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Abstract

Granular media composed of ordered arrays of discrete spherical granules have attracted considerable attention due to their
highly nonlinear and discontinuous dynamics and acoustics that enable passively adaptive and tailorable properties. In this
work we numerically study nonlinear pulse propagation in a two-dimensional (2D) granular channel composed of a main
homogeneous lattice with several pairs of side granules. Depending on the direction of pulse transmission in the main lattice,
a periodic series of symmetry-breaking clearances alter the topology of this 2D granular network. The rotational dynamics
of the individual granules, as well as dissipative effects due to friction between granules (and their boundaries) and inher-
ent material damping, are proven to play a significant role in the acoustics of the granular channel. This is demonstrated
by comparing the theoretical predictions of this work to experimental measurements of the same system reported earlier.
Moreover, the strong nonlinearity of this system in synergy with the topological asymmetry introduced by the clearances
passively breaks acoustic reciprocity. To this end, a detailed study of pulse transmission in the 2D granular channel is per-
formed, and it is shown that by simply changing the direction of pulse transmission it is possible to switch the nonlinear
acoustics from Nesterenko solitary pulses to strongly decaying propagating pulses. In the latter case there is continuous
and irreversible transfer of energy from the main propagating pulse to the side granules, which act, in essence, as nonlinear
energy absorbers. This work highlights the important role that (even small) geometric imperfections (asymmetries) may play
on the acoustics of 2D granular media.

Keywords Non-reciprocity - 2D granular lattice - Geometric effects - Solitary pulses

1 Introduction attention from both theoretical and practical points of view.

Nesterenko performed pioneering research in the field

Tunable wave propagation in granular media composed of
ordered or packed arrays of discrete linearly elastic parti-
cles (granules) in Hertzian contact has attracted considerable
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of nonlinear wave propagation in one-dimensional (1D)
ordered granular media and proved analytically, numerically
and experimentally the existence of a new type of spatially
localized and shape preserving strongly nonlinear solitary
waves [1, 2] with speed depending on amplitude, and thus
exhibiting passive tunability with respect to energy. Due to
their highly tunable and tailorable dynamic properties, ini-
tially uncompressed ordered granular media are capable of
forming and transmitting a broad range of stress waves, such
as propagating solitary pulses [1, 3-9], traveling waves [10,
11], a mixture of solitary and nonlinear shear waves [12],
and transient breathers [13—15]. In addition, these nonlinear
acoustic media, which have been characterized as “acoustic
vacua” due to their purely energy-dependent speed of sound
(in contrast to the constant speed of sound in classical lin-
ear acoustic waveguides), can support tunable (with energy)
pass bands, intense nonlinear energy exchanges and “energy
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explosions” [16], targeted energy transfers and passive wave
redirection [14], and strongly non-reciprocal acoustics [17].
Due to these unique acoustical features, ordered granular
media have been considered for various potential applica-
tions and in novel engineering devices, e.g., as nonlinear
acoustic lenses [18, 19], shock and energy absorbing layers
[20-22], passive acoustic filters [23] and acoustic switches
[24].

The highly nonlinear nature of the Hertzian and colli-
sional interactions between granules makes it possible for
non-reciprocal pulse propagation in the presence of asym-
metry or structural disorder in 1D ordered granular media.
Boechler et al. [25] experimentally demonstrated a mecha-
nism for tunable rectification based on bifurcations and
chaos in the nonlinear acoustics of a statically compressed
one-dimensional array of granules containing a light mass
defect. As a result of the defect, vibrations at selected fre-
quencies caused dynamical instability and a subsequent
jump from regular to quasi-periodic and chaotic states
with broadband frequency. Depending on the position of
the defect relative to the point of actuation, the system’s
response could be switched from a high-amplitude trans-
mitting state to a low-amplitude non-transmitting one. Cui
et al. [26] proposed a granular device composed of a 23-bead
granular chain and a conical rod. Excitation from different
sides of the assembly gave rise to vastly different output
responses indicating that the frequency-preserved non-recip-
rocal acoustic propagation in a lower frequency range in that
system could be experimentally realized.

Despite the growing amount of research in this field, there
are only a few studies of non-reciprocal acoustics of two-
dimensional (2D) granular media in the current literature.
This may be attributed to the complicated nature of granular
mechanics in 2D settings, especially when the granules not
only interact through Hertzian forces but also exhibit fric-
tional effects. Based on the open source molecular mechan-
ics package LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator [27]), Amnaya et al. [28]
numerically studied the impact-induced wave propagation in
closely packed 2D granular media and observed the propaga-
tion of 2D solitary waves. Leonard [29] investigated pulse
propagation in 2D hexagonal granular assemblies and found
that a propagating pulse decays as it propagates through
that medium. Li et al. [30] studied a similar 2D hexago-
nally packed granular system with multiple granules being
impacted, and noted that the impact excitations yielded two
distinct solitary waves of the same amplitude and a trailing
train of weaker solitary waves with smaller velocities. How-
ever, typically the 2D models considered in previous studies
only included Hertzian normal contact interactions between
granules and did not incorporate dissipation mechanisms
associated with damping and particularly frictional contact.
Yet, in some other works, Yang [31] and Goldenberg [32]
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claimed that friction plays an important role in the dynamics
of 2D granular media and showed that taking into account
frictional effects greatly improved the agreement between
simulations and experiments [32].

For example, Pal et al. [33] numerically and experimen-
tally studied pulse propagation in a 2D granular channel.
Geometric tolerances in that system altered the network
topology depending on the point of actuation, and the non-
linear acoustical behavior could be switched from rapidly
decaying pulses to unaltered solitary pulses. The work
described in [33] provides the main motivation for the pre-
sent study, since it can be considered as an interesting sys-
tem for breaking acoustical non-reciprocity. However, the
simplifying assumptions in the numerical model employed
in [33] give rise to deviations of the computational predic-
tions from the experimental measurements; these discrepan-
cies are reexamined in the present work after removing some
of these simplifications in the model.

In this paper we numerically study the non-reciprocal
acoustics of the 2D granular channel first introduced in
[33]. Apart from developing a more accurate computational
model that accounts for the rotational dynamics of the indi-
vidual granules, as well as the frictional dissipation caused
by these rotational effects, neither of which was considered
in [33], herein emphasis is placed on the study of non-
reciprocal pulse transmission in this system. The remainder
of this manuscript is structured as follows. In Sect. 2, we
present the governing equations of the 2D inclined granular
channel. In Sect. 3, we revisit the results of [33] and numeri-
cally study the tunable pulse propagation in two different
topological configurations of the granular channel, now
taking into account the rotational and frictional effects in
the individual granules. The efficacy of a new mathematical
model that accounts for these effects is validated by com-
paring its predictions with the experimental measurements
of [33] and through additional energy considerations. The
key factors that affect the strongly nonlinear acoustics in
this system are also discussed. In Sect. 4, we employ the
mathematical model to study acoustic non-reciprocity in
an extended version of the inclined granular channel pos-
sessing a symmetry-breaking periodic series of geometric
clearances. We show that the geometric clearances induce
strong non-reciprocity in the nonlinear acoustics, and pro-
pose measures for its quantification. Finally, in Sect. 5 we
summarize the main findings of this work and discuss some
potential practical applications.

2 Theoretical modeling

In this work we consider 2D ordered granular networks
composed of multiple identical spherical linearly elastic
granules with modulus E, Poisson’s ratio v, mass m and
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radius R. Each of the considered granular lattice networks
is arranged within the confines of two parallel rigid walls
on an inclined plane, thus forming an inclined granular
channel. Given that the inclination angle of the channel is
sufficiently small, assumptions are made that gravity does
not affect the nonlinear acoustics of the granular network
(although it does affect the static topology and gives rise to
the asymmetric clearances in the network) and that no pre-
compression exists. Such a granular channel is depicted in
Fig. 1a, composed of a main homogeneous granular lattice
(indicated by the blue axial granules) and several symmet-
rically placed side granules (indicated by red). Assuming
that there exist periodic tolerances between the granules
of the main lattice and the side ones, when the channel is
inclined by a fixed angle @ there will be a periodic series
of clearances between the side granules and some of their
neighboring axial granules of the main lattice. Moreover,
given that the side granules are assumed to be in perfect
contact with their neighboring granules situated in the
main lattice, a geometric asymmetry in the configura-
tion of the granular channel will result. In addition, it is
assumed that all side granules are in perfect contact with
the corresponding rigid side walls of the channel and that
no pre-compression exists in the system; this is shown in
the top view of Fig. 1b.

It is interesting to note that the nonlinear acoustics of
this inclined granular channel differ qualitatively depend-
ing on the path of pulse transmission. Indeed, referring to
Fig. 1 we note that, following the application of an exter-
nal impulse to one of the boundaries and depending on
the direction of the pulse transmission (i.e., upstream, or
downstream, cf. Fig. 1a), the topological configuration of
the granules of the system changes, and this is anticipated

Fig.1 Schematic of the 2D granular channel considered in this work,
with blue axial granules composing the main homogeneous 1D gran-
ular lattice and red granules being symmetrically placed causing the
geometric tolerances due to gravity by the inclination angle ¢: a ste-

to affect the resulting acoustics. This is discussed in more
detail in Sect. 3.

Apart from the translational granular motions considered
in previous studies [33-36], the rotational degrees-of-free-
dom of the granules as well as friction effects should also
be included in this type of 2D setting, since not all Hert-
zian interactions are expected to occur through the mass
centers, resulting in friction torques acting on the granules.
This point was demonstrated clearly by Yang and Sutton in
[31], where it was shown that failure to do so would lead
to erroneous results. Accordingly, an angular velocity o is
defined for each granule, which is taken as positive when
the granule rotation is counterclockwise (cf. Fig. 2), and a
Coulomb friction model is assumed to model the frictional
effects. Finally, two additional simplifying assumptions are
made, namely, (i) that the inclination angle is sufficiently
small so that, although it is gravity that gives rise to the
asymmetric geometric clearances, it nevertheless does not
affect the nonlinear acoustics of the granular channel; and
(ii) that there is no friction between the granules and the base
of the channel (that would introduce complicated 3D effects
which are neglected in this work).

A new 2D granular interaction model was developed for
the present study having as its basis (but not being identi-
cal to) a similar prior model developed by Yang and Sut-
ton in [31]. The following formulation assumes 2D (planar)
motions (cf. Fig. 1b), so any non-planar effects are ignored.
We begin by describing the normal contact force between
two neighboring granules, e.g., granules i and j, as shown
in Fig. 2. Each granule is of spherical shape and composed
of a linear elastic material. Assuming small deformations
and imposing some additional simplifying assumptions that
ensure the validity of the model as in [37], we may consider
each granule as a point mass at its geometric center and

(®)  Downstream

o

Upstream

reographic view, and b top view showing the symmetry-breaking tol-
erances; the model follows the experimental fixture used in [33], all
spherical granules have identical geometrical and material properties,
and only 2D planar motions (in the xy-plane) are considered
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Fig.2 Schematic of two identi-
cal interacting granules under
compression, with one of the
granules having an additional
possible interaction with a rigid
side wall; the subscripts i, j

and k denote granule or wall
indices, the subscripts n and ¢
denote normal and tangential
force components, respectively,
and the possibility of granule
rotations is taken into account
through the instantaneous angu-
lar velocities o, and w;

describe the normal interactions between two contacting
granules in terms of a nonlinear (Hertzian) spring situated
in parallel to a viscous damper, and acting along an axis
connecting their centers [37-39]. We note that the viscous
damper models the dissipation force due to the material
damping of the granules. Then, the normal component of
the contact force acting on granule i by granule j is given by,
F,;= —Aijézf[j.znij + V00 My 1
where n;; is the normal unit vector pointing from the center-
of-mass of the ith granule to the jth (cf. Fig. 2), §, ; is the
deformation of the distance between centers under com-
pressive contact (where before deformation of this distance
was equal to 2R), and 5',,’,-] is the corresponding deformation
velocity. The first term in (1) represents the elastic contact
force based on the Hertzian contact law, with the contact
coefficient A; given by,

V2RE

The second term in (1) is the damping part with the damping
coefficient y, ; expressed as [31],
_ 1/251/4

Vo = @ (mAy) %6,/ 3)
where a,, is an empirical constant related to the coefficient of
restitution. Note that the damping coefficient increases with
normal compression 6,, ;.

Given the position vectors s; and s; pointing from the ori-
gin of the inertial reference frame to the center-of-mass of
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the ith and jth granules (cf. Fig. 2), respectively, the transient
position vector of the jth granule relative to the ith is given
by S =S —S; with the normal unit vector in that direction
givenbyn; =s;/ |sii" Accordingly, the normal deformation

between these two granules can be expressed as,
6, = max(2R — ’sij|,0) >0 @

in order to take into account the possibility of zero compres-
sive deformation in the absence of any compression between
granules, i.e., during granule separation; hence, no tensile
normal forces are allowed. Similarly, the relative velocity
vector of the jth granule with respect to the ith granule is
$; = 8; — §;, where overdot represents the differentiation with
respect to time. Hence, taking into account (4), the normal
deformation velocity is defined as,

5 =24 Si Mp
nij 0,

with dot denoting the inner product between vectors.

Considering now the tangential contact forces during
granular interactions, clearly these forces are due to non-
negligible granule rotations and give rise to frictional effects.
Such frictional contact forces introduce additional strongly
nonlinear and non-smooth effects in the granular acoustics,
that is, in addition to the Hertzian contact nonlinearities
originating due to compression of neighboring granules.
Adopting the Coulomb friction model, the tangential contact
force acting on the ith granule by the jth, is approximately
modeled by,

0, >0
5, =0 )
n,ij
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F--=ﬂF

Lij

| S1E0(0, )t (6)
where t;; is the tangential unit vector in the direction defined
by the cross product of the angular velocity (pseudo) vec-
tor and the normal vector n; (cf. Fig. 2), p is the coefficient
of friction, and o, ; is the tangential relative velocity of the
contact point in the jth granule with respect to that of the
ith (cf. Fig. 2),

85 = |8 = $) — R(@; + wpty] - t; @

In (7) it is assumed that the granules are rotating with instan-
taneous angular velocities ; and w;, respectively. Note that
the positive direction of the tangential relative velocity is
defined by the direction of t;, so that the direction of the
frictional force F, ; exerted on the granules is always oppo-
site to the relative motion.

The contact force between a granule and a rigid side wall
is similar to the contact forces between interacting granules
discussed above. Indeed, considering the previous formula-
tion and replacing the jth granule by the kth contact point
with a rigid side wall (cf. Fig. 2)—determined by the nor-
mal projection of the center of ith granule on the wall—
the resulting normal deformation and approaching velocity
between the ith granule and its neighboring side wall are
given by,

8, = max(R — |s; —s;|,0) 8)

: = $) - ny = —$;
5n,ik = { Ok k

Note that in this case, the kth contact point on the wall is a
particle-specific point which “moves” with the ith granule
so that the unit vector n; = (s, —s,)/|s; — s;| is always nor-
mal to the wall. Accordingly in (9), §; is always orthogonal
to ny, and hence irrelevant to the equation. The expression
(1) of the normal component of the interaction force in this
case still holds, while the normal Hertzian contact coeffi-
cient should be modified in order to account for the different
geometry such that,

2v/RE

3(1 —0?)

‘N, 06, >0
O =0 ©)

Ay = (10)

W,
J k

viscous() = —/ lz (Z VoiOngy - 87) + Z (AT SJ)] dr

With regard to the tangential component of the contact
force, the relationship (6) still applies, while the tangential
relative velocity of the contact point of the ith granule rela-
tive to the side wall is now approximated by,

byix ® [_Si - Rwitik] e (11

Taking into account that, in the 2D granular channels con-
sidered herein, the ith granule can be potentially in simulta-
neous contact with more than one neighboring granule and
the side wall, the resultant contact force acting on the ith
granule is the summation of the above-mentioned contact
forces. Accordingly, the governing equations of motion for
the ith granule can be expressed as,

m§; = (F,; +F )+ D (F,; +F )

j k

. (12)

I, =R Y (n; xF, )+ R (my xF, )
k

i

where I is the mass moment of inertia of the spherical gran-
ule. Assembling the equations of motion of all granules
provides the system of equations of motion of the entire
granular channel. In this study, this system of equations is
solved for zero initial conditions and an impulse applied to
either of the boundaries of the main homogeneous lattice
(cf. Fig. 1) using a fourth-order Runge—Kutta scheme with a
sufficiently small time step At compared to the characteristic
time scales of the granule dynamics and the pulse propaga-
tion in the granular channel.

In addition, we will be interested in energy computations
following the application of the impulse. To this end, the
instantaneous kinetic and potential energies of the entire
granular channel are expressed as,

KE. = Z( mls |+ 3107 )
(13)
=3 [S () 3 (2nt)]

where the summations are carried out over all granules.
Moreover, the energies dissipated by viscous and friction
effects up to time instant 7, W_;..,(#) and W, 0n(?), respec-
tively, are computed through the integrals,

(14)

Wfricti(m(t) = _/ lz <Z t,ij (S +sz l]) + z tik " (S +sztzk))>]

! J
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Note that a dissipative force can do only negative work on
the system. Hence a minus sign is applied in Eqs. (14) such
that the expressions for the dissipated energies W, ;. us()
and Wi;.ion (?) are always non-negative. Clearly, at each time
instant the summation of the instantaneous potential and
kinetic energies of all granules, as well as the total dissi-
pated energies up to that time instant, should remain equal to
the impulsive energy imparted to the system at time instant
t = 0+ (based on conservation of total energy) expressed by,

(K-E.+ P.E)+ Wiy + Wpiciion) = Input energy
—_— ——

T.E. he

as)

This energy criterion will be assessed at each time instant
in the computational studies to follow as a measure of the
accuracy of the numerical simulations.

3 Direction-dependent pulse propagation
in the granular channel

In this section, nonlinear pulse propagation in a granular
channel introduced by Pal et al. [33], which has similar con-
figuration to that shown in Fig. 1, is discussed. The granular
network presented in Figs. 3 and 4 is composed of a certain
number of axial granules (forming the main homogeneous

Fig.3 Experiment setup of

the granular channel [33]: a
downstream configuration and
b upstream configuration; the
clearances in the two configura-
tions are highlighted (the arrows
show the direction of primary
pulse propagation)

Fig.4 Schematic of the topol- (a _
ogy of the granular channel Direction of pulse propagation
with 5 pairs of side granules

granular lattice) with a varying number of pairs of side gran-
ules symmetrically placed along the sides of the main lat-
tice. The angle 6 denotes the angle between the axial direc-
tion and the line connecting the centers of a side granule
and its contacting axial granule (cf. Fig. 4). Assuming that
all granules are identical, when 6 > 60°, a periodic series
of clearances exists between the side granules and one of
their neighboring axial granules, such that each side granule
is initially in contact with only one axial granule and the
sidewall of the inclined granular channel. A steel support is
installed at the right (lower) boundary (cf. Figs. 1a, 4a) to
prevent the main granular lattice from rolling away [33] and
is regarded as a fixed rigid wall in our numerical model. The
upper boundary of the main granular lattice is free.

This system was first studied experimentally by applying
an impulsive load at either of the boundaries of the main
homogeneous granular lattice [33]. Following the applica-
tion of the load, pulse propagation is initiated in the sys-
tem, which, however, depends on the direction of energy
transmission. This is highlighted in Figs. 3 and 4, where
the downstream and upstream configurations of the granu-
lar channel with five pairs of side granules are considered.
The experiments performed in [33] for the downstream con-
figuration considered 21 axial granules, whereas the experi-
ments for the upstream configuration were carried out with
18 granules. The numerical model considered in this section
follows the experimental setups. Moreover, in this work we

Downstream configuration

studied in [33]: a downstream
configuration with 21 axial
granules and b upstream config-
uration with 18 axial granules;

a piezoelectric force sensor is
embedded in the 18th granule
in the downstream configura- (b)
tion, and an infrared detector

Upstream configuration

Direction of pulse propagation

is placed close to the upper

boundary of the main lattice in
the upstream configuration to T
measure the escape velocity of

the end granule JInfrared detector
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consider only primary pulse transmission, i.e., only the ini-
tial wave front generated following the application of the
impulsive load at the boundary, and we are not interested in
any reflections coming from the boundaries.

For an impulsive load applied at the upper boundary,
downstream pulse transmission occurs, and the topologi-
cal configuration of the system is depicted in Figs. 3a and
4a; whereas, for excitation at the lower boundary, upstream
pulse transmission occurs and the altered topological con-
figuration is depicted in Figs. 3b and 4b. The key difference
between these two configurations concerns the different
topologies of the clearances between the side granules and
their neighboring axial granules. That is, for downstream
pulse propagation, due to the existence of the clearances the
axial granules do not make contact with their neighboring
side granules until affer the primary pulse has been transmit-
ted downstream. However, for upstream pulse propagation,
the axial granules make contact and interact with the side
granules during the arrival of the primary pulse and before
it is transmitted upstream. As a result, downstream primary
pulse propagation in the main granular lattice is unaffected
by the side granules, whereas upstream primary pulse prop-
agation does get affected by the side granules.

Pal et al. [33] performed a series of experimental meas-
urements of primary pulse transmission in these two con-
figurations for different numbers of pairs of side granules.
Given an impulsive load at a boundary, a rapidly decaying
primary pulse propagating along the main lattice was experi-
mentally observed for the upstream configuration, while the
downstream configuration was shown to support the propa-
gation of Nesterenko solitary pulses as in a simple homoge-
neous granular lattice [1, 3]. Pal et al. [33] also performed
numerical simulations with the model that accounted only
for normal granular interactions but ignored rotational, fric-
tion and damping effects. As a result, their numerical predic-
tions overestimated the experimental measurements. In the
present work we revisit the systems studied in [33] and, by
including rotational and frictional effects, we achieve better
agreement between numerical predictions and experimen-
tal measurements, quantifying the importance of including
these effects.

The developed numerical model closely follows the
experimental granular channel studied in [33] where the
granules were arranged in an slightly inclined channel
(¢ ~ 2°) with a smooth Teflon holder ramp on the bottom
and confining steel walls on both sides. The spherical gran-
ules considered were made of stainless steel with a diameter
of 2R=9.525 mm, Young’s modulus £=200 GPa, density
p = 7670 kg/m®, and Poisson’s ratio v = 0.3. An impact
velocity of V;, = 0.62 m/s along the axial direction was
applied at the axial granule on either boundary, ensuring
elastic deformations throughout the pulse propagation. Cor-
respondingly, a total simulation time window of 0.4 ms with

a sufficiently small time step At = 2 X 10~7s is employed,
which has been shown to be sufficient to fully capture the
nonlinear pulse propagation of interest. As an approxima-
tion, the same empirical damping constant and friction
coefficient used in [31], a, = 6.313 X 103 and p = 0.099,
are applied, providing the effect of structural damping, and
the granule-to-granule and granule-to-wall friction forces,
respectively. Note that by assuming a small angle of incli-
nation (¢ = 2°), the component of gravity parallel to the
slope (the x-direction in Fig. 1b) is estimated to be about
1.2 x 1073 N, or about four orders of magnitude smaller than
the estimated interaction forces during pulse propagation;
hence, gravity effects are neglected. The friction between
the granules and the bottom holder of the channel is also
neglected so that planar acoustics are studied. It is clear that
due to symmetry the axial granules composing the main lat-
tice will move axially, despite the rotational and frictional
effects of the side granules, provided that the clearances in
the system are periodic and symmetrically placed on both
sides of the main lattice.

The position angle 8 (cf. Fig. 4) is set to 61°, so that the
time scale of the primary pulse propagation along the main
lattice is much smaller compared with the time it takes for a
side granule to cover the clearance and make contact with its
neighboring axial granule during downstream or upstream
pulse transmission. Equivalently, it is ensured that within the
time window considered in the simulations, the side granules
can interact only with a single neighboring axial granule.

1 T T T T
————— Numerical results without dissipation
09l - -# - Experimental results
: —3¥— Numerical results with dissipation

8 0.8
Re)
50 7& __________ i X
N el
3 ¥ ¥ ¥ ——=%
o L
g 0.6
o)
N
© 05 ]
£
S
Zz 04} b

03 ]

0.2 : : : :

0 1 2 3 4 5

Number of side pairs

Fig.5 Peak axial force at the 18th granule normalized by the peak of
the impulsive force acting on the first granule for downstream pulse
transmission: Numerical predictions obtained in [33] without includ-
ing any viscous, friction or rotational effects (dashed-dotted line),
compared to the experimental measurements [33] (dashed line with
standard deviation error bars) and the numerical predictions of the
current model that includes viscous, friction and rotational effects
(solid line)
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In the plot of Fig. 5 we depict the normalized peak axial
force at the 18th axial granule for downstream pulse trans-
mission and different numbers of side granule pairs. In this
configuration a primary Nesterenko solitary pulse is trans-
mitted in the main granular lattice following the applica-
tion of the impulsive load since, due to the configuration
of the clearances, the side granules do not affect primary

1 T T T T

\\. ----- Numerical results without dissipation
0.95 N\ - - - Experimental results _
® N \\ —¥— Numerical results with dissipation
808t
S
= 0.7
“—
o
206}
o
o
Q o5}
=
3
5 04
@)
031
0.2 - L . |

Number of side pairs

Fig.6 Output velocity of the first granule normalized by the velocity
V, = 0.62 m/s of the granule where the impulse is applied (upstream
pulse transmission): Numerical predictions obtained in [33] without
including any viscous, friction or rotational effects (dashed-dotted
line) compared to the experimental measurements [33] (dashed line
with standard deviation error bars) and the numerical predictions of
the current model that includes viscous, friction and rotational effects
(solid line)

Wfriclion

|~ - ~KE+PE+work

Energy(%)

0.2
Time(ms)

Fig. 7 Instantaneous energy partition in the impulsively excited gran-
ular channel for a downstream and b upstream pulse transmission,
including kinetic energy K.E. (red solid curve), potential energy P.E.
(blue solid line), dissipated energy due to viscoleastic effects Wy,
(dashed-dotted line), and dissipated energy due to friction Wi,gion
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pulse transmission. In the plot we compare the numerical
predictions obtained in [33] without including any viscous,
friction, or rotational effects in the experimental measure-
ments [33] and to the numerical predictions of the current
model that includes viscous, friction and rotational effects.
It is noted that the current model significantly improves the
accuracy of the numerical modeling and predicts normalized
force peaks that are much closer (within the range of the
error bars) of the experimental measurements.

In Fig. 6 we consider the normalized velocity of the first
granule of the main lattice in the upstream configuration
with different numbers of side granule pairs. Again, the
predictions of the current numerical model are compared
to the experimental measurements and the dissipation-less
and rotation-less numerical predictions of [33]. Our numer-
ical results better approximate the experimental measure-
ments, with remaining discrepancies likely due to unmod-
eled effects, e.g., the frictional effects on the granules due to
the Teflon base. We note that in this case the side granules
drastically affect the propagation of the primary pulse in
the main lattice, rapidly removing energy from it, and thus
resulting in a decaying propagating pulse. Hence, the output
normalized velocity decreases rapidly with increasing num-
ber of side granule pairs, confirming that the side granules
indeed play a significant role in the nonlinear acoustics in
the upstream configuration. It is interesting to note that there
are significant rotations of the side granules, giving rise to
friction torques.

To gain better insight into the nonlinear acoustics of pulse
propagation for both configurations, the simulation results
for the system with 5 pairs of side granules (cf. Fig. 4) using

L 1
0.2 0.3

Time(ms)

0.35 0.4

(dotted line); the energy components are normalized with respect to
the input energy E, = 1/2 mV?2, and conservation of total energy in
the simulation is verified at each time instant with maximum error
<0.1% (color figure online)
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Fig.8 Spatiotemporal evolutions of the velocities of the axial gran-
ules of the main lattice of the granular channel: a a Nesterenko soli-
tary pulse is generated in the downstream configuration with small
energy dissipation and then reflected back by the fixed lower end; b

the model that incorporates rotational and dissipative effects
are presented as examples. In Fig. 7 we depict the instanta-
neous kinetic and potential energies of the granular network,
as well as the dissipated energies due to viscous and fric-
tion effects. For the same configurations the spatiotemporal
evolutions of the velocities of the axial granules are depicted
in Fig. 8.

For the case of downstream pulse propagation, it can be
noted that the impulsive energy is mainly partitioned into
kinetic and potential energies (cf. Fig. 7a), which is the typi-
cal pattern featured in the propagation of the Nesterenko
solitary pulse in a 1D homogeneous granular lattice with no
side granules [1, 4, 5]. Meanwhile, the energy dissipated by
friction is zero, denoting non-existence of rotational effects
in this case, with all energy loss being caused by the viscole-
lastic dissipative effects. Indeed, in this case as the solitary
pulse arrives at the site of an axial granule and causes its
forward motion, there is no collision with the neighboring
side granules due to the existence of the clearance. It can
be concluded that the granular channel in its downstream
configuration behaves like a 1D homogeneous granular lat-
tice which supports the propagation of solitary pulses (cf.
Fig. 8a), and the side granules play no role in the acoustics;
it means that pulse propagation in the downstream configu-
ration is independent of the number of pairs of side granules.

In the case of upstream pulse propagation, however, the
existence of the side granules significantly affects the non-
linear acoustics, causing rapid decrease of the magnitude
of the transmitted pulse as parts of its energy “leak” to the
side granules as it passes through their sites (cf. Fig. 8b). In
this case there are rotations of the side granules (but not of

20 velocity(m/s)

(b)0.4
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0.35
0.30
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Time(ms)
o
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15 10 5
Bead index

a pulse with rapidly decaying magnitude is generated in the upstream
configuration, and the end (upper) granule is in free flight as the pri-
mary pulse reaches the upper free boundary

the axial granules), and as indicated in the plot of Fig. 7b
frictional effects dissipate as much as 26% of the total input
energy; at the same time viscous effects dissipate a mere
5.6% of the total input energy, which highlights the signifi-
cant role played by the rotational and frictional effects. Pre-
dictably, the frictional moments on the side granules cause
the transmission of a portion of the input energy to the
rotational dynamics of side granules. Actually, in this case,
about 2.85% of the input energy is retained by the side gran-
ules in the form of rotational kinetic energy. Moreover, there
is a slowing down of the primary pulse in this case, which
also highlights the strong dispersion of energy among the
granules of the channel, since the speed of the highly non-
linear solitary pulse decreases with decreasing energy [1].
The comparisons between the numerical results and the
experimental data, as well as the energy conservation within
the granular channel that was demonstrated in the previous
simulations elucidate the validity and accuracy of the devel-
oped numerical model, which provides us with a reliable
tool for precise modeling and predictive design of the acous-
tics of 2-D granular networks. In the next section we apply
this tool to highlight nonlinear acoustic non-reciprocity in an
extended version of the inclined granular channel.

4 Acoustic non-reciprocity in the granular
channel

The discussion in Sect. 3 has shown that pulse propagation

behavior in the 2D inclined granular channel can be highly
non-reciprocal and depends on the point of application of the
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applied impulse. Hence, the nonlinear acoustics can switch
from a downstream solitary pulse to an upstream rapidly
decaying pulse, depending on the “activation” of the side
granules which can absorb and locally dissipate a signifi-
cant portion of the energy of the primary propagating pulse.
Moreover, it is the asymmetric topology of the periodic
clearances that gives rise to this acoustic non-reciprocity.
It follows that a natural extension of our study is to employ
the interesting acoustical features of the previous inclined
granular channels to achieve a “diode-like” granular device
that supports only one-way tunable (with energy) pulse
propagation.

In this section, we present a simple, practically realiz-
able extension of the granular channel depicted in Fig. 1 in
the form of a 2D granular network with diode-like behav-
ior. The network is shown in Fig. 9. Adopting the previous
nomenclature, it contains 33 identical spherical granules
of which 13 are axial granules—forming the homogene-
ous main lattice—and the remaining form 10 pairs of side
granules. The granules are assembled in an inclined channel
with adjustable width greater than 2\/§R+2R, which permits
the existence of a periodic series of asymmetric clearances
between the side granules and the axial beads, as discussed
previously. The angle 6 and the size of the clearances can
be simply controlled by altering the width of the channel,
with this relationship being depicted in Fig. 10. There are
two limiting values for 8: At the lower limiting value 8 = 60°
the clearances have zero widths, whereas at the upper limit-
ing value 8 = 90° the side granules have no effect on the

Fig.9 Schematic of the non- (a)
reciprocal granular channel:

a teflon base with adjustable

width and cross-sectional view

of the granules in the channel, ~
and b top view of the granular -~
channel topology; free ends

are considered, and to test

non-reciprocity the impulse

is applied to either one of the

boundary granules of the main

homogeneous granular lattice;

the velocities of the axial gran-

ules marked by stars (*) and the

side granules marked by crosses

(X) are considered in Figs. 13 (b)

and 14
Downstream

@ Springer

90°

75}

60°

@ +2J§)}e l | ’ ‘ 6R
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Fig. 10 The relationship between the width D of the channel and the
angle 6: By adjusting the width, 0 as well as the tolerance can be con-
trolled (the clearance asymmetry in the channel can be “turned off”
by setting D = (2 4+ 24/3)R corresponding to the lower limiting value
0 = 60°)

motions of the axial granules. Moreover, a new feature of
this network compared to that considered in the previous
section is that now the side granules are also in contact with
their neighbouring side granules (that is, in addition to the
axial granules), which makes it possible for solitary wave
propagation in the arrays of the side granules.

Adjustable width D
7)< >

3
7 v/

pstream
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A slight tilt of the device at one of its ends (i.e., giv-
ing it a small inclination angle) produces the two distinct
downstream and upstream configurations discussed in the
previous section (cf. Fig. 9b). In this case, the component of
gravity acting along the small slope can provide a small but
sufficient force to ensure the stability of both configurations
in their static condition, while it is negligible in the nonlinear
acoustics considering the small inclination. Under impulse
excitation the primary pulse in the upstream channel config-
uration will collide with the side granules and continuously
transfer energy to them, which results in a rapidly decaying
pulse propagating along the axial granular lattice. However,
in the downstream channel configuration the side granules
will not be excited by the propagating primary pulse which
again will be in the form of the Nesterenko solitary pulse;
hence, the granular channel will behave like a 1D homoge-
neous granular lattice which supports a higher amplitude
primary propagating pulse. In other words, non-reciprocal
pulse propagation will be realized, which depends solely on
the direction of the pulse propagation, i.e., on which of its
free ends is the main homogeneous granular lattice excited
by the impulse.

We now proceed to study non-reciprocal pulse trans-
mission in the granular channel for varying initial veloci-
ties of the end granules of the main lattice, in the range
0.1 m/s £V, < 3.0 m/s. The material and geometric param-
eters of the granules are identical to those of the previous
section, as is the angle 8 = 61° (cf. Fig. 9b). The selected
range of initial velocities ensured that the elastic strains of
the granules and contact forces during granular interactions
are within the elastic limit of the material and fulfilled the
requirements of the Hertz contact law, respectively. All inter-
action forces between axial and side granules during primary

(a)
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Energy(%)
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0.2 0.3
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Fig. 11 Energy partition in the granular channel for a downstream
and b upstream primary pulse propagation for V,, =1 m/s and
0 = 61°; each energy component is normalized by the input energy

pulse propagation are estimated to be orders of magnitude
larger than the component of gravity along the slope of the
channel so that gravity effects can be safely ignored.

In Figs. 11 and 12 we consider primary pulse transmis-
sion in the downward and upward directions for impulses
applied to the upper and lower granules, respectively, of the
homogeneous main lattice. The initial velocity of the excited
granules following the application of the impulse is equal to
Vo, = 1 m/s. In these plots we study the energy partition of
the primary pulse in each case, as well as the spatiotemporal
velocity evolutions of the axial granules. In addition, the
velocity profiles of selected axial granules situated in the
main lattice (cf. Fig. 9) along the direction of wave propa-
gation are shown in Fig. 13, while the velocities of all axial
granules at the end of the simulation period (after which
the axial granules are in free flight) for both upstream and
downstream configurations are compared in Fig. 14. Moreo-
ver, the corresponding animations of energy transmissions
and motions of the granules during pulse transmission are
now included in the Supplementary Material (see SM vid-
eos). The non-reciprocal, direction-dependent primary pulse
transmission in the granular channel is evident. Indeed, in
the downstream direction (cf. Figs. 11a, 12a), a Nesterenko
solitary wave is generated since the side granules have no
effects on the nonlinear acoustics. The measured veloci-
ties (cf. Fig. 13—solid lines) exhibit the typical shape of
the Nesterenko solitary wave, featuring a single-humped
waveform with fast decaying tails [1, 37]. As the solitary
propagates, the peak velocity of the corresponding granule
slightly decreases due to the dissipative effect of damping.
Eventually the last (13th) granule of the main lattice carries
away 90% of the input energy in the form of kinetic energy
with escape velocity equal to 0.95 m/s (cf. Fig. 14).

KE+PE+work|

Energy(%)

0.3
Time(ms)

E, = 1/2 mV?2, and conservation of total energy in the simulation has
maximum error <0.1% (the notation of Fig. 7 holds)
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Fig. 12 Spatiotemporal evolution of the instantaneous veloci-
ties of the axial granules in the non-reciprocal granular channel for
Vo =1m/s and § = 61°: a a Nesterenko solitary pulse with nearly
preserved amplitude is propagating in the downstream direction with
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Fig. 13 Velocity profiles of the selected axial particles marked by
stars in Fig. 9 for V;, = 1 m/s and @ = 61°; downstream primary pulse
propagation corresponds to solid curves, and upstream to dash-dotted
curves

Conversely, in the upstream direction, strong attenuation
of the primary pulse is deduced (cf. Fig. 12b) as intense
interactions with the side granules drain a large fraction of
the transmitted energy from the axial lattice. This energy is
either dissipated (35.5% of input energy) by friction, or is
transformed into kinetic energy of the side granules, being
continuously reflected back into the axial lattice in the form
of kinetic energy with “negative” velocities (cf. Figs. 12b,
13, 14). As a result, the maximum velocity of the axial gran-
ules decreases significantly as the primary pulse propagates
along the main lattice, while the escape velocity of the last
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Fig. 14 Velocities of all axial granules at the end of the simulation
period for V;, = 1 m/s and 6 = 61° for downstream (black solid line)
and upstream (red dash line) primary pulse propagation (color figure
online)

(13th) granule of the main lattice is relatively small (less
than 0.2 m/s). This highlights the diode-like behavior of
the non-reciprocal granular channel of Fig. 9. Apart from
their smaller amplitudes, the responses of the axial gran-
ules for upstream propagation obviously lag behind their
counterparts for downstram propagation (cf. Fig. 13), denot-
ing a slowing down of the primary pulse and highlighting
the strong dispersion of energy in the main lattice; this is
explained by the fact that the speed of the highly nonlinear
pulse has a strong dependence on energy.
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Fig. 15 Partition of the total kinetic energy of the granular channel
for upstream pulse transmission for V, = 1 m/s and 6 = 61°: The
kinetic energy of axial granules is denoted by the blue solid curve, the
translational kinetic energy of the side granules by the black dashed
line, and the rotational energy of side granules by the black dash-
dotted line; all energies shown are normalized by the input energy
and the detail shows the steady state value reached by the rotational
kinetic energy of the side granules from 0.25 to 0.3 ms

To show the strong influence of the side granules on the
upstream primary pulse transmission, in Fig. 15 we detail
the amount of kinetic energy retained in the axial lattice,
as well as the kinetic energy captured in the side granules
for upstream pulse propagation. In Fig. 16 we depict the
spatiotemporal evolution of the velocity components in
the axial (x-) direction of the side granules. Apart from the
energy dissipated (35.5% of the input energy) mainly due
to frictional effects, we note that the side granules capture
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Fig. 16 Spatiotemporal evolution of the axial (x-) components of
the instantaneous velocities of a all ten side granules situated on one
side of the main (axial) lattice, and b the three selected side granules

as much as 37% of the input energy in the form of kinetic
energy, which is more than the amount retained by the main
(axial) homogeneous lattice (which captures about 27% of
the input energy). In fact, among the energy retained in the
main lattice, only about 4% of the input energy is transim-
mited up to the end of the channel by the primary pulse,
while the remaining 23% of the retained energy is eventu-
ally reflected back (cf. Fig. 14) partly by the side spheres.
Meanwhile, it is worth mentioning that the rotational energy
of the side granules reaches its maximum at around 0.1 ms
due to the torques caused by the frictional forces, and then
begins to decrease until it reaches a small (but non-zero)
constant level. As the primary pulse propagates, the upper
side granules, while in contact with each other, are forced
to rotate counter-clockwise by the strong interaction forces
applied by the axial granules. Subsequently, the resulting
friction torques generated as neighboring in-contact side
granules rotate in the same direction, dissipate a part of their
rotational energy. More interestingly, it can be observed that
two solitary waves are generated in the side granular lattices,
while the amplitude of the first solitary wave increases as it
propagates, indicating that the side granules can continu-
ously “drain” the transmitted energy from the axial lattice.
To quantify the acoustic non-reciprocity that occurs in
the granular channel, in Fig. 17 we compare the output
velocities of end axial granules (viewed as system outputs)
in the downstream and upstream configurations with vary-
ing initial velocity V,, of the impulsively excited granules
(viewed as system inputs). From an energy perspective, the
end granule for downstream pulse propagation can retain
nearly 90% of the input energy, while less than 4% of the
input energy is transmitted to its counterpart in the upstream
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marked by crosses in Fig. 9, for V, =1 m/s, § = 61° and upstream
pulse propagation; the formation of two distinct solitary waves in the
axial direction is clear
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Fig. 17 Acoustic non-reciprocity in the granular channel: Output
velocities of the end granules in the downstream and upstream config-
urations for varying input velocity V(, and 8 = 61°; the output velocity
is measured at the end of each simulation after which the end gran-
ule is in free flight and will never interact again with its neighboring
other axial granule

pulse propagation. It can be concluded that the nonlinear
acoustics of this system is substantially dependent on the
direction of pulse transmission.

As mentioned previously, the acoustic non-reciprocity of
the granular channel is solely due to geometric effects or,
more specifically, to the periodic series of symmetry-break-
ing clearances between the side granules and the axial gran-
ules of the main homogeneous lattice. Interestingly enough,
this non-reciprocity can be tuned (and even completely
eliminated) by simply varying the width of the channel,
or, equivalently, by varying the angle 8 > 60° (cf. Fig. 9b).
In turn, this controls the widths of the periodic clearances
and tunes the acoustic non-reciprocity in the system. We
note that the case & = 60° corresponds to the perfectly sym-
metric granular network which is reciprocal, as in that case
all clearances are eliminated (cf. Fig. 10). It follows that
nonlinear acoustic non-reciprocity in the granular channel
can be tuned both by energy (i.e., varying the intensity of
the applied impulse) as well as by the width of the channel
(i.e., by varying the angle 0, and, hence, the widths of the
clearances).

To highlight the tunability of the nonlinear acoustic non-
reciprocity with respect to the angle 6 (or the width of the
granular channel), in Fig. 18 we depict the output velocities
of the last granules in both configurations for varying angle
60° < 6 < 90° and fixed input velocity V,, = 1 m/s. For the
reciprocal case 8 = 60°, predictably the two configurations
yield the same result, but a small increase in € breaks the
acoustic reciprocity in the system. For downstream pulse trans-
mission when @ is sufficiently small (< 60.05° in this case) the
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Fig. 18 Acoustic non-reciprocity in the granular channel: Output
velocities of the end granules in the downstream and upstream con-
figurations for input velocity V, = 1 m/s and 60° < 6 < 90°; the out-
put velocity is measured at the end of each simulation after which
the end granule is in free flight and will never interact again with its
neighboring other axial granule; inset shows a detail of the results for
60° <6 <60.1°

widths of the clearances are quite small, so some of the axial
granules can interact with the side granules during primary
pulse propagation, leading to energy leaking to the side gran-
ules. However, the larger the clearance, the less energy leaks
to the side granules, and therefore higher output velocity is
achieved. Moreover, when 8 > 60.05° it is no longer possible
for the axial granules to collide with the side granules within
the considered time window, and the output velocity remains
constant regardless of the varying angle; this is the case of
Nesterenko solitary pulse propagation in the downstream
direction. Non-reciprocity is eliminated at the higher limiting
value 6 = 90° where the side granules cease to interact with
the axial ones.

Similarly, for upstream pulse transmission and 6§ < 60.05°
the side granules can interact with their rear axial granules
and transfer a part of their energy to the axial lattice. Accord-
ingly, the output velocity decreases with increasing 6 at first.
However, for 8 > 60.05° the clearances are sufficiently large
so that the side granules retain their energies without transfer-
ring any energy to the main lattice. In this case, the primary
interaction between the axial granules and the side ones domi-
nate the upstream pulse propagation, and the angle € plays an
important role. Understandably, in two-granule collisions, the
larger the incident angle €, the more energy will remain in the
incident granule. Hence, the increase in 6 yields an increase
in output velocity until 8 gets close to the other limiting value
of 90° after which the side granules have no influence on the
primary pulse propagation. It is worth mentioning that the
“critical” angle (around 60.05° in this case) is dependent on
the input velocity.



Pulse transmission and acoustic non-reciprocity in a granular channel with symmetry-breaking...

Page150f16 20

Additional animations of energy transmissions and motions
of the granules during upstearm and downstream pulse trans-
mission can be found in the Supplemental Information [40].
These results highlight further the non-reciprocal granular
dynamics of the system considered.

5 Concluding remarks

In this study, we numerically examined pulse transmission in
an inclined 2D granular channel composed of a main homo-
geneous uncompressed granular lattice with several pairs of
side granules. This system was first studied in [33]. Assum-
ing that all spherical granules are identical and depending on
the width of the channel, it is possible to induce a symme-
try-breaking periodic array of clearances between the side
granules and some of their neighboring granules in the main
lattice. In turn, these clearances yield interesting non-recip-
rocal phenomena in the nonlinear acoustics of this system
under impulsive excitation. Given that the asymmetrically
placed clearances yield two distinct channel configurations,
namely a downstream and an upstream configuration, the
channel supports either Nesterenko solitary pulses that trans-
mit downstream or strongly decaying pulses that transmit
upstream. In the latter case, a significant amount of energy
gets continuously transferred from the main lattice to the
side granules as the primary propagating pulse in the main
lattice propagates upstream. It follows that the passive diode-
like granular channel considered is doubly tunable not only
by energy, as are all granular networks due to their strongly
nonlinear dynamics and acoustics, but also by adjusting the
width of the channel, i.e., by varying the size of the clear-
ances and changing the level of asymmetry. Hence, the pro-
posed system provides an interesting framework for study-
ing strongly non-reciprocal acoustics in a strongly nonlinear
acoustical system.

To accurately model and study the acoustics of this sys-
tem we developed a mathematical model of the 2D granular
network that takes into account the rotational dynamics of
the granules, friction effects and material damping of the
granule material. This model is a variant of the similar mod-
els presented in [31, 38, 39]. We validated the 2D granular
model by revisiting the experimental results reported in [33]
and showing much improved convergence compared with a
dissipation-less prior model. The model enabled not only
the detailed parametric study of nonlinear acoustic non-
reciprocity in the granular channel with asymmetrically
placed clearances, but also, through energy considerations,
revealed the significant irreversible energy exchanges from
the main lattice to the side granules for upward primary
pulse transmission. In fact, it is precisely this continuous
leaking of energy to the side granule pairs that causes non-
reciprocity in the acoustics of the granular channel. This

makes it possible to switch the type of pulse propagation
in the granular network from a rapidly decaying pulse to
a solitary pulse by simply changing the direction of pulse
propagation and altering the lattice network topology.

The model and results herein contribute toward the pre-
dictive design of advanced acoustic granular devices capa-
ble of passively controlling mechanical energy flow. As
such they may have important applications in engineering
practice, e.g., as shock mitigators or diode-like logic ele-
ments in granular acoustic circuits. In addition, they may
lead to better modeling and predictive design methods for
granular interfaces and for 2D acoustic topologies such as
branched granular networks, the interesting properties of
which have been studied in previous works with modeling
based on simplified effective particle-type models.
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