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Abstract

We prove that time-periodic solutions arise via Hopf bifurcation in a finite closed system of
coagulation-fragmentation equations. The system we treat is a variant of the Becker-Déring equa-
tions, in which clusters grow or shrink by addition or deletion of monomers. To this is added a
linear atomization reaction for clusters of maximum size. The structure of the system is motivated
by models of gas evolution oscillators in physical chemistry, which exhibit temporal oscillations
under certain input/output conditions.
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1 Introduction

Coagulation-fragmentation equations are commonly used to model particle size distributions in a wide
range of scientific and technological applications. These equations model binary reactions of clusters
of size j with clusters of size k as indicated schematically by

() + (k) =5 (j+k) (aggregation),
(J)+ (k) v (j+k) (binary breakup),

With rate coefficients a; j, for aggregation and b, ;, for breakup, the net rate of this binary reaction is
modeled by the law of mass action to be

Rjx = ajknjng —bjrnji.

The coagulation-fragmentation equations accounting for the gain and loss rates for the number density
n;(t) of groups of size j then take the form

1 J—1 (')
6tnj:§ZRj,k,k—ZRj7k, j=12,...
k=1 k=1
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To date, mathematical investigations of the dynamic behavior of solutions have largely focused on
questions of convergence to equilibrium and the phenomenon of gelation, in which mass conservation
fails (either in finite or infinite time) due to a flux to infinite size. We refer to classic work of Aizenman
and Bak [I] who established an H-theorem for perhaps the simplest coagulation-fragmentation model
with constant rate coefficients, and Ball, Carr and Penrose [2] for the first analysis of (infinite-time)
gelation in the Becker-Déring equations. If fragmentation is weak, finite-time gelation can occur
[12, 13} 19, BI] as it does for the case of pure coagulation about which there is now an extensive
literature.

Regarding convergence to equilibrium, entropy methods have been effectively used to study general
classes of coagulation-fragmentation equations that admit equilibria in detailed balance, meaning that
R; . = 0 for each individual reaction in the system, so the forward and backward reaction rates match.
See work of Laurencot and Mischler [2I] for the continuous-size case and Caiizo [7] for the discrete-size
case. More recent studies of equilibration have examined rates of convergence and their relation to
entropy-dissipation relations [I8], [6, 27] 28] [5].

In the absence of detailed balance, however, one does not expect that an H-theorem always holds,
and it is not clear whether the structure of coagulation-fragmentation reaction networks means that
solutions necessarily always converge to some equilibrium. Sometimes it is indeed the case, as in cases
when coagulation is weak [14] or for special systems that can be studied globally using transform
methods, as in [9]. In [22], Laurencot and van Roessel analyzed a model with a critical balance of
coagulation and fragmentation rates, and used transform methods to show that infinite-time gelation
emerges through self-similar growth.

On the other hand, in studies of pure coagulation without fragmentation, the usual expectation of
self-similar growth has sometimes been shown not to occur. For special rate kernels, solutions with
fat tails are known to be capable of periodic and even chaotic behavior after rescaling [26]. Temporal
oscillations can persist after rescaling without fat tails for Smoluchowski equations with diagonal rate
kernel [20].

Our goal in the present work is to demonstrate that persistent oscillations in time are possible in
a simple discrete-size coagulation-fragmentation model, by proving that Hopf bifurcations occur.

The particular system that we study is a modified system of Becker-Doring equations. (For a nice
historical review of mathematical developments concerning the Becker-Déring equations, see [I7].) As
usual for Becker-Doring equations, we suppose that the coagulation of clusters of size ¢ with monomers
proceeds at the rate agnyni, and clusters of size £ + 1 lose monomers at the rate by41n¢41. We take
these rates to apply only for a finite range of sizes 1 < ¢ < N, however, and consider only the simplest
case, always taking ay = byy1 = 1. Thus the net flux of clusters from size ¢ to £ + 1 is J; = Ry ¢, as
given by

Jo=ngny —nggry, for1 << N, (1)

We suppose further that M = N 41 is the size of the largest clusters in the system, and these are also
subject to a linear atomization reaction that converts an M-cluster into M monomers and proceeds
at rate Knp;. Thus the governing equations take the following form:

Oy =Jy_1—Jg, for2<L<N, (2)

ony =Jv—1—Kny, M=N+1, (3)
N

Oy =—Jy =Y Jo+MKny . (4)
=1

All solutions of the system 7 conserve mass, since

M
8t (Z E’I’L[) = 0.
(=1

A formal continuum analog of this system will be studied for illustrative purposes in Section 4.
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2 Background and motivation

Model with nonlinear atomization. In the physical literature, recent work of Matveev et al. [25] and
Brilliantov et al. [4] has identified a coagulation-fragmentation model with a different, nonlinear at-
omization mechanism that exhibits persistent temporal oscillations in numerical simulations. In this
model, aggregation of clusters of size ¢ and j proceeds at rate a; jn;n; where

ai; = (i/3)" + (G/1)"

and pairs of such clusters atomize upon collision into ¢ + j monomers at rate Aa; jn;n;. In total, the
rate equations in [25] take the form

o0 oo A o0 o0
8tn1 = — Z @1,4M1N; + )\Zjal,jnlnj + 5 Z Z(’L + j)ai,jnmj, (5)
i=1 j=2 1=2 j=2
1 k—1 9]
Ogny, = § - Qi o—iMiN—i — (1 + )\) ;ai7knink, k> 2. (6)

This system has the feature that interactions between large clusters of similar size appear to be
dominated by interactions between large clusters and small ones (for which either i/j or j/i is large).
Oscillations are found for % < a <1 and small A > 0. Though the numerics is convincing, to our
knowledge there is no proof yet that temporal oscillations persist in this system.

Bubbling oscillators. Our motivation for studying the system 7 comes from literature in
physical chemistry concerning bubbling oscillators (often called ‘gas evolution oscillators’ in much of
the literature). In these systems, dissolved gas (such as CO or COy) is added slowly to a liquid solution,
producing a super-saturated mixture. At some time, nucleation of gas bubbles occurs spontaneously
and the bubbles grow rapidly and carry most of the dissolved gas out of the system. The first system
of this kind was reported by J. S. Morgan in 1916, who found that a small concentration of formic acid
mixed in sulphuric acid produced periodic bursts of carbon monoxide. Such systems were the subject of
part of an extensive series of quantitative studies by R. M. Noyes and collaborators concerning chemical
oscillators, including some of the original studies of chemical oscillators such as the BZ reaction and
the Oregonator. Regarding gas evolution oscillators, we especially refer to [30}[32][3]. The phenomenon
of sudden outgassing of CO5 after slow buildup of supersaturation was responsible for the 1986 Lake
Nyos disaster in Cameroon, which killed more than 1700 people.

In the work of Yuan, Ruoff and Noyes [32], this process was simulated numerically by grouping
bubble sizes into a finite set corresponding to exponentially spaced radii r;, and writing rate equations
to model the number density N; of bubbles of size r;. A key equation when r; greater than a critical

value req is

OeNj = qj—1N;j—1 — (g + kj)N; , (7)

where the coefficients ¢; are proportional to bubble growth rate and the k; are rate constants for escape.
This resembles a linearized Becker-Doring equation or a discretized advection equation, and models
the process of free bubble growth and escape. With M = 60 size classes, numerical simulations in [32]
exhibit temporal oscillations for a range of parameters designed to model experimental conditions.

Bar-Eli and Noyes [3] later devised a simplified, qualitative model for bubbling oscillators that
involves a nonlinear differential-delay equation for the concentration of dissolved gas. When linearized
about a constant steady-state, one obtains a constant-coefficient linear DDE of the form

Opx(t) = —ax(t — 7) — bx(t), (8)

where the parameters a, b and the delay time 7 are positive constants. Whenever a > b, one finds
there is an oscillatory transition from stability to instability as 7 increases.
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Figure 1: Monomer density ny vs. t for a numerical solution of 7.

We sketch loosely how one can see this mathematically. (A detailed analysis of can be found
in work of Hadeler and Tomiuk [16].) Equation has solution e provided

p(A) :=ae ™ +b+ A =0. 9)

For 7 = 0, naturally A < 0, and moreover A = 0 is never possible for any 7. But for a > b and 7
sufficiently large, there are solutions with Re A > 0. To show this is so, one can consider the winding
number around 0 of a curve p oy, where v is a concatenation of a path s — —is for s € [-R, R] and
a path in the right half plane along the semicircle where |y| = R > a + b. Along the semicircle, p o~y
can never cross the negative real axis R_. Along the imaginary axis, however,

poy(s) =ae’" +b—is,

and this does cross R_ for s between 0 and 27 /7, if 7 is large enough. Moreover, p o v(s) can only
ever cross R_ going from the second quadrant to the third, since whenever p o y(s) < 0,

d

£po'y(s) =it(povy(s) —b+1is)—i

and this has negative imaginary part. Consequently, the winding number of p o around 0 is positive
if 7 is large enough, and this implies @ has a root A inside 7.

Becker-Déring with linear atomization (our model). Now, the rough idea behind our model f
is that the Becker-Doring equations involve a well-known advection mechanism that transports
mass from small cluster sizes to large ones when the monomer concentration is supercritical. The
atomization reaction added in couples the advected wave back to the monomer concentration after
a time delay that depends on the size of the system. Luckily enough, we find that for large M there
indeed is an oscillatory transition to instability as the parameter K varies, in a certain parameter range
where K is small but KM remains large. See Figure [1} where we plot the monomer concentration vs.
time for a numerically computed solution of 7 with parameters and initial values given by

M=25 K=3 n=42, n=1+K=4 forl>2. (10)

Other models with linear atomization. Finally, we mention two other kinds of merging-splitting
models involving a linear atomization reaction that have appeared in the literature. Alongside discus-
sion of Niwa’s model [29] for animal group size, Ma et al. [24] described a “preferential attachment”
model, which takes the form

875’”]’ = (] - 1)n1nj_1 —jnlnj - anj, fOI"j > 2. (11)
This model admits a simple logarithmic distribution in equilibrium, of the form

o—Bi
n; = ——, = .
J 7 ni + K
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(This is roughly similar to the distribution Niwa found to be a good description of empirical data on
school size for pelagic fish.) A model of herd behavior by networks of colluding agents in financial
markets introduced by Eguiluz & Zimmermann [I1] takes the form

j—1 e}
Onj = Z(] — k)knj_png — 2 ij:njnk - Kjn;, j>2. (12)
k=1 k=1

D’Hulst and Rodgers [I0] found a formula for equilibrium solutions of this model by use of generating
functions. But as far as we are aware, no analysis of dynamics has been carried out for either of these
models.

3 Equilibria, linearization, and main result

In this section, we find the general equilibrium solutions of the model 7, describe the special
family of constant equilibria, and state our main rigorous result on the existence of Hopf bifurcations
from this family, occurring at particular values of K, for large enough M.

3.1 General equilibria
We find the general equilibria as follows. In equilibrium, due to the fluxes J; are all equal to the
same value J for ¢ = 1,..., N, so the equilibrium number densities i, satisfy the difference equation
figr1 = 20 — J, when we require i; = z. For z # 1, the solution takes the form

fie = 2(1 — a) + 2fa, where J=(22—-2)(1-a). (13)
To obtain an equilibrium it remains to require that hold, i.e.,

0=J—Kny =(22—2-Kz)(1-a) - KzMa.

Then it follows (recall N = M — 1)

z—1—-K
@ K:N+z2—-1-K’ (14)
and u ,
K —-1-K
PIE St K ) -1 M (15)

K:N4z—-1-K

Note that then holds also. For every z > 0, N > 1 and K > 0, such an equilibrium exists and is
positive. In case z = 1, one finds directly that

S ROV

= {=1,...,M. 16

Uz 1+ NK ) ) ) ( )

The total mass as a function of z and K is now
M
m = ZEW =aup(z)+ (1 — a)zupm(l)
(=1
where
M
d1— M+l 5 _ M+l proM+1
_ 024 = 5 — _
a (2) Z TR 12 (1—2)2 1—2
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3.2 Linearization at constant equilibria

Particularly convenient for our analysis is the special family of equilibria that have constant densities,
corresponding to o = 0. By these take the form

=A:=1+K, 1<0<M. (17)

Corresponding to K > 0 we require A > 1. We will study the linearization of the system f about
this equilibrium. We write:
ng=A4+uv,, 1<L<M.

The linearized fluxes take the form
Lg:A’U1+AUg71)g+1, 1<l<N=M-1,

and the linearized evolution equations are written as follows:

at’l)g:Lg_l—Lg, QSKSN, (18)

0wy = Ly 1 — Koy, (19)
N

Oy =Ly — Y Ly + MEKuvyy. (20)
=1

Equivalently, after some computations, the system takes the more explicit form

Orvg = K (vg—1 —ve) + (vp—1 —2v¢ + ve41) , 2<L <N, (21)

Oy = (K +1) (v1 +on —oum), (22)
N

Oy = —A(N+3)v1 +vy = K> v+ (MK +1) v (23)
=2

Equation yields a combination of diffusion and transport. It is not able to yield oscillatory behavior
by itself, but this will be generated through the ‘boundary conditions,” or more precisely the equations
with £ = M and ¢ = 1.

Looking for solutions of this system with the form

v =VeeM, V,€C,

leads to the eigenvalue problem (recalling A =1+ K and M = N + 1)

N
AVi=-AN+3)Vi+ Vo= K> Vi+ (MK +1)Vy, (24)
=2
MWe=K Vi1 = Vo) + (Vi1 = 2Ve+ Vi), 2<UL< N, (25)
MWy =(K+1) (Vi 4+Vy — V) . (26)

This system takes the form of an eigenvalue problem BV = AV for a vector V = (Vi,...,Va)T €
CM | with M x M matrix B having the structure

AM+2) 1-K K . K  MK+1
A —A-1 1 0o - 0 0
0 A —-A-1 1
B= 0 A (27)
0 0 A —-A-1 1
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Our goal is to understand the spectrum of B in some detail, and eventually show that in a certain
parameter range, some pair of complex eigenvalues of B crosses the imaginary axis, and this forces the
system f to undergo a Hopf bifurcation.

To begin, one can check that for any eigenvector V = (V1,...,Vy)T corresponding to a nonzero
eigenvalue A # 0, the mass conservation condition holds:

M
> vy =o. (28)
=1

This is due to the fact that £ = (1,2,..., M) is a left null vector of B. Thus A = 0 is an eigenvalue
of B. If we represent the equations of equilibrium from (2)-() in vector form as F(7i) = 0, then the
matrix B = 0F/On evaluated at 7 with constant components A. Thus by differentiation it naturally
follows from that a right null vector v satisfying Bv = 0 is given by

o, AL KNANTT 4 A A
e oY KAV Tgay o tsts (29)

In fact, we have the following.
Lemma 3.1. For all N >1 and K >0, A =0 is a simple eigenvalue of B.

Proof. First, we show the null space of B is one-dimensional. Whenever BV = 0, the fluxes defined
by
Le:AV1+Aw—W+1, 1<?¢ <N, (30)

must all take the same value due to , and for V' = o this value is Koy, > 0 due to . If BV =0,
then we can replace V' by a linear combination with ¥ to make all fluxes Ly = 0. But by it follows
Vo = 2AV; and, by induction, Vp, = A,V; with Ay > 0 for £ = 2,..., M. Since 0 = Ly = KV}, the
only vector V' making all the fluxes vanish is V' = 0. It follows that v spans the null space of B.

Next, we claim there is no generalized eigenvector V satisfying BV = ©. The reason is that, because
g > 1 >0 for all £ and £ is a left null vector of B, we would obtain a contradiction, via

M
0<> o, =4£0=4£BV)=({B)V =0.
=1

Thus the eigenvalue A = 0 has algebraic multiplicity one, so it is simple. O

3.3 Main results

If X\ is an eigenvalue of B, we say A is unstable if Re A > 0. We find that we can show the matrix
B = B(K, M) has unstable eigenvalues when M is sufficiently large and K is small but not too small,
in a range proportional to 1/ VM. These eigenvalues are characterized as follows. It is convenient to
state our results in terms of the parameter

k=KVM, (31)
in place of K = k/vV M.

Theorem 3.2. For each k € N and 5y € (0,1), there ezists B, > Bo, and positive constants Mo, Ch,
such that for each M > My j, the following hold:

1. If Bo < Kk < Bk, then any unstable eigenvalue of B is non-real and simple, and satisfies

IA| < CLM—3/2,



8 Temporal oscillations in Becker-Déring equations

3 XXX X
x X XTX XXX x

X
X
X
X

X

X
X

T

X
X
X
X

X
X
X
T
0

-10 -8 -6 -4 -2
Figure 2: Complex eigenvalues of matrix B for M = 100, K =3

2. There are numbers k; = k;(M) for j =1,...,k, satisfying
Bo=:ko < K1 <...<Ek<Kkt1:=Pk,
such that:

(a) If kj < Kk < Kj41 (j = 0,...,k), then B has exactly j complez-conjugate pairs (A, ) of
unstable eigenvalues.

(b) There are analytic curves A; : [Bo, Bk] = C, j = 1,...,k, such that \;(k) is an eigenvalue
of B that satisfies

Re\j(k;) =0, Im\;(k) >0 for all k € [Bo, Bk, (32)
along with
d, d);
Re%>0, Im%>0, for all k € [K;, By). (33)

By the properties stated in part 2 of this theorem, the matrix B has a unique pair of nonzero,
purely imaginary eigenvalues £\ ;(x;) when M is large and x = k;(M), and these cross transversely
into the right half plane as K increases.

The simple eigenvalue at zero, described in Lemma [3.1] is nominally an obstruction to applying
the standard Hopf bifurcation theorem at this point. This eigenvalue is easily removed, however, by
considering the dynamics of the nonlinear system 7 restricted to the invariant affine hyperplane
determined by conservation of mass, i.e., the hyperplane where

i Iny = i by (34)
=1 =1

with n = (77) being the constant equilibrium state from . Within this hyperplane, the linearization
of the system 7 is restricted to orthogonal complement of the left null vector £ of B. In this
subspace, the zero eigenvalue is removed, and the standard Hopf bifurcation theorem can be applied to
yield the following result. (For a proof of the Hopf bifurcation theorem see [8, pp. 98-99|. For further
discussion also see [I5] pp. 150-152].)

Theorem 3.3. Let k € N and suppose M > My j, as given by Theorem . Then for eachj=1,...,k,
the system 7 admits a Hopf bifurcation as the bifurcation parameter k passes through r; = r;(M).
Thus a time-periodic solution exists for some value of k with |k — k;| small.

We have not managed to determine analytically whether the bifurcating solutions are stable (the
supercritical case) or not. Many of our numerical computations, as in Fig. [I} are consistent with the
presence of stable periodic solutions, however.
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In Figure [2| we illustrate the location of the complex eigenvalues of B computed numerically for
the parameter values M = 100 and K = 3. The unstable eigenvalues shown correspond to values

A~ 0.05836 + 0.20144, 0.02585 % 0.3618q.

Besides the real eigenvalue A = 1 this matrix also has a large negative eigenvalue A ~ —410.94. There
are 49 complex-conjugate pairs of eigenvalues that lie close to an ellipse that we will describe formally
in Remark [5.1] and Section [f] The presence of eigenvalues spaced closely along a smooth curve and a
large isolated eigenvalue is reminiscent of the structure of the spectrum of differential-delay systems
with large delay, see [23].

The real parts of eigenvectors for the first 3 complex eigenvalues closest to A = 1 are plotted in
Figure [3] They appear to have a “smooth” structure except in a boundary layer near ¢ = M.

Table 1: Critical parameters for first Hopf bifurcation

M K k1 = KvVM Im A

102 0.39349 3.9349 0.021740
10%  0.075016 2.3722 3.6176e-4
10 0.020376 2.0376 9.3596e-6
10°  0.0061392 1.9414 2.7777e-7
106 0.0019118 1.9118 8.6091e-9

In Table 1 we tabulate for various values of M numerically computed critical values of K that
correspond to k1, the value at which the first pair of complex-conjugate eigenvalues crosses the imag-
inary axis. Eigenvalues were obtained by solving the equation in Proposition below using an
iteration method. The first two rows were computed also by finding all eigenvalues of B using the
julia function eigen. The values of 1 in the third column can be compared to the value k¢, ~ 1.89825

described below in . This value is proved in Section |10[to be the limiting value of k1 as M — oo,
see ((152)).
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4 A formal continuum approximation

Here we describe and heuristically analyze a formal continuum approximation of the system 7
that we are studying. This will serve to preview how the proof of Theorem [3:2] will proceed, and also
provides an approximate understanding of the origin of the oscillatory instability in the system and
the smooth structure of the eigenvectors as shown in Figure

We introduce a scaled atomization rate and scaled space and time variables via

K=¢kr, x=¢%, 7=¢%, €= ——. (35)

VM
With these relations, we write a continuum approximation of f in terms of variables
u(x, 7) & ne(t), T (x, 1) = Jo(t),
as follows: The evolution equations for dyng, £ =2,..., M in 7 are approximated by the PDE
e30.u + €20, T =0, 0<z<l, (36)
where the number flux relation J; = (ny — 1)ng + ng — ngqq from is approximated by
T(x,7) = (u(0,7) — Du(z,7) — 20,u(x, 7). (37)
Taking to hold also for £ = M with Jy; = Knyy, the following boundary condition replaces ([3)):
J(1,7) = Ku(l,71) (38)
We replace the evolution equation for 0;nq by an equation equivalent to mass conservation, which says

1 1
0= 5i zu(z, 7)dr = 7/ 10, J (v, 7) dz.
dr 0 0

After integrating by parts, we require

1
j(l,T):/O J(z,7) dz. (39)

The system of equations f has the constant equilibrium w(z) = A = 1 + K just like
the discrete system. Using a superposed dot to denote differentiation with respect to a variational
parameter leads to the linearized system

0=ed i+ 0,7, (40)
J(x,7) = (1 +er)i(0,7) + ert(x, 7) — 20, 0(x, T), (41)
j(l, 7) = eri(l, ), (42)

1
J(1,7) = (1 + ek +2)a(0,7) + 5/@/ w(x, 7) dr — 2u(1, 7). (43)
0

Then looking for solutions of the form e’7v(z) leads to the eigenvalue problem

0 = Av+ 0, (kv — €0,v), 0<z<l, (44)
0 = (14 er)v(0) —20,v(1), (45)
! 1+ ek + &2
_ 2 _ _ 2
0= (ex+¢e7)v(l) sn/o v(x)de — e 0,v(1) Tren (46)
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The steps that we now take to analyze this continuum eigenvalue problem parallel the steps that
we will take to analyze the discrete eigenvalue problem 7. First, we describe the solutions of
as linear combinations of solutions of the form e™** where

0=A— Kz —ez? (47)
It is convenient to write a general solution of in terms of the two solutions z4 of as
v(z) = cype+(172) 4o _er-(177),

Then a nonzero solution can satisfy the boundary conditions and if and only if
0= ‘f(2+) f(z-)
9(z4)  g(z-)
f(z) =e*(1 +er) +e2 g(z)=Kk+e—k -1 +ez |1+ e (49)

’ z 1+ek)’

So far this is an exact treatment of the eigenvalue problem 7. But now we approximate,
noting that the two solutions zy of satisfy

; (48)

A A A
Z++27:_g7 2z == 2y A —, z,z—f——, (50)

for small e. For k > 0 and complex z; both of order O(1), we neglect the exponentially small
term e*~ = O(e”‘“/ ¢) and keep only the leading order terms in the other entries of the matrix in
, expressing z_ in terms of z; using the relations in . Thus, writing z = z; we make the
approximations

o) = e, fleo) m e~ —en, (51)

zZ_

g(z4) = g(z +1—¢%), g(z_) = (k+ez_) (1 + 1) R —ez. (52)

Multiplying the second row of by z/k and dividing the second column by —ek, we find that the
equation determining eigenvalues approximately takes the form Q(z; k) = 0, where

eZ

1
Qz; k) = z+1—e* 22/K?

= ¢* (1 + zz) - (1+2). (53)

It is exactly this function @ that we will find responsible for the appearance of unstable eigenvalues
for the discrete problem 7 in the limit of large M. We analyze the complex roots of @) in depth
in Section [7] It turns out that a complex-conjugate pair of roots z emerges into the right half plane
Rez > 0 as « increases past each value k = n? of an infinite sequence. The values /{? will be seen to
be the limiting values of x;(M) as appear in the statement of Theorem in the limit M — oo.

In the remainder of this paper, we carry out the proof of Theorem by performing an analogous
analysis for the discrete eigenvalue problem, including rigorous estimates for all the error terms. For
brevity’s sake, we forgo the formulation and rigorous demonstration of results analogous to Theo-
rems and for the (parabolic) continuum model f described in this section. It should be

evident from our analysis, though, that Hopf bifurcation occurs for this model in a similar way.

5 Reformulation of the eigenvalue equation

5.1 The difference equation

The eigenvalue equations for 2 < £ < N comprise a family of second order difference equations.
These difference equations have solutions of the form

VK:cgpM_e, 1</< M, (54)
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whenever
A=K(p-1+(@-2+¢1). (55)
which we can rewrite using A = K + 1 as
A+A+1=Ap+¢p L, (56)
or as
Ap? =AM+ A+1Dp+1=0. (57)

We take decreasing powers in for reasons of scaling explained below.
We can then “connect" the values of V; and Vj; by means of a transition matrix depending on two
constants (for each value of A). More precisely, any solution of takes the form

Ve=ci(o)" ()", 1<0<M, (58)

whenever 1 and @9 are distinct roots of . Evidently the two roots are always related by 12 =
1/A, and for A = 0 the roots are ¢1 = 1 and @9 = 1/A.
The roots are distinct except when ¢; = +A~%/2, which corresponds to

A=—1—-A+2VA. (59)
For small K > 0, we note that this becomes

—-K?/4  for +,

60
—4 —-2K for —. (60)

)\:—2—K:|:2\/1+K%{

The roots ¢1, @2 are naturally functions of A\. However, it will be more convenient to recast the

eigenvalue equations in terms of the variable ¢ and regard A as a function of ¢, given by the following
equation equivalent to (b6)):

A=A-p ) (p-1). (61)

Except when ¢ = +A4~/2 (which will generate spurious roots below), corresponding to M eigenvalues
A there should exist 2M roots ¢ of the relevant equations, which occur in pairs ¢, 1/(A¢g) that produce
the same .

Remark 5.1. We note that by 7 values of ¢ on the unit circle, with ¢ = € for s real, produce
values of A on an ellipse with

A=(2+K)(—1+coss)+iKsins (62)

This ellipse lies in the left half plane and passes through A = 0. In numerical computations such as
those reported in Fig. 2| almost all the eigenvalues lie near this ellipse. By consequence we will expect
to find most roots satisfying |¢;| =~ 1 and |ga| ~ 1/A < 1, with |p)!| extremely small. (This is the
basic reason for the form we took in ) The possibility of transition to instability will depend upon
the deviation of roots ¢, from this ellipse in the vicinity ¢ ~ 1 where A ~ 0.

5.2 Reduction to a 2 x 2 determinant

We now use the expression (58) to write the “boundary conditions” for V', that correspond to the
equations for Vj; and V; in (26 and respectively. Using the fact that holds for both ¢; and
2, after some computation we find that these equations take the following form:

O=ci (At "+ 1) +e2 (Apd T +1-93") | (63)
oM — ¢

0=c, <_A¢{Vf —AMMTt gL . +KM+1>
Y1 —

SOM — P2
+ ¢ (—Agpé\/[ — AM =t — K% + KM + 1) . (64)
P2 —
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Except in the degenerate cases when ¢, = @o = £A~Y/2 and holds, the eigenvalue problem in
f is therefore equivalent to the vanishing of a determinant:

| fler) fle2) | _
o) = 9(p1)  g(p2) =0 (65)

where 1 = ¢ and ps = 1/(Ay), and the functions f, g are given by

flo) =AMt +1 -,

M —p
g(@):—A(pM—AMgoM_l—Kil—FKM—&-l
-
AM K
= —pM <¢+1+A>+@+KM+1

The function § depends on M and K, but this dependence will not be written explicitly for simplicity.
We note the general root-exchange symmetry

3 (42) = -ato) (66)

Because A = 0 is an eigenvalue we also know that ¢ has roots at ¢ = 1 and 1/A. Note that 6(+A~1/2) =
0 due to dependence of the columns, but these roots are spurious, unless double, as we now discuss.

The degenerate case. In the cases of when the two roots of coincide at ¢ = p; = +A1/2 =
(2, one checks that the difference equation has the general solution

Ve=e1oM ™ pey(M —0)pM 71 1<i< M, (67)
by the expedient of replacing ci, ¢ in with

C2 C2
) Co = )
P2 — P1 Y2 —P1

and taking ¢, — +A~1/2. Doing the same with 7, we see that the eigenvalue condition
is replaced by the condition

01261—

g _ | fle) ) | _ _ —1/2
5(<p)_’g(¢) 7 () ’_0 at o = +A71/2, (68)

This is equivalent to the condition §’(¢) = 0 because one finds 8’ () = —20(¢) at these points.

Remark 5.2. In order to characterize Hopf bifurcation, we will use the fact that when ¢ # +£A~%/2 1
or A7, o is a simple root of §(¢) if and only if A = (A — ¢~ 1)(p — 1) is a simple eigenvalue of B. See
Lemma and its proof in Section

5.3 Sorting terms and removing singularities

For convenience in analysis, we sort the terms in according to Mth powers of ¢ and A. Note that
Flp2) = (1= Ap) + (Ap)~ M A%p, (69)

K KA
g(p2) = (1 > + KM + 1) — (Ap)™™ (MA2<p+ . X; +A) : (70)

In order to remove singularities, we multiply by p(¢ —1)(1 — Ap). Define

fi f2

g1 92 |’ (71)

F(p) ==6(p) ol —1)(1 - Ap) =
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where
fi=Ff@)-p=(p—1)+o"A,
fo=f(p2) = (1 = Ap) + (Ap) M A%,
g =9(0) ple—1)(1—Ap) =G1—¢"Gs,
g2=9g(p2) - (p =11 = Ap) =H — (Ap) " Hy,

with the definitions

Gi= (1 = Ap)(Kp + (KM + 1)(p — 1)), (72)
Gy = (1= Ap)(AM(p — 1)+ Kp + Ap(p — 1)), (73)
Hy = (¢ = D(K + (KM +1)(1 - Ap)), (74)
Hy = (p = 1)((A+ MA%9)(1 - Ap) + KAp). (75)
By consequence we have the sorted representation
Fp)=—P+oMPy+ AMRy + (Ap) MRy, (76)
where
o -1 1-Ap | A 1-A4p
Pl‘Gl H1 '7 PQ‘_GQ Hl )
A A% o—1 A2%p
R = R = .
! ’—GQ —Hy| " 2 ’ G1 —H,

Observe that F has a pole at ¢ = 0 of order M, with F(p) ~ —A1=M =M hecause Ry = Hy = —A
at the origin. And for |p| — co we find that

F(p) ~ @M Py ~ oM ApGy ~ A3 M1,

Consequently F' must have exactly 2M + 4 zeros, counting multiplicities.
We may summarize the situation as follows.

Proposition 5.3. A complex number X is an eigenvalue of B if and only if holds for some pair
v, 1/Ap satisfying
F(p) =0, (77)

except in the two cases A = —1 — A+ 2\/A. In these cases, \ is an eigenvalue if and only if
F(p)=F'(p)=0 at p = +A"1/2, (78)

Of the 2M + 4 roots of F, four are spurious, counting ¢ = £A~/2 ¢ =1 and ¢ = 1/A once each,
coming from the dependence of the columns in and the factors used to remove singularities from
d.

The polynomial o™ F(p) of degree 2M + 4 is divisible by the factor

S() = (p = 1)(Ap — 1)(Ap* — 1), (79)

and the remaining 2M roots of @™ F()/S(p) correspond in pairs ¢, 1/(Ap) to the M eigenvalues of
B. The values ¢ = 1 and 1/A, are (at least) double roots of F' because they were already roots of ¢,
and correspond to the simple eigenvalue A = 0. Concerning other roots of F', we have the following
result whose proof we defer to Section

Lemma 5.4. Suppose S(p) # 0 and A = (A — o) (¢ — 1). Then ¢ is a simple root of F if and only
if X is a simple eigenvalue of B.
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6 Formal approximation

Before we begin a rigorous analysis of the zeros of F(¢), we treat the problem approximately in the
limit of large M to gain insight. Numerical experimentation suggests that we can expect to find most
solutions of to satisfy |¢1]| ~ 1, and |pa] ~ A7 < 1, with A=M extremely small.

Thus we neglect the terms containing A= in and study the zeros of

Folp) = —Pi(p) + 0" (). (80)
For any such zero, evidently
Pi(p)
M 1
= , 81
4 Py(p) (8D

unless both numerator and denominator vanish. The right-hand side is a ratio of polynomials of low
degree, while for large M, the function ¢ ++ ™ expands a small region about any Mth root of unity
e2™k/M to cover a large part of the complex plane. Roughly, then, we can expect to have a
solution near each Mth root of unity. These should then provide eigenvalues spread out around the

ellipse in .
We focus next on looking for imaginary roots ¢ ~ 1. We change variables from ¢ to z = M (¢ — 1),
noting that

M
¢M2<1+ﬁ> —e* as M — . (82)

With these relations we have

Az
Ap—1=K+Alp-1) =K+ =K+-+-7,

and we find from f the exact expressions
Glz—(1+%) <K+’j\‘;> (K<1+J\3)+ (K+A14>z>
GQZ—(K-I—?\;) Az — (K+‘§j)2(1+ﬂz),
s () e )
—Z<—K2—<K+J\14> ’jj) (83)

It turns out to be appropriate to require K is small while KM is large. Somewhat more precisely, we
ask that

K=0() as e:= — 0. (84)

Then we get the approximate relations

G1=—-K?(142)+0(%),
2
Go=—K(1+K)z— ZM K2+ 0(e%),

K 2
Hi =K% — WZ +O(Y. (85)
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By consequence, we find that

Py = K3(1+2)+0(e?),

P, =(1+K) (K22 - Igj) +0(eh)

+(K+ﬁ) (K(1+K)z+j\;+K2>

K 2
= -+ KP+0().

If we suppose K ~ k/vVM as M — oo, then
-3 z .
K™ F, (1 + ) — Q(z; k) (86)

where

2

Qlz; k) = & (1 + ;) —(1+2) (87)

The complex roots of @ provide an approximation for roots of Fy(¢) when M is large. These
approximate eigenvalues A of f through , which may be written directly in terms of z as

_ Kz 2/M? Kz

A= M +m—ﬁ+0(54). (88)

Thus purely imaginary roots of () approximate eigenvalues A near the imaginary axis, and roots of @
in the right half plane Re z > 0 should approximate eigenvalues satisfying Re A > 0.

7 Analysis of roots of ()

In this section we establish basic properties of the roots z of Q(z; k) as defined in . This will serve
as the foundation to analyze the roots of Fy and ultimately those of F, in subsequent sections.
Purely imaginary roots z = it of @) occur whenever

" t2
e’ (1_#;2>:1+Zt' (89)

Matching real parts demands that if ¢ # 0 then sect = 1 — ﬁ—z < 1 hence sect < —1. Matching also
the ratio of imaginary to real parts, one finds that holds if and only if

cost <0 and tant=t, (90)

together with
2
KP= ——— =1+2-1. (91)
1 —sect
Each positive root of provides a complex conjugate pair of imaginary roots z = =£it of Q. Let
t1 < to < ... denote the increasing sequence of all these positive roots of . The smallest occurs for
t =t; ~ 4.4934095 (less than %71 ~ 4.71238898). This corresponds to a critical value of x given by

Fer 1= (y/1 412 — 1)1/2 ~ 1.89825. (92)

The roots t;, approach %7‘(’ + 27k from below as k — oo. As k increases, they correspond to larger
values of k2, hence larger values of K for a fixed M.
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In the rest of this section, we shall prove that non-real roots of ) are always simple, and purely
imaginary roots must move into the right half plane Re z > 0 as k increases, where they must remain
in a bounded region. By this result and , when kK > K¢ we can expect that for large enough
M with K ~ &/ VM, there will be some eigenvalue A of f in the right half plane, and when
0 < Kk < ke We can expect there will not.

Lemma 7.1. For any k > 0, Q has a double root z = 0. All other complex roots are non-real and
simple.

Proof. Clearly Q(0; k) = 0, and for real z # 0 we have @ > e* — 1 — z > 0 by the convexity of ¢*. In
general we compute

0.Q = Q + z + e*(22/K%).

The root z = 0 is double because 0 = Q = 9,Q < 92Q at 0. At a complex double root, on the other
hand, necessarily e* = —x2/2. This implies z = 7 + ik where ¢” = x2/2 and k is an odd integer.
Then, however, it follows

0=-2Q =2 +r*+2+22=(r* —m?k* + 2" + 2+ 2r) +ink(2r + 1),
sor = —% and we infer
2 < w?k? = i+2671/2+1 < 4,
a contradiction. Hence the nonzero roots of () are all non-real and simple. L

For the next result, let tg = 0 and recall that t; < t3 < ... denotes the sequence of positive roots
of .

Lemma 7.2. The function Q has exactly k complex-conjugate pairs of roots z in the right half plane
Rez >0 if k2 =V1+12 -1 with t € (g, tgy1].

Proof. First, we claim that the imaginary roots of ) always cross into the right half plane Re z > 0 as
K increases. To see this, regard w := k2 as a complex variable and note that @ = 0 if and only if

2

z
= 93
v (I+2)ez—-1 (93)
Because %(1 + 2)e™* = —ze™*, we compute
z (dz w+ z
— | = =2 F=2 94
w <dw) +we T +2z (94)

by using the identity @ = 0 to eliminate e~*. Multiplying by 2|1 + 2|2, we find

dw

w

2|q 2 /d -1
[2*L + 2 <z> =271+ 22+ w(Z+2%) + 2|22 + |2|* (95)

For z = z 4 iy in the first quadrant, the imaginary part of this expression is negative, which implies

dz
Im — .
m I >0 (96)

Furthermore, provided y? > x? (which must be the case if z = 0 by ), the real part of is

larger than y* — wy? > 0, hence

dz
Re T >0. (97)

It follows from these computations that the roots z = +ity of () on the imaginary axis always pass
into the right half plane as x increases, with derivative dz/dk remaining in the first quadrant. They
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can never escape to infinity, because any roots of @ in the right half plane must lie in the bounded
region where
K2 4 22
K2(1+ 2)
To finish the proof, we show that if £ > 0 is small enough, then @ has no roots with Rez > 0. If
k € (0,1), any such root must satisfy

1>]e? =

22

K2

2

2 z
+1’=|(1+2)6_Z<1+|Z<1+‘H

-1<
=2

)

and this implies |z| < 2x. Now it follows
K2Q =e*22 + K%(e* — 1 —2)
=224+ 0(2%) + K2 (;22 + O(z3)>
=22 (1+O0(k)).
Therefore, for small enough x > 0, @ does not vanish when Re z > 0. O

Labeling the roots. Due to the results of the previous two lemmas, we may label all the non-real
roots of ) that cross the imaginary axis and lie in the upper half plane Im z > 0 by analytic functions
z= Z?(FL), j=1,2,..., defined for all k > 0 according to the property that

z?(m) =1it; when HZK? = (141, —1)1/2. (98)
Thus we can summarize as follows.

Lemma 7.3. There are analytic curves ZJO»: (0,00) = C, j =1,2,..., satisfying and Im Z?(li) >0

for all k > 0, such that when k € (K, k)], the numbers 29 (k) ...,z (k) comprise all the roots of Q
in the first quadrant. Moreover, dZ?/dI{ #£0 for all Kk >0, and
Re™ 20 and ™ 50 forallx > a0 (99)
e an m— or all k > Kj.

Proof. To show the curves z? are well defined and nondegenerate for all x > 0, we note that according
to standard continuation theory for the ODE , a solution exists for real w in a maximal interval
(w_,00) C (0,00) for which dz/dw remains bounded. It is not possible that w_ > 0, however, because
the right-hand side of (94)) cannot approach zero at the same time as holds with w — w_, for the
following reason: If anishes, then 0 = 2(1+ 2) +w+ 22, hence z = —1 47 with 7 = /1 +w > 1.

But then implies
0=w(l+z2)e? —w— 22 =ir((? — 1)e! 7" 4 2).

This implies 72 = 1 — 2¢" !, so necessarily sinT = 0 but also 1 < 72 < 1+ 2/e, and this is
impossible. O

8 Analysis of roots of Fj

In this section we locate all the roots of the polynomial Fy = @M P, — P; in of degree M + 4,
to a rough approximation, provide bounds on roots that may correspond to unstable eigenvalues, and
establish the convergence in in a precise sense. Let B(z,r) C C denote the closed disk with center
z € C and radius r > 0. We fix a constant v > 2. (Actually, v = 3 suffices.) Depending on some large
B > 1 (to be chosen in the proof of Theorem , we presume throughout that

B~ < KVM < 8. (100)
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8.1 Rough locations of all roots

Locations of the M + 4 roots of Fy will be identified as follows. We recall that the four values ¢ =1,
A~ +£A71/2 which comprise the roots of the polynomial

S(p) = (¢ — 1)(Ap — 1)(Ap* — 1)

from , are already known to be roots of the function F' that Iy approximates. Note that the three
roots of S(p) with ¢ # 1 satisfy

A'=1-K+o(K), +AY2=4 (1 — I;) + o(K). (101)

Proposition 8.1. Fiz~ > 2. Then for any f > 1 there exists ag > 0 and My > 0 such that whenever
M > My and (100) holds, the polynomial Fy has exactly:

(i) one double root at o = 1.
(i) one simple root in each of the following disks of radius rix = K/8:
B(A_l,T‘K), B(A_l/Q,TK) 5 B(—A_1/277”K) .
(iii) one simple root in B(—M,1).

(iv) M — 2 roots in the punctured annulus

Dyi={p:o#1 and MM < | < (1_%)_1}.

Proof. Recall Fy(p) = o™ P, — P;. where we can write

P = (Ap —1)*0(Kp+ (KM +1)(p — 1))
—(p—1)*(K — (KM +1)(Ap — 1))
= K[(Ap —1)%¢* — (¢ — 1)*] + (KM +1)S5(¢) (102)

with S(¢) as in (79), and

Py = (Ap — 1)’ [Kp+ A(p — 1)(M + ¢)]
—Alp = DN[KM(Ap — 1) + A(p — 1)]
=p(Ap —1)° — A%(p — 1)* + M(Ap — 1) A%(p — 1)°. (103)

Step 1. First we establish (i). Note that Fy(1) = 0, since
Pi(1) = Py(1) = K3.
Furthermore, Fj(1) = MK? + Pj(1) — P{(1) = 0 since

P{(1) = (KM +1)K* + 2K?*(1 + 2K) = MK® + K*(3 + 4K),
Py(1) = 2AK?* + K*(K + A(M +1)) — AMK? = K*(3 + 4K) .

Hence ¢ = 1 is at least a double root. But one also checks
FJ(1) = M(M + 1)K + 2A%(KM — 1) (104)

(e.g., by computer algebra) so Fj(1) # 0 when KM > 1.
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Step 2. Next we claim that the only roots of Fy in the disk B(0, M’“’/M) are three as described
in (ii). We can write

— Fo(p) =P — MPy = (KM +1)S(p) + KS1 — o™ Py, (105)

where
Sy = (Ap —1)20* — (¢ — 1)°. (106)

It suffices to show that for all ¢ in B(0, M ~7/M) outside the balls listed in (ii),
Ao = KM|S(p)| — K|Si| — |9 P3| > 0, (107)

for M large enough. For then our claim follows from Rouché’s theorem, since each of the balls in (ii)
contains one simple root of S.
Observe that |Py| < CM for |p| < 1, therefore

M Py| < OM'. (108)

(Here and below C' denotes a generic constant which may depend on 8 and + but is independent of
M and K, whose value may change from instance to instance.) To complete the proof of (107, we
consider three sub-cases:

(a) Rep <0; (b)Rep>0and |p—1|>2K; (c)|p—1| <2K.

In case (a), for each ¢ € {1,A~', A=Y/2} (i.e., for each positive root of S), we have 1 — K <
| — | < 2, therefore

1S(@)] > A2(1 — K)o+ A2 and |Sy| < 4(A% +1) < 8A2. (109)

Because v > 2 and K2M > 2 it follows that for |¢ + A~1/2| > rx = K/8, with M large enough we
have

K2MA2  8A? c B2
Ap > - - >
16 BVM M1 =20

(We could replace ri by say 20/M here, but we have no need.)
In case (b), each positive root of S satisfies |1 — ¢| < K, hence

> 0. (110)

1 .
5\@—1\S\w—ll—KS\w—wl§|¢—1I+K<2Is@—1|-

Consequently
151 < A%l — ATH2 4 [ — 12 < 5A%|p — 12

and (for K < 1)

1 1
IS(p)| = 1A2(1 —K)lp -1 > ZA2K|<P -1
Therefore as in (110) we get
K2MA?  5A? C B4
Ag > — —1]2 - > 0 111
o_( ! BﬁM)w P2 D (111)

for M large enough depending on 8 and ~.
In case (c¢), we have

1S(¢)| > A*(1 - 3K) min | - ?l°,

51| < 24% max |p — ¢* < 1042K?,
©®
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with min and max taken over positive roots of S. Therefore for M large, when | — @| > rg = K/8
(chosen to separate the roots) we find

VMA? (rie 10K*\ C _ ¢
B MYy=1 = M’

|Ao| > (112)

2 M

for some ¢ > 0 depending on f.

This finishes the proof of (107)). The conclusion in (ii) now follows, and also the fact that Fy has
no other roots in B(0, M~7/M).

Step 3. Next we show that F{; has no roots satisfying

o™t < 1 - % and |M+¢|>1, (113)

for large enough g depending on 3, and deduce (iii) and (iv). The estimates in (113]) imply

M
L z1-lp" > 57 and M+ gllel = T Vel. (114)
Observe
o MFEy(p)=Po—o MP =8, + 83— MP,,
where
Syi= (M +¢)(Ap — 1)A%(p — 1)?, (115)
Sz = p(Ap —1)° — A%(p — 1)* — p(Ap — 1) A%(p — 1)°
= p(Ap — 1)(K? + 2K A(p — 1)) — A%(p — 1)%. (116)

(To get this last, expand (Ap — 1) = (K + A(¢ — 1))? and cancel a term.)

We now show the ratios S3/S; and =M P, /S, are uniformly small for ¢ satisfying , by
estimating six terms as follows:

(a) The first term of the ratio S3/S4 is bounded using as follows:

o(Ap—1)K?| K? 2K* M* _ 27 (117)
S4 Mt ollplA1 -T2 T M of T af
(b) To bound the next term in Ss/S4, observe
V2K A(p — 1) 2K
Sy 1= 118
e | < B )
For |¢| > M/2, since |M + ¢| > 1, for M > 4 we have
2K 48
S, < 0 4 < 2 119
—1-2/M < ~ VM (119)
while for |p| < M/2 we have |M + ¢| > M/2 and infer from (114)) that
S*gaijglegj%. (120)
Qo
(c) The last term in the ratio S3/S, satisfies the bound
200, _ 1)2
A —1)7| _ L <2l 2 (121)
Si M +ollel(K+1—[e|") = MK = VM
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(d) The terms in ¢~ P; /S, are estimated as follows. By (114)),
M +ellp -1 > 3.
Further, Ap? — 1= A(p — A~'/?)(p + A~'/?) and
Alp— ATV < Alp— 1|+ AQ - A7) < Alp— 1|+ K . (122)

Therefore, since | + A™1/2| < 2|p| and recalling |M + |~ < 2|¢|/M,

S 24|p|(Alp — 1|+ K) _ 4]p]*? 4K
‘ ()|  24]pl(Alp — 1]+ ! ) _Ael® | AKlo| (123)
Sy IM + ¢|lp — 1A M g
Hence, since KM + 1 < 2K M, the last term in ¢~ P; /S, is bounded by
2K MS(p) ‘ 8K SK2M 88 832
< 4 < + = 124
‘ P75y | T Te? T e ag < VI a0 (124
(e) For the next term in ¢ =™ P; /S, we have the bound
‘K(Aso —1)%?| _ K(K + Alp —1])e~"
eMSy [M + ¢llp — 1]242
2K2M 2K 2532 20
< 4+ < =+ . 125
T NG T (129
(f) Lastly we have the bound
K(p—1)2 K|p|=™ 2
’ (soM ) < |l <2 (126)
QM Sy [M + pl|p|(K +1—[p[7) = M
Assembling the estimates in (a)-(f), we conclude that if g > ao(8) and M > My(5), then
oM Fo(p) = Sal _ 1
1 127
|54 2 (127)

for all ¢ satisfying (113)). Part (iii) now follows by Rouché’s theorem since Sy has only one simple
zero at ¢ = —M inside B(—M,1). Part (iv) follows since we have shown that F has exactly 6 roots
(counting multiplicity) in the complement of the punctured annulus D,. O

We record here several estimates that follow from the proof above.

Corollary 8.2. Under the conditions of Proposition |8.1, we have the following estimates, for some
c > 0 depending on B:

: g2 _

B IRz i oA =y

.. c . _ _

() Rz i - A=k or lp— ATV =g
c .
) (R 2 i el = MM,

. ~ 1 .
(i) o MFo(sD)\>§M3 if lo+M|=1.

=
Q

2
. _ @
i JelTt=1—-—.

W IR 2 510 %
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Proof. Part (i) follows from (110) in case (a) of Step 2, because |Fy(p)| > Ap. Similarly, part (ii)
follows from (112)) in case (c) of Step 2, and part (iii) follows from all cases of Step 2. To infer part
(iv), note that (127) of Step 3 implies that for | + M| =1 we have

20 MFo(p)] > |Sa] = A% Ap — 1flp — 1> > M?, (128)

because [Ap — 1| > Alp — 1| — K > AM — K > M. Part (v) follows similarly, since |p| > 1+ ag/M
and therefore |S4| > K(|p| — 1)? > Ka3/M?>. O

8.2 Bounds for roots relevant to instability

Next we focus on roots of Fy that may be related to eigenvalues A of the matrix B having non-negative
real part. It turns out these are roots ¢ in the punctured annulus D, of Proposition [8.1] that are near
1. Recall the relation between eigenvalues of the matrix B and roots ¢ of F', namely

A=(A-9 (p-1)

Lemma 8.3. Under the conditions of Pmposz’tion if M is large enough, then whenever holds
with p € D, then Re A > 0 implies

2040
M3/4°

Proof. By , A=Ap—A—1+ ¢! hence if Rep < 0 then ReA < —A4 — 1. Writing

2
1§Reap<l+% and |Imy| <

(129)

p=Rep—-1, v=Imyp,
we then have y > —1 and
0<ReA=Apu—1+1+p)el? = (A+ el )u—1+[p 72 (130)
For ¢ € D, and M large, we infer |p|=2 < M?"/M <14 4yM~'log M, then

4vylog M K
> > ——. 131
A VAR (131)

Now because |¢|™2 < (1 + u)~2, we deduce from (130]) that
0<(Ap—D(p+1)+1=(Ap+K)p.

This entails 2 > 0, due to (131). Since [p|~1 > 1— T implies Rep < 1+ %, we have established the
desired bounds on Re ¢.
Now since |¢|? = (14 p)? 4+ % and 0 < p < 220 we deduce from (T30 that

14+p 14+ p 4By
2 < - .= K+ Ap)p < 2Kp < :
-y ( ) 1—Au( + Ap)p r<
Since we may presume S < ag, therefore |v| < 200 M —3/* as claimed. O

Any roots of Fj in the region where (129) holds actually satisfy a tighter bound, namely |¢ — 1| =
O(1/M), as we now show.

Proposition 8.4. Under the conditions of Proposz'tion there exist positive constants a; = aq(f)
and My = Mi(B) such that whenever M > My, any zeros ¢ € D, of Fy that satisfy the bounds in

(129) must satisfy |¢ — 1| < §}. Moreover,

KO(12
F > 132
Fo(o)l = 5, (132)
for all ¢ that satisfy
a1 (5] 30[0
OSRe(cp—l)SM and M§|¢—1\§M3/4. (133)
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Proof. In the expression Fy = @M P, — P; we seek to show that the first term dominates, provided
(133)) holds for some ;. Writing ¢ = A(¢ — 1) for convenience, we have Ap —1 = K + ¢, so by (103),

Py, =K3(1+ %)%JF@KM (1+ % - K1M> :

By (133) we have (/K = O(M~%) and |¢| <1+ O(M~3/%), so
[Po| = KM|CP(1 = O(M %)) = K3 (1 4+ O(M~%)).
Because 5 ) )
K B £7
KM|C[? = M2[¢]* ~ of
for a3 > 26 and large enough M we infer that

(P2l > KM (134)
On the other hand, due to we have
[S(0)] < [CIE + ¢[P2le] = K2[CI(1+ O(M™)),
therefore from we obtain the upper bound
[P < (K2 + KICP + KEMIC)(1+O(M ™))

62 1 62
S2KMICP | 5+ — + —
- €] (a% Tt
1
< Lrmic? (135)
if iy > 4083?, say, and M is large enough. Since |¢| > 1 if (133 holds, the result follows. O

8.3 Convergence of K 3Fy(1+ z/M)

After the results of the previous subsection, to study unstable eigenvalues of B we are motivated to
make the change of variables
z
= 1 —_
2 + Wi
as in Section [} According to Proposition for any zeros ¢ € D, of Fj that correspond to Re A > 0,
the quantity z = M (¢ — 1) must satisfy

Rez >0, 0<|z] <. (136)

As in , let us now define k = K(K, M) = Kv/M and € = 1/v/ M. Then the formal approximations
in Section [f] are rigorous, with errors that are uniform over the values of (z,x) € C x C such that

2] < &, (137)
where & > «; is an arbitrary constant (to be chosen later), and
1
2 < K| <28, |argk| <27, (138)
for some small 4 > 0. (We allow k to be complex with small argument here, to simplify derivative

estimates later.) By consequence, the convergence in holds, in the following sense.

Proposition 8.5. Uniformly for (z,r) satisfying (137)—(138), with M = 1/e* and K = ke we have
that
K—3F, (1 + %) — Q(z;K) as e — 0. (139)
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9 Analysis of roots of F
Recall from we have

F(p)=Folp) + A MF(p), Filp)=Ri+e "R,
where R, Ro are low-degree polynomials that may be written in the form

Ry = —A*((Ap — 1)%0* — (¢ — 1)%), (140)
Ry = A(p —1)° + A%p(Ap — 1)*(M(p — 1) + o). (141)

For large M, A~™ is exponentially small, with the bound

1
A—M — 1+K)_M S 1+7)—M Se—m/Qﬁ.
( ( BV M

We now roughly characterize the location of the 2M + 4 roots of F'.

Proposition 9.1. Under the conditions of Proposition there exists My = My () such that when-
ever M > M, F has (counting multiplicities):

(i) one double root at o =1, and one double root at ¢ = A~".

(ii) M — 2 roots in the punctured annulus D,, and M — 2 roots with (Ap)~' € D, which satisfy
lp] <1—3K < M—/M,

(iii) one simple real root in B(—M,1), and one with (Ap)~! € B(—M,1).
(iv) one simple real Toot at ¢ = A~/? and one at p = —A~1/2,

Proof. We note that due the root symmetry 7 the multiplicity of each root ¢ of F is the same as the
multiplicity of 1/(Ag), unless ¢ = +A~1/2, Also, all non-real roots of F' come in complex-conjugate
pairs when K is real.

For || > M~/ we then have |¢|~™ < M?” and it follows A=M|F; ()| is exponentially small.

Combining the lower bounds in parts (iii)—(v) of Corollary with the count of roots of Fj in
parts (i), (iii) and (iv) of Proposition we conclude from Rouché’s theorem that F' has a simple
root inside the ball B(—M, 1), and M roots inside the closed annulus D, U {1}, the same as Fy.

By examining 7, we find oM Fy = ™ R, + R, has at least a double root at ¢ = 1, due
to the fact that the expression

M
—oMo+ M -1 +o=(p—1) | M=) ¢
j=1

has a double root at ¢ = 1. Then, because A~ F{'(1) is exponentially small, it follows from (104)
that F”(1) # 0. This proves (i).
Now (iii) follows and also (ii), due to the fact that for ¢ € D, and M large,

exp(YM ~1log M)
1+ K

3K
|[Ap| ™! < <1l- -4 < exp(—yM ! log M).

To infer (iv) we can simply recall that we know F(£A~'/2) = 0 due to the root symmetry relation
(66). These roots must be simple, since we have accounted for all 2M + 4 roots of F'. O

Next, we can characterize zeros of F' that may correspond to unstable eigenvalues of B as follows.
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Proposition 9.2. Under the conditions of Pmposz’tions and there exists My = Ms(B) such
that whenever M > Ms and X is an eigenvalue of B with ReX > 0, then A = (A — ¢~ 1)(p — 1) for
some root @ of F' that satisfies

aq
M .

Proof. Under the correspondence between A and ¢ in , the zeros of F described in parts (iii) and
(iv) of Proposition correspond to negative real values of A, and the roots in part (i) correspond
to A = 0. So, given M is large enough, for any nonzero eigenvalue A satisfying Re A > 0, necessarily
holds for some ¢ € D,. This ¢ must satisfy the bounds in , due to Lemma For these
values of ¢, we have |Fy ()| < CM'/* so A=M|F,| is exponentially small. Then we can conclude from

Proposition [8.4] that

Rep >1, lo—1] < (142)

Kao?
F >_ 1
|F ()| > Vi

for all ¢ that satisfy (133]). The conclusion follows. O

0, (143)

Further, the convergence in Proposition holds with F' in place of Fy:

Proposition 9.3. Let & > «y, and let ¥ > 0 be small. Uniformly for (z,k) satisfying (137)—(138)),
with M = 1/¢2 and K = ke we have that

Q°(z;k) = K °F (1 + %) — Q(z; k) as e — 0. (144)
Furthermore, for each pair of integers j,k > 0, the derivatives
ORQe(2:5) = D1O*Q(2;5) ase — 0, (145)
uniformly for all z and Kk satisfying
2l <a,  BTH<IR| < B, |argk| <F. (146)

Proof. For |z| < & and ¢ = 1+ &, the factor [p|™" is bounded by e**. Hence again A~MF is
exponentially small, and the convergence of Q°(z; k) follows from Proposition
The convergence of derivatives follows from the Cauchy integral formula representation for such

derivatives, since Q°(z; k) is analytic for z satisfying (137) and x satisfying (138). O

Curves of roots. Recall that the non-real roots z of @ = Q(z; k) are simple and those that may
satisfy Rez > 0 lay on the curves z? (k) described by Lemma Moreover, due to and ,
only a finite number of these curves provide values that can satisfy (136]), corresponding to values of
© =1+ 57 that satisfy (142)). In particular, we note the following.

Corollary 9.4. ForjeN, if 8 > /1? and oy 1s given by Proposition then
oy > |Z?(I<§)| for all k€ [£3, ).

Proof. Suppose a1 < [29()| for some r € [k, 5]. Recall z = 29(k) satisfies Q(z,%) = 0, Rez > 0.
Then for M large enough, ¢ = 1+ 47 satisfies (133)), and

a? a?
€ ; > > —>0, 147
Q=5 )] = 8K2M — 832 (147)
due to (143). But this contradicts the convergence result in Proposition O

Any finite number of the curves z? of simple zeros of ) perturb to curves 25 of simple zeros of Q*
as a consequence of the implicit function theorem, as follows.
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Proposition 9.5. For j € N, suppose 5 > ng. Let a be given by Pmposz’tion and suppose
& > |Z?(I€)| for all k € [B71, 3].

Then for sufficiently small € > 0, there is a curve 25 : (371, 8] = B(0, &) that is real analytic, with the
following properties:

(i) For each k € (371, B], 25(k) is a simple root of Q°(z, k).

(ii) 25(k) — z?(n) as e — 0, uniformly for k € [, B], together with any finite number of derivatives
m K.

(ii) There exists (; < f satisfying (5 — H? as € = 0, such that Re 25 (k) > 0 if and only if k > (5,

and
€ €
Red—;>0 and Imd—;>0 for all k € [C5, B]. (148)

Proof. The existence of the curve, its analyticity in x, and properties (i), (ii) and (iii), follow from
standard implicit function theorem arguments using the simplicity of the roots of @, the convergence
in Proposition [0:3] and Lemma [7.3] O

10 Analysis of eigenvalues of B

The M eigenvalues A of B are generated via the relation by: one of the roots of F' at ¢ =1, the
one near —M, and the M — 2 roots in D,. The roots =A~1/2, one root at 1, and one root at A~! are
spurious, as discussed earlier. We have not characterized the multiplicity of all the eigenvalues or all
the roots, but each eigenvalue must correspond to some root of F', and vice versa.

10.1 Curves of unstable eigenvalues

Recall that zeros z of Q(z; k) correspond to eigenvalues A of the matrix B via the relation (88)). We
rescale this relation by defining

M +£ 22
K k1l4e2z

(149)

Clearly A(z;k,e) — z as € — 0, together with derivatives, uniformly for z, k satisfying .

When ¢ = 0, of course we have Re A(z;k,0) > 0 if and only if z = Rez > 0, for any x > 0. By
stardard implicit function theorem arguments, for small enough £ > 0 there is a real analytic function
(y, k) = &(y, K, €) such that for |z| < & and k € [371, 3],

ReA(x + iy;k,e) >0 if and only if =z > Z(y, &, e).

Let Z. C B(0,&) x [871, 8] denote the surface on which this holds, i.e., where Re A = 0. When ¢ = 0,
the imaginary axis Z; meets each curve z;-) transversely due to the computation in . Therefore, for
sufficiently small € > 0, the surface Z. meets each curve z5 provided by Proposition @ transversely.
By consequence, each curve given by

X (k) = ke’ A(25 (k), k,e) . we[B7H 4] (150)

provides a curve of eigenvalues of B that must cross the imaginary axis transversely as x increases,
exactly once for x € [371, 3].
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10.2 Proof of Theorem [3.2]

Let By € (0,1) and k € N. Recalling that the curves zjo-(n) and numbers n? > 1 were defined in ,
we fix O € (ng,ngﬂ), and note

>0 for all 7 <k,

Re 2Y <0 forall j, Re 29
e2;(Bo) oraty eZﬂ(ﬁ’“){«) for all j > k.

Next, choose 8 > max(S, Bal), let a1 = a1(83) be determined by Proposition and choose & > oy
such that
\z?(/i)|§d forallk € [71,8], i=1,...,k.

If M is sufficiently large (i.e., M > My for some M, depending on ) then analytic curves 25 ()
are defined by Proposition and A5 (k) by (150). Let

A](H):Aj(ﬁ)7 He [/371’/8]7 j:]‘7""k' (].5].)

Due to Propositions 0.2 and [9.5 and the discussion above, each curve \; crosses the imaginary axis
transversely at some point k; = k5 € [ 7 O] that satisfies

K — k) ase — 0. (152)

By consequence, for small enough £ > 0 we have k5_; < k5 < fj for j = 1,..., k, where we set rj = [o.
Also we have the monotonicity relations in (33).
Since |25 (k)| < &, the eigenvalues of B given by A;(x), j = 1,...,k satisfy the bound

I\j(k)| < 2ke3a < CLM 372 (153)

for M large. Furthermore, due to Lemma (proved below), every such eigenvalue \;(x) is a simple
eigenvalue of B, since the roots 2 = 25 (k) of Q°(2; k) are simple.

It remains to prove that for x € [8y, Bx], if X # 0 is an eigenvalue of B with Re A >0, and Im A > 0,
then necessarily A= Aj(k) for some j < k with k > k5. According to Proposition necessarily such
an eigenvalue must satisfy

A= kePA(3;k,€)

where Q°(2;k) =0, ReZ > 0 and || < og.

Now, for any r > 0 sufficiently small, note that the balls B(z(x),r) do not overlap or contain 0
for any r, and each must contain a simple root 25 (k) of Q°(z, k). Fix some such r > 0, and let 2, be
the set of (z, k) such that

Rez>0, Imz>0, 0<|z[<a, |z—2)(k)|>r forj=1,... kK,
and & € [Bo, Br]. Because S < ﬁg+1, for sufficiently small » > 0 we have
() = T 1Q(, 1) /7] > 0.
From the convergence in Proposition [9.3]it follows

fie(r) == igzlfIQE(Z,ﬁ)/Zz\ >0,

if € > 0 is sufficiently small. Then it follows that |z — z?\ < r for some j < k, whence necessarily

2= zj(,%) And K > &5 since Re 2 > 0.

This completes the proof of Theorem [3.2]
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10.3 Simplicity of eigenvalues

It remains to prove Lemma [5.4] which shows in particular that simple roots of F' provide simple
eigenvalues of B.

Proof of Lemma[5.4) First, we show that the kernel of B—\I is one-dimensional. Recall from Section 5]
that whenever (B — AI)V = 0, then the components V; have the form for some constants cq,
co. More generally, if V= V(p) has the form with 1 = ¢, Y2 = (Ap)~L, and if A(p) =
(A— ¢ 1) (p —1), then equations (63)-(64) are equivalent to the equation

(B =A@V () = encilDe) () =0, (154)
where e; denotes the jth standard basis vector, and
_ (1) flp2)
Dle) = (g (p1) g (@2)) ' (155)

The value X is an eigenvalue if and only if D(y) is singular. The matrix D(¢) does not vanish in this
case, however, for the following reason. Since S(p) # 0 and Apip2 = 1, necessarily ¢; and o are
distinct and have the same sign. But the function ¢ f(¢) = ApM + ¢ — 1 is convex and cannot have
two distinct roots with the same sign. Hence it is not possible that f(¢;) = 0 for both j = 1 and 2.
It follows that the kernel of B — AI is one dimensional, and the eigenspace is spanned by V (),

taking
(-

2 —f(p1)
Next, we determine when A is simple, i.e., when it has algebraic multiplicity one. Since (B—\I)V =0,
this is the case if and only if the equation

(B=X)U=V (156)
has no solution. Letting ' denote differentiation with respect to ¢, it follows by differentiating (154))
(while keeping ¢, ¢o fixed), that

(B=ADV' =NV + [em, e1]D'(¢) (2) .

Now, X' = A — ¢ # 0 whenever ¢ # +A~1/2, 50 it follows that a solution to (I56) exists if and only
if VU = V'(¢) — U where U is a solution to

(B = MU = [em, e1]D' () (Cl) .

C2

As in Section |5, necessarily U, = élgoiw*l + 62903472 for some constants ¢, ¢o that satisfy

pie) (&) =20 (21) (157)

62 C2
Writing f; = f(¢;), f; = f'(vj)¥} and similarly for g;, g;, the fact that D(¢p) is singular means
6(p) = fig2 — g1f2 =0, (158)
and a left null vector is given by (g1, —f1) or (g2, —f2) (since D(¢) # 0). Supposing f1 # 0, applying
the left null vector to (157) we find that a solution of (157)) exists if and only if

0=t (I B (52) =antsise - 5210 + 5~ 1)

9 9
= fl(sl((p)u

where we used (158)) to replace g1 fo by fige. If fo # 0 similarly the criterion is 0 = f260’(¢). Thus an
eigenvalue X is simple if and only if §'(¢) # 0, and this is equivalent to F'(¢) # 0. O
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