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The effect of on-site damping on breather arrest, localization, and non-reciprocity in strongly non-
linear lattices is analytically and numerically studied. Breathers are localized oscillatory wavepack-
ets formed by nonlinearity and dispersion. Breather arrest refers to breather disintegration over a
finite “penetration depth” in a dissipative lattice. First, a simplified system of two nonlinearly cou-
pled oscillators under impulsive excitation is considered. The exact relation between the number of
beats (energy exchanges between oscillators), the excitation magnitude, and the on-site damping is
derived. Then, these analytical results are correlated to those of the semi-infinite extension of the
simplified system, where breather penetration depth is governed by a similar law to that of the finite
beats in the simplified system. Finally, motivated by the experimental results of Bunyan, Moore,
Mojahed, Fronk, Leamy, Tawfick, and Vakakis [Phys. Rev. E 97, 052211 (2018)], breather arrest,
localization, and acoustic non-reciprocity in a non-symmetric, dissipative, strongly nonlinear lattice
are studied. The lattice consists of repetitive cells of linearly grounded large-scale particles nonli-
nearly coupled to small-scale ones, and linear intra-cell coupling. Non-reciprocity in this lattice
yields either energy localization or breather arrest depending on the position of excitation. The non-
linear acoustics governing non-reciprocity, and the surprising effects of existence of linear compo-

nents in the coupling nonlinear stiffnesses, in the acoustics, are investigated.
© 2019 Acoustical Society of America. https://doi.org/10.1121/1.5114915
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I. INTRODUCTION

Discrete breathers are spatially localized oscillatory wave-
packets formed due to strong nonlinear interactions between
adjacent linearly grounded particles in a discrete lattice.
Traveling breathers are spatially localized wavepackets that
travel undistorted (or nearly undistorted) through the lattice.>™
These special nonlinear propagating waveforms are made pos-
sible by the delicate balance between nonlinearity and disper-
sion, and typically incorporate two different lengths (and time)
scales, namely, a slowly varying envelope enclosing a fast-
varying oscillation. An example of a strongly nonlinear
medium that supports traveling breathers is the homogeneous
one-dimensional (1 D) ordered granular chain.’”’ Asymptotic
analysis has shown that for nonlinear lattices with weak cubic
nonlinearity, the approximate equation governing the form and
the slowly varying amplitude of the envelope of the breather is
the discrete nonlinear Schrodinger (DNLS) equation,® while
for the case of granular chains, the governing equation is of
the form of the discrete nonlinear p-Schrodinger (DNLpS)
equation.” A somewhat similar analysis of lattices with strong
cubic nonlinearities yields analogous results for traveling
breathers. Indeed, there is rich literature on the topic of travel-
ing breathers or propagating solitons in different types of non-
linear lattices such as Toda,9 Ablowitz—Ladik,10 and
Klein—-Gordon''~'# lattices, with analytical4 and numerical >4
approaches. One property that most, if not all, of these studies
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have in common is that they consider Hamiltonian lattices,
i.e., they omit the effects of dissipation in breather propaga-
tion. This is not surprising, given that in the presence of dissi-
pation, e.g., viscous damping, and in the absence of a
sustained external source of energy, e.g., an applied periodic
force, traveling breather propagation changes from stationary
to non-stationary, thus changing completely both the govern-
ing mathematical physics and the nonlinear acoustics of the
problem.

In the present study, we aim to investigate and under-
stand non-reciprocity and the effects of on-site damping on
breather penetration depth in essentially nonlinear semi-
infinite lattices subject to impulsive excitations at their
boundaries. Preliminary numerical results associated with an
impulsively excited, dissipative, semi-infinite, nonlinear lat-
tice incorporating internal scale hierarchy and asymmetry'”
revealed that traveling breathers disintegrated after propagat-
ing through only a finite number of lattice particles; more-
over, interesting non-reciprocal acoustics were detected. In
the first section of this work, we initiate our investigation of
the effects of dissipation on breather propagation and arrest
by considering a simplified two-degree-of-freedom (2 DOF)
system of two nonlinearly coupled particles grounded
through linear stiffness and viscous damping. When this sys-
tem is excited by an impulse, a finite number of nonlinear
beats (i.e., energy exchanges) between the two particles
occurs. The exact relation between the number of beats, the
impulse amplitude, and the viscous damping coefficient is
analytically derived. Then, a breather penetration study for
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an impulsively excited 1D nonlinear lattice representing the
semi-infinite extension of the simplified 2 DOF system is
numerically performed, and the results are compared to the
corresponding analytical results for the simplified 2 DOF sys-
tem. Surprisingly, the results on breather penetration for the
semi-infinite lattice appear to correlate closely with the finite
number of beats in the simplified system. Following these
studies, we numerically investigate breather penetration in a
semi-infinite nonlinear asymmetric hierarchical lattice, simi-
lar to the finite lattice studied in Ref. 15 and compare the
results to those of the symmetric nonlinear lattice considered
earlier. Furthermore, interesting non-reciprocal acoustic phe-
nomena are investigated. Before discussing the results on
acoustic non-reciprocity, a few basic definitions regarding
reciprocity in linear and nonlinear systems should be
reviewed. Reciprocity is one of the fundamental properties of
linear time-invariant dynamical systems. Mathematically, this
feature reveals itself in the form of symmetric Green’s func-
tions and self-adjoint governing operators. According to the
Onsager-Casimir principle of microscopic reversibility, reci-
procity is directly related to time-reversal symmetry of the
response.'®'® Hence, to be able to break reciprocity, one
must break time-reversal symmetry, and to this end one can
take several different approaches; namely, implementing odd-
symmetric external biases (which are likely to violate parity-
time-symmetry of the lattice),'"®* considering time-varying
system parameters, or incorporating nonlinearities.'>**2®
Here, in this paper, we aim to investigate in more detail a lat-
tice, which was proved to exhibit acoustic non-reciprocity
(both numerically and experimentally) in Ref. 15. The non-
reciprocal acoustics of this specific nonlinear lattice is demon-
strated by either immediate breather confinement and wave
localization, or finite breather propagation and then arrest,
depending on the point of application and the amplitude of
the impulsive excitation. The bifurcations governing these
non-reciprocal acoustics are investigated, and the nonlinear
mechanisms governing these phenomena are discussed. We
end by summarizing the main findings in this work.

Il. SIMPLIFIED SYSTEM—BEAT ARREST

We start by considering the preliminary, simplified sys-
tem shown in Fig. 1. Our aim is to study the effect of damp-
ing and input energy to the system on the energy exchanges
between the two oscillators. The simplified system consists
of two identical particles with mass m, grounded by pairs of
linear springs and viscous dampers with constants £ and d,
respectively, and are coupled by means of a strongly nonlin-
ear (in fact, non-linearizable) cubic stiffness with constant C.
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FIG. 1. Configuration of the 2 DOF nonlinear system.
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The system is assumed with zero initial conditions and an
impulse of intensity Fy is applied to one of the two
oscillators.

The corresponding governing equations of motion are
given by

mx| + kx; + dx; —l—C(Xl —x2)3 = F(t) = Foo(1),
mxy + kxp 4+ dx, + C(Xz —x1)3 =0,
x1(04) = x2(04) =0, x;(0+) = x2(04) =0, (1)

where 0(r) is the Dirac function. Applying the change of
variables w,t =1, k = w,>m, X1 = ouy, X» = dur, /= d/
(mw,), we normalize the equations of motion as follows:

uy + uy + A + (u — ) =0,

Uy + 1y + Aidy + (2 — ur)? =0,

u1(0+) = up(0+) =0, U} (0+) = Fo/ok = Io,
uy(04) =0, 2

where o« = /k/C, (-) = d(-)/dt, and the impulse excitation
term in the first equation of system (1) is replaced by an
equivalent initial condition for u| at T = 0+. At this point
we introduce two new dependent variables to describe the
dynamics, one in terms of the motion of the center of mass
of the system, v = (u; + u)/2, and the other describing the
relative motion between the two particles, w = u; — u,.
Then Eq. (2) is expressed as the following system of
uncoupled oscillators:

Vidv+ A =0,

w4+ w+iw + 2w =0,

v(0+) =0, V(0+)=1y/2, w(0+)=0,

w' (04) = Io. 3)

We note that the motion of the center of mass of the system
is governed by a damped linear harmonic oscillator whose
exact solution is trivial, whereas the relative displacement
between the two particles is governed by a damped cubic
oscillator. Unfortunately, the nonlinear differential equation
governing the second expression in Eq. (3) is not solvable in
terms of known (tabulated) functions® so can admit only an
approximate solution through asymptotic methods. Indeed,
for sufficiently small values of w the analytical solutions of
system (3) are given by

v(t) = %Oexp (—At/2)sin (1),

. 3N} )
w(t) & Noexp (—At/2)sin T—FH[I —exp(—41)] ¢,
“)

where Nj is the only real root of N(1 + 3N?/4) = I accord-
ing to the initial conditions in Eq. (3). Moreover, details
on derivation of the response w(t) are provided in the
Appendix.

Considering the previous results, the motion of the two
oscillators can be analytically approximated as
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uy (1) =~ fo ;NO exp (—At/2)sin (1)

: : 3N§ .
+ Npexp (—At/2)sin 7 + T [1 —exp (—41)]
3N2 ) }
X COS {S/L [1 —exp(—47)] ¢,
uy (1) ~ fo _2N0 exp (—At/2)sin (1)
2
—Ny exp (—4t/2)cos {r + % [1 —exp (—/lr)]}
_ [3N2 . }
X sm{ T [1 —exp(—47)] ¢. %)

A first observation from the solutions (5) is that each
response is composed of two terms, namely, an exponentially
decaying oscillation which is common in both responses, and a
second decaying but “beating” term. The beating terms incor-
porate two different scales in the sense that they describe
“fast” oscillations of the two particles at normalized frequency
close to unity with relative phase of 7/2, bounded by exponen-
tially decaying “slow” envelopes. Hence, the solutions (5)
describe nonlinear beats between the two coupled oscillations,
in the form of recurring energy exchanges with energy from
one of the oscillators being transferred to the other and vice
versa. It is interesting that, as discussed below, the number of
beats is finite and can be analytically predicted. Indeed, for
small values of I (i.e., for sufficiently small applied impulses)
the non-beating terms in Eq. (5) may be neglected (although
this assumption is not necessary), and an analytical relation
between the number of beatings 7, the impulsive intensity
measure /(, and the normalized damping coefficient 2 may be
derived. From Eq. (5), the envelopes U, (7) and U(t) of the
beating terms for the responses u;(t) and u,(t), respectively,
can be expressed as

U,(t) = Nyexp (—4t/2) b ,

. [3N? }
sin {8—) [1 —exp (—41)] ‘
(6)

cos {3253 [l — exp (—zf)}}

U, (t) = Ngexp (—4t/2)

Figures 2(a) and 2(b) depict the analytical envelopes, U (t)
and U,(7), in comparison to the corresponding envelopes of
the responses, u; (1) and u,(t), derived from direct numerical
integrations of Eq. (2) for Iy = 0.1 and A =5 x 10~%; this
comparison demonstrates the accuracy of the analysis.
Beating phenomena which correspond to intense recurring
energy exchanges between the two oscillators are clearly
detected. Moreover, we note that the number of beats, n, in
the responses of u(t) or u, () is directly related to the num-
ber of zeros of the envelopes U, (t) and U, (1), respectively.
Since the current study is computational, we provide
some details of the numerical approach taken to solve the
governing equations of motion. All ordinary differential
equations are integrated using the ODE45 command of
MATLAB® which is based on explicit Dormant-Prince method,
a member of Runge-Kutta ODE solver family. To ensure
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FIG. 2. (Color online) Comparison between analytically computed enve-
lopes, Eq. (6), and the corresponding envelopes derived from direct numeri-
cal simulation of Eq. (2): (a) u; (7) and (b) u (7).

reliable results, relative and absolute error tolerances were
set to 10'°. Moreover, the initial step size as well as the
maximum step size in the algorithm was set equal to 1/20 of
the period of oscillation corresponding to the highest linear-
ized frequency of the system.

Now, considering the analytical expressions (6) the rela-
tion between n, the impulse intensity /y, and the damping
coefficient 4 can be expressed as

3N?
(zn—l)g<—g 2n+1)

2 (7

SRR

so that the maximum value for the ratio 3N?/(8/) corre-
sponding to exactly n beats is given by

2

% =2n+1)=. (®)

Relation (8) yields the ‘“characteristic curves,” with
each of them dividing the parameter space, (4,1), into sec-
tors. For a fixed number of total beats, n, there corresponds
a single characteristic curve—termed the nth characteristic
curve. The sector (region) between the nth and (n+ 1)-th
characteristic curves in the parameter plane contains values
of (4,1y) for which a maximum number of n beats occur
before beat arrest is realized. After breather arrest has
occurred, the responses of the two oscillators decay to zero
with no more intense energy exchanges occurring between
them. Some of the characteristic curves are shown in Fig. 3.
For a fixed value of total beats n, the relation between A and
Iy can be expressed as 4 = a,ly“', where a, is a coefficient
directly related to n, while ¢ is a constant exponent which
can be determined from Eq. (8) with an approximate value
of ¢; = 1.9740.

In Sec. III we consider the semi-infinite extension of the
simplified system of Fig. 1 and show that the results related
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FIG. 3. Characteristic curves for specific maximum number of beatings in
logarithmic scale.

to beat arrest reported herein can be related to breather arrest
in the resulting semi-infinite lattice.

lll. SEMI-INFINITE HOMOGENEOUS SYMMETRIC
NONLINEAR LATTICE—BREATHER ARREST

The semi-infinite extension of the simplified system of
Fig. 1 is the strongly nonlinear, one-dimensional lattice shown
in Fig. 4. This lattice consists of identical grounded linear
oscillators coupled by strongly nonlinear springs with cubic
stiffness characteristics. Considering that the left boundary of
the lattice is free, that an impulsive excitation is applied to the
left boundary and that the system is initially at rest, the govern-
ing equations of motion are expressed as

miy + diy + kx + C(xi — %)’ = F(t) = Fo f (1),
x1(04) =x,(0+) =0,

mi; + dx; + kx; + C(xi —xi.1)” + C(x; — xi11)* = 0,
(04) = 5:(04) =0, =23, ..., )

where £ () is a half cycle of the sine function with a period of
0.005 s and maximum amplitude equal to unity, and Fy is the
magnitude of the impulsive excitation. Figure 5 depicts the
responses of the six leading particles of the lattice (counted
from the left free boundary) for the applied impulsive load of
amplitude 80N and the parameters listed in Table I. Whereas

X4 (t) X5(t) xi(t)
[—>

FIG. 4. Configuration of the one-dimensional semi-infinite strongly nonlin-
ear lattice.
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FIG. 5. (Color online) Responses of the six leading particles of the lattice
for Fy = 8ON.

all displacements are plotted in the same scale, there are
depicted in vertically shifted positions for clarity of presenta-
tion. The parameters (except for the damping coefficient) listed
in Table I are identical to the measured and/or identified param-
eters of the experimental lattice studied in Ref. 15, so that they
can be physically realized. Unless otherwise noted, these will
be the parameters assumed for the nonlinear lattices studied in
this section. Moreover, for the numerical simulations lattices
composed of twenty particles were selected (this number was
sufficient for the breather arrest results discussed below).
Considering the plots of Fig. 5 we note that following
the application of the impulsive excitation a traveling
breather is generated, but the amplitude of the breather dras-
tically decreases after propagating through a certain number
of particles of the lattice. This disappearance of the traveling
breather will be referred to as breather arrest from here on.
Since in the infinite lattice (unlike in the simplified 2 DOF
system) after breather arrest there remains an exponentially
decaying oscillation at each site, a certain criterion should be
considered to define the occurrence of breather arrest,

max,(|xi(7)])

<1074,
max,(|xi (1)])

i=23,... (10)

It turns out that the number of particles after which the
amplitude of the breather becomes negligibly small, i.e., the

TABLE 1. Parameters used for the numerical simulations of the one-
dimensional nonlinear lattice.

Parameter Value
m [kg] 0.4349
k [N/m] 30166
d [Ns/m] 0.5

C [N/m’] 5x 108

Mojahed etal. 829



penetration depth of the breather, highly depends on the
amplitude of the impulse and the grounding damping coeffi-
cient. In the specific simulation depicted in Fig. 5, we note
that the breather which is initiated by the impulse of magni-
tude Fp = 80N is able to penetrate only up to four particles
into the lattice (cf. Fig. 5).

Motivated by these numerical results, we performed a
series of numerical simulations to study breather arrest in the
semi-infinite lattice for varying applied impulses and
grounding damping coefficients with all other system param-
eters kept fixed (cf. Table I). In Fig. 6 the penetration depth
curves (i.e., the number of the leading particles reached by
the breather) as functions of the impulse magnitude, F, and
the grounding damping coefficient, d, are depicted. In each
simulation, the penetration depth was numerically deter-
mined by considering the responses x;(¢) of the leading par-
ticles of the lattice and establishing approximately the
particle where the amplitude of the breather was nearly elim-
inated by satisfying Eq. (10), taking into account that the
leading particle (i.e., the one that is directly excited by the
applied impulsive load) attains always the maximum ampli-
tude. The criterion (10) indicates that breather arrest occurs
at the first particle whose temporal maximum response is
less than 0.01% compared to the first particle.

Considering the plots of Fig. 6 one deduces similar
trends to the beat arrest plots of Fig. 3 for the simplified sys-
tem of Sec. II. From these results we note that, with the
exception of very small forcing magnitudes and damping
values, it approximately holds that d ~ b,F(“*, where n
denotes the penetration depth of the propagating breather.
Moreover, theoretically the penetration depth curves of Fig.
6 should start from d = 0, Fy = 0O (i.e., same as in the plots
of Fig. 3). This numerical error is due to inaccuracies in the
numerical integrations of the equations of motion and the
approximate criterion (10).

d [Ns/m]

10?

FIG. 6. Breather penetration depths in the semi-infinite homogeneous lattice
in the parameter space (d, Fyy) in logarithmic scales.
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Neglecting the initial parts of the penetration depth level
curves in Fig. 6, determining the corresponding slopes yields
the approximate value of the exponent ¢, ~ 2.0046, which
compares to the analytic value for the corresponding expo-
nent of the beat arrest curves of the simplified system of Sec.
I, ¢; = 1.9740. Hence, we deduce that the study of beat
arrest in the simplified 2 DOF system can predict fairly
accurately breather arrest in the semi-infinite one-dimen-
sional chain, with an error of approximately 1.5%. On the
other hand, the dimensional form of the coefficients a, for
the simplified system do not directly correspond to the coef-
ficients b, for the homogeneous semi-infinite system. The
main reason that causes this discrepancy is that in the simpli-
fied system, the only dissipative source that reduces the
energy carried by the beats is the on-site damping of the two
particles, whereas in the lattice, in addition to on-site damp-
ing of the particles there is “radiation damping” as the
breather passes from each particle since it leaves an oscilla-
tory tail behind it with frequency approximately equal to the
linear frequency of each oscillator (i.e., there is an additional
“ringing” effect). The equivalent term for this tail in the sim-
plified system is the exponentially decaying non-beating
term which only appears once for each particle while the tail
appears for each of the particles of the lattice mass during
breather propagation (cf. Fig. 5). In other words, in the lat-
tice, the energy of the breather is reduced by the on-site
damping of each particle as well as the tail that remains after
the breather passes by each of the particles.

In conclusion, the results of this section established a
surprising approximate correspondence between beat arrest
in the simplified system and breather arrest in the homoge-
neous nonlinear lattice which represents a semi-infinite
extension of the simplified system. Moreover, the dissipative
mechanisms that influence breather arrest were discussed. In
Sec. IV we consider a finite hierarchical, strongly nonlinear
system with a hierarchical structure that incorporates asym-
metry. We show that the study of breather arrest in this lat-
tice is directly linked to interesting acoustic non-reciprocity
phenomena that occur when the point of the applied impulse
excitation varies.

IV. FINITE HIERARCHICAL, ASYMMETRIC AND
NONLINEAR LATTICE—BREATHER ARREST AND
ACOUSTIC NON-RECIPROCITY

The final system considered in this work is the
one-dimensional (ID) nonlinear lattice depicted in Fig. 7,
incorporating both scale hierarchy and asymmetry. The lattice
is composed of a finite number (V) of repetitive cells, with
each cell consisting of a large particle [designated as the inter-
nal “large-scale” (LS)] nonlinearly coupled to a smaller parti-
cle [the internal “small-scale” (SS)]. The nonlinear stiffness
coupling the two internal scales in each cell has a strongly non-
linear stiffness characteristic, which for the time being is
assumed to be essentially nonlinear and non-linearizable (i.e.,
its nonlinear stiffness characteristic is purely cubic without any
linear component); in Sec. IIIC we consider the (surprisingly
important) effects of a small linear component in the coupling
stiffness characteristic. Moreover, the SS of each cell is
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FIG. 7. Configuration of the finite nonlinear hierarchical and asymmetric lattice with cell 1 being the left-most and cell N the right-most one.

coupled to the LS of the cell on its right by a linear stiffness,
except for the last cell (cf. Fig. 7), and the LS of each cell is
grounded by a linear spring-viscous damper pair in parallel.
Finally, only impulsive external forcing excitation is

M3\ + dyxy + dy (1 — %) + kixy + C(x1 — x2)° = Fre(t),

mi, +d2(f€2 —Xl) + C()Cz —X1)3 +k2()€2 —X3) =0,

considered as discussed below. Recently this lattice has been

the subject of experimental'> and computational®® study.
Assuming unidirectional motion, the equations of

motion governing the acoustics of this lattice are given by

MX; + diX; + do(%; — Xi1) + kv + C(x; — xt+1)3 + ko (x; — xi—1) =0,

miipy 4 dy(Xiq

— %) + C(xix1 —xi) + ka(xip1 — Xi42) =0,3 < i <N =2,

Miy_i + diiy-y + do(in-1 — ) + kixyoy + Clan—1 — xv)’ + ka(xy—1 — xn—2) = Fre (),

miy + dp(Xy — Xn—1) + C(xy —xN71)3 =0,

x](O—&—):xj(O—i—)zQ j:1,2,...,N,

where the parameters are the same as the ones used in Ref.
15 and are defined in the schematic of Fig. 7. Unless other-
wise noted, the lattice is assumed to be composed of N = 20
cells, and the numerical values for the system parameters are
listed in Table II; these parameters were identified for the
experimental realization of the three-cell hierarchical lattice
studied in Ref. 15 (but for a small linear stiffness component
in the nonlinear stiffnesses connecting the SSs and the LSs
whose effect is discussed in Sec. IV C). Zero initial condi-
tions are assumed, and the lattice is forced by either “left”
impulsive excitation with F(1) = Fof (f) and Fg (1) = 0,

TABLE II. System parameters of the nonlinear asymmetric hierarchical lat-
tice (Ref. 15).

Parameter Value
M [kg] 0.4349
m [kg] 0.0204
ki [N/m] 30166
dy [Ns/m] 0.5

C [N/m’] 5% 10*
k> [N/m] 3753.75
d> [Ns/m] 0.0014

J. Acoust. Soc. Am. 146 (1), July 2019

an

or “right” impulsive excitation with Fi; (1) = —Fof(r) and
Fiz(t) = 0; Fy (in N) is the impulsive amplitude, and f (¢) is
the broadband function defined in Sec. III.

Due to the asymmetry in the hierarchical nonlinear lattice,
we anticipate that the signal transmission properties will be
energy dependent (i.e., will depend on the intensity of the
impulsive excitation), but also on the location of the impulsive
excitation. Hence, we need to consider separately the cases of
right-to-left and left-to-right wave propagation, corresponding
to right or left impulsive excitation, respectively.

A. Right-to-left wave transmission

For right impulsive excitation the only force acting on the
hierarchical lattice is applied to the LS of the last cell, i.e., the
rightmost LS which on its right is nonlinearly connected to the
ultimate (rightmost) free SS, and on its left is linearly con-
nected to the SS of the penultimate cell. In Fig. 8 we illustrate
the spatio-temporal evolution of the instantaneous total energy,
normalized with respect to remaining total energy at a given
time instant. The lattice considered in the simulations has the
parameters listed in Table II, except for the grounding damp-
ing which is assigned the value d; = 0.15Ns/m. Moreover,
we consider the responses for both large and small impulsive
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FIG. 8. (Color online) Right-to-left wave transmission in the finite hierarchi-
cal lattice: spatio-temporal evolution of the normalized instantaneous total
energy of the lattice for right impulsive excitation for d; = 0.15N s/m and
(a) Fy = 35 N—point (p;) in Fig. 9, (b) Fy = 150 N—point (p,) in Fig. 9;
only cells 10-20 are depicted and the square root of the normalized data is
plotted for better visualization.

amplitudes, namely, Fy = 150 and 35N. For clarity in the
plots of Fig. 8 we depict only cells 10-20. Immediately follow-
ing the application of the impulsive excitation there occurs
breather initiation at the rightmost cell 20, with the breather
propagating in the lattice with decreasing speed as its energy is
dissipated due to damping. For the case of small impulse exci-
tation the breather is arrested at cell 16, whereas for the larger
impulsive excitation the breather is arrested at cell 14 (refer to
Fig. 10 below).

To study the effects on the penetration depth of the
breather of the grounding damping d; and forcing amplitude
force Fy, in Fig. 9 we depict the breather penetration depth
curves for cells 4, 5, and 6 (as defined in Sec. III) in the param-
eter space (dy, F). Similar to Figs. 3 and 6, in the logarithmic
plots of Fig. 9 we observe a linear asymptotic behavior for
each penetration depth level curve. Hence, neglecting the ini-
tial segment in each curve (which is due to the finite time win-
dow of the corresponding numerical integrations), a relation of
the form d; = «,Fy“*, where the exponent is approximately
determined as c¢3 =~ 1.85 by computing the corresponding
slopes in the logarithmic plot. Notice that there is a slight dif-
ference in the slopes of the lines shown in Fig. 9, so the previ-
ous value of c3 represents the averaged value obtained.

A typical example of right-to-left breather generation,
propagation and ultimate arrest is given in Fig. 10 for the case
corresponding to point (p;) in Fig. 9, and the spatiotemporal
normalized energy plots of Figs. 8(a) and 8(b) which corre-
spond to points (p;) and (p,), respectively. The time series in
Fig. 10 depict the responses of the LSs of the five right cells of
the hierarchical lattice, and although the time series of each
figure are plotted in the same scale, all but the last are shifted
horizontally for clarity. The generated breather following the
application of the impulsive excitation is clearly discernable,
having the form of an oscillating wavepacket which is
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FIG. 9. (Color online) Right-to-left wave transmission in the finite hierarchi-
cal lattice: breather penetration depth curves in the parameter space (dy, Fo)
in logarithmic scales; points (p;) and (p,) refer to the cases of breather arrest
depicted in Figs. 8(a) and 8(b), respectively.

modulated by a slow decaying envelope. Since point (p;) is
located on the breather penetration curve for four cells in the
parameter space of Fig. 9, one expects that the propagating
breather will be able to penetrate only up to four cells into the
lattice for the case of low impulsive excitation and then be
arrested at the location of that cell. Indeed, the transient
responses of the LSs of the cells depicted in Fig. 10 confirm
the relatively large amplitude of the breather for the right-most
LSs, and its nearly negligible amplitude for the LSs of the
remaining cells.
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FIG. 10. (Color online) Right-to-left wave transmission in the essentially
nonlinear lattice showing breather arrest for point (p;) in Fig. 9; depicted are
the responses of the LSs of the rightmost cells—note the magnification
boxes for the LS of cell 17.
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B. Left-to-right wave localization

We now consider left impulsive excitation of the hierar-
chical lattice in order to highlight its strongly non-reciprocal
acoustics. In Fig. 11 the spatio-temporal evolution of the
instantaneous energy of the lattice is depicted for identical sys-
tem parameters to the ones designated by point (p,) in Fig. 9
(i.e., for Fy = 150N, d; = 0.15 Ns/m, and the other system
parameters listed in Table II). Compared to the spatiotemporal
plots of Figs. 8(a) and 8(b) we deduce a qualitatively different
lattice response in this case. Indeed, in contrast to the breather
formation and arrest for the case of right impulsive excitation,
in this case we note standing wave localization and spatial
energy confinement for left impulsive excitation.

Comparing the spatiotemporal energy plots of Figs. 8 and
11 it is clear that, while for the case of right-to-left wave trans-
mission the initiated breather propagates into the lattice until
its eventual arrest, in the left-to-right case there is complete
absence of breather initiation and propagation; rather, a local-
ized standing wave forms, spatially extending up to the leading
four cells of the lattice and energy is spatially confined and is
not getting transmitted into the lattice. The non-reciprocal fea-
tures of the nonlinear acoustics of the hierarchical lattice are
highlighted by comparing the right-to-left breather penetration
depth curves of Fig. 9 to the corresponding left-to-right spatial
extension curves for the localized standing wave depicted in
Fig. 12. Point (q) in Fig. 12 coincides with point (p,) in Fig. 9,
but a different notation is used to distinguish between the
right-to-left and left-to-right cases.

A typical example of left-to-right standing wave locali-
zation in the lattice is given in Fig. 13 for the case corre-
sponding to point (q) in Fig. 12 and the spatio-temporal
energy plot depicted in Fig. 11. The time series in that figure
depict the responses of the LSs of the five leading cells of
the lattice for a left impulsive excitation (as in the plots of
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FIG. 11. (Color online) Left-to-right localized standing wave formation in
the finite hierarchical lattice: spatio-temporal evolution of the normalized
instantaneous total energy of the lattice for right impulsive excitation for
d; = 0.15N s/m and F(, = 150 N—point (q) in Fig. 10; only cells 1-10 are
depicted and the square root of the normalized data is plotted for better
visualization.
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FIG. 12. (Color online) Left-to-right standing wave localization in the finite
hierarchical lattice: spatial extension curves of the standing wave in the
parameter space (d;, F) in logarithmic scales; point (q) refers to the spatio-
temporal energy plot of Fig. 11 and the time series of Fig. 13 [note that point
(q) coincides with point (p,) in Fig. 9].

Fig. 10 the time series are presented in the same scale, and
all but the first are shifted horizontally for clarity). The for-
mation of the standing wave following the application of the
impulsive excitation is clearly discernable, with the three
leading LSs oscillating approximately in-unison with
absence of any wave transmission into the lattice. In contrast
to right impulsive excitation there is no breather initiation in
this case, and instead a spatially confined standing waveform
is formed which decays after the leading three cells of the
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FIG. 13. (Color online) Left-to-right wave localization in the finite hierar-
chical lattice: localized standing wave confined in the leading three cells
corresponding to point (q) of Fig. 12; the depicted time series represent the
responses of the LSs of the five leftmost cells of the lattice (note the magni-
fication box for LS of cell 4).
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lattice. It is interesting to note the occurrence of a finite num-
ber of beats (i.e., of recurring intense energy exchanges) in
the responses of the LSs of the leading cells 1 and 2, which
resemble the beat phenomena and arrest noted in the
responses of the simplified system of Sec. II. This strongly
suggests that the left-to-right wave localization in the hierar-
chical lattice may be studied by a simplified reduced-order
model analogous to the one considered previously.

We comment briefly on the non-reciprocal acoustical
features of the lattice as evidenced by the right-to-left wave
transmission compared to the left-to-right wave localization.
This appears to be caused by the asymmetry of the lattice at
its left and right boundaries, i.e., the way that the LSs and
SSs in the leading and last cells are connected. To this end,
we note that for left impulsive excitation the directly excited
LS of the first cell (designated as LS1) is nonlinearly coupled
to the SS of the first cell (i.e., SS1), which itself is linearly
coupled on its right to LS2; whereas due to the asymmetry
of the lattice for right impulsive excitation the directly
excited LS20 is nonlinearly coupled on its right to SS20
(which is free to oscillate) and on its left is linearly coupled
to SS19. As such, due to its linear coupling to LS20, SS19 is
capable of resonating with LS20 and, consequently, of gain-
ing more energy for relatively small input forces, compared
to the case where the force is applied to LS1. The linear

resonance effect between SS19 and LS20 appears to be the
main mechanism for the generation and initiation of the
breather for right impulsive excitation, whereas its absence
for right impulsive excitation (where SS1 is nonlinearly cou-
pled to LS1 and linearly coupled to LS2) leads to wave
localization in that case.

C. The effect of a linear component in the nonlinear
coupling stiffness

In this section we reconsider the finite hierarchical
asymmetric lattice composed of N cells, but now we add a
linear component with characteristic k3 in the nonlinear cou-
pling stiffnesses between the SSs and LSs; hence, we con-
sider the lattice with linearizable nonlinearities, which from
here on we will be referring as the “modified lattice.”
Adopting the same notation as for the essentially nonlinear
lattice of Fig. 7, and assuming a total of N = 20 cells, the
parameters of the modified lattice are identical to those listed
in Table II, with the only addition being the linear stiffness
coefficient k3 = 1598.2 N/m. As for the other system param-
eters listed in Table II, this coefficient was identified for the
experimental lattice studied in Ref. 15. Accordingly, the
governing equations of motion of the modified lattice are
expressed as

M3y +dixy + da (%) — 3%2) + kixy + ks (x1 — x2) + C(x) — x2)* = Fu(2),
mis + dp(xy — X1) +h3(x2 — x1) + C(x2 —X1)3 + ka(xa — x3) =0,

Mi; + diki + dy(%; — Xis1) + kix; + ks (x; — xi1) + C(% — Xi1)” + ka(xi — xi1) = 0,

M1 + dy(Fier — %) + k(o1 — %) + C(xip1 — X)) + ka(xip1 — xig2) =0,

3<i<N-2,

Miy_y 4 diiy-1 + da(in_1 — k) + kixy—1 + k(-1 — xn) + C(av—1 — xn)’ + ka(xv—1 — xv—2) = Fre (1),

miy + dy(Xy — Xn-1) + k3 (v — xn11) + Clay —xy-1) =0,

x(0+) =x;(0+) =0, j=1,2,...,N,

where, as in Secs. IV A and IV B, we consider left and right
impulsive excitations in order to study the nonlinear acoustic
non-reciprocity in this case.

Following the same logic, we examine the behavior of
the system for left-to-right and right-to-left wave transmis-
sion or localization by performing direct numerical integra-
tions of the equations of motion (12). Figures 14(a) and 14(b)
depict the spatio-temporal evolution of normalized total
energy of the modified lattice for an intermediate impulsive
amplitude of Fy = 100. That is, to get a more detailed depic-
tion of wave generation and transmission in the lattice, at
each time instant the instantaneous energy of the lattice is
normalized with respect to the total energy remaining in the
lattice at that time instant. Such normalization accounts for
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12)

the dissipation of the total energy by the viscous dampers of
the cells.

Although the results of Figs. 14 confirm the (antici-
pated) strong acoustic non-reciprocity of the modified lattice
at this level of applied energy, the unexpected finding is that
the wave localization and transmission features in this case
are reversed compared to the original (essentially nonlinear)
lattice. Indeed, the modification of the lattice by small linear
coupling terms, yields right-to-left wave localization [cf.
Fig. 14(a)] and left-to-right wave transmission [cf. Fig.
14(b)], which is the reverse of what was found for the essen-
tially nonlinear lattice in Secs. IVA and IVB. A closer
examination of the plot of Fig. 14(b) reveals slight right-to-
left wave transmission but this is immediately dissipated
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FIG. 14. (Color online) Non-reciprocal acoustics of the modified lattice:
spatio-temporal evolution of the normalized instantaneous total energy of
the lattice for (a) left impulsive excitation, (b) right impulsive excitation for
the intermediate impulsive amplitude Fo = 100 N.

before it can further penetrate into the modified lattice. As
previously, this should be caused by the asymmetry of the
modified lattice, since for right excitation on LS20, SS20 is
free to oscillate, whereas for left excitation on LS1, SS1 is
restricted by coupling elements both on its right and on its
left. This indicates that for the case of right excitation SS20
can potentially act as a nonlinear energy sink (NES),*'? rap-
idly absorbing a significant portion of the impulsive energy,
hindering the transmission of energy (waves) into the lattice,
and causing wave localization in the directly excited LS20.
That would amount to a very interesting nonlinear boundary
effect, which might be the mechanism for acoustic non-
reciprocity in this case; however, clearly there is a different
mechanism for reciprocity in the modified lattice.

Prior to performing a more detailed investigation of the
mechanism for acoustic non-reciprocity in the modified lattice,
we wish to emphasize the effect of energy on the non-reciprocal
acoustics. Accordingly, in Figs. 15(a) and 15(b) we present the
spatio-temporal normalized energy evolutions for the modified
lattice for the higher impulsive amplitude Fy = 350 N. Whereas
left-to-right wave transmission is preserved at this higher energy
level, there is increased wave transmission into the lattice for
right excitation, despite the fact that a significant portion of the
impulsive energy remains localized at the right boundary. This
underscores the importance of the energy level, since at it
appears that at increased energy there is more intense right-to-
left wave transmission.

These results indicate that, despite the preservation of
acoustic non-reciprocity in the modified lattice, the addition
of small linear components in parallel to the nonlinear cou-
pling stiffnesses qualitatively modifies the non-reciprocal
acoustics. This major change in the acoustics of the modified
lattice resulting from such a slight structural modification
strongly suggests that a different nonlinear mechanism gov-
erns the acoustics in this case. Having this in mind, we inves-
tigate in more detail the non-reciprocal acoustic features of
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FIG. 15. (Color online) Non-reciprocal acoustics of the modified lattice:
spatio-temporal evolution of the normalized instantaneous total energy of
the lattice for (a) left impulsive excitation, (b) right impulsive excitation for
the high impulsive amplitude Fy = 350 N.

the modified (linearizable) lattice, and their dependence on
the amplitude of the impulsive excitation (i.e., the energy
level).

To gain an understanding of acoustic non-reciprocity in
the modified lattice we need to construct a frequency-energy
plot—FEP depicting its nonlinear periodic orbits in the fre-
quency—energy plane, namely, its nonlinear normal modes
(NNMs),* in the absence of dissipative or external forces. It
turns out that for the 40-DOF modified lattice there exist 40
NNMs (which are ordered with respect to increasing linear-
ized natural frequency in their low energy limits) and six of
them are depicted in Fig. 16 together with the corresponding
mode shapes in Fig. 17. These results were derived by set-
ting dy =0, dy =0, Fp = 0 in the system (12) and comput-
ing the periodic responses of the resulting Hamiltonian
system by numerical continuation.>® The six NNMs, namely,
the NNMs 1, 2, 20, 21, 22, and 40, are depicted in the FEP
of Fig. 16 represent special periodic responses of the lattice.

The NNM 2 (20) is the lowest- (highest-) frequency
mode of the lower-frequency family of modes whose mode
shape is spatially extended, and each SS oscillates in-phase
with respect to the LSs of the neighboring cells; what distin-
guishes these particular modes in this family is that for
NNM 2 all LSs oscillate in-phase with respect to each other,
whereas for NNM 20 all LSs oscillate out-of-phase. As dis-
cussed in a previous work>> NNMs 2 and 20 define the lower
and upper boundaries, respectively, of the (lower-frequency)
nonlinear acoustical passband of the modified lattice.
Similarly, the pair of higher-frequency NNMs 22 and 40
defines the (higher-frequency) nonlinear optical passband of
the modified lattice. We note at this point that such pass-
bands define the ranges of frequencies and energies for
which waves can propagate in the infinite modified lattice; in
the finite lattice considered herein (composed of only 20
cells), one can only refer to such passbands in an approxi-
mate sense, although it is worth pointing out that spatially
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FIG. 16. (Color online) Frequency-energy plot (FEP) of the modified nonlin-
ear lattice with the two localized NNMs 1 and 21, the NNMs 2 and 20 approxi-
mately bounding the acoustical passband, and the NNMs 22 and 40
approximately bounding the optical passband; L1-L40 and H1-H40 refer to the
mode shapes of Fig. 17 (------ : frequency-energy curve for grounded SS20).

extended NNMs of the finite lattice are always situated in
these passbands (this was the basis for the approximate com-
putation of the passbands in terms of the highest- and
lowest-frequency NNMs of each families of modes situated
in each of them); in particular the lower 19 spatially
extended NNMs 2-20 are located inside the acoustical pass-
bands and the upper 19 spatially extended NNMs 21-40
inside the optical passband. Separating the passbands are
three stopbands, which depending on their positions in the
FEP will be referred to as lower, intermediate, and upper
stopbands. As discussed below, the approximate passbands
can help us to understand the nonlinear mechanism govern-
ing acoustic non-reciprocity in the finite modified lattice.
Returning to the two NNMs that approximately define the
higher-frequency nonlinear optical passband, the NNM 22
(40) is the lowest- (highest-) frequency mode of the higher-
frequency family of NNMs whose mode shape is spatially
extended, and each SS oscillates in an out-of-phase fashion
with respect to the LSs of its neighboring cells; again, what
distinguishes these modes in this family of modes is that for
NNM 22 all LSs oscillate out-of-phase with respect to each
other, whereas for NNM 40 all LSs oscillate in-phase.
Regarding the “isolated” NNMs 1 and 21, these are
unique modes in the sense that they do not belong to a
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FIG. 17. (Color online) Lower-energy (L1-L40) and higher-energy (H1-H40) mode shapes of the NNMs at the selected points depicted in Fig. 16: (a)
NNMs 1 and 21 localized at SS20, (b) NNMs 2 and 20 approximately bounding the acoustical passband, and (c) NNMs 22 and 40 approximately bound-

ing the optical passband.
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specific family of NNMs, and whose main feature is that
they are spatially localized at SS20, i.e., at the right-most
SS, which is “free” to oscillate due to the asymmetric way of
the linear coupling between cells (no other SS of the lattice
has this property); as mentioned previously, for this reason
$S20 may act as an NES**? for the modified lattice. NNM
1 (20) is the lowest- (highest-) frequency of the two.

An important feature of the NNMs depicted in the FEP of
Fig. 16 is that their mode shapes (and frequencies) depend on
energy. These mode shapes are depicted in Fig. 17 where we
deduce that certain NNMs change drastically as energy increases.
Specifically, considering the localized NNM 21 changes its wave-
form from spatially localized to spatially extend with increasing
energy, whereas the reverse is encountered for NNMs 20 and 40
whose waveforms become spatially localized with increasing
energy. We conclude by commenting on the special (and pecu-
liar) behavior of the NNM 21, which at low-energy is spatially
localized at SS20, whereas after “encountering” the upper optical
band changes to being spatially extended. As discussed below,
this energy-dependency has implications on the acoustic non-
reciprocity in the modified lattice.

Revisiting now the impulsive response of the modified lat-
tice (cf. Figs. 14 and 15), in Fig. 18 we depict the relative

response between LS20 and SS20 subject to right impulsive
excitation Fgy (f) with Fp = 100N, 180N and 350N, and their
corresponding wavelet spectra contours. The wavelet contours
are superimposed to the FEP of the underlying Hamiltonian
lattice of Fig. 16 with the nonlinear acoustical and optical pass-
bands depicted (their complements form the three stopbands).
To construct these wavelet depictions, time in the wavelet
spectrum of the transient relative response was replaced by the
total instantaneous energy of the modified lattice following the
application of the impulsive excitation. It follows that decreas-
ing (increasing) instantaneous energy corresponds to increas-
ing (decreasing) time, with the initial state of the response
occurring at the point of maximum energy on the right hori-
zontal axis. These results clarify breather initiation in the mod-
ified lattice for right impulsive excitation.

Considering first the case of low impulsive excitation of
Fig. 18(a), we note that the spectrum of the relative response
is mainly confined in the lower and intermediate stopbands,
with the impulse exciting mainly the second localized NNM
21 (and its harmonics) which for low energies is spatially
confined in the directly excited 20th cell [cf. Figs. 16 and
17(a)]. As a result, for sufficiently small impulsive excitation
no wave propagation can be initiated in the modified lattice,
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FIG. 18. (Color online) Relative responses between LS20 and SS20 of the modified lattice and the corresponding contours of the wavelet spectra for right
impulsive amplitude (a) Fp = 100 N, (b) Fp = 180N, and (c) Fy = 350N; the wavelet spectra are superimposed on the FEP of the underlying Hamiltonian

system showing the nonlinear acoustical and optical passbands.
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since for this to occur some harmonic components of the
response need to be located inside the upper passband so
intense energy transmission in the lattice can commence (in
the lower passband there occurs much less intense wave
transmission in the lattice). This result is consistent with the
localized response and the weak wave transmission observed
in the spatiotemporal plot of Fig. 14(b). The response
changes qualitatively for increasing impulsive amplitude
since for Fy = 180N a harmonic of the localized NNM
encounters the lower boundary of the upper passband at the
initial stage of the response [cf. Fig. 18(b)]. This is a point of
bifurcation and signifies the critical amplitude of the impulse
beyond which intense wave transmission in the modified lat-
tice occurs. It is worth recalling, that with increasing energy
the second localized NNM 21 changes its mode shape and
from localized become spatially extended [cf. the FEP of
Fig. 16 and the corresponding mode shapes of Fig. 17(a)].
Hence, with increasing amplitude of the right impulse the
wave localization in cell 20 is gradually eliminated. This is
corroborated by the numerical results. Indeed, for the stron-
ger impulsive amplitude Fp = 350N [cf. Fig. 18(c)], we note
that in the initial, highly energetic regime of the response the
harmonic of the localized NNM is initially situated inside
the upper passband, but as energy decreases due to damping
this harmonic makes a transition to the intermediate stop-
band where it remains until energy is completely dissipated.
This indicates that there traveling waves are formed in the
initial regime of the motion, but this wave transmission is
eliminated shortly thereafter with the motion becoming
localized close to the right boundary of the lattice. This is
consistent with the spatiotemporal energy plot of Fig. 15(b).
A radically different picture for the acoustics is noted for
left impulsive excitation. In Fig. 19 we depict the relative
response between LS1 and SS1 subject to Frg(r) with
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FIG. 19. (Color online) Relative responses between LS1 and SS1 of the
modified lattice and the corresponding wavelet spectrum contour for left
impulsive amplitude Fy = 350 N; the wavelet spectrum is superimposed on
the FEP of the underlying Hamiltonian system showing the nonlinear acous-
tical and optical passbands.
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Fo = 350N, together with its corresponding wavelet spectrum
contour. In this case there is absence of any type of localized
NNM in cell 1 since SS1 is not “free” to oscillate (as is SS20
due to the asymmetric coupling of the lattice) since it is line-
arly coupled on its right to LS2. As a result, the harmonic com-
ponents of the relative response are now located mainly inside
the upper and lower passbands throughout the duration of the
motion, and there are no consistent harmonic components in
the stopbands, except for a brief period in the initial stage of
the response (this is in contrast to the wavelet spectra of Figs.
18(a) and 18(c)]. Hence, for left impulsive excitation there is
intense propagation of traveling wavepackets in the lattice in
the corresponding passbands (mainly in the upper one), a result
which agrees with the spatio-temporal energy plots of Figs.
14(a) and 14(b).

The previous results clarify that the principal nonlinear
mechanism for acoustic non-reciprocity in the modified lat-
tice is the localized NNM 21 at the small scale on the right
boundary, which, in turn is caused exclusively by the asym-
metric way of the linear coupling between cells. Hence, the
acoustic non-reciprocity in the modified lattice is attributed
to the synergy of nonlinearity (without it the localized NNM
21 cannot exist), scale hierarchy (with the localized NNM
being spatially confined in the SS of the right-most cell) and
asymmetry (of the linear coupling between cells).

We end this study by briefly revisiting the essentially
nonlinear lattice considered in Secs. IITA and ITIIB. We found
previously that in the absence of a linear component in the
nonlinear coupling stiffnesses reverse acoustic non-reciproc-
ity is realized, in the sense that standing wave localization
occurs for left impulsive excitation and travelling wave prop-
agation for right impulsive excitation. We wish to investi-
gate briefly the cause of this “non-reciprocity reversal.” In
Fig. 20 we depict the FEP for the essentially nonlinear lattice
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FIG. 20. (Color online) Frequency-energy plot (FEP) of the essentially non-
linear lattice with the two localized NNMs 1 and 2, the NNMs 3 and 21
approximately bounding the acoustical passband, and the NNMs 22 and 40
approximately bounding the optical passband (x denotes instability).
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using the previous technique and notation, from which we
deduce a qualitatively different picture regarding the loca-
tion of the two isolated localized modes, which now are real-
ized at low frequencies (NNMs 1 and 2 in Fig. 20), and are
below the acoustic passband. Moreover, in this case the
localized NNM 1 becomes unstable at high energies, a fea-
ture which was absent for the localized NNMs of the modi-
fied lattice. We now reconsider the spatiotemporal energy
plots of Figs. 8(a) and 8(b) corresponding to points (pl) and
(p2) of Fig. 9 for right impulsive excitation. In Fig. 21 we
depict the corresponding relative responses between LS20
and SS20 in the last cell, together with their wavelet trans-
form spectra superimposed on the FEP of Fig. 20. In addi-
tion, for comparison purposes in Fig. 22 we present similar
depictions for the relative responses between LS1 and SS1
of the first cell for the same essentially nonlinear lattices but
for left impulsive excitations with the same amplitudes.
These results highlight the cause of non-reciprocity reversal
in this case.

For right impulsive excitation [cf. Figs. 21(a) and 21(b)]
the localized NNM of cell 20 is excited, but since this mode
is located at low frequencies below the acoustical passband
for low impulse amplitude [cf. Fig. 21(a)] and below the
optical passband for high impulse amplitude [cf. Fig. 21(b)].
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As a result, the amount of the applied energy localized at the
right boundary is small, and the major part of this energy is
transmitted into the lattice. This is evidenced by the har-
monic components that are located in the two passbands, and
especially the upper optical passband. A different situation
occurs for left impulsive excitation [cf. Figs. 22(a) and
22(b)], where, irrespective of the amplitude of the applied
impulse, there is no excitation of any localized NNM and the
main harmonic components of the response are located in
the lower acoustical passbands and there is negligible har-
monic content in the upper optical passband. Given that
breather formation in the lattice can only occur by excitation
of the optical passband, and that excitation of the acoustical
passband leads to weak wave transmission in the lattice, the
net effect is energy localization close to its left boundary.

V. CONCLUDING REMARKS

The effect of on-site linear viscous damping on breather
arrest, wave localization and acoustic non-reciprocity in
elastically grounded, strongly nonlinear discrete semi-
infinite and finite lattices was studied. As the first step, an
impulsively forced simplified 2 DOF system composed of
two linearly damped oscillators coupled through a purely
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FIG. 21. (Color online) Relative responses between LS20 and SS20 of the essentially nonlinear lattice and the corresponding contours of the wavelet spectra
for right impulsive amplitude (a) Fp = 35N and (b) Fp = 150 N; the wavelet spectra are superimposed on the FEP of the underlying Hamiltonian system of

Fig. 20 showing the nonlinear acoustical and optical passbands.
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FIG. 22. (Color online) Relative responses between LS1 and SS1 of the essentially nonlinear lattice and the corresponding contours of the wavelet spectra for
left impulsive amplitude (a) Fy = 35N and (b) Fy = 150 N; the wavelet spectra are superimposed on the FEP of the underlying Hamiltonian system of Fig. 20

showing the nonlinear acoustical and optical passbands.

cubic nonlinear spring was studied, since this system admits
approximate analytical solutions in the limit of small input
energy. An interesting finding was that the finite number of
nonlinear beats, i.e., of recurring energy exchanges, in this
system was related to the damping coefficient and the initial
impulse amplitude. Accordingly, we computed characteristic
curves which related a specific maximum number of beats to
the damping and forcing amplitudes (energy) required for
their realization. In the next stage of the study a semi-infinite
lattice of nonlinearly coupled damped oscillators and essen-
tial (pure) cubic nonlinearity was considered, as a semi-
infinite extension of the simplified 2 DOF system. Impulsive
excitation was applied to its free end, and the breather arrest
phenomenon was demonstrated for varying damping coeffi-
cients and impulsive force amplitudes. Following this obser-
vation, breather penetration depth curves were computed,
relating the amplitude of the impulsive force to the on-site
damping coefficient for breather arrest at a specific particle of
the lattice. It was found that similar power laws govern the
breather penetration curves in the semi-infinite lattice and the
characteristic curves for finite number of beats in the simpli-
fied system. Simply stated, it was shown that each breather
depth penetration curve of the essentially nonlinear lattice is
linearly proportional to a corresponding characteristic curve
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for finite beats of the simplified system. This strongly sug-
gests that problems of breather arrest in nonlinear lattices can
be studied and physically understood by considering appro-
priate simplified reduced-order models of coupled oscillators
which are easier to analyze.

Motivated by the previous results, a more complicated
system was considered, namely, a finite, strongly nonlinear,
hierarchical and asymmetric lattice. This lattice was com-
posed of a finite number of linearly coupled identical cells,
with each cell composed of a linearly grounded large-scale
particle (LS) that was nonlinearly coupled to an ungrounded
small-scale particle (SS). Each SS of the lattice was coupled
to the same cell-LS on its left through a strongly nonlinear
cubic stiffness, while it was linearly coupled to the next cell-
LS on its right. The arrangement of the linear coupling stiff-
nesses between cells resulted in an interesting asymmetry for
the lattice, with the SS of the last (right-most) cell being
“free” to oscillate, since it is only coupled on its left to the
LS of the last cell. We considered two cases for the strongly
nonlinear coupling stiffnesses of the lattices, i.e., either with
essentially nonlinear stiffness characteristics or with linear
components in their nonlinear stiffness characteristics.
Perhaps some of the most interesting findings of this work
are that (a) the asymmetry of the last SS is the main cause
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for acoustic non-reciprocity in this finite lattice, and is caused
by a boundary effect; and (b) that the existence or absence of
(even small) linear components in the nonlinear stiffnesses
defines the main features of the non-reciprocal acoustics of the
lattice, resulting either in breather formation and arrest on one
end, and standing wave localization and absence of wave trans-
mission on the other. Based on the absence or not of a small
linear component in the nonlinear stiffnesses we distinguished
between “essentially nonlinear” and “modified” lattices. The
nonlinear mechanisms governing acoustic non-reciprocity,
breather initiation and arrest and wave localization in both of
these lattices were studied utilizing a simplified reduced-order
model and by superimposing the wavelet spectra of the lattice
responses on the frequency-energy plots (FEPs) of the corre-
sponding Hamiltonian lattices. Breather initiation in the lattice
was associated with harmonic components of the responses
exciting the optical passband of the FEP, whereas standing
wave localization and absence of wave transmission with either
strong excitation of a localized NNM in the rightmost cell of
the lattice and absence of excitation of the optical passband.
The results of this work underscore the strong influence
of viscous damping and energy in the acoustics of nonlinear
lattices, as well as the feasibility of studying and understand-
ing complex nonlinear acoustical responses by studying
appropriate reduced-order models that are easier to analyze.
In addition, our results show the efficacy of relating the
acoustics of nonlinear lattices to the FEPs of the correspond-
ing underlying Hamiltonian lattices. Hence, the methods and
results presented herein can be regarded as tools towards pre-
dictively designing strongly nonlinear lattices with desired
non-reciprocity, localization, and breather arrest capacities.
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APPENDIX: DERIVATION OF THE SECOND OF
EXPRESSIONS (4)

Consider the second expression in Eq. (3),

W+ w+n +2u =0, (A1)
which can be expressed as

w' =p,

P =—lp—w—2uw. (A2)

For |w| < 1, the nonlinear term in Eq. (A2) can be approxi-
mately neglected, and this equation is approximately linear
with action-angle variables of the corresponding undamped
system given by

w=2Isin0,

w =p =2l cos0. (A3)
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Introducing this action-angle variable transformation into
Eq. (A3) we express this system of equations as

I' = =21 cos?0 — 8% sin>0 cos 0,

0 =1+ JsinOcos 0 + 41 sin*0. (A4)

In the limit when |w| < 1 the first equation of Eq. (A4) can
be averaged with respect to the fast angle 0 yielding the fol-
lowing averaged equation:

J(t) = Joexp (—21), (A5)

where J = (I) is the time-averaged action. Assuming weak
viscous damping 4, the second equation in Eq. (A4) can also
be averaged to obtain

0 —1) = %]0 exp (—At1). (A6)

Assuming the initial condition 0(0+) = 0, the solution of
this averaged equation is expressed as

0(r) =1 —|—% [1 —exp(—i1)].

(A7)
Denoting Ny = v/2Jy while applying the initial conditions
imposed on w, the approximate solution for w can be
obtained as

, . 3N3
w(t) & Noexp (—At/2)sin r—&-ﬂ[l —exp (—=41)] ¢-
(A8)
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