η2,L + iη1,L ) the potential

term in Eq. (D1) becomes

Vs = (MUSC − �PDW)iη1,Rη1,L + (MUSC + �PDW)iη2,Rη2,L.

(D3)

Since MUSC ∼ gs1 and �PDW ∼ gs2, MUSC − �PDW changes
sign when moving from the SC region to the PDW region at
x = 0 and x = L. At these points there will be zero energy
mode for the Majorana fermions η1 = (η1,R, η1,L ) due to
the Jackiw-Rebbi mechanism. These MZMs imply that the
spin sector of the doped KH model can be considered to be
topological superconductor in class D, i.e., a Kiteav chain.
Acting on a given state with a MZM operator changes the
fermion parity of the state [Eq. (D2)] from ±1 to ∓1. Naively,
this would lead to two ground states, one with fermion parity
even, and one with fermion parity odd.

It is at this point that we wish to ask if the MZMs from
the refermionized model Eq. (D1) correspond to physical
operators in the original spin model. To answer this in the
Abelian bosonized framework, we first note that the bosonic
fields describing the electron and Heisenberg spins are com-
pact. This compactification means that the fields φ± are
defined such that (φs+, φs−) ≡ (φs+ + √

π, φs− − √
π ) (see

Appendix C). Because of this, all physical operators in the
theory must be invariant under sending φs± → φs± ± √

π si-
multaneously. However, if in the refermionization in Eq. (D1)
we note that the fermions R and L are not not invariant
under this transformation, but instead transform as R → −R
and L → −L.

Let us now consider the situation where there is a boundary
between a section of PDW wire and a section of trivial SC
wire. As noted before, one would expect there to be a pair of
MZMs at either ends of the PDW wire. Let us consider the
ground state of the system |0〉 that must be invariant under the
transformation φs± → φs± ± √

π . Furthermore, the ground
state will have a well-defined fermion parity [Eq. (D2)], that
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we will take to be equal to +1. If one of the zero modes η1
is physical, the state η1|0〉 will be a degenerate ground state
with fermion parity −1. However, as noted before, the zero
mode η1 is not a physical state, since under φs± → φs± ± √

π ,
η1 → −η1. So η1|0〉 cannot be a physical state. From this,
we can also conclude that only products of an even number
of Majorana fermion operators leads to physical states. This
means that all physical states will have fermion parity +1.
From our earlier logic, we can then confirm that there is not
ground-state degeneracy, and by extension no MZMs.

APPENDIX E: Z2 ORDER PARAMETER

Here we discuss the a Z2 order parameter and the associ-
ated symmetry breaking that occurs between the trivial SC
and PDW phases of the doped KH model. We expect this
symmetry breaking to occur because of the phase transition
between the two phases in the Ising universality class. The
Z2 symmetry that we will need to consider sends (ge, gh) →
(−ge,−gh).

To approach the problem of symmetry breaking, it will
be useful to consider this problem with Abelian bosonization
instead of non-Abelian bosonization, since in the former case,
the order parameters can be read off by using a semiclassical
analysis. In Abelian bosonization, the WZW fields ge and gh

can be written as

ge =
[

ei
√
2πφs e−i

√
2πθs

−ei
√
2πθs e−i

√
2πφs

]
, gh =

[
ei

√
2πφ̃s e−i

√
2πθ̃s

−ei
√
2πθ̃s e−i

√
2πφ̃s

]
.

(E1)

We note that combining Eqs. (E1) and (A2) reproduce
Eq. (C2). The order parameters we are interested in will be
tr(ge) = 2 cos(

√
2πφs), and tr(gh) = 2 cos(

√
2πφ̃s), as well

as their product tr(ge)tr(gh). Clearly tr(ge) and tr(gh) are odd
under (ge, gh) → (−ge,−gh) but their product is not.

Let us now determine when these order parameters have
expectation values. In the trivial SC phase, 〈φs+〉 = 〈φs−〉 =
0,

√
π/2. Using that φs± = 1√

2
(φs ± φ̃s), we can determine

that both 〈tr(ge)〉 = ±2 and 〈tr(ge)〉 = ±2, and so the Z2

symmetry is broken. In the PDW phase, 〈φs+〉 = 〈θs−〉 =
0,

√
π/2. In this phase, neither tr(ge) or tr(ge) have expec-

tation values, but their product does have an expectation value
〈tr(ge)tr(gh)〉 = ±2. So, the (ge, gh) → (−ge,−gh) symmetry
is unbroken. We can thereby identify the phase transition
between the PDW and trivial SC phase with breaking the
(ge, gh) → (−ge,−gh) symmetry.

APPENDIX F: ADDITIONAL NUMERICS

All energies shown in Fig. 2 were generated via extrapola-
tion to 0 variance. For completeness, we show those energies
in Figs. 7 and 8.
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FIG. 7. Variance extrapolation of the ground state (E0) for vari-
ous system sizes.
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FIG. 8. Variance extrapolation of the first excited state (E1) for
various system sizes.
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