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We investigate the problem of intertwined orders in fractional Chern insulators by considering lattice fractional
quantum Hall (FQH) states arising from pairing of composite fermions in the square-lattice Hofstadter model.
At certain filling fractions, magnetic translation symmetry ensures the composite fermions form Fermi surfaces
with multiple pockets, leading to the formation of finite-momentum Cooper pairs in the presence of attractive
interactions. We obtain mean-field phase diagrams exhibiting a rich array of striped and topological phases,
establishing paired lattice FQH states as an ideal platform to investigate the intertwining of topological and

conventional broken symmetry order.
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I. INTRODUCTION

Fractional quantum Hall (FQH) states realized in lattice
systems have attracted considerable attention in recent years,
driven in large part by advances in the engineering of Chern
bands in solid-state Moiré [1-6] and cold atom systems
[7-11]. In the presence of strong interactions, the partial filling
of a Chern band may result in the formation of a fractional
Chern insulator (FCI) state [12—-18], a lattice analog of con-
tinuum FQH states [19]. Importantly, lattice effects can give
rise to phenomena with no continuum analog, such as novel
FCI states obtained by partial filling of bands with Chern
number greater than unity, which may support lattice defects
with nontrivial braiding statistics [20,21]. The presence of the
lattice also results in the competition and, in some cases, the
coexistence of FCI states with more traditional broken sym-
metry orders, such as charge density waves (CDWs) [22,23].
This phenomenon of multiple orders that sometimes compete
with each other but sometimes drive each other is reminiscent
of the complex intertwined orders found in high-temperature
superconductors [24,25].

In spite of the importance of the lattice, many FCI states
can still be understood through the widely used composite
fermion (CF) framework [26,27], like most experimentally
observed continuum FQH states. In this picture, the electrons
nucleate fluxes of an emergent Chern-Simons gauge field,
which partially screen the external magnetic field. The bound
states of the electrons and the emergent flux are known
as composite fermions. In the continuum, an FQH state of
electrons results when the composite fermions, which feel a
reduced net flux, form an integer quantum Hall state. Much
as in the case of the continuum FQH states, the FCI lattice
counterparts can also be represented in terms of a theory of
(composite) lattice fermions coupled to a lattice version of
Chern-Simons gauge theory [28-31]. Abelian FCI states are
formed when composite fermions fill an integer number of
Hofstadter bands [32-35]. At certain filling fractions in the
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continuum case, the composite fermions see no effective flux
and so form a Fermi surface [36]. In higher Landau levels, this
composite Fermi liquid yields to a pairing instability, resulting
ina p; + ip, superconductor of composite fermions [37]. This
gapped state is the Pfaffian state proposed by Moore and Read
[38] and possesses non-Abelian topological order.

Although analogs of the Pfaffian state have been observed
numerically in lattice systems [39-43], we claim that more
exotic paired phases may also be obtainable. Indeed, although
the composite fermions may form a Fermi surface at cer-
tain filling fractions due to the vanishing of the net flux, at
other filling fractions at which the net flux is nonzero, the
composite fermions may partially fill a Hofstadter band and
so still form a Fermi surface. Magnetic translation symmetry
implies, as we will review, that this Fermi surface must consist
of multiple Fermi pockets, raising the possibility of finite-
momentum pairing and the formation of Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) [44,45] or pair-density wave (PDW)
[24] like states. These statements may hold true even in zero
magnetic field, as the composite fermions will still see a
nonzero Chern-Simons flux. We should emphasize that the
PDW states we investigate do not arise from a Zeeman effect
(as in the conventional FFLO states) but rather have a purely
orbital origin.

The goal of the present study is to illustrate the exis-
tence, at a mean-field level, of a novel set of FCI phases
which exhibit a coexistence of topological order (TO) and
broken symmetry order (BSO) as a result of finite-momentum
composite fermion pairing, taking as an example, for sim-
plicity, the square-lattice Hofstadter model [46]. We find,
for instance, topologically ordered states supporting CDWs,
providing a new entry in the long history of stripe order in
QH systems [47-51]. These states support a range of Abelian
and non-Abelian topological orders, including the Pfaffian
and PH-Pfaffian [52] states. We also find a phase which
we call a quantum Hall thermal semimetal, as the charge
sector is gapped, while the neutral sector is described by a
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theory of relativistic massless Majorana fermions. Such a state
will possess a quantized Hall conductance but will support
unquantized transport of heat through the bulk.

Related phenomena have been exhibited in recent experi-
ments [53-55], which revealed a competition between pairing
and nematicity in continuum Landau levels. A subsequent
theoretical study [56] proposed a p, + ip, PDW state of com-
posite fermions as a possible explanation for this observation.
The distinguishing feature between the physics we present
and that of, for instance, Ref. [56] is that we present FCIs
as a platform in which to study intertwining of TO and BSO,
in that they do not compete with nor are even independent
of one another but rather arise from a common microscopic
origin, namely, the interplay between the pairing of composite
fermions and the commensurability of the lattice and magnetic
length scales.

We emphasize that, although we focus on a particular lat-
tice model, the basic mechanism of finite-momentum pairing
of composite fermions is applicable to other experimentally
relevant lattice systems. These include the aforementioned
Moiré systems, such as bilayer graphene/hexagonal boron
nitride heterostructures, in which Abelian fractionalized states
have been observed in strong magnetic fields [1]. Recent
theoretical studies suggest that such states may even be found
at zero magnetic field in twisted bilayer graphene systems
[57-60]. On the cold atoms front, the Hofstadter model has
already been experimentally realized [7-9]. Although frac-
tionalized states have not yet been observed, the tunability
of interactions in these systems make them a promising play-
ground in which to search for our proposed finite-momentum
paired states. With this in mind, we look for both fermionic
and bosonic FCI states in the Hofstadter model, the latter
of which are of relevance to cold atom experiments. At the
filling fractions we consider, the bosonic and fermionic phase
diagrams exhibit roughly the same set of ordered states.

The remainder of this paper is structured as follows. First,
we introduce the fermionic Hofstadter model and review the
flux attachment transformation. We identify three example
filling fractions at which the composite fermions form Fermi
surfaces with multiple Fermi pockets. Next, we perform a self-
consistent BCS calculation to produce phase diagrams at these
fillings in the presence of attractive nearest-neighbor (NN) and
repulsive next-nearest-neighbor (NNN) interactions. We then
briefly repeat this analysis for the same lattice model but with
hardcore bosons. Lastly, we discuss our results and conclude.

II. MODEL, FLUX ATTACHMENT, AND
COMPRESSIBLE FCI STATES

We consider the Hofstadter model [61-63] of spinless
fermions hopping on a square lattice in a uniform magnetic
field, as described by the Hamiltonian

Hy = —t Z Z [c;chre/e’iAf(x) + Hc]

X j=xy

2.1)

where ¢ is the hopping amplitude, e are the NN lattice vectors,
and A ;(x) is the electromagnetic vector potential. We choose
the Landau gauge A = (0, ¢px), where ¢y is the flux per

plaquette. We take

Po
po = 27Tq—, Do, qo € Z,
0

2.2)

with pg and gy coprime, so that the magnetic unit cell (MUC)
consists of g sites along the x direction. The energy spectrum
therefore consists of gy bands. Additionally, the magnetic
translation algebra [64] dictates that the single-particle disper-
sion obeys the following periodicity in the magnetic Brillouin
zone (MBZ):

S(kxs ky) = 8(kx9 ky - ¢0)

The consequences of magnetic translation symmetry will play
an important role when we turn to discussing pairing of
composite fermions.

Now, the Chern number, Cy, of the first r filled bands of
the Hofstadter Hamiltonian satisfies the Diophantine equation
r = Copo + Dogo, Do € Z [65]. The lowest Landau level
(LLL) corresponds to the solution (r, Cy, Do) = (po, 1, 0).
Hence, lattice effects split the LLL into py subbands. We are
interested in scenarios in which the LLL filling v = 27n/¢,
where n is the fermion density per site, is fractional. Here
we are following the conventions of Ref. [34] by defining
the filling relative to the bands below a certain gap (in this
case, the gap above the manifold of states corresponding to
the LLL), rather than in terms of the filling of a specific band.

We look for fractionalized phases at these filling fractions
by performing an exact mapping of the system of fermions
to a system of composite fermions coupled to an emergent
Chern-Simons gauge field [27,28]. Physically speaking, this
flux attachment procedure amounts to attaching solenoids of
2k, k € Z, flux quanta to each fermion so that the resulting
bound state of a fermion and a solenoid, a composite fermion,
still obeys Fermi statistics. The resulting action is given by

Stf. 7, a0 = Self, £, ] + Scsla, ], (2.4)

where f is the composite fermion field and a,, the statistical
gauge field. Explicitly,

(2.3)

e = [ 30U w0y + 1)

X

+ Z (fT(x, t)ei(aj(x,t)fAf(x))f(x +ej.1)+He)l,

j=xy
(2.5)

where Dy = 9y + iag is the covariant time derivative and u is
the chemical potential. The flux attachment procedure on the
lattice is more subtle than that in the continuum due to the
difficulties associated with defining a lattice Chern-Simons
action. We make use of the action defined in Refs. [29,31],
which takes the form

1
Scs = Q/Z [ao(x, 1)d(x, 1) — Eai(x, t)K:l‘j(:lj(x, t)i| (2.6)

Here,
0=1/2n2k), ke Z, 2.7

and ®(x) = ¢;;dia;j(x) is the Chern-Simons flux through
the plaquette northeast of the site x, where the d; are
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CQJ ®
p(x)

FIG. 1. Flux attachment on the square lattice. The Chern-Simons
flux, ®(x), through the plaquette northeast of x is attached to the
fermion density p(x) via Gauss’ law, p(x) = 6 d(x).

forward difference operators: d;a;(x) = a;(x +e;) — a;(x).
Likewise, we define backward difference operators, c?i, which
have the action 3,-aj(x) =aj(x) —aj(x —e;). The opera-
tor KC;j—the explicit form of which is unimportant for us
and is relegated to Appendix A—is chosen so as to make
the theory gauge invariant. What is important is that Scg
enforces the flux attachment constraint (or Gauss’ law),
fTf(x) =0d(x), via the Lagrange multiplier field ao, as
depicted in Fig. 1.

We will defer the inclusion of interaction terms until the
next section, as we first simply wish to understand the mean-
field composite fermion band structure. Now, the saddle-point
equations for the above action are given by (restricting to
time-invariant solutions)

(fTef@) = px) = 00(x) (2.8)

(k@) = Beridia(x),

where ji(x) = _agksﬁ is the gauge-invariant current. On the

square lattice, there always exists a uniform solution at any
filling fraction with

d(x) = ¢ = nb,

(2.9)

p(x) = n, Jk@) = ao(x) = 0. (2.10)

In this mean-field configuration the composite fermions feel a
reduced effective flux of

¢ =0 — ¢ = 202"

*

@2.11)

per plaquette, where we restrict ourselves to cases where
ps« and g, are integer and take them to be coprime. So the
mean-field CF band structure is described by a Hofstadter
Hamiltonian in the form of Eq. (2.1) but with a flux per
plaquette of ¢,.

For appropriate choices of v and k, the resulting mean-field
spectrum consists of CFs partially filling a Hofstadter band,
yielding a Fermi surface and hence a compressible state. In
particular, if there is a CF pocket centered at, say, k = 0, then
magnetic translation symmetry implies, through Eq. (2.3),
that there will be g, — 1 additional CF pockets centered at
momenta Q; = (0, 2wl/q,),l € Z, in the Landau gauge. This
is illustrated in Fig. 2 for the three different configurations
of magnetic flux and filling specified in Table I. Given the

1.0 / \ 1.0 1.0

T oo T os] T os] O
= = =

o o~ o

S04 0] S04 O

0.2 0.2 0.24 O
0.0 \ T / 0.0 0.0 T
0 2

0.4

" ki [2mal "k, [2n/a] ky (27721
(a) Period two (b) Period three  (c) Period four

FIG. 2. Composite Fermi surfaces for the period-two, -three, and
-four configurations given in Table I.

number of Fermi pockets for each configuration, we will
label them as periods two, three, and four, respectively. It is
clear that in the presence of an attractive interaction, we have
the possibility of the formation of Cooper pairs of CFs with
center-of-mass momenta O, + Q,,.

III. MEAN-FIELD THEORY OF PAIRED STATES

Our goal now is to investigate the possible pairing instabil-
ities when the composite fermions form a Fermi surface with
multiple Fermi pockets, focusing, for simplicity, on the three
configurations listed in Table I. To that end, we introduce a
NN attractive interaction,

Spair = =V /Zﬁ(x, Df (e +ej, Df (x +ej,1)f(x,1)

x,j

~ —/Z [Ax,,f*(x,t)f*(x+e,»,t)
t x.j

1
+AL fx e f (1) — V|Ax,,-|2}, (3.1

where V < 0, and we have performed a Hubbard-Stratonovich
transformation to introduce the complex pair field A, ;. We

TABLE 1. Details of the three composite Fermi-liquid states
whose pairing instabilities we investigate. The names period two,
three, and four refer to the periodicity of the MBZ. Here ¢y, n, v, k,
¢, and ¢, are the magnetic flux, fermion density per site, LLL filling
fraction, number of pairs of attached statistical flux quanta, statistical
flux, and effective flux seen by the composite fermions.

Po/21 n v k ¢/2m ¢, /21
Period two 3/4 1/8 1/6 1 1/4 1/2
Period three 2/3 1/6 1/4 1 1/3 1/3
Period four 5/8 3/16  3/10 1 3/8 1/4
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will also consider the effect of NNN repulsive interactions,

S = =3 [ X £ 000G =)f 060

x,x'

) _g/Z [f%(x’ 0f DU @ —x)p', 1)

—%p(x,t)U(x —x’)p(x’,t)], (3.2)
where g > 0, p(x) is a Hubbard-Stratonovich field corre-
sponding to the fermion density, and U(x — x’) = 1 if x and
x' are next-nearest-neighbors while U (x — x") = 0 otherwise.
We include this repulsive interaction in order to stabilize
additional striped solutions, which may be metastable at g =
0. Such a combination of short-range attractive and long-range
repulsive interactions can be be engineered in cold atom
systems and has been shown numerically to be conducive
to the formation of non-Abelian FCI states [43]. We will
restrict our attention to the region of phase space in which
0<g<-V.

Now, in principle, we could perform a fully self-consistent
calculation and solve the saddle-point equations for the
Hubbard-Stratonovich fields and the Chern-Simons gauge
fields. Indeed, the gauge fields should be expected to play
an important dynamical role. Since they lead to repulsive in-
teractions between the composite fermions, they will disfavor
superconducting order [66] and possibly lead to phase separa-
tion [67]. However, we will instead adopt a more phenomeno-
logical approach, analogous to that used in the continuum
[37], in which we simply take the uniform statistical gauge
field flux as a fixed background and look for paired states
on top of it. Our reasons for this are twofold. First, as in the
continuum, our motivation is to look for potentially interesting
pairing instabilities, not investigate dynamical questions of the
stability of these states to gauge field fluctuations. Second,
as noted in a previous study [35], mean-field approximations
of this type of lattice Chern-Simons action appear to be “too
classical” in the sense that, although the mapping to composite
fermions is an exact one, the choice of flux attachment breaks
the lattice point-group symmetries. This makes itself manifest
in mean-field solutions and, in Ref. [35], the authors do not
find uniform density FCI states in their model for this reason
[68]. In the present problem we are generally unable to find
solutions with reasonably small unit cells if we perform this
fully self-consistent analysis. This may be indicative of a
similar issue or of the possibility that we are already seeing
the effects of phase separation. In either case, this misses
the main physics we which to address, which, to reiterate,
is the existence of interesting instabilities of the composite
fermions.

It should also be noted that we have chosen specific
channels into which to decompose the attractive and repulsive
interactions. In a fully self-consistent variational calculation,
it would be more appropriate to decompose both interactions
into all possible channels since, as we shall see, the mean-
field solutions typically exhibit CDWs and bond order waves
(BOWs), even for g = 0 [69]. We have adopted this simplified
approach as our goal is not to provide a detailed, quantitative
understanding of the phase diagram but rather to highlight the

P
(a, B)

FIG. 3. Unit cell used in the mean-field analysis. The net flux per
unit cell is ¢, out of the page. Here we take ¢, = 27 (2 — 2) =2 4
so that the unit cell contains g, x g, = 4 x 4 lattice sites. The arrows
represent our choice of the Landau gauge, with the net mean-field
gauge field taking the form a, = (0, ¢.«). Lastly, («, B) represent
the horizontal and vertical coordinates of the lattice sites within a
unit cell.

qualitative features of the phases which may appear in these
lattice systems.

With these assumptions and caveats out of the way, we
are left with solving for mean-field configurations of spinless
fermions in a uniform background magnetic field on a lattice,
as described by the mean-field Hamiltonian

HF = Z [ - tf:jfx-i—e,'eiia*'f(m + Ax,jf;-f:_;,_ej + HC]

x,j

—wY fifAed fAUG =@, (33
x x,y

where we have defined a, = A — a = (0, ¢,x). We must look
for solutions of the following self-consistent equations:

p(x) = (fT(x)f(x)) (3.4)
Avj= (f(x +e)f(x)) (3.5)
(3.6)

> P =Ny,

where Ny is the total number of fermions. For nonzero values
of the pairing amplitudes A, ;, the total fermion number is
not conserved by the mean-field Hamiltonian, and so we fix
the average density » by tuning the chemical potential .

As noted in the previous section, we must allow for pair
fields with COM momenta O, + Q,,, the smallest of which is
(0,27 /q,) and corresponds to a period of g, lattice sites in
the y direction. As such, we will take our unit cell to contain
g+« X g4 lattice sites, as depicted in Fig. 3 for g, = 4. This
leaves us with g2 densities, p(q. ), and 2¢? pair fields, A g) j
to solve for, where o, 8 =1, ..., g, denote the horizontal
and vertical coordinates of the sites within a unit cell (see
Fig. 3). For given values of V and g, we numerically solve the
saddle-point Egs. (3.4)—(3.6) using several random anscitze for
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the densities and pair fields to ensure we identify the lowest
energy solution. Note that the ground state is the solution
which minimizes the energy—not the grand potential—since
we are working at fixed particle number rather than fixed
chemical potential. So, although we compute observables
within the grand canonical ensemble, we must subtract — Ny
from the mean-field Hamiltonian when comparing the ener-
gies of different mean-field configurations:

1
E = (Hp) + Ny = 5 3 1A

x,J

8
-5 Zy POU (x —)p(¥). (3.7)

In the following we map out the mean-field phase diagrams as
functions of V and g.

A. Role of magnetic translation symmetry

As a brief interlude, let us investigate the role of the
magnetic translation symmetry in determining the form of the
pair fields [70]. In the Landau gauge we have chosen, the
magnetic translation operators are given by

T, = exp <iq§* Z rgf:fr> 1i, L =", (3.8)

where T, are the ordinary translation operators and have
the action Tj’1 f+Tj = fc—,. The magnetic translations 7j ,
commute with the kinetic part of the mean-field Hamiltonian.
Under the action of 7, the pair fields transform as

TiA@pT ' = Awrr pyce 2P,

A ‘ (3.9)
NiA@py T = Dty Pe.
This implies that a mean-field state |i), with, for instance,
uniform p, + ip, pairing, actually breaks magnetic transla-
tions, and the state 7; |y) will have spatially modulated pair
fields. We alert the reader to this fact now so that it is clear
when we present real-space configurations of specific mean-
field solutions that the pair fields of the translated (and rotated)
solutions will not take the same form. This is a consequence of
the fact that magnetic translations (rotations) are translations
(rotations) combined with a gauge transformation and the pair
fields are not gauge-invariant quantities.

Let us now consider solutions which preserve the magnetic
translation symmetry so that T}A(a,ﬂ),jfj_l = A(g,p),j- On
defining the Fourier transform of the pair fields in the y
direction, Agp ;= Y4 Awp.je P, with P = %, le
Z, and imposing the above magnetic translation symmetry
constraints, we find

b8y
’je 5y

Aup,j = Das1,p+24. (3.10)

This implies that zero-momentum pairing will generically
coexist with finite-momentum pairing if magnetic translation
symmetry is preserved. Of course, there is no guarantee that
magnetic translations will be respected by the mean-field
ground state, and we will often find it to be the case that it
is not. Nevertheless, this observation highlights the point that

there is a predisposition to finite-momentum pairing in these
lattice systems.

IV. FERMIONIC PAIRED FCI PHASE DIAGRAMS

The results of our self-consistent mean-field analysis are
summarized in the phase diagrams of Fig. 4. We find a host of
translation symmetry breaking paired states of the composite
fermions, the qualitative features of which we now describe
in more detail. In addition to the site-centered charge density
and pair field configurations, we characterize these phases by
computing the link currents and the bond densities,

(jx,k) = (if;fx-ﬁ-eke_ia*'k(x’t) + H.C.),

(Bei) = (f{ feree™ ) + He),

as well as the Chern number C of the Bogoliubov—de Gennes
(BdG) band structure using the method of Ref. [71]. The latter
quantity determines the number and chirality of Majorana
edge modes in a system with open boundary conditions. This
allows us to determine the topological order of the system via
the bulk-boundary correspondence, on taking into account the
presence of a charged chiral boson from the gapped charge
sector. Equivalently, from the bulk perspective, vortices of the
pair field will trap C Majorana zero modes (MZMs).

Much as in the well-studied case of the paired FQH states
in the continuum [37], due to the Higgsing of the dynamical
Chern-Simons gauge field by the pairing amplitudes, vortices
of the pair field are finite-energy excitations and carry a charge
e/4k, where e is the charge of the electron. So states with an
odd Chern number possess non-Abelian topological order, as
these pair field vortices will possess one unpaired MZM. Con-
versely, states with an even Chern number possess Abelian
topological order. In particular, since we have focused on
FQH states arising from attaching a single pair of flux quanta
(k = 1), states with C = 1, —1 possess the same topological
order as the Pfaffian and PH-Pfaffian states [52], respectively,
whereas those with C = 0 support the same topological order
as the Abelian Halperin paired state [72].

The relation between the Higgsing of the Chern-Simons
gauge field and the non-Abelian topological order is a subtle
issue. Its root reason is the fact that the pair field condensate
leaves a local Z, symmetry unbroken in a regime in which
the theory is deconfined [73]. An example is the case of a
conventional superconductor coupled to a dynamical gauge
field which has Z, topological order [74]. In the case of
a relativistic field theory, the non-Abelian character can be
described either through a similar pairing mechanism or in
terms of a topological phase of the partition function in the
form of an » invariant [75].

“.1)

4.2)

A. Period two

We now turn to the nonuniform paired phases. We begin
with the period-two phase diagram, depicted in Fig. 4(a),
in which we find three striped phases. The real-space con-
figurations of these phases are depicted in Fig. 5. We note
that the net (statistical plus magnetic) flux per plaquette is &
and so, prior to the addition of interactions, the mean-field
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FIG. 4. Schematic mean-field phase diagrams as functions of the NN attraction, |V | = —V, and NNN repulsion, g, for the fermionic

configurations of Table I. Solid (dashed) black lines correspond to first-order (continuous) transitions. The dotted line separating the stripe-I
and -II regions in (b) indicates a crossover. Gapped phases are labeled by the Chern number C of the BdG bands. The gray regions indicate
where the energies of the saddle-point equation solutions are too close to numerically deduce which is the ground state. Details of the phases

are presented in the main text and illustrated in Figs. 5, 7, and 8.

composite Fermi-liquid solution [Fig. 2(a)] preserves time-
reversal symmetry (TRS). The mean-field paired ground states

~<— < —_
o—=0 @
o——=0 @

,7( 20 25 30
X

(c) Nodal Stripe Dispersion

FIG. 5. (a, b) Period-two mean-field configurations. In this and
the following figures, the color of the sites indicates the charge
density, with darker (lighter) sites corresponding to higher (lower)
density. Likewise, the width of the links represents the magnitude
of the bond density, B, ;. The blue arrows represent the pair fields
A = | Ay jle®J, with length proportional to |A, ;| and angle rel-
ative to the horizontal given by 6, ;. The link currents all vanish.
(c) Spectrum of the BAG Hamiltonian for mean-field configuration
(b). The left panel depicts the two bands closest to £ = 0. The black
circle highlights the presence of two Majorana cones along the line
ky, = 0, which are depicted in more detail in the right panel.

we find also preserve TRS, since all the pair fields A, ; can be
made real by a global U (1) rotation.

Focusing on the individual phases in more detail, the
ground state for small g is a bidirectional stripe phase. As
depicted in Fig. 5(a), this state possesses a uniform site
density but also a bidirectional BOW. In particular, B, , and
By, possess modulations at the wave vectors (i, 0) and
(0, ), respectively. This is not surprising, as the pair fields
take the forms A, = Ae™* + Ae* and A,y = Aet™ —
Ae®* where A > A >0, g, =(0,7), g, = (7, ), and
q; = (0, 0). In general, the presence of pair fields at momenta
q, and g, will induce a daughter CDW order with ampli-
tude pg,—q, ~ Ay, AZZ + A_,hAiql, where p, is the Fourier
transform of the charge density, as can be shown through a
simple free energy analysis [24,76]. However, in the present
problem we must be careful to note that the phases of the
pair fields, and hence their Fourier components, depend on the
choice of gauge for the background flux. In particular, as noted
above, the pair fields transform nontrivially under magnetic
translations and rotations. As such, we cannot directly use
the free energy analysis of Ref. [76] to deduce the daughter
orders of the spatially modulated superconducting order. A
more careful treatment, which is beyond the scope of the
present work, would require the analysis of a free energy
which takes into account the transformations of the pair fields
under the magnetic algebra. Nevertheless, it is clear that we
can still identify the BOW as a daughter order of the striped
superconducting order (and hence a consequence of finite-
momentum pairing of the composite fermions) by virtue of
the fact that this phase exists as the ground state in the absence
of the NNN repulsive interaction, at g = 0.

The band structure of the BAG Hamiltonian for this phase
is less interesting. It is fully gapped with C = 0, implying
there are no chiral Majorana edge states. We have also studied
this mean-field configuration with open boundary conditions
to confirm that there are indeed no edge states protected by
the mean-field TRS or any other symmetry.
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FIG. 6. Dispersions of the (top row) nodal and (bottom row)
gapped stripe phases on finite-size systems with different boundary
conditions. In (c), we also plot a horizontal line at E = 0, represent-
ing the topological invariant M (k,) defined in Appendix B 1. Purple
(yellow) indicates M (k,) = —1(+1).

As g is increased, there is a first-order transition to a
striped p, phase in which A, , = 0, while Ay, = A + A7~
with ¢ = (;r, 0) and A > A > 0. The modulation of the pair
fields in this phase appears to be driven by the (v, 0) CDW
engendered by the repulsive NNN interactions, as this phase
does not exist as a solution of the saddle-point equations at
g = 0. Moreover, we have numerically checked that a similar
stripe phase can be obtained in a square-lattice system with
the same interactions but with a vanishing magnetic flux and
hence a single Fermi pocket. Nevertheless, the BdG spectrum
exhibits an interesting nodal structure. For large g and V, the
system possesses two Majorana cones, as shown in Fig. 5(c).
As g is increased further or V decreased, the cones approach
and annihilate one another (indicated by the dashed black line
in Fig. 5), yielding a fully gapped spectrum.

Although C = 0 in the gapped stripe phase, both the nodal
and gapped phase band structures are in fact topologically
nontrivial. This is demonstrated in Fig. 6, in which we plot
the energy spectra for these phases on finite-size systems with
open and periodic boundary conditions (OBCs and PBCs,
respectively). In the nodal phase, on imposing OBCs along the
direction parallel to the stripes, we find a Majorana flat band
connecting the projections of the bulk nodes onto the edge
Brillouin zone (BZ). In the gapped phase, we find a Majorana
flat band spanning the entire surface BZ. These properties are
typical of p,-paired states [77]. We show in Appendix B 1
that a combination of the particle-hole symmetry of the BAG
Hamiltonian and reflection symmetry, with the reflection axis
taken along a stripe, are sufficient to protect these flat bands
and the nodal points.

Physically, the existence of these flat bands is not sur-
prising, as the mean-field ground state resembles an array of
Kitaev chains [78]. At large values of g, hopping between the
chains consisting of sites with high density, which also have
nonzero Ay ,, will be suppressed due to the intervening low-
density chains and the NNN repulsion. This yields an array
of decoupled Kitaev chains which, in the topological regime,
will host MZMs at their ends when OBCs are imposed, giving
rise to the observed Majorana flat band.

Since they both have C = 0, the bidirectional stripe phase
and gapped stripe phases possess the topological order of
the Abelian Halperin paired state. That being said, based on
the physical picture of the gapped stripe phase as an array
of nearly decoupled Kitaev chains, we expect that lattice
dislocations should bind MZMs (see Appendix B 2). This
is a particularly intriguing possibility in the context of cold
atom experiments where lattice defects can be engineered
directly. A somewhat similar nematic FQH phase was found in
a coupled wire construction of paired FQH states in Ref. [79],
although in that case the edge supported a pair of helical
Majoranas with finite dispersion. Lastly, we note that the
nodal striped phase is a quantum Hall thermal semimetal in
that charged excitations are gapped in the bulk, but the gapless
Majoranas can still transport heat. The nodal striped phase
is not strictly topologically ordered since it has a gapless
spectrum. Nevertheless, it still supports gapped charge-1/2
Laughlin quasiparticles.

B. Period three

We will now discuss the period-three inhomogeneous
paired states. As shown in Fig. 4(b), the period-three phase di-
agram is dominated by unidirectional stripe phases. The real-
space configurations of these phases are depicted in Fig. 7.
The stripe-I and -1I configurations clearly belong to the same
phase—they both possess a CDW at wave vector (27 /3, 0).
For small g, as |V| is increased there is a crossover from
stripe I to stripe 11, as the CDW order parameter continuously
drops to zero at around |V | & 4.5 and then changes sign. This
crossover is indicated by the dotted black line in Fig. 4(b). As
g is increased, however, this crossover changes to a first-order
transition at around g & 2.5. The stripe I/1I configurations are
also characterized by finite-momentum pairing and counter-
propagating currents. The pair fields in the chosen gauge have
the forms Ay, = Ag + A;cos(2rx/3), where Ag > A} >
0, and A,, = —iA; —iAzcos[27(x + 1)/3], where Az >
A4 > 0. Note that the pair fields on the horizontal links of the
rightmost two columns in Figs. 7(a) and 7(b) do not vanish;
they are simply about one to two orders of magnitude smaller
than the pair fields on the other links. As in the example of the
period-two bidirectional stripe, we identify the CDW order as
a daughter order of the striped superconducting order by virtue
of the fact that the stripe I/II phases persist down to g = 0.
Aside from the stripe I/1I phases, there is a small region of the
phase diagram at around (V, g) = (—5, 3) which supports a
vortex lattice phase and is separated from the other phases by a
first-order transition. As shown in Fig. 7(c), this phase consists
of an array of clusters of four high-density sites, around which
there are circulating currents. As for the topological properties
of these states, the stripe I/II phase supports regions with
C=—-1,0,1and C = 0, —1, respectively, whereas the vortex
lattice phase has Chern number C = 0. So, in contrast to
the period-two case, non-Abelian phases with the topological
orders of the Pfaffian and PH-Pfaffian are present in the
period-three phase diagram.

We note that that we are not able to conclusively identify
the ground state in the unlabeled gray region of Fig. 4(b).
Here, several states (with C = £1) compete with the stripe-I
configuration, and all are nearly degenerate up to our chosen
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FIG. 7. Period-three mean-field configurations. For each config-
uration, the left figure depicts the link currents, ji, as red arrows,
while the right figure depicts the pair fields in the same manner as
Fig. 5.

numerical precision. This suggests that the system will likely
be unstable to phase separation in this regime.

C. Period four

Lastly, we have the period-four phase diagram, shown in
Fig. 4(c), which exhibits the greatest diversity of phases. A
unidirectional stripe phase, shown in Fig. 8(a), occupies most
of the g £ 1 region. Of note is the fact that it supports a
CDW and a BOW in the x direction with a period of two
lattice sites, while the pair field modulation has a period of
four sites in the same direction (that is, the pair field pattern
returns to itself after four magnetic translations). Explicitly,
the pair fields on the y links, A, , possess a uniform q; =
(0, 0) Fourier component and a modulation at wave vector
q, = (7, 0), while the pair fields on the x links are given by
Ay = Age"™ + A_ge™*, where ¢ = (7/2,0) and A, =
|Ale=™/* = A* . Note that the appearance of a CDW with
half of the period of the pair field modulation is characteristic
of PDW states [76]; indeed, the form of A, , is precisely that

—— —— —— ——
—— —— —— ——

(a) Stripe (b) Bidirectional Stripe
(c) Vortex Latticel

H
i

(d) Vortex Lattice ITI

FIG. 8. Period-four mean-field configurations. The link currents
in the stripe configurations (a,b) all vanish.

of a PDW, at least in the chosen gauge. In fact, this unidi-
rectional stripe phase remains a solution of the saddle-point
equations down to g = 0, and so it indeed owes its existence
to finite-momentum pairing of the CFs—the NNN repulsive
interactions are needed only to stabilize it as the ground
state. Additionally, it is topologically trivial except for a small
region of the phase diagram at around (V, g) = (—1.2, 1.2),
where the BdG bands have C = —2. In this regime, the edge
of the system supports a chiral boson from the charge sector
and two counterpropagating Majorana fermions.

The NNN repulsion also helps stabilize a bidirectional
stripe phase, shown in Fig. 8(b), in a small region of the
phase diagram. This phase possesses CDWs at wave vectors
(0, ), (7, 0), and (;r, ) as well as modulations of the bond
densities, By and By, at wave vectors (0, ) and (7, 0),
respectively. The pair fields take the form

Ary =A+ A+ (A =A™ (4.3)

Ayy = iA cos(mx/2 + 7 /2) + Ae™ cos(mx/2),  (4.4)

with A > A > 0. Note that this mean-field configuration is
invariant under two magnetic translations along both lattice
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TABLE II. Details of the three composite Fermi-liquid states for
the bosonic system. Here, 2k’ — 1 is the number of attached statistical
flux quanta.

¢do/2m n v 4 o/2m ¢, /27
Period two 3/4 /4 13 1 1/4 172
Period three  2/3 19 16 2 173 1/3
Period four 5/8 1/8 1/5 2 3/8 1/4

directions, and so the CDW and BOW has the same period-
icity as the pair field modulation, in contrast to the unidirec-
tional stripe phase. However, we find that this phase exists
as a (metastable) self-consistent mean-field solution at g = 0,
and so it seems reasonable to view the CDWs and BOWs
as daughter orders of the spatially modulated pairing. As far
as its topological properties are concerned, this bidirectional
stripe phase has Chern number C = 1 and so possesses the
topological order of the Pfaffian.

In the region below g~ 1, we find competition between
various configurations with circulating currents, which we
refer to as vortex lattices. Two examples of these phases are
shown in Figs. 8(c) and 8(d). For |V| > 2.2, the ground state
is the vortex lattice-I phase, which exhibits a square lattice
of vortices. It also has C = —1 and so supports the same
topological order as the PH-Pfaffian. As |V| is lowered, the
system transitions through other vortex lattice phases, includ-
ing that of Fig. 8(d), in which there appears to be a triangular
lattice of vortices. In the region V| 5 0.8, marked by the
color gray in Fig. 4(c), we find competition between several
vortex lattice states, one of which has Chern number C = —2.
These solutions appear to be degenerate (up to numerical
precision), suggesting the system will likely be unstable to
phase separation. It is thus unclear whether a uniform paired
state of CFs can actually be stabilized in this regime or if a
proliferation of vortices will return the system to a composite
Fermi liquid.

V. BOSONIC PAIRED FCI PHASE DIAGRAMS

Thus far, we have considered paired FCI states in a tight-
binding model of fermions. In this section, we repeat our
analysis for a system of hardcore bosons in the same square-
lattice Hofstadter model, which is of relevance for cold atom
experiments [7-9]. The setup is the same as that of the
fermionic case considered above, with the only difference
being that we must attach an odd number of flux quanta to
the bosons to obtain a theory of composite fermions. Hence,
we must take the Chern-Simons coupling to be

1

g=—— . Kel.
2n 2k — 1)

G.D

In gapped, paired states of the CFs, vortices of the pair field
will thus carry charge e¢/(4k’ — 2). We again consider three
different configurations of filling and background magnetic
flux, as summarized in Table II, such that the composite
fermions form Fermi surfaces with two, three, and four pock-
ets, as shown in Fig. 9.

1.0 1.0 / \ 1.0
0.8 0.8 1 0.81
E 0.6 E 046> < E 06
E E 3
S S S
04 > o‘4> < 04
0.2 0.2 0.24
0.0 T T 0.0 \ ‘/ 0.0 T
0.0 0.2 0.4 0.0 0.2 0.0 0.2
kx [2m/a] kx [2m/a] kx [2m/a]
(a) Period two (b) Period three  (c) Period four

FIG. 9. Composite Fermi surfaces for the period-two, -three, and
-four configurations given in Table II.

Repeating the same mean-field analysis as for the
fermionic problem, we obtain the phase diagrams of Fig. 10,
which exhibit nearly the same topology as the corresponding
fermionic phase diagrams. One novel feature is the emer-
gence of the bidirectional stripe-IIA and -IIB phases in the
period-two phase diagram [Fig. 10(a)] at around (V, g) =
(—1.3,1.3), which support CDWs at wave vectors (0, ),
(7, 0), and (7, ) and BOWs in By , and B, , at wave vectors
(0, ) and (7, 0), respectively. The real-space configurations
of these phases are depicted in Fig. 11; the differences be-
tween IIA and IIB are that, in the former, the (0,0) component
of Ay, is greater than the (7, 0) component and the (0, )
component of A, , is greater than the (0,0) component, while
the opposite statements hold true in the latter. Unlike the other
period-two phases, these phases spontaneously break TRS,
since the pair fields on the x links, A, ., are all real while
those on the y links, Ay ,, are imaginary. The pair fields have
very small magnitudes, yielding a minute gap which is not
easily seen in Fig. 11(c). As such, even at low temperatures
the system will exhibit unquantized heat transport mediated
by the Bogoliubov quasiparticles through the bulk.

Another new phase seems to appear at small |V| and g
in the period-four diagram; since the order parameters are
so small in this region, it is difficult to conclusively identify
the nature of this phase, but we tentatively describe it as
a vortex lattice and label it as Vortex Lattice IV. The BdG
band structure has C = 2, and so this phase is Abelian. We
note that a different C = 2 paired quantum Hall phase was
studied in Ref. [56] which resulted from somewhat similar
PDW physics.

VI. DISCUSSION AND CONCLUSION

We have presented a qualitative, mean-field picture of
the intertwining of symmetry breaking and topological order
in FCI states arising from the finite-momentum pairing of
composite fermions. This is a consequence of magnetic trans-
lation symmetry enforcing the presence of multiple composite
Fermi pockets. We find a diverse array of paired states, the
most notable of which exhibit some subset of the following
observable features:
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FIG. 10. Schematic mean-field phase diagrams as functions of the NN attraction, |V | = —V, and NNN repulsion, g, for the bosonic

configurations listed in Table II. The bidirectional stripe-I phase in (a) is the same as the bidirectional stripe phase present in Fig. 4(a).

(1) Daughter CDW and/or BOW order arising from the
modulated pair fields, similar to that in theories of PDW states
in the cuprates.

(2) Gapped neutral sectors possessing Chern numbers
C=-2,-1,0,1,2, resulting in C Majorana edge modes
with chirality sgn(C), in addition to a charged chiral boson.
Here, C = —1, 0, 1 correspond to the PH-Pfaffian, Halperin
paired state, and Pfaffian topological orders, respectively.

(3) Gapless neutral sectors, forming quantum Hall thermal
semimetals [only the nodal stripe phase in Figs. 4(a) and 10(a)
possesses this property].

® O
(a) Bidirectional Stripe ITA

(b) Bidirectional Stripe IIB

5
2.0
éx 25 30

(c¢) BAG Spectrum

FIG. 11. Real-space configuration of the bidirectional stripe
(a) IIA and (b) IIB phases in the bosonic FCI period-two phase
diagram [Fig. 10(a)]. The link currents vanish in both configurations.
(c) The two BdG bands closest to £ = 0 for IIB (the spectrum for
IIA is similar). Despite appearances, there is a very small gap, as the
pair fields are nonzero but small.

(4) The possible trapping of MZMs by lattice dislocations
[only the gapped stripe phase in Figs. 4(a) and 10(a) possesses
this property].

Although the more interesting phases we find occupy small
regions of the phase diagram, there is some hope for observing
these states in future cold atom experiments in which the
nature of the interactions can be finely tuned. At a minimum,
our results demonstrate that the observation of BSO in an
experimental setting need not rule out concomitant TO, as
their coexistence is in fact a generic scenario in the composite
fermion picture. In particular, the CDW patterns we discuss
could be directly imaged in cold atom experiments [80].

Looking forward, it may prove interesting to better un-
derstand the properties of lattice defects in these systems. In
particular, we found a stripe phase in the period-four phase
diagram exhibiting a CDW with half the period of the pair
field modulation, a feature shared by PDWs. In PDW states,
a dislocation of the CDW pattern will require the pair field
phase to wind by 27 about the dislocation, trapping a vortex
[76]. It is possible that lattice dislocations in this phase, or
related paired FCI states, may display similar properties. If
the BAG band structure has Chern number C, such vortices
would trap C MZMs and would provide a novel way of
engineering non-Abelian defects in a manner distinct from
previous proposals [21,81].

Coupled wire constructions [79,82—-84] may also provide a
means by which to demonstrate the existence of the striped
states we find beyond mean field, especially since, by def-
inition, these are anisotropic states. However, while such
constructions would allow us to identify regions of the phase
diagram in which these states could in principle exist through
the fine-tuning of interactions, there is still the issue of phase
separation. As we have discussed, there appear to be nearly
degenerate vortex lattice solutions in the fermionic period-
four phase diagram, suggesting a tendency towards a prolifer-
ation of vortices and hence a destruction of superconducting
order. Although the more interesting stripe phases can be
stabilized, as we have seen, through long-range repulsive
interactions, such phases are also sensitive to the breaking
of translation symmetry via, for instance, disorder or the
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harmonic traps used in cold atom experiments. Such features
would result in local variations of the density with periods
which may be incommensurate with the expected stripe order
in a clean system. So, while cold atoms experiments and solid-
state Moiré systems provide promising platforms in which to
search for our proposed finite-momentum paired FCI states,
there are several physical hurdles which may disfavor the
realization of said states.
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APPENDIX A: DETAILS OF FLUX ATTACHMENT

We direct the reader to Refs. [29,31] for more details about
the lattice Chern-Simons action of which we make use. Here,
we record only for completeness the explicit form of the K
matrix (not to be confused with the K matrix appearing in
multicomponent Abelian Chern-Simons theories), which does
not play a role in our mean-field analysis:

—2—2d, +2d> + azdl)

1 d>d,
 2\2+42d, — 24, — did, —d; — d,

(AD)

The form of /K is lattice dependent and ensures that the theory
is gauge invariant. We note that the lattice Chern-Simons
action of Ref. [31] can only be defined on lattices for which
the number of vertices matches the number of plaquettes, of
which the square lattice is one example.

APPENDIX B: TOPOLOGICAL PROPERTIES OF
PERIOD-TWO STRIPE PHASES

1. Protection of edge Majorana flat-band and bulk nodes

We briefly detail the protection, at the level of noninteract-
ing band theory, of the Majorana cones found in the nodal p,
stripe phase and the Majorana flat bands in both the nodal and
gapped p, stripe phases of the period-two case via reflection
and particle-hole symmetries [85]. From Fig. 5(b), we see
that the unit cell of this striped phase consists of two sites,
which we label as a (white, low-density) sites and b (black,
high-density) sites. Using this notation, we can write Hg in
the usual BAG form (dropping constant terms),

ho(k)

1 ¥ 1 ¥ A(k)

—ho(—k>*> Ve
B1)

where we have defined the Nambu spinor

W= (ax b aly BT (B2)
and
hot) = <2t cos(ky) +4gpp — 1 —2¢ cos(ky) )’
—2t cos(ky) —2t cos(ky) +4gpa — 1
(B3)
Al = <2iAa gin(ky) sin, gin(lg,))‘ (B4)

Here, p,, are the average densities on the a and b sites
and A, > 0 the pair fields on the links connecting the a
and b sites, respectively. As a BAG Hamiltonian, Eq. (B1)
automatically satisfies a particle-hole symmetry:

Ch(k)C™" = —h(—k) (B5)

with

C=Ko't*=C*=1. (B6)
Here, K is the complex conjugation operator, the 0%, a =
0,...,3, are the Pauli matrices acting on the band index
(with ¢° = 1), and the ¢ are Pauli matrices acting on the
particle-hole sector.

The Hamiltonian is also invariant under reflection about the
y axis, under which

Oy —> Oyy = Op k, —> Ofk, (@ =a, b). (B7)
Equation (B1) thus satisfies the reflection symmetry,
R™"h(ky, ky)R = h(—ky, k), (B8)

where, since we are dealing with spinless fermions, R = 1.
Defining the composite operator [85] C = RC, we have that
C'hk,, k)C = —h(ky, —ky). (B9)
Hence, for fixed k., h(k,,k,) describes a one-dimensional
(particle-hole symmetric) BAG Hamiltonian in symmetry
class D, for which we can define the usual Z, invariant,
M(k,) = £1 [78]. The nodal points of h(k,, k,) then corre-
spond to critical points separating regions in k, space with
different M(k,). Since M(k,) takes discrete values, this
means the nodal points cannot be gapped out by (local)
perturbations preserving reflection symmetry. Additionally, if
one imposes open boundary conditions in the y direction,
a k, point with M(k,) = —1 will possess a MZM. Hence,
the regions in k, space with M(k,) = —1 will yield the
observed edge Majorana flat bands. We note that although Hp
also possesses a time-reversal symmetry, we restrict ourselves
to a consideration of the C and P symmetries, as they are
sufficient to protect the single pair of nodes and nondegenerate
Majorana flat bands in the period-two stripe phases.
We can compute M (k, ) using the usual Pfaffian expression
[78], which requires us to express Eq. (B1) in a Majorana
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basis. Following [86], we can define Majorana operators as

yl?,l
b

1 0 0
i | — v, U:—<U. o .“0),
Yia ﬁ —io io
b
V2

(B10)

where o® = 1 acts on the band index. In the Majorana basis
the BAG Hamiltonian takes the form

iA(k) = Uh(k)U", (B11)
where
_ 0 q(k) _
(B12)

Note that A(k) is antisymmetric for k, =0, 7. We have
that [78]

M(k,) = sgn[Pf(A(k,, ky, = 0))PL(A(ky, ky = 7))], (B13)

where Pf(M) is the Pfaffian of the antisymmetric matrix M.
Explicitly,

M(ky) = sgn[(41? cos® ke + (2t — dgpy, + )2t + 4gps — 1))
x (417 cos” ky + (2t — 4gp, + )2t + 4gpp — )1
(B14)

In Fig. 6(c), we have plotted M (k,) on top of the BdG spectra
with periodic boundary conditions in both directions as a

horizontal line at E = 0. When M(k,) = —1 (+1), the line
is purple (yellow). We see that the changes in M (k,) coincide
exactly with the projected positions of the bulk nodes, and the
Majorana flat bands, shown in Fig. 6(b), exist in regions with
M(k,) = —1 up to energy splittings due to the finite size of
the system.

2. Majorana zero modes at lattice dislocations

We claimed in the main text that lattice dislocations of
the gapped period-two stripe phase should trap MZMs. To
see this, we use the results of the previous section and the
argument of Ref. [87]. Let us consider the gapped stripe phase
on a torus with L, , unit cells in the x and y directions, respec-
tively. We can view the torus as a one-dimensional system of
length L,, consisting of a set of L, coupled wires. Here, each
wire is a two-leg ladder, with the two legs consisting of the
a and b sites defined in the previous section [see Fig. 5(b)].
Each wire can be characterized by the usual Z, invariant,
M = =£1. The torus, viewed as a one-dimensional system,
is thus characterized by a Z, invariant of M%:. In order to
determine the value of M, we simply need to compute the
Z, invariant of the torus system with L, = 1. This amounts
to computing M(k, = 0) [see Eq. (B14)], which as shown
in Fig. 6(c), is indeed —1 in the gapped stripe phase. We
can thus interpret the period-two gapped stripe phase as an
array of topologically nontrivial Kitaev chains, implying that
lattice dislocations (along the direction of the stripes) will trap
MZMs, as claimed.
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