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The effect of on-site damping on breather arrest, localization, and non-reciprocity in strongly non-

linear lattices is analytically and numerically studied. Breathers are localized oscillatory wavepack-

ets formed by nonlinearity and dispersion. Breather arrest refers to breather disintegration over a

finite “penetration depth” in a dissipative lattice. First, a simplified system of two nonlinearly cou-

pled oscillators under impulsive excitation is considered. The exact relation between the number of

beats (energy exchanges between oscillators), the excitation magnitude, and the on-site damping is

derived. Then, these analytical results are correlated to those of the semi-infinite extension of the

simplified system, where breather penetration depth is governed by a similar law to that of the finite

beats in the simplified system. Finally, motivated by the experimental results of Bunyan, Moore,

Mojahed, Fronk, Leamy, Tawfick, and Vakakis [Phys. Rev. E 97, 052211 (2018)], breather arrest,

localization, and acoustic non-reciprocity in a non-symmetric, dissipative, strongly nonlinear lattice

are studied. The lattice consists of repetitive cells of linearly grounded large-scale particles nonli-

nearly coupled to small-scale ones, and linear intra-cell coupling. Non-reciprocity in this lattice

yields either energy localization or breather arrest depending on the position of excitation. The non-

linear acoustics governing non-reciprocity, and the surprising effects of existence of linear compo-

nents in the coupling nonlinear stiffnesses, in the acoustics, are investigated.
VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5114915
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I. INTRODUCTION

Discrete breathers are spatially localized oscillatory wave-

packets formed due to strong nonlinear interactions between

adjacent linearly grounded particles in a discrete lattice.1

Traveling breathers are spatially localized wavepackets that

travel undistorted (or nearly undistorted) through the lattice.2–4

These special nonlinear propagating waveforms are made pos-

sible by the delicate balance between nonlinearity and disper-

sion, and typically incorporate two different lengths (and time)

scales, namely, a slowly varying envelope enclosing a fast-

varying oscillation. An example of a strongly nonlinear

medium that supports traveling breathers is the homogeneous

one-dimensional (1D) ordered granular chain.5–7 Asymptotic

analysis has shown that for nonlinear lattices with weak cubic

nonlinearity, the approximate equation governing the form and

the slowly varying amplitude of the envelope of the breather is

the discrete nonlinear Schrodinger (DNLS) equation,8 while

for the case of granular chains, the governing equation is of

the form of the discrete nonlinear p-Schrodinger (DNLpS)

equation.7 A somewhat similar analysis of lattices with strong

cubic nonlinearities yields analogous results for traveling

breathers. Indeed, there is rich literature on the topic of travel-

ing breathers or propagating solitons in different types of non-

linear lattices such as Toda,9 Ablowitz–Ladik,10 and

Klein–Gordon11–14 lattices, with analytical4 and numerical12–14

approaches. One property that most, if not all, of these studies

have in common is that they consider Hamiltonian lattices,

i.e., they omit the effects of dissipation in breather propaga-

tion. This is not surprising, given that in the presence of dissi-

pation, e.g., viscous damping, and in the absence of a

sustained external source of energy, e.g., an applied periodic

force, traveling breather propagation changes from stationary

to non-stationary, thus changing completely both the govern-

ing mathematical physics and the nonlinear acoustics of the

problem.

In the present study, we aim to investigate and under-

stand non-reciprocity and the effects of on-site damping on

breather penetration depth in essentially nonlinear semi-

infinite lattices subject to impulsive excitations at their

boundaries. Preliminary numerical results associated with an

impulsively excited, dissipative, semi-infinite, nonlinear lat-

tice incorporating internal scale hierarchy and asymmetry15

revealed that traveling breathers disintegrated after propagat-

ing through only a finite number of lattice particles; more-

over, interesting non-reciprocal acoustics were detected. In

the first section of this work, we initiate our investigation of

the effects of dissipation on breather propagation and arrest

by considering a simplified two-degree-of-freedom (2 DOF)

system of two nonlinearly coupled particles grounded

through linear stiffness and viscous damping. When this sys-

tem is excited by an impulse, a finite number of nonlinear

beats (i.e., energy exchanges) between the two particles

occurs. The exact relation between the number of beats, the

impulse amplitude, and the viscous damping coefficient is

analytically derived. Then, a breather penetration study fora)Electronic mail: mojahed2@illinois.edu
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an impulsively excited 1D nonlinear lattice representing the

semi-infinite extension of the simplified 2 DOF system is

numerically performed, and the results are compared to the

corresponding analytical results for the simplified 2 DOF sys-

tem. Surprisingly, the results on breather penetration for the

semi-infinite lattice appear to correlate closely with the finite

number of beats in the simplified system. Following these

studies, we numerically investigate breather penetration in a

semi-infinite nonlinear asymmetric hierarchical lattice, simi-

lar to the finite lattice studied in Ref. 15 and compare the

results to those of the symmetric nonlinear lattice considered

earlier. Furthermore, interesting non-reciprocal acoustic phe-

nomena are investigated. Before discussing the results on

acoustic non-reciprocity, a few basic definitions regarding

reciprocity in linear and nonlinear systems should be

reviewed. Reciprocity is one of the fundamental properties of

linear time-invariant dynamical systems. Mathematically, this

feature reveals itself in the form of symmetric Green’s func-

tions and self-adjoint governing operators. According to the

Onsager-Casimir principle of microscopic reversibility, reci-

procity is directly related to time-reversal symmetry of the

response.16–18 Hence, to be able to break reciprocity, one

must break time-reversal symmetry, and to this end one can

take several different approaches; namely, implementing odd-

symmetric external biases (which are likely to violate parity-

time-symmetry of the lattice),19–23 considering time-varying

system parameters, or incorporating nonlinearities.15,24–28

Here, in this paper, we aim to investigate in more detail a lat-

tice, which was proved to exhibit acoustic non-reciprocity

(both numerically and experimentally) in Ref. 15. The non-

reciprocal acoustics of this specific nonlinear lattice is demon-

strated by either immediate breather confinement and wave

localization, or finite breather propagation and then arrest,

depending on the point of application and the amplitude of

the impulsive excitation. The bifurcations governing these

non-reciprocal acoustics are investigated, and the nonlinear

mechanisms governing these phenomena are discussed. We

end by summarizing the main findings in this work.

II. SIMPLIFIED SYSTEM—BEATARREST

We start by considering the preliminary, simplified sys-

tem shown in Fig. 1. Our aim is to study the effect of damp-

ing and input energy to the system on the energy exchanges

between the two oscillators. The simplified system consists

of two identical particles with mass m, grounded by pairs of

linear springs and viscous dampers with constants k and d,
respectively, and are coupled by means of a strongly nonlin-

ear (in fact, non-linearizable) cubic stiffness with constant C.

The system is assumed with zero initial conditions and an

impulse of intensity F0 is applied to one of the two

oscillators.

The corresponding governing equations of motion are

given by

m€x1 þ kx1 þ d _x1 þ C x1 � x2ð Þ3 ¼ FðtÞ ¼ F0dðtÞ;
m€x2 þ kx2 þ d _x2 þ C x2 � x1ð Þ3 ¼ 0;

x1ð0þÞ ¼ x2ð0þÞ ¼ 0; _x1ð0þÞ ¼ _x2ð0þÞ ¼ 0; (1)

where dðtÞ is the Dirac function. Applying the change of

variables xnt ¼ s; k ¼ xn
2m; x1 ¼ au1; x2 ¼ au2; k ¼ d=

ðmxnÞ, we normalize the equations of motion as follows:

u001 þ u1 þ ku01 þ u1 � u2ð Þ3 ¼ 0;

u002 þ u2 þ ku02 þ u2 � u1ð Þ3 ¼ 0;

u1ð0þÞ ¼ u2ð0þÞ ¼ 0; u01ð0þÞ ¼ F0=ak � I0;

u02ð0þÞ ¼ 0; (2)

where a ¼
ffiffiffiffiffiffiffiffi
k=C

p
, ð�Þ0 ¼ dð�Þ=ds, and the impulse excitation

term in the first equation of system (1) is replaced by an

equivalent initial condition for u01 at s ¼ 0þ. At this point

we introduce two new dependent variables to describe the

dynamics, one in terms of the motion of the center of mass

of the system, v ¼ ðu1 þ u2Þ=2, and the other describing the

relative motion between the two particles, w ¼ u1 � u2.
Then Eq. (2) is expressed as the following system of

uncoupled oscillators:

v00 þ vþ kv0 ¼ 0;

w00 þ wþ kw0 þ 2w3 ¼ 0;

vð0þÞ ¼ 0; v0ð0þÞ ¼ I0=2; wð0þÞ ¼ 0;

w0ð0þÞ ¼ I0: (3)

We note that the motion of the center of mass of the system

is governed by a damped linear harmonic oscillator whose

exact solution is trivial, whereas the relative displacement

between the two particles is governed by a damped cubic

oscillator. Unfortunately, the nonlinear differential equation

governing the second expression in Eq. (3) is not solvable in

terms of known (tabulated) functions29 so can admit only an

approximate solution through asymptotic methods. Indeed,

for sufficiently small values of w the analytical solutions of

system (3) are given by

vðsÞ ¼ I0
2
exp �ks=2ð Þsin ðsÞ;

wðsÞ � N0 exp �ks=2ð Þsin sþ 3N2
0

4k
1� exp ð�ksÞ½ �

� �
;

(4)

where N0 is the only real root of Nð1þ 3N2=4Þ ¼ I0 accord-
ing to the initial conditions in Eq. (3). Moreover, details

on derivation of the response wðsÞ are provided in the

Appendix.

Considering the previous results, the motion of the two

oscillators can be analytically approximated asFIG. 1. Configuration of the 2 DOF nonlinear system.
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u1ðsÞ �
I0 � N0

2
exp �ks=2ð Þsin ðsÞ

þN0 exp �ks=2ð Þsin sþ 3N2
0

8k
1� exp ð�ksÞ½ �

� �

� cos
3N2

0

8k
1� exp ð�ksÞ½ �

� �
;

u2ðsÞ �
I0 � N0

2
exp �ks=2ð Þsin ðsÞ

�N0 exp �ks=2ð Þcos sþ 3N2
0

8k
1� exp ð�ksÞ½ �

� �

� sin
3N2

0

8k
1� exp ð�ksÞ½ �

� �
: (5)

A first observation from the solutions (5) is that each

response is composed of two terms, namely, an exponentially

decaying oscillation which is common in both responses, and a

second decaying but “beating” term. The beating terms incor-

porate two different scales in the sense that they describe

“fast” oscillations of the two particles at normalized frequency

close to unity with relative phase of p/2, bounded by exponen-

tially decaying “slow” envelopes. Hence, the solutions (5)

describe nonlinear beats between the two coupled oscillations,

in the form of recurring energy exchanges with energy from

one of the oscillators being transferred to the other and vice

versa. It is interesting that, as discussed below, the number of

beats is finite and can be analytically predicted. Indeed, for

small values of I0 (i.e., for sufficiently small applied impulses)

the non-beating terms in Eq. (5) may be neglected (although

this assumption is not necessary), and an analytical relation

between the number of beatings n, the impulsive intensity

measure I0, and the normalized damping coefficient k may be

derived. From Eq. (5), the envelopes U1ðsÞ and U2ðsÞ of the
beating terms for the responses u1ðsÞ and u2ðsÞ, respectively,
can be expressed as

U1ðsÞ ¼ N0 exp �ks=2ð Þ
����cos 3N2

0

8k
1� exp ð�ksÞ½ �

� �����;
U2ðsÞ ¼ N0 exp �ks=2ð Þ

����sin 3N2
0

8k
1� exp ð�ksÞ½ �

� �����:
(6)

Figures 2(a) and 2(b) depict the analytical envelopes, U1ðsÞ
and U2ðsÞ, in comparison to the corresponding envelopes of

the responses, u1ðsÞ and u2ðsÞ, derived from direct numerical

integrations of Eq. (2) for I0 ¼ 0:1 and k ¼ 5� 10�4; this

comparison demonstrates the accuracy of the analysis.

Beating phenomena which correspond to intense recurring

energy exchanges between the two oscillators are clearly

detected. Moreover, we note that the number of beats, n, in
the responses of u1ðsÞ or u2ðsÞ is directly related to the num-

ber of zeros of the envelopes U1ðsÞ and U2ðsÞ, respectively.
Since the current study is computational, we provide

some details of the numerical approach taken to solve the

governing equations of motion. All ordinary differential

equations are integrated using the ODE45 command of

MATLABVR which is based on explicit Dormant-Prince method,

a member of Runge-Kutta ODE solver family. To ensure

reliable results, relative and absolute error tolerances were

set to 10�10. Moreover, the initial step size as well as the

maximum step size in the algorithm was set equal to 1/20 of

the period of oscillation corresponding to the highest linear-

ized frequency of the system.

Now, considering the analytical expressions (6) the rela-

tion between n, the impulse intensity I0, and the damping

coefficient k can be expressed as

ð2n� 1Þ p
2
<

3N2

8k
� ð2nþ 1Þ p

2
(7)

so that the maximum value for the ratio 3N2=ð8kÞ corre-

sponding to exactly n beats is given by

3N2

8k
¼ ð2nþ 1Þp

2
: (8)

Relation (8) yields the “characteristic curves,” with

each of them dividing the parameter space, ðk; I0Þ, into sec-

tors. For a fixed number of total beats, n, there corresponds

a single characteristic curve—termed the nth characteristic

curve. The sector (region) between the nth and (nþ 1)-th

characteristic curves in the parameter plane contains values

of ðk; I0Þ for which a maximum number of n beats occur

before beat arrest is realized. After breather arrest has

occurred, the responses of the two oscillators decay to zero

with no more intense energy exchanges occurring between

them. Some of the characteristic curves are shown in Fig. 3.

For a fixed value of total beats n, the relation between k and

I0 can be expressed as k ¼ anI0
c1 , where an is a coefficient

directly related to n, while c1 is a constant exponent which

can be determined from Eq. (8) with an approximate value

of c1 ¼ 1:9740.
In Sec. III we consider the semi-infinite extension of the

simplified system of Fig. 1 and show that the results related

FIG. 2. (Color online) Comparison between analytically computed enve-

lopes, Eq. (6), and the corresponding envelopes derived from direct numeri-

cal simulation of Eq. (2): (a) u1ðsÞ and (b) u2ðsÞ.
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to beat arrest reported herein can be related to breather arrest

in the resulting semi-infinite lattice.

III. SEMI-INFINITE HOMOGENEOUS SYMMETRIC
NONLINEAR LATTICE—BREATHER ARREST

The semi-infinite extension of the simplified system of

Fig. 1 is the strongly nonlinear, one-dimensional lattice shown

in Fig. 4. This lattice consists of identical grounded linear

oscillators coupled by strongly nonlinear springs with cubic

stiffness characteristics. Considering that the left boundary of

the lattice is free, that an impulsive excitation is applied to the

left boundary and that the system is initially at rest, the govern-

ing equations of motion are expressed as

m€x1 þ d _x1 þ kx1 þ Cðx1 � x2Þ3 ¼ FðtÞ ¼ F0 f̂ ðtÞ;
x1ð0þÞ ¼ _x1ð0þÞ ¼ 0;

m€xi þ d _xi þ kxi þ Cðxi � xi�1Þ3 þ Cðxi � xiþ1Þ3 ¼ 0;

xið0þÞ ¼ _xið0þÞ ¼ 0; i ¼ 2; 3;…; (9)

where f̂ ðtÞ is a half cycle of the sine function with a period of

0.005 s and maximum amplitude equal to unity, and F0 is the

magnitude of the impulsive excitation. Figure 5 depicts the

responses of the six leading particles of the lattice (counted

from the left free boundary) for the applied impulsive load of

amplitude 80N and the parameters listed in Table I. Whereas

all displacements are plotted in the same scale, there are

depicted in vertically shifted positions for clarity of presenta-

tion. The parameters (except for the damping coefficient) listed

in Table I are identical to the measured and/or identified param-

eters of the experimental lattice studied in Ref. 15, so that they

can be physically realized. Unless otherwise noted, these will

be the parameters assumed for the nonlinear lattices studied in

this section. Moreover, for the numerical simulations lattices

composed of twenty particles were selected (this number was

sufficient for the breather arrest results discussed below).

Considering the plots of Fig. 5 we note that following

the application of the impulsive excitation a traveling

breather is generated, but the amplitude of the breather dras-

tically decreases after propagating through a certain number

of particles of the lattice. This disappearance of the traveling

breather will be referred to as breather arrest from here on.

Since in the infinite lattice (unlike in the simplified 2 DOF

system) after breather arrest there remains an exponentially

decaying oscillation at each site, a certain criterion should be

considered to define the occurrence of breather arrest,

maxtðjxiðtÞjÞ
maxtðjx1ðtÞjÞ

< 10�4; i ¼ 2; 3;…: (10)

It turns out that the number of particles after which the

amplitude of the breather becomes negligibly small, i.e., the

FIG. 3. Characteristic curves for specific maximum number of beatings in

logarithmic scale.

FIG. 4. Configuration of the one-dimensional semi-infinite strongly nonlin-

ear lattice.

FIG. 5. (Color online) Responses of the six leading particles of the lattice

for F0 ¼ 80N.

TABLE I. Parameters used for the numerical simulations of the one-

dimensional nonlinear lattice.

Parameter Value

m [kg] 0.4349

k [N/m] 30166

d [Ns/m] 0.5

C [N/m3] 5� 108
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penetration depth of the breather, highly depends on the

amplitude of the impulse and the grounding damping coeffi-

cient. In the specific simulation depicted in Fig. 5, we note

that the breather which is initiated by the impulse of magni-

tude F0 ¼ 80N is able to penetrate only up to four particles

into the lattice (cf. Fig. 5).

Motivated by these numerical results, we performed a

series of numerical simulations to study breather arrest in the

semi-infinite lattice for varying applied impulses and

grounding damping coefficients with all other system param-

eters kept fixed (cf. Table I). In Fig. 6 the penetration depth

curves (i.e., the number of the leading particles reached by

the breather) as functions of the impulse magnitude, F0, and

the grounding damping coefficient, d, are depicted. In each

simulation, the penetration depth was numerically deter-

mined by considering the responses xiðtÞ of the leading par-

ticles of the lattice and establishing approximately the

particle where the amplitude of the breather was nearly elim-

inated by satisfying Eq. (10), taking into account that the

leading particle (i.e., the one that is directly excited by the

applied impulsive load) attains always the maximum ampli-

tude. The criterion (10) indicates that breather arrest occurs

at the first particle whose temporal maximum response is

less than 0.01% compared to the first particle.

Considering the plots of Fig. 6 one deduces similar

trends to the beat arrest plots of Fig. 3 for the simplified sys-

tem of Sec. II. From these results we note that, with the

exception of very small forcing magnitudes and damping

values, it approximately holds that d � bnF0
c2 , where n

denotes the penetration depth of the propagating breather.

Moreover, theoretically the penetration depth curves of Fig.

6 should start from d ¼ 0, F0 ¼ 0 (i.e., same as in the plots

of Fig. 3). This numerical error is due to inaccuracies in the

numerical integrations of the equations of motion and the

approximate criterion (10).

Neglecting the initial parts of the penetration depth level

curves in Fig. 6, determining the corresponding slopes yields

the approximate value of the exponent c2 � 2:0046, which
compares to the analytic value for the corresponding expo-

nent of the beat arrest curves of the simplified system of Sec.

II, c1 ¼ 1:9740. Hence, we deduce that the study of beat
arrest in the simplified 2 DOF system can predict fairly
accurately breather arrest in the semi-infinite one-dimen-
sional chain, with an error of approximately 1.5%. On the

other hand, the dimensional form of the coefficients an for

the simplified system do not directly correspond to the coef-

ficients bn for the homogeneous semi-infinite system. The

main reason that causes this discrepancy is that in the simpli-

fied system, the only dissipative source that reduces the

energy carried by the beats is the on-site damping of the two

particles, whereas in the lattice, in addition to on-site damp-

ing of the particles there is “radiation damping” as the

breather passes from each particle since it leaves an oscilla-

tory tail behind it with frequency approximately equal to the

linear frequency of each oscillator (i.e., there is an additional

“ringing” effect). The equivalent term for this tail in the sim-

plified system is the exponentially decaying non-beating

term which only appears once for each particle while the tail

appears for each of the particles of the lattice mass during

breather propagation (cf. Fig. 5). In other words, in the lat-

tice, the energy of the breather is reduced by the on-site

damping of each particle as well as the tail that remains after

the breather passes by each of the particles.

In conclusion, the results of this section established a

surprising approximate correspondence between beat arrest

in the simplified system and breather arrest in the homoge-

neous nonlinear lattice which represents a semi-infinite

extension of the simplified system. Moreover, the dissipative

mechanisms that influence breather arrest were discussed. In

Sec. IV we consider a finite hierarchical, strongly nonlinear

system with a hierarchical structure that incorporates asym-

metry. We show that the study of breather arrest in this lat-

tice is directly linked to interesting acoustic non-reciprocity

phenomena that occur when the point of the applied impulse

excitation varies.

IV. FINITE HIERARCHICAL, ASYMMETRIC AND
NONLINEAR LATTICE—BREATHER ARRESTAND
ACOUSTIC NON-RECIPROCITY

The final system considered in this work is the

one-dimensional (1D) nonlinear lattice depicted in Fig. 7,

incorporating both scale hierarchy and asymmetry. The lattice

is composed of a finite number (N) of repetitive cells, with

each cell consisting of a large particle [designated as the inter-

nal “large-scale” (LS)] nonlinearly coupled to a smaller parti-

cle [the internal “small-scale” (SS)]. The nonlinear stiffness

coupling the two internal scales in each cell has a strongly non-

linear stiffness characteristic, which for the time being is

assumed to be essentially nonlinear and non-linearizable (i.e.,
its nonlinear stiffness characteristic is purely cubic without any

linear component); in Sec. IIIC we consider the (surprisingly

important) effects of a small linear component in the coupling

stiffness characteristic. Moreover, the SS of each cell is
FIG. 6. Breather penetration depths in the semi-infinite homogeneous lattice

in the parameter space ðd;F0Þ in logarithmic scales.
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coupled to the LS of the cell on its right by a linear stiffness,

except for the last cell (cf. Fig. 7), and the LS of each cell is

grounded by a linear spring-viscous damper pair in parallel.

Finally, only impulsive external forcing excitation is

considered as discussed below. Recently this lattice has been

the subject of experimental15 and computational30 study.

Assuming unidirectional motion, the equations of

motion governing the acoustics of this lattice are given by

M€x1 þ d1 _x1 þ d2 _x1 � _x2ð Þ þ k1x1 þ C x1 � x2ð Þ3 ¼ FLRðtÞ;
m€x2 þ d2 _x2 � _x1ð Þ þ C x2 � x1ð Þ3 þ k2ðx2 � x3Þ ¼ 0;

..

.

M€xi þ d1 _xi þ d2 _xi � _xiþ1ð Þ þ k1xi þ C xi � xiþ1ð Þ3 þ k2ðxi � xi�1Þ ¼ 0;

m€xiþ1 þ d2 _xiþ1 � _xið Þ þ C xiþ1 � xið Þ3 þ k2ðxiþ1 � xiþ2Þ ¼ 0; 3 � i � N � 2;

..

.

M€xN�1 þ d1 _xN�1 þ d2 _xN�1 � _xNð Þ þ k1xN�1 þ C xN�1 � xNð Þ3 þ k2ðxN�1 � xN�2Þ ¼ FRLðtÞ;
m€xN þ d2 _xN � _xN�1ð Þ þ C xN � xN�1ð Þ3 ¼ 0;

xjð0þÞ ¼ _xjð0þÞ ¼ 0; j ¼ 1; 2;…;N; (11)

where the parameters are the same as the ones used in Ref.

15 and are defined in the schematic of Fig. 7. Unless other-

wise noted, the lattice is assumed to be composed of N ¼ 20

cells, and the numerical values for the system parameters are

listed in Table II; these parameters were identified for the

experimental realization of the three-cell hierarchical lattice

studied in Ref. 15 (but for a small linear stiffness component

in the nonlinear stiffnesses connecting the SSs and the LSs

whose effect is discussed in Sec. IVC). Zero initial condi-

tions are assumed, and the lattice is forced by either “left”

impulsive excitation with FLRðtÞ ¼ F0 f̂ ðtÞ and FRLðtÞ ¼ 0,

or “right” impulsive excitation with FRLðtÞ ¼ �F0 f̂ ðtÞ and

FLRðtÞ ¼ 0; F0 (in N) is the impulsive amplitude, and f̂ ðtÞ is
the broadband function defined in Sec. III.

Due to the asymmetry in the hierarchical nonlinear lattice,

we anticipate that the signal transmission properties will be

energy dependent (i.e., will depend on the intensity of the

impulsive excitation), but also on the location of the impulsive

excitation. Hence, we need to consider separately the cases of

right-to-left and left-to-right wave propagation, corresponding

to right or left impulsive excitation, respectively.

A. Right-to-left wave transmission

For right impulsive excitation the only force acting on the

hierarchical lattice is applied to the LS of the last cell, i.e., the

rightmost LS which on its right is nonlinearly connected to the

ultimate (rightmost) free SS, and on its left is linearly con-

nected to the SS of the penultimate cell. In Fig. 8 we illustrate

the spatio-temporal evolution of the instantaneous total energy,

normalized with respect to remaining total energy at a given

time instant. The lattice considered in the simulations has the

parameters listed in Table II, except for the grounding damp-

ing which is assigned the value d1 ¼ 0:15Ns=m. Moreover,

we consider the responses for both large and small impulsive

FIG. 7. Configuration of the finite nonlinear hierarchical and asymmetric lattice with cell 1 being the left-most and cell N the right-most one.

TABLE II. System parameters of the nonlinear asymmetric hierarchical lat-

tice (Ref. 15).

Parameter Value

M [kg] 0.4349

m [kg] 0.0204

k1 [N/m] 30166

d1 [Ns/m] 0.5

C [N/m3] 5� 108

k2 [N/m] 3753.75

d2 [Ns/m] 0.0014
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amplitudes, namely, F0 ¼ 150 and 35N. For clarity in the

plots of Fig. 8 we depict only cells 10–20. Immediately follow-

ing the application of the impulsive excitation there occurs

breather initiation at the rightmost cell 20, with the breather

propagating in the lattice with decreasing speed as its energy is

dissipated due to damping. For the case of small impulse exci-

tation the breather is arrested at cell 16, whereas for the larger

impulsive excitation the breather is arrested at cell 14 (refer to

Fig. 10 below).

To study the effects on the penetration depth of the

breather of the grounding damping d1 and forcing amplitude

force F0, in Fig. 9 we depict the breather penetration depth

curves for cells 4, 5, and 6 (as defined in Sec. III) in the param-

eter space ðd1;F0Þ. Similar to Figs. 3 and 6, in the logarithmic

plots of Fig. 9 we observe a linear asymptotic behavior for

each penetration depth level curve. Hence, neglecting the ini-

tial segment in each curve (which is due to the finite time win-

dow of the corresponding numerical integrations), a relation of

the form d1 ¼ anF0
c3 , where the exponent is approximately

determined as c3 � 1:85 by computing the corresponding

slopes in the logarithmic plot. Notice that there is a slight dif-

ference in the slopes of the lines shown in Fig. 9, so the previ-

ous value of c3 represents the averaged value obtained.
A typical example of right-to-left breather generation,

propagation and ultimate arrest is given in Fig. 10 for the case

corresponding to point (p1) in Fig. 9, and the spatiotemporal

normalized energy plots of Figs. 8(a) and 8(b) which corre-

spond to points (p1) and (p2), respectively. The time series in

Fig. 10 depict the responses of the LSs of the five right cells of

the hierarchical lattice, and although the time series of each

figure are plotted in the same scale, all but the last are shifted

horizontally for clarity. The generated breather following the

application of the impulsive excitation is clearly discernable,

having the form of an oscillating wavepacket which is

modulated by a slow decaying envelope. Since point (p1) is

located on the breather penetration curve for four cells in the

parameter space of Fig. 9, one expects that the propagating

breather will be able to penetrate only up to four cells into the

lattice for the case of low impulsive excitation and then be

arrested at the location of that cell. Indeed, the transient

responses of the LSs of the cells depicted in Fig. 10 confirm

the relatively large amplitude of the breather for the right-most

LSs, and its nearly negligible amplitude for the LSs of the

remaining cells.

FIG. 8. (Color online) Right-to-left wave transmission in the finite hierarchi-

cal lattice: spatio-temporal evolution of the normalized instantaneous total

energy of the lattice for right impulsive excitation for d1 ¼ 0.15N s/m and

(a)F0 ¼ 35N—point (p1) in Fig. 9, (b) F0 ¼ 150N—point (p2) in Fig. 9;

only cells 10–20 are depicted and the square root of the normalized data is

plotted for better visualization.

FIG. 10. (Color online) Right-to-left wave transmission in the essentially

nonlinear lattice showing breather arrest for point (p1) in Fig. 9; depicted are

the responses of the LSs of the rightmost cells—note the magnification

boxes for the LS of cell 17.

FIG. 9. (Color online) Right-to-left wave transmission in the finite hierarchi-

cal lattice: breather penetration depth curves in the parameter space ðd1;F0Þ
in logarithmic scales; points (p1) and (p2) refer to the cases of breather arrest

depicted in Figs. 8(a) and 8(b), respectively.
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B. Left-to-right wave localization

We now consider left impulsive excitation of the hierar-

chical lattice in order to highlight its strongly non-reciprocal

acoustics. In Fig. 11 the spatio-temporal evolution of the

instantaneous energy of the lattice is depicted for identical sys-

tem parameters to the ones designated by point (p2) in Fig. 9

(i.e., for F0 ¼ 150N, d1 ¼ 0.15 Ns/m, and the other system

parameters listed in Table II). Compared to the spatiotemporal

plots of Figs. 8(a) and 8(b) we deduce a qualitatively different

lattice response in this case. Indeed, in contrast to the breather

formation and arrest for the case of right impulsive excitation,

in this case we note standing wave localization and spatial
energy confinement for left impulsive excitation.

Comparing the spatiotemporal energy plots of Figs. 8 and

11 it is clear that, while for the case of right-to-left wave trans-

mission the initiated breather propagates into the lattice until

its eventual arrest, in the left-to-right case there is complete

absence of breather initiation and propagation; rather, a local-

ized standing wave forms, spatially extending up to the leading

four cells of the lattice and energy is spatially confined and is

not getting transmitted into the lattice. The non-reciprocal fea-

tures of the nonlinear acoustics of the hierarchical lattice are

highlighted by comparing the right-to-left breather penetration

depth curves of Fig. 9 to the corresponding left-to-right spatial

extension curves for the localized standing wave depicted in

Fig. 12. Point (q) in Fig. 12 coincides with point (p2) in Fig. 9,

but a different notation is used to distinguish between the

right-to-left and left-to-right cases.

A typical example of left-to-right standing wave locali-

zation in the lattice is given in Fig. 13 for the case corre-

sponding to point (q) in Fig. 12 and the spatio-temporal

energy plot depicted in Fig. 11. The time series in that figure

depict the responses of the LSs of the five leading cells of

the lattice for a left impulsive excitation (as in the plots of

Fig. 10 the time series are presented in the same scale, and

all but the first are shifted horizontally for clarity). The for-

mation of the standing wave following the application of the

impulsive excitation is clearly discernable, with the three

leading LSs oscillating approximately in-unison with

absence of any wave transmission into the lattice. In contrast

to right impulsive excitation there is no breather initiation in

this case, and instead a spatially confined standing waveform

is formed which decays after the leading three cells of the

FIG. 11. (Color online) Left-to-right localized standing wave formation in

the finite hierarchical lattice: spatio-temporal evolution of the normalized

instantaneous total energy of the lattice for right impulsive excitation for

d1 ¼ 0.15N s/m and F0 ¼ 150 N—point (q) in Fig. 10; only cells 1–10 are

depicted and the square root of the normalized data is plotted for better

visualization.

FIG. 12. (Color online) Left-to-right standing wave localization in the finite

hierarchical lattice: spatial extension curves of the standing wave in the

parameter space ðd1;F0Þ in logarithmic scales; point (q) refers to the spatio-

temporal energy plot of Fig. 11 and the time series of Fig. 13 [note that point

(q) coincides with point (p2) in Fig. 9].

FIG. 13. (Color online) Left-to-right wave localization in the finite hierar-

chical lattice: localized standing wave confined in the leading three cells

corresponding to point (q) of Fig. 12; the depicted time series represent the

responses of the LSs of the five leftmost cells of the lattice (note the magni-

fication box for LS of cell 4).
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lattice. It is interesting to note the occurrence of a finite num-

ber of beats (i.e., of recurring intense energy exchanges) in

the responses of the LSs of the leading cells 1 and 2, which

resemble the beat phenomena and arrest noted in the

responses of the simplified system of Sec. II. This strongly

suggests that the left-to-right wave localization in the hierar-

chical lattice may be studied by a simplified reduced-order

model analogous to the one considered previously.

We comment briefly on the non-reciprocal acoustical

features of the lattice as evidenced by the right-to-left wave

transmission compared to the left-to-right wave localization.

This appears to be caused by the asymmetry of the lattice at

its left and right boundaries, i.e., the way that the LSs and

SSs in the leading and last cells are connected. To this end,

we note that for left impulsive excitation the directly excited

LS of the first cell (designated as LS1) is nonlinearly coupled

to the SS of the first cell (i.e., SS1), which itself is linearly

coupled on its right to LS2; whereas due to the asymmetry

of the lattice for right impulsive excitation the directly

excited LS20 is nonlinearly coupled on its right to SS20

(which is free to oscillate) and on its left is linearly coupled

to SS19. As such, due to its linear coupling to LS20, SS19 is

capable of resonating with LS20 and, consequently, of gain-

ing more energy for relatively small input forces, compared

to the case where the force is applied to LS1. The linear

resonance effect between SS19 and LS20 appears to be the

main mechanism for the generation and initiation of the

breather for right impulsive excitation, whereas its absence

for right impulsive excitation (where SS1 is nonlinearly cou-

pled to LS1 and linearly coupled to LS2) leads to wave

localization in that case.

C. The effect of a linear component in the nonlinear
coupling stiffness

In this section we reconsider the finite hierarchical

asymmetric lattice composed of N cells, but now we add a

linear component with characteristic k3 in the nonlinear cou-

pling stiffnesses between the SSs and LSs; hence, we con-

sider the lattice with linearizable nonlinearities, which from

here on we will be referring as the “modified lattice.”
Adopting the same notation as for the essentially nonlinear

lattice of Fig. 7, and assuming a total of N ¼ 20 cells, the

parameters of the modified lattice are identical to those listed

in Table II, with the only addition being the linear stiffness

coefficient k3 ¼ 1598:2N=m. As for the other system param-

eters listed in Table II, this coefficient was identified for the

experimental lattice studied in Ref. 15. Accordingly, the

governing equations of motion of the modified lattice are

expressed as

M€x1 þ d1 _x1 þ d2 _x1 � _x2ð Þ þ k1x1 þ k3 x1 � x2ð Þ þ C x1 � x2ð Þ3 ¼ FLRðtÞ;
m€x2 þ d2 _x2 � _x1ð Þ þ k3 x2 � x1ð Þ þ C x2 � x1ð Þ3 þ k2ðx2 � x3Þ ¼ 0;

..

.

M€xi þ d1 _xi þ d2 _xi � _xiþ1ð Þ þ k1xi þ k3 xi � xiþ1ð Þ þ C xi � xiþ1ð Þ3 þ k2ðxi � xi�1Þ ¼ 0;

m€xiþ1 þ d2 _xiþ1 � _xið Þ þ k3 xiþ1 � xið Þ þ C xiþ1 � xið Þ3 þ k2ðxiþ1 � xiþ2Þ ¼ 0; 3 � i � N � 2;

..

.

M€xN�1 þ d1 _xN�1 þ d2 _xN�1 � _xNð Þ þ k1xN�1 þ k3 xN�1 � xNð Þ þ C xN�1 � xNð Þ3 þ k2ðxN�1 � xN�2Þ ¼ FRLðtÞ;
m€xN þ d2 _xN � _xN�1ð Þ þ k3 xN � xNþ1ð Þ þ C xN � xN�1ð Þ3 ¼ 0;

xjð0þÞ ¼ _xjð0þÞ ¼ 0; j ¼ 1; 2;…;N; (12)

where, as in Secs. IVA and IVB, we consider left and right

impulsive excitations in order to study the nonlinear acoustic

non-reciprocity in this case.

Following the same logic, we examine the behavior of

the system for left-to-right and right-to-left wave transmis-

sion or localization by performing direct numerical integra-

tions of the equations of motion (12). Figures 14(a) and 14(b)

depict the spatio-temporal evolution of normalized total

energy of the modified lattice for an intermediate impulsive

amplitude of F0 ¼ 100. That is, to get a more detailed depic-

tion of wave generation and transmission in the lattice, at

each time instant the instantaneous energy of the lattice is

normalized with respect to the total energy remaining in the

lattice at that time instant. Such normalization accounts for

the dissipation of the total energy by the viscous dampers of

the cells.

Although the results of Figs. 14 confirm the (antici-

pated) strong acoustic non-reciprocity of the modified lattice

at this level of applied energy, the unexpected finding is that

the wave localization and transmission features in this case
are reversed compared to the original (essentially nonlinear)

lattice. Indeed, the modification of the lattice by small linear

coupling terms, yields right-to-left wave localization [cf.

Fig. 14(a)] and left-to-right wave transmission [cf. Fig.

14(b)], which is the reverse of what was found for the essen-

tially nonlinear lattice in Secs. IVA and IVB. A closer

examination of the plot of Fig. 14(b) reveals slight right-to-

left wave transmission but this is immediately dissipated
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before it can further penetrate into the modified lattice. As

previously, this should be caused by the asymmetry of the

modified lattice, since for right excitation on LS20, SS20 is

free to oscillate, whereas for left excitation on LS1, SS1 is

restricted by coupling elements both on its right and on its

left. This indicates that for the case of right excitation SS20

can potentially act as a nonlinear energy sink (NES),31,32 rap-
idly absorbing a significant portion of the impulsive energy,

hindering the transmission of energy (waves) into the lattice,

and causing wave localization in the directly excited LS20.

That would amount to a very interesting nonlinear boundary

effect, which might be the mechanism for acoustic non-

reciprocity in this case; however, clearly there is a different

mechanism for reciprocity in the modified lattice.

Prior to performing a more detailed investigation of the

mechanism for acoustic non-reciprocity in the modified lattice,

we wish to emphasize the effect of energy on the non-reciprocal

acoustics. Accordingly, in Figs. 15(a) and 15(b) we present the

spatio-temporal normalized energy evolutions for the modified

lattice for the higher impulsive amplitude F0 ¼ 350N. Whereas

left-to-right wave transmission is preserved at this higher energy

level, there is increased wave transmission into the lattice for

right excitation, despite the fact that a significant portion of the

impulsive energy remains localized at the right boundary. This

underscores the importance of the energy level, since at it

appears that at increased energy there is more intense right-to-

left wave transmission.

These results indicate that, despite the preservation of

acoustic non-reciprocity in the modified lattice, the addition

of small linear components in parallel to the nonlinear cou-

pling stiffnesses qualitatively modifies the non-reciprocal

acoustics. This major change in the acoustics of the modified

lattice resulting from such a slight structural modification

strongly suggests that a different nonlinear mechanism gov-

erns the acoustics in this case. Having this in mind, we inves-

tigate in more detail the non-reciprocal acoustic features of

the modified (linearizable) lattice, and their dependence on

the amplitude of the impulsive excitation (i.e., the energy

level).

To gain an understanding of acoustic non-reciprocity in

the modified lattice we need to construct a frequency-energy

plot—FEP depicting its nonlinear periodic orbits in the fre-

quency—energy plane, namely, its nonlinear normal modes
(NNMs),33 in the absence of dissipative or external forces. It

turns out that for the 40-DOF modified lattice there exist 40

NNMs (which are ordered with respect to increasing linear-

ized natural frequency in their low energy limits) and six of

them are depicted in Fig. 16 together with the corresponding

mode shapes in Fig. 17. These results were derived by set-

ting d1 ¼ 0; d2 ¼ 0; F0 ¼ 0 in the system (12) and comput-

ing the periodic responses of the resulting Hamiltonian

system by numerical continuation.34 The six NNMs, namely,

the NNMs 1, 2, 20, 21, 22, and 40, are depicted in the FEP

of Fig. 16 represent special periodic responses of the lattice.

The NNM 2 (20) is the lowest- (highest-) frequency

mode of the lower-frequency family of modes whose mode

shape is spatially extended, and each SS oscillates in-phase

with respect to the LSs of the neighboring cells; what distin-

guishes these particular modes in this family is that for

NNM 2 all LSs oscillate in-phase with respect to each other,

whereas for NNM 20 all LSs oscillate out-of-phase. As dis-

cussed in a previous work35 NNMs 2 and 20 define the lower

and upper boundaries, respectively, of the (lower-frequency)

nonlinear acoustical passband of the modified lattice.

Similarly, the pair of higher-frequency NNMs 22 and 40

defines the (higher-frequency) nonlinear optical passband of

the modified lattice. We note at this point that such pass-

bands define the ranges of frequencies and energies for

which waves can propagate in the infinite modified lattice; in

the finite lattice considered herein (composed of only 20

cells), one can only refer to such passbands in an approxi-

mate sense, although it is worth pointing out that spatially

FIG. 14. (Color online) Non-reciprocal acoustics of the modified lattice:

spatio-temporal evolution of the normalized instantaneous total energy of

the lattice for (a) left impulsive excitation, (b) right impulsive excitation for

the intermediate impulsive amplitude F0 ¼ 100 N.

FIG. 15. (Color online) Non-reciprocal acoustics of the modified lattice:

spatio-temporal evolution of the normalized instantaneous total energy of

the lattice for (a) left impulsive excitation, (b) right impulsive excitation for

the high impulsive amplitude F0 ¼ 350 N.
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extended NNMs of the finite lattice are always situated in

these passbands (this was the basis for the approximate com-

putation of the passbands in terms of the highest- and

lowest-frequency NNMs of each families of modes situated

in each of them); in particular the lower 19 spatially

extended NNMs 2–20 are located inside the acoustical pass-

bands and the upper 19 spatially extended NNMs 21–40

inside the optical passband. Separating the passbands are

three stopbands, which depending on their positions in the

FEP will be referred to as lower, intermediate, and upper
stopbands. As discussed below, the approximate passbands

can help us to understand the nonlinear mechanism govern-

ing acoustic non-reciprocity in the finite modified lattice.

Returning to the two NNMs that approximately define the

higher-frequency nonlinear optical passband, the NNM 22

(40) is the lowest- (highest-) frequency mode of the higher-

frequency family of NNMs whose mode shape is spatially

extended, and each SS oscillates in an out-of-phase fashion

with respect to the LSs of its neighboring cells; again, what

distinguishes these modes in this family of modes is that for

NNM 22 all LSs oscillate out-of-phase with respect to each

other, whereas for NNM 40 all LSs oscillate in-phase.

Regarding the “isolated” NNMs 1 and 21, these are

unique modes in the sense that they do not belong to a

FIG. 16. (Color online) Frequency-energy plot (FEP) of the modified nonlin-

ear lattice with the two localized NNMs 1 and 21, the NNMs 2 and 20 approxi-

mately bounding the acoustical passband, and the NNMs 22 and 40

approximately bounding the optical passband; L1-L40 and H1-H40 refer to the

mode shapes of Fig. 17 (- - - - - -: frequency-energy curve for grounded SS20).

FIG. 17. (Color online) Lower-energy (L1-L40) and higher-energy (H1-H40) mode shapes of the NNMs at the selected points depicted in Fig. 16: (a)

NNMs 1 and 21 localized at SS20, (b) NNMs 2 and 20 approximately bounding the acoustical passband, and (c) NNMs 22 and 40 approximately bound-

ing the optical passband.
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specific family of NNMs, and whose main feature is that

they are spatially localized at SS20, i.e., at the right-most

SS, which is “free” to oscillate due to the asymmetric way of

the linear coupling between cells (no other SS of the lattice

has this property); as mentioned previously, for this reason

SS20 may act as an NES30,32 for the modified lattice. NNM

1 (20) is the lowest- (highest-) frequency of the two.

An important feature of the NNMs depicted in the FEP of

Fig. 16 is that their mode shapes (and frequencies) depend on

energy. These mode shapes are depicted in Fig. 17 where we

deduce that certain NNMs change drastically as energy increases.

Specifically, considering the localized NNM 21 changes its wave-

form from spatially localized to spatially extend with increasing

energy, whereas the reverse is encountered for NNMs 20 and 40

whose waveforms become spatially localized with increasing

energy. We conclude by commenting on the special (and pecu-

liar) behavior of the NNM 21, which at low-energy is spatially

localized at SS20, whereas after “encountering” the upper optical

band changes to being spatially extended. As discussed below,

this energy-dependency has implications on the acoustic non-

reciprocity in the modified lattice.

Revisiting now the impulsive response of the modified lat-

tice (cf. Figs. 14 and 15), in Fig. 18 we depict the relative

response between LS20 and SS20 subject to right impulsive

excitation FRLðtÞ with F0 ¼ 100N; 180N and 350N, and their

corresponding wavelet spectra contours. The wavelet contours

are superimposed to the FEP of the underlying Hamiltonian

lattice of Fig. 16 with the nonlinear acoustical and optical pass-

bands depicted (their complements form the three stopbands).

To construct these wavelet depictions, time in the wavelet

spectrum of the transient relative response was replaced by the

total instantaneous energy of the modified lattice following the

application of the impulsive excitation. It follows that decreas-

ing (increasing) instantaneous energy corresponds to increas-

ing (decreasing) time, with the initial state of the response

occurring at the point of maximum energy on the right hori-

zontal axis. These results clarify breather initiation in the mod-

ified lattice for right impulsive excitation.

Considering first the case of low impulsive excitation of

Fig. 18(a), we note that the spectrum of the relative response

is mainly confined in the lower and intermediate stopbands,

with the impulse exciting mainly the second localized NNM

21 (and its harmonics) which for low energies is spatially

confined in the directly excited 20th cell [cf. Figs. 16 and

17(a)]. As a result, for sufficiently small impulsive excitation

no wave propagation can be initiated in the modified lattice,

FIG. 18. (Color online) Relative responses between LS20 and SS20 of the modified lattice and the corresponding contours of the wavelet spectra for right

impulsive amplitude (a) F0 ¼ 100 N, (b) F0 ¼ 180N, and (c) F0 ¼ 350N; the wavelet spectra are superimposed on the FEP of the underlying Hamiltonian

system showing the nonlinear acoustical and optical passbands.
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since for this to occur some harmonic components of the

response need to be located inside the upper passband so

intense energy transmission in the lattice can commence (in

the lower passband there occurs much less intense wave

transmission in the lattice). This result is consistent with the

localized response and the weak wave transmission observed

in the spatiotemporal plot of Fig. 14(b). The response

changes qualitatively for increasing impulsive amplitude

since for F0 ¼ 180N a harmonic of the localized NNM

encounters the lower boundary of the upper passband at the

initial stage of the response [cf. Fig. 18(b)]. This is a point of
bifurcation and signifies the critical amplitude of the impulse

beyond which intense wave transmission in the modified lat-

tice occurs. It is worth recalling, that with increasing energy

the second localized NNM 21 changes its mode shape and

from localized become spatially extended [cf. the FEP of

Fig. 16 and the corresponding mode shapes of Fig. 17(a)].

Hence, with increasing amplitude of the right impulse the

wave localization in cell 20 is gradually eliminated. This is

corroborated by the numerical results. Indeed, for the stron-

ger impulsive amplitude F0 ¼ 350N [cf. Fig. 18(c)], we note

that in the initial, highly energetic regime of the response the

harmonic of the localized NNM is initially situated inside

the upper passband, but as energy decreases due to damping

this harmonic makes a transition to the intermediate stop-

band where it remains until energy is completely dissipated.

This indicates that there traveling waves are formed in the

initial regime of the motion, but this wave transmission is

eliminated shortly thereafter with the motion becoming

localized close to the right boundary of the lattice. This is

consistent with the spatiotemporal energy plot of Fig. 15(b).

A radically different picture for the acoustics is noted for

left impulsive excitation. In Fig. 19 we depict the relative

response between LS1 and SS1 subject to FLRðtÞ with

F0 ¼ 350N, together with its corresponding wavelet spectrum

contour. In this case there is absence of any type of localized

NNM in cell 1 since SS1 is not “free” to oscillate (as is SS20

due to the asymmetric coupling of the lattice) since it is line-

arly coupled on its right to LS2. As a result, the harmonic com-

ponents of the relative response are now located mainly inside

the upper and lower passbands throughout the duration of the

motion, and there are no consistent harmonic components in

the stopbands, except for a brief period in the initial stage of

the response (this is in contrast to the wavelet spectra of Figs.

18(a) and 18(c)]. Hence, for left impulsive excitation there is

intense propagation of traveling wavepackets in the lattice in

the corresponding passbands (mainly in the upper one), a result

which agrees with the spatio-temporal energy plots of Figs.

14(a) and 14(b).

The previous results clarify that the principal nonlinear

mechanism for acoustic non-reciprocity in the modified lat-

tice is the localized NNM 21 at the small scale on the right

boundary, which, in turn is caused exclusively by the asym-

metric way of the linear coupling between cells. Hence, the

acoustic non-reciprocity in the modified lattice is attributed

to the synergy of nonlinearity (without it the localized NNM

21 cannot exist), scale hierarchy (with the localized NNM

being spatially confined in the SS of the right-most cell) and

asymmetry (of the linear coupling between cells).

We end this study by briefly revisiting the essentially

nonlinear lattice considered in Secs. IIIA and IIIB. We found

previously that in the absence of a linear component in the

nonlinear coupling stiffnesses reverse acoustic non-reciproc-
ity is realized, in the sense that standing wave localization

occurs for left impulsive excitation and travelling wave prop-

agation for right impulsive excitation. We wish to investi-

gate briefly the cause of this “non-reciprocity reversal.” In

Fig. 20 we depict the FEP for the essentially nonlinear lattice

FIG. 19. (Color online) Relative responses between LS1 and SS1 of the

modified lattice and the corresponding wavelet spectrum contour for left

impulsive amplitude F0 ¼ 350N; the wavelet spectrum is superimposed on

the FEP of the underlying Hamiltonian system showing the nonlinear acous-

tical and optical passbands.

FIG. 20. (Color online) Frequency-energy plot (FEP) of the essentially non-

linear lattice with the two localized NNMs 1 and 2, the NNMs 3 and 21

approximately bounding the acoustical passband, and the NNMs 22 and 40

approximately bounding the optical passband (� denotes instability).
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using the previous technique and notation, from which we

deduce a qualitatively different picture regarding the loca-

tion of the two isolated localized modes, which now are real-

ized at low frequencies (NNMs 1 and 2 in Fig. 20), and are

below the acoustic passband. Moreover, in this case the

localized NNM 1 becomes unstable at high energies, a fea-

ture which was absent for the localized NNMs of the modi-

fied lattice. We now reconsider the spatiotemporal energy

plots of Figs. 8(a) and 8(b) corresponding to points (p1) and

(p2) of Fig. 9 for right impulsive excitation. In Fig. 21 we

depict the corresponding relative responses between LS20

and SS20 in the last cell, together with their wavelet trans-

form spectra superimposed on the FEP of Fig. 20. In addi-

tion, for comparison purposes in Fig. 22 we present similar

depictions for the relative responses between LS1 and SS1

of the first cell for the same essentially nonlinear lattices but

for left impulsive excitations with the same amplitudes.

These results highlight the cause of non-reciprocity reversal

in this case.

For right impulsive excitation [cf. Figs. 21(a) and 21(b)]

the localized NNM of cell 20 is excited, but since this mode

is located at low frequencies below the acoustical passband

for low impulse amplitude [cf. Fig. 21(a)] and below the

optical passband for high impulse amplitude [cf. Fig. 21(b)].

As a result, the amount of the applied energy localized at the

right boundary is small, and the major part of this energy is

transmitted into the lattice. This is evidenced by the har-

monic components that are located in the two passbands, and

especially the upper optical passband. A different situation

occurs for left impulsive excitation [cf. Figs. 22(a) and

22(b)], where, irrespective of the amplitude of the applied

impulse, there is no excitation of any localized NNM and the

main harmonic components of the response are located in

the lower acoustical passbands and there is negligible har-

monic content in the upper optical passband. Given that

breather formation in the lattice can only occur by excitation

of the optical passband, and that excitation of the acoustical

passband leads to weak wave transmission in the lattice, the

net effect is energy localization close to its left boundary.

V. CONCLUDING REMARKS

The effect of on-site linear viscous damping on breather

arrest, wave localization and acoustic non-reciprocity in

elastically grounded, strongly nonlinear discrete semi-

infinite and finite lattices was studied. As the first step, an

impulsively forced simplified 2 DOF system composed of

two linearly damped oscillators coupled through a purely

FIG. 21. (Color online) Relative responses between LS20 and SS20 of the essentially nonlinear lattice and the corresponding contours of the wavelet spectra

for right impulsive amplitude (a) F0 ¼ 35N and (b) F0 ¼ 150N; the wavelet spectra are superimposed on the FEP of the underlying Hamiltonian system of

Fig. 20 showing the nonlinear acoustical and optical passbands.
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cubic nonlinear spring was studied, since this system admits

approximate analytical solutions in the limit of small input

energy. An interesting finding was that the finite number of

nonlinear beats, i.e., of recurring energy exchanges, in this

system was related to the damping coefficient and the initial

impulse amplitude. Accordingly, we computed characteristic

curves which related a specific maximum number of beats to

the damping and forcing amplitudes (energy) required for

their realization. In the next stage of the study a semi-infinite

lattice of nonlinearly coupled damped oscillators and essen-

tial (pure) cubic nonlinearity was considered, as a semi-

infinite extension of the simplified 2 DOF system. Impulsive

excitation was applied to its free end, and the breather arrest

phenomenon was demonstrated for varying damping coeffi-

cients and impulsive force amplitudes. Following this obser-

vation, breather penetration depth curves were computed,

relating the amplitude of the impulsive force to the on-site

damping coefficient for breather arrest at a specific particle of

the lattice. It was found that similar power laws govern the

breather penetration curves in the semi-infinite lattice and the

characteristic curves for finite number of beats in the simpli-

fied system. Simply stated, it was shown that each breather

depth penetration curve of the essentially nonlinear lattice is

linearly proportional to a corresponding characteristic curve

for finite beats of the simplified system. This strongly sug-

gests that problems of breather arrest in nonlinear lattices can

be studied and physically understood by considering appro-

priate simplified reduced-order models of coupled oscillators

which are easier to analyze.

Motivated by the previous results, a more complicated

system was considered, namely, a finite, strongly nonlinear,

hierarchical and asymmetric lattice. This lattice was com-

posed of a finite number of linearly coupled identical cells,

with each cell composed of a linearly grounded large-scale

particle (LS) that was nonlinearly coupled to an ungrounded

small-scale particle (SS). Each SS of the lattice was coupled

to the same cell-LS on its left through a strongly nonlinear

cubic stiffness, while it was linearly coupled to the next cell-

LS on its right. The arrangement of the linear coupling stiff-

nesses between cells resulted in an interesting asymmetry for

the lattice, with the SS of the last (right-most) cell being

“free” to oscillate, since it is only coupled on its left to the

LS of the last cell. We considered two cases for the strongly

nonlinear coupling stiffnesses of the lattices, i.e., either with

essentially nonlinear stiffness characteristics or with linear

components in their nonlinear stiffness characteristics.

Perhaps some of the most interesting findings of this work

are that (a) the asymmetry of the last SS is the main cause

FIG. 22. (Color online) Relative responses between LS1 and SS1 of the essentially nonlinear lattice and the corresponding contours of the wavelet spectra for

left impulsive amplitude (a) F0 ¼ 35N and (b) F0 ¼ 150N; the wavelet spectra are superimposed on the FEP of the underlying Hamiltonian system of Fig. 20

showing the nonlinear acoustical and optical passbands.
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for acoustic non-reciprocity in this finite lattice, and is caused

by a boundary effect; and (b) that the existence or absence of

(even small) linear components in the nonlinear stiffnesses

defines the main features of the non-reciprocal acoustics of the

lattice, resulting either in breather formation and arrest on one

end, and standing wave localization and absence of wave trans-

mission on the other. Based on the absence or not of a small

linear component in the nonlinear stiffnesses we distinguished

between “essentially nonlinear” and “modified” lattices. The

nonlinear mechanisms governing acoustic non-reciprocity,

breather initiation and arrest and wave localization in both of

these lattices were studied utilizing a simplified reduced-order

model and by superimposing the wavelet spectra of the lattice

responses on the frequency-energy plots (FEPs) of the corre-

sponding Hamiltonian lattices. Breather initiation in the lattice

was associated with harmonic components of the responses

exciting the optical passband of the FEP, whereas standing

wave localization and absence of wave transmission with either

strong excitation of a localized NNM in the rightmost cell of

the lattice and absence of excitation of the optical passband.

The results of this work underscore the strong influence

of viscous damping and energy in the acoustics of nonlinear

lattices, as well as the feasibility of studying and understand-

ing complex nonlinear acoustical responses by studying

appropriate reduced-order models that are easier to analyze.

In addition, our results show the efficacy of relating the

acoustics of nonlinear lattices to the FEPs of the correspond-

ing underlying Hamiltonian lattices. Hence, the methods and

results presented herein can be regarded as tools towards pre-

dictively designing strongly nonlinear lattices with desired

non-reciprocity, localization, and breather arrest capacities.
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APPENDIX: DERIVATION OF THE SECOND OF
EXPRESSIONS (4)

Consider the second expression in Eq. (3),

w00 þ wþ kw0 þ 2w3 ¼ 0; (A1)

which can be expressed as

w0 ¼ p;

p0 ¼ �kp� w� 2w3: (A2)

For jwj 	 1, the nonlinear term in Eq. (A2) can be approxi-

mately neglected, and this equation is approximately linear

with action-angle variables of the corresponding undamped

system given by

w ¼
ffiffiffiffiffi
2I

p
sin h;

w0 ¼ p ¼
ffiffiffiffiffi
2I

p
cos h: (A3)

Introducing this action-angle variable transformation into

Eq. (A3) we express this system of equations as

I0 ¼ �2Ik cos 2h� 8I2 sin 3h cos h;

h0 ¼ 1þ k sin h cos hþ 4I sin 4h: (A4)

In the limit when jwj 	 1 the first equation of Eq. (A4) can

be averaged with respect to the fast angle h yielding the fol-

lowing averaged equation:

JðsÞ ¼ J0 exp ð�ksÞ; (A5)

where J ¼ hIi is the time-averaged action. Assuming weak

viscous damping k, the second equation in Eq. (A4) can also

be averaged to obtain

hh0 � 1i ¼ 3

2
J0 exp ð�ksÞ: (A6)

Assuming the initial condition hð0þÞ ¼ 0, the solution of

this averaged equation is expressed as

hðsÞ � sþ 3J0
2k

1� exp �ksð Þ
� �

: (A7)

Denoting N0 ¼
ffiffiffiffiffiffiffi
2J0

p
while applying the initial conditions

imposed on w, the approximate solution for w can be

obtained as

wðsÞ � N0 exp �ks=2ð Þsin sþ 3N2
0

4k
1� exp ð�ksÞ½ �

� �
:

(A8)
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