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Abstract

The Devonian Period witnessed the expansion of vascular land plants and an atmospheric oxygenation event associated
with enhanced organic mass burial. The deposition of organic-rich shales (e.g. black shales of the Marcellus subgroup)
and several biotic crises in the marine realm have been linked to Devonian ocean anoxia. However, it is not clear how redox
conditions evolved in different parts of the water column in such a context of dynamic changes in the atmosphere-ocean sys-
tem. To address this problem, we use the bulk carbonate I/Ca proxy on core samples from Yates County, NY, in order to
reconstruct the water column redox history through the Onondaga Limestone into the lower Marcellus shale. On the secular
scale, the range of I/Ca values support the notion of a Devonian rise in atmospheric oxygen, relative to time intervals earlier in
the Paleozoic. In terms of Eifelian Stage stratigraphic trends, I/Ca ratios are generally stable and high in the Onondaga For-
mation but show large fluctuations in lower Marcellus strata. Low I/Ca ratios are found near the onset of organic-rich shale
deposition indicating relatively reducing subsurface waters. The pattern of redox changes resembles that of contemporaneous
sea-level changes. Finally, the reconstructed oxygenation changes are correlated to three biotic transitions in Devonian marine
systems.
© 2019 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION
1.1. The Devonian Earth system and Appalachian Basin

The Earth system went through important changes dur-
ing the Devonian Period. The diversification of vascular
land plants during the Mid to Late Devonian and the
development of larger and deep root and seed systems sig-
nificantly altered weathering and sedimentary processes, the
hydrologic cycle, and global climate (Gensel and Andrews,
1984, 1987; Algeo and Scheckler, 1998; Meyer-Berthaud
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et al., 1999; Stein et al., 2007). Enhanced preservation and
burial of biomass decreased the sink of atmospheric
oxygen (Kump, 1988; Lenton et al., 2016). The updated
GEOCARBSULF model and compilation of inertinite
abundance in coal all suggest a rise in atmospheric oxygen
0O, during Mid Devonian time (Glasspool and Scott, 2010;
Krause et al., 2018). A statistical analysis of iron specia-
tion and biotic data (Sperling et al., 2015) suggests
that pO, might have risen to modern levels during the
Devonian. This pO, rise is also supported by Mo isotope,
I/Ca and Ce anomaly signals recorded in Silurian to
Devonian strata (Dahl et al., 2010; Wallace et al., 2017;
Lu et al., 2018).
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A range of relatively moderate biocrises to well-known
extinctions also occurred in Devonian marine ecosystems.
At the Frasnian-Famennian stage boundary (372 Ma;
Becker et al., 2012), up to 80% of marine species were
impacted by a major biotic crisis, namely the Kellwasser
event (Hallam and Wignall, 1997). The Hangenberg events,
which occurred at the Devonian-Carboniferous boundary
(359 Ma), witnessed losses of over 50% vertebrate diversity
and is recognized as a “bottleneck” in vertebrate evolution
(Sallan and Coates, 2010). The Eifelian-Givetian Kacak
biotic event is recorded globally and associated with sea
level rise, deposition of anoxic black shales or limestones,
and pelagic faunal turnovers (House, 1996; DeSantis
et al., 2007). In the eastern U.S. pre- Kacak turnovers, such
as the Bakoven and Stony Hollow events, are recorded as
well (DeSantis and Brett, 2011) and oceanic anoxia is also
linked to these biotic events in association with climate
changes (Koch and Boucot, 1982; Algeo and Scheckler,
1998; McGhee et al., 2013; White et al., 2018).

A thick succession of Devonian-age mudrocks in the
northern Appalachian Basin, eastern North America,
comprises a highly detailed stratigraphic sequence (Baird
and Brett, 1986; Griffing and Ver Straeten, 1991; Brett
and Baird, 1994; Ver Straeten et al., 1994; Murphy
et al., 2000; Werne et al., 2002; Sageman et al., 2003;
Ver Straeten, 2007; Brett et al.,, 2011; Ver Straeten
et al., 2011a; Ver Straeten et al., 2011b). It provides an
ideal case study region for investigating depositional pro-
cesses and organic carbon preservation in black shales
within a detailed litho- and chronostratigraphic frame-
work, with superb paleontological records, and a growing
dataset of geochemical proxies (Arthur and Sageman,
2005; Brett et al., 2011; Ver Straeten et al., 2011b). The
dominant controls on the deposition of black shales in
Devonian Appalachian Basin have been attributed to ris-
ing global sea-level with tectonic contributions (Ver
Straeten et al., 1994; Werne et al.,, 2002; Sageman
et al., 2003; Arthur and Sageman, 2005; Brett et al.,
2011; Kohl et al., 2014).

The estimates of bottom water redox state were formu-
lated on the basis of various proxies, such as the concentra-
tions and elemental ratios of redox sensitive elements (Mo
and U), the degree of pyritization, 5>*S of syngenetic pyrite,
Mo isotopes, and pyrite framboid size distributions
(Murphy et al., 2000; Werne et al., 2002; Sageman et al.,
2003; Algeo, 2004; Rimmer, 2004; Gordon et al., 2009;
Ver Straeten et al., 2011b; Lash and Blood, 2014; Blood
and Lash, 2015; Chen and Sharma, 2016). A recent study
using a high-resolution chemostratigraphic analysis indi-
cates a close relationship between the microbial sulfate
reduction in organic rich layers and the formation of pyrite
due to the diffusive flux of H,S (Liu et al., 2019). The dis-
covery of agglutinated benthic foraminifera in these
sequences provides evidence that anoxia was not persistent
and that there was at least episodic oxygenation (Schieber,
2009). Fe-speciation data consistent with oxic conditions
(Boyer et al., 2011), large pyrite framboids (diameter
>10 um) (Blood and Lash, 2015), and low Fe/Al ratios

<0.55 close to modern oxic sediments (Lash, 2016), are also
consistent with episodic benthic oxygenation during deposi-
tion of the Marcellus strata.

In the context of this complex history of global/re-
gional paleo-redox, this paper aims to provide new
insights into the upper water redox conditions through
Onondaga to lower Marcellus strata by I/Ca. We employ
the following redox terms and their corresponding oxygen
levels: oxic (>2 ml O,/L), dysoxic (~0.2-2ml O,/L),
suboxic (0-0.2ml O,/L), anoxic (no O,, no H,S), and
euxinic/sulfidic (no O,, with free H,S present) (Hofmann
et al., 2011).

1.2. Iodine paleo-redox proxy

Iodine has a low average concentration of only
~300 ppb in Earth’s crust, and ~70% of the global iodine
inventory is thought to exist in marine sediments
(Muramatsu and Wedepohl, 1998). The average iodine con-
centration in seawater is nearly constant at ~0.46 umol/L
(Elderfield and Truesdale, 1980). Iodine is an important
trace element in biogeochemical and redox reactions
(Kiipper et al., 2011). The concentrations of iodate (103)
and iodide (I7), two thermodynamically stable inorganic
species in seawater, are thought to be controlled by primary
productivity in the surface ocean (Elderfield and Truesdale,
1980; Chance et al., 2010) and by redox conditions in the
water column (Wong and Brewer, 1977; Farrenkopf and
Luther III, 2002). Iodate is the main iodine species in
well-oxygenated waters (Truesdale and Bailey, 2000), while
iodide dominates at depth in anoxic basins (Wong and
Brewer, 1977) and in anoxic porewaters (Kennedy and
Elderfield, 1987a,b).

Iodate, not iodide, is the only species incorporated into
carbonates (Lu et al., 2010) by potential substitution of 103
for CO3~ (Podder et al., 2017). I/Ca ratios in bulk carbon-
ate have been used as a novel proxy to constrain redox con-
ditions in the upper part of water columns over a range of
time scales (e.g. Lu et al., 2010; Hardisty et al., 2014; Zhou
et al., 2015; Lu et al., 2016). A decrease in bulk carbonate
I/Ca commonly represents development of O,-depleted
conditions in upper waters, as iodate is converted to iodide.
Other factors may partially contribute to changes in I/Ca,
such as the upwelling of iodide-rich anoxic waters, iodate
loss from mixed-layer waters in high-productivity areas,
diagenetic alteration, and mixing with authigenic carbon-
ates (e.g. Zhou et al., 2015). I/Ca ratios of carbonate rocks
represent a minimum value at the time of deposition — as
understood so far, diagenetic processes can only decrease
the original ratio (Hardisty et al., 2017). Recently, this
proxy has been applied in studying redox conditions during
the Paleozoic (e.g. Edwards et al., 2018; Young et al., 2019).
A threshold value of I/Ca (2.5 pmol/mol) was proposed by
Lu et al. (2016) to indicate the presence of O,-depleted con-
dition in the upper water. However, this threshold value is
based on Holocene planktonic foraminifera. Whether it can
be used in ancient bulk carbonates remains an open
question.
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2. GEOLOGICAL BACKGROUND AND SAMPLING
2.1. Study site and stratigraphy

Devonian mudrocks in New York State are part of the
Catskill Delta Complex. The development of this sedimen-
tary package was closely related to the Acadian Orogeny,
during which the collision of multiple terranes led to the
uplift a mountain belt from east Greenland to Alabama, ter-
med the Acadian orogen (Rast and Skehan, 1993; van Staal
et al., 2007; van Staal et al., 2009). Paleogeographic recon-
struction of North America in the Mid Devonian shows that
the Appalachian Basin was a retroarc foreland basin sys-
tem/epicontinental sea, and was connected to the global
open ocean (Rheic Ocean) (Blakey, 2016 and Fig. 1). Water
depth at the time of deposition of the black shales was prob-
ably tens of meters to two hundred meters maximum, shal-
lowing in the Late Devonian onto arches separating the
Appalachian Basin from cratonic basins (Schieber, 1994).

We obtained core samples from a 28 m thick interval of
a 5cm diameter core (Morton Salt Core, API # 31-123-
13174-00-00), in the collections of the New York State
Museum. The drilled well is located in the town of Starkey,
Yates County, western New York State (42.571507°N,
76.934513°W). The strata analyzed in this study comprise
lower Middle Devonian rocks of the Eifelian Stage and
basal-most Givetian Stage. The classic Onondaga Forma-
tion consists of a range of limestone lithologies from grain-
stone to carbonate mudstone, with minor amounts of chert
and shale. In contrast, overlying Marcellus strata in central
New York consist primarily of black to dark gray shales.
Lower to middle Marcellus strata in the area also feature
lesser amounts of limestone, occurring as well-defined beds,
laminae of pelagic or low-oxygen adapted benthic shells,
and concretions. Upper Marcellus strata are generally very
poor in carbonate content.

Since the 1930s (Cooper, 1930) Marcellus strata in New
York have been defined as a chronostratigraphic unit,
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bounded by time-significant surfaces. In New York the
term Marcellus includes all marine strata in the state under-
lain by the Onondaga Formation and overlain by the
Skaneateles Formation, including basinal dark/black shales
to shoreface sandstones. Associated with a thickness
approaching >580 meters in eastern New York, Ver
Straeten et al. (1994) and Ver Straecten and Brett (2006)
redefined Marcellus Formation of Cooper (1930) as a sub-
group of Hamilton Group in New York, and elevated the
Union Springs and Oatka Creek members to lower and
upper formations within the Marcellus subgroup. Oatka
Creek-age strata in eastern New York’s thick, basinal to
shoreface facies are assigned to a Mount Marion Forma-
tion. The term Cherry Valley is applied here to strata specif-
ically assigned to that name in New York, which is only
correlative with the upper part of the Purcell Member in
the central to southern Appalachian Basin.

Stratigraphy of the Morton Salt Core of this study, low
to high, comprise the Onondaga Formation (Edgecliff,
Nedrow, Moorehouse and Seneca Members), the Union
Springs Formation (Bakoven Member) and the lower part
of the Oatka Creek Formation (Hurley, Cherry Valley
and most of the overlying East Berne Member). The top
of the study interval falls at the base of a key marker
bed, termed the Dave Elliott Bed (Ver Straeten, 1994). Core
samples in this study were obtained from all but a basal
phosphatic, sand-rich 0.25 m of the 16.25 m thick Onon-
daga Limestone, and from overlying 12.35 m of lower Mar-
cellus strata. The Marcellus strata of this study consist of
(1) black shales, often calcareous, with thin dacryoconarid
shelly limestone laminae and concretionary limestones
assigned to the 9.7m thick Union Springs Formation
(Bakoven Member), and (2) lowermost strata of the
Oatka Creek Formation, consisting of 1.15m of bedded
limestones of the Hurley and Cherry Valley Members
and ~1.5m of shales of the East Berne Member. The
Eifelian-Givetian stage boundary falls within the East
Berne Member in the core.
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Fig. 1. Paleogeographic maps of North America and New York State in the Mid Devonian Period. North America Map is based on Blakey
(2016) and the New York State Map is based on Dennison (1985), Werne et al. (2002), and Sageman et al. (2003). Red circle denotes location
of the core used in this study; yellow circle denotes the Greene County core in southwestern Pennsylvania from Lash and Blood (2014)
discussed in the text. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
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2.2. Carbonate materials

Union Springs Formation carbonates largely consist of
thin limestones of micrite and shelly material of small con-
ical dacryoconarid/styliolinid shells, with varying concen-
trations of thin-shelled brachiopods, bivalves and
ostracodes. In central New York, in the study core and
three additional sites, Arroyave (2014) described five
macro-lithofacies (MLs) in the Union Springs Formation.
While ML facies 1-5 predominantly occur low to high
through the formation, respectively, the three middle facies
interfinger in intervals. Limestone is more prevalent in
ML1, ML4 and MLS5 facies of Arroyave (2014). Carbonate
in ML1, at the bottom of the formation, largely consists of
matrix cement and recrystallized microspar mud, and silt-
size calcareous sediments (Fig. Sla). ML4 carbonates con-
sist of generally thin-bedded fossiliferous limestones that
occur scattered through relatively organic-rich siliciclastic
shales (Fig. S1b). MLS5 carbonates, found in the upper part
of the Union Springs in the core and nearby sites, occur as
largely concretions which sometimes coalesce to form lenses
to continuous knobby beds of limestone. These are less fos-
silifereous, and are interbedded with silty siliciclastic mud-
stones (Fig. Slc).

In contrast, Onondaga Formation limestones are largely
bioclastic in character. Coarser grainstones to packstones
occur in eastern and western New York, where finer
grained facies occur in the upper lower and upper parts
of the formation. In the study area of central New York,
Onondaga Limestones are overall finer grained, with only
minor siliciclastic mudstones in the lower middle part of
the unit. Central New York Onondaga strata were depos-
ited in a central trough that extends southward into the dee-
per central Appalachian Basin. Petrographic studies by
Lindholm (1967 and 1969) showed that finest-grained
Onondaga carbonates largely consist of silt-size calcareous
sediments (“‘calcisiltite”), and not micrite, in contrast with
Union Springs limestones. Union Springs carbonates that
are most analogous to fine-grained Onondaga limestones
are represented by ML1 facies of Arroyave (2014), in the
base of the Union Springs (Fig. Sla). Furthermore, dacry-
oconarid shells were found throughout the Onondaga lime-
stones (Frappier et al., 2015).

3. METHODS
3.1. Bulk carbonate I/Ca

A total of 92 rock samples were collected at 10-70 cm
intervals. Most of the carbonate in shaly samples are fine
grain materials. Rock chips containing any visible nodules
or fossils were avoided for generating powders. 2-4 mg of
powered samples were weighed out on a microgram bal-
ance, and then rinsed with MilliQ water to remove any
potential dissolved iodine attached on the surface of the
samples. Carbonate fractions in the samples were dissolved
with 3% (v/v) HNOj3 and separated from residuals immedi-
ately after samples stop bubbling. This sample dissolution
procedure only exposes non-carbonate phases to diluted
acid for <5 minutes. 0.5% tertiary amine was added to help

stabilize iodate. Measurements of iodine were performed on
a quadrupole inductively coupled plasma-mass spectrome-
ter (ICP-MS, Bruker M90) at Syracuse University. The pre-
cisions are typically better than 1% for '*’I, and they are
not reported individually for each sample. The detection
limit of I/Ca is usually better than 0.1 pmol/mol. The
long-term accuracy is guaranteed by frequently repeated
measurements of the standard reference material JCp-1
(Lu et al., 2010).

3.2. TOC and $'3C analyses

Stable isotope analyses for 613C0rg were performed using
an Elementar Isotope Cube elemental analyzer coupled to
an Isoprime 100 stable isotope mass spectrometer. Decar-
bonated samples were weighed and sealed in tin boats for
isotopic analysis and combusted at 1100 °C (oxidation fur-
nace) and 650 °C (reduction furnace). Reference gases were
calibrated relative to international reference standards
TAEA-C6 sucrose (—10.80%0) and NIST-1547 peach leaves
(—26.0%o0). Standard reproducibility was better than +0.1%o
and reported as +0.1%o to reflect reported precision from
known isotopic values of reference materials. Calibration
of samples to reference data was performed using the
two-point calibration method described in Coplen et al.
(2006). The EA peak area response factors were determined
using replicates of NIST-1547 peach leaves (47.79 wt.% C
and 2.98 wt.% N) distributed throughout sample analysis
runs and bracketing the quantity of C and N in the samples.
Reproducibility of the N and C content of NIST-1547
peach leaves is 0.5% (relative error) and +0.1 wt.% (lo).
C/N values are reported as atomic ratios.

4. RESULTS
4.1. Bulk carbonate I/Ca

I/Ca shows relatively stable background values (~2-
4 ymol/mol) for most of the Onondaga Limestone
(Fig. 2a). However, passing from the Onondaga Limestone
to lower Marcellus strata, I/Ca starts to fluctuate from
underlying background values (~2-4 pmol/mol) to a wider
range of values (0.86-7.57 umol/mol). From the lower to
middle part of the Union Springs Formation, I/Ca
decreases from >7 umol/mol to <1 pmol/mol. I/Ca ratios
rise to ~8 pmol/mol towards upper part of the Union
Springs, except for one very low value most likely repre-
senting concretionary carbonate. I/Ca decreases to
<2 umol/mol within the Hurley and Cherry Valley Mem-
bers of the Oatka Creek Formation. Then, I/Ca ratios
increase again in the East Berne Member to values as high
as 7.22 pmol/mol.

4.2. TOC and carbon isotopes

The Onondaga Formation contains mostly limestone,
with carbonate content in most samples exceeding 60%
and TOC content in the range of 0.67% to 4.56%
(Fig. 2a). E‘)BCOrg values in the Onondaga Formation start
at —27.2%o0, and show a gradual decrease to —28.8%¢ and
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Fig. 2. (a) Chemostratigraphic profiles in the Morton Salt core from Yates County (NY) showing TOC, carbonate content, C/Ngomic,
SIBCDrg, I/Ca ratios, and biotic data. Grey boxes with R indicate regression, and white boxes with T indicate transgression. Yellow boxes mark
redox fluctuations in the lower Marcellus subgroup. Biotic data are from DeSantis (2010). Stratigraphy abbreviations (members is italics):
Bak = Bakoven; EB = East Berne; Edg = Edgecliff; Fm = Formation; H-C = Hurley and Cherry Valley Members; LoD = Lower Devonian;
Mo = Moorehouse; Ned = Nedrow; OC = Oatka Creek; OS = Oriskany and/or Schoharie Formation; p,br = phosphate, brachiopods;
P/E = Pragian and/or Emsian Stage; Sen = Seneca; Ti-B = Tioga B, and altered airfall volcanic tephra/K-bentonite. Paleontology
abbreviations: AT = trilobites, BR = brachiopods, CR = Corals, EC = crinoids, MB = bivalves, MG = gastropods, OTH = other. b) TOC
and redox proxy data in Greene County core (PA) from Lash and Blood (2014). Abbreviations: Crk = Creek; Pur = Purcell Member. Depths
are in meters in both cores.

remain relatively constant through the upper ~3.5 m to the
base of the Union Springs Formation. TOC content shows
a sharp increase from the base of the Union Springs Forma-
tion to around 7-13% throughout most of the formation,
whereas 613C0rg shows a rapid decrease to —29.3%0 and
maintains a constant value of ~—29%o (Fig. 2a). The Hur-
ley and Cherry Valley Members of the Oatka Creek Forma-
tion show a rapid drop in TOC content from 7.47% to
0.88%, and 613C0rg of these members exhibit a sharp
increase to —27.50%0. Then, within the East Berne Member,

TOC values remain below <5%, and 8]3C0rg is in the range
of —28.03%0 to —27.30%o.

5. DISCUSSION
5.1. Preservation of redox signals
The Devonian carbonates in the Appalachian Basin,

especially in the organic-rich Marcellus strata, may be
influenced by diagenetic alteration (Sageman et al., 2003;
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Lash and Blood, 2014; Chen and Sharma, 2016). We do
not argue that our carbonate I/Ca record is exempt from
the effects of diagenesis. However, since authigenic/diage-
netic carbonate precipitation occurs in anoxic porewaters
where iodide is the dominant iodine species and iodide
does not get incorporated into carbonate structure, addi-
tion of diagenetic carbonate and recrystallization of pri-
mary carbonate can only lower bulk carbonate I/Ca
signals (Hardisty et al., 2017). No diagenetic mechanisms
considered thus far are able to artificially increase I/Ca
values. In addition, I/Ca values show no correlation with
Mn/Sr and Mg/Ca ratios, although higher I/Ca values are
more frequently found in samples with relatively lower
Mn/Sr (Fig. 3). Comparing the average I/Ca in the rela-
tively organic-lean Onondaga Limestone and organic-rich
Union Springs and Oatka Creek formations, I/Ca is not
significantly lower in the organic-rich intervals where pre-
cipitation of authigenic carbonate is more likely to occur
(Fig. 2a). Therefore, it is not obvious that the I/Ca trend
is universally biased by the presence of diagenetic carbon-
ates in the high TOC intervals. Without diagenesis, the
primary I/Ca values in some of the shaly samples theoret-
ically could be even higher.
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The middle-upper Union Springs Formation is known
to contain concretionary carbonates of diagenetic origin.
We avoided concretions during sampling but the lowest
I/Ca value of this study indeed was found in that interval
(Fig. 2a). Furthermore, clay, igneous rocks and terrestrial
sediments commonly have very low iodine concentration
(Muramatsu and Wedepohl, 1998; Fehn, 2012; Lu et al.,
2015). For example, bulk rock iodine content in a clay
formation is demonstrated to be dominated by carbonate
minerals (Claret et al., 2010). We found no covariation
between I/Ca values and Al content (Fig. 3c), which is an
indicator for silicate contamination. Thus, detrital materi-
als are unlikely to contaminate marine carbonate I/Ca
signal. Best examples of lithology changes are near the for-
mation boundaries (Onondaga to Union Springs Forma-
tion and Union Springs to Oatka Creek Formation),
where carbonate content dropped sharply (Fig. 2a). There
is no systematic or consistent correlation between I/Ca
and the gradient of carbonate content across these two
lithological boundaries (Fig. 3d). I/Ca also does not corre-
late with carbonate content for the study formation as a
whole (Fig. 3d). This indicates influence of lithology on
the I/Ca record is weak, if any.
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Organically-bound iodine theoretically can contaminate
carbonate associated I/Ca signals. Our sample dissolution
and solution preparation methods were used in many previ-
ous studies and no sign of contamination by organic matter
was observed. For example, relatively low I/Ca values were
more frequently found in high-TOC and low-carbonate
rocks, compared to relatively high I/Ca in organic-lean
and pure carbonate rocks (e.g. Zhou et al., 2015). In this
study, we can’t isolate any correlation convincingly indicate
that organic matter has major influence on this I/Ca record,
after examining samples from intervals with large TOC
variations (1%-13% at boundaries of Onondaga to Union
Springs Formation and Bakoven to Hurley and Cherry Val-
ley Members) (Fig. 4). It should be noted that different ana-
lytical methods are developed for extracting carbonate
associated iodine signal (I/Ca) and organically-bound
iodine signal (I/TOC) in previous studies about OAEs,
the interpretations and rationales for these two proxies
are very different (Zhou et al., 2015; Zhou et al., 2017).

5.2. Comparison to secular records in a global context

The I/Ca compilation throughout Earth’s history shows
low background values (0.5-1 umol/mol) from the Protero-
zoic Eon into the Paleozoic Era (Lu et al., 2018). High I/Ca
values above this generally low background are often found
in time intervals with increases in atmospheric pO, sug-
gested by other proxies and models (Hardisty et al., 2014;
Lu et al., 2017; Wei et al., 2019). The majority of I/Ca val-
ues from Middle Devonian strata of this study are above
2 umol/mol (Fig. 5), within the range of I/Ca in Mesozoic
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Fig. 4. Correlation between I/Ca and TOC for Morton Salt core
samples. Onon-US and Bak-HC mark two intervals where TOC
shows large variations. Linear regression includes samples across
the whole core. Abbreviations: Onon-US and other data are same
as Fig. 3. Bak-HC = Bakoven to Hurley and Cherry Valley
Members boundary (346-350 m).

and Cenozoic carbonates (Lu et al., 2018). This contrasts
with the low I/Ca baseline in the sections surveyed from
the Proterozoic and during Paleozoic extinction events
(Edwards et al., 2018; Young et al., 2019). There is no
proxy development for the absolute values of I/Ca in
long-term records to quantitatively and reliably indicate
specific pO, values, since the I/Ca proxy is highly dependent
on local oceanographic conditions. Independent marine
redox proxies (e.g. Fe speciation, Ce anomaly and
698M0), and atmospheric pO, trends from several box
model studies are converging towards the scenario of an
oxygen increase in the atmosphere-ocean system during
the Devonian, likely related to the expansion of land plants
(Dahl et al., 2010; Sperling et al., 2015; Lenton et al., 2016;
Wallace et al., 2017; Krause et al., 2018). As summarized in
Meyer-Berthaud et al. (2010), paleobotany studies support
a diversification of vascular land plants from the Early
Devonian (Fig. 5). Plant maximum axis diameters, related
to the height of a self-supporting tree, also show in increase
through the Mid to Late Devonian (Fig. 5). Therefore,
based on this whole set of proxy data and models, Onon-
daga to lower Marcellus strata were deposited during a time
period featuring overall well-oxygenated atmosphere and at
least some parts of global oceans.

This scenario is potentially supported by Ce anomaly
measured from Morton Salt Core, since (Figs. S2-S5) these
values fits reasonably well into the secular record of
decreasing Ce anomaly reported by Wallace et al. (2017),
in terms of timing and absolute values. These carbonate
Ce anomaly values may not represent ambient seawaters
during the deposition of our sample materials, but the pri-
mary seawater Ce signal are more likely to indicate more
oxic environment (see more discussions in the supplemen-
tary materials). No evidence suggests that the I/Ca pulse
in the Devonian sections are due to exceptionally better
preservation comparing to other Paleozoic sections (Lu
et al., 2018), but future studies are required to explain
detailed mechanisms for how atmospheric and oceanic con-
ditions might have driven these long-term trends in I/Ca.

5.3. Regional-scale redox changes

The stratigraphic I/Ca trends in our NY core are in gen-
eral agreement with trace metal data from another core
from Greene County, Pennsylvania (PA) (Lash and
Blood, 2014), approximatley 400 kilometers southwest of
the Morton Salt Core of this study (Fig. 1). They broadly
show two stages of redox change: relatively stable redox
conditions during the deposition of the Onondaga Forma-
tion and redox fluctuation from the uppermost Onondaga
Formation into overlying Marcellus strata (Fig. 2). These
basin scale redox changes are likely associated with relative
sea-level oscillations (Brett and Baird, 1996; Ver Straeten,
2007; Brett et al., 2011), which impacted the accumulation
of organic matter and faunal turnover. Some high I/Ca
ratios are found in relatively organic-rich intervals. We
speculate that iodide accumulated in anoxic water might
have been oxidized due to rising pO, and recorded as the
high I/Ca. The exact ocean-atmospheric dynamics for such
a scenario will be an interesting topic for future studies.
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Background 1/Ca ratios throughout the Onondaga
Formation are in the range of 2-4 pmol/mol (Fig. 2a), com-
parable to the background ratios of Mesozoic and
Cenozoic strata in well-oxygenated settings (Lu et al.,
2010; Zhou et al., 2015; Lu et al., 2018). This suggests a
stable and well-oxygenated upper water column in this part
of the Appalachian Basin during the early Eifelian Stage, as
expected from fossil abundance of the Onondaga
Limestone. The Greene County core shows relatively high
Th/U, low Fe/Al, and low Mo and U concentrations in this
interval, consistent with I/Ca results (Fig. 2b). Higher Th/U
ratios suggest relatively oxic bottom water conditions since
reducing conditions favor U fixation and Th is generally
immobile in oxic environments (Wignall and Myers, 1988;
Wignall and Twitchett, 1996). Elevated Fe/Al ratios are
indicative of reducing bottom water conditions because of
the accumulation of Fe during the precipitation of Fe
sulfide minerals (e.g. pyrite) that is favored under euxinic
conditions (Canfield et al., 1996; Lyons and Severmann,
2006; Algeo and Maynard, 2008). Anoxic/euxinic benthic
conditions result in strongly enriched Mo and U owing to
their removal from seawater and precipitation as insoluble

forms in sediments (M0O4,S2~ for Mo; UO,, U,0; and
U304 for U) (Zheng et al., 2000; Algeo and Maynard,
2008; Algeo and Tribovillard, 2009; Algeo and Rowe,
2012).

In the lower part of the Union Springs Formation, I/Ca
ratios show transient increases to nearly 8 umol/mol. These
shifts are followed by decreases of 1/Ca ratios to slightly
below 2 pmol/mol, indicating deoxygenation in subsurface
waters close to the onset of black shale deposition
(Fig. 2a). These redox changes in the upper water column,
inferred from I/Ca trends in the NY core, are generally con-
sistent with the trends in bottom water conditions based on
trace metal concentrations in the Greene County core
(Fig. 2b). This redox evolution appears to correlate with
sea level changes: deoxygenation during overall transgres-
sion and re-oxygenation during overall regression
(Fig. 2a) (Brett and Baird, 1996; Brett et al., 2011; Ver
Straeten et al., 2011b).

The organic matter geochemistry lends further support
for a transition from relatively well-oxygenated to more
poorly ventilated conditions. Coincident with increasing
organic matter content, C/N ratios increase and 13
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decreases (Fig. 2a). Assuming a primarily marine source for
organic matter, increases in C/N ratios are broadly attribu-
ted to more a reducing water column and benthic zone
(Meyers and Bernasconi, 2005; Junium and Arthur, 2007).
Sources of high C/N organic matter from the incipient ter-
restrial biosphere was possible, but the organic matter
found in Appalachian Basin black shales is of predomi-
nantly marine origin (e.g. Jaminski et al., 1998; Kelly
et al., 2019). The decrease in & '*C with increasing TOC
is a hallmark of Appalachian Basin black shales
(Sageman et al., 2003; Lash, 2017; Uveges et al., 2018).
The specific mechanism of the '*C-depletion is debated
but the most likely mechanisms, methane oxidation
(Lash, 2017), sources of '*C-depleted DIC from a shallowed
chemocline or significant contributions of anaerobe bio-
mass (e.g. Uveges et al., 2018) all rely upon at least episod-
ically reducing water column conditions.

5.4. Local faunal turnovers

We further compare the reconstructed redox history to
evidence of faunal turnovers in the Eifelian-Givetian Appa-
lachian Basin. Water column redox changes correlate with
at least three well-resolved faunal shifts, which are recorded
in coeval formations in adjacent areas of Eastern North
America and to some degree globally (DeSantis et al.,
2007; DeSantis and Brett, 2011). The Bakoven and Stony
Hollow faunal turnovers occurred following the shift from
the Onondaga Limestone to the overlying Union Springs
Formation. The Bakoven Event in the Bakoven Member
of the Union Springs marks a loss of 80% of the Onondaga
fauna. Of the diverse Onondaga fauna (276 species), only 5
species (1.8%) carried over into the lower Union Springs
Bakoven fauna (32 species) (DeSantis, 2010 and Fig. 2a).
Reducing bottom water conditions during sea level rise
might have contributed to this rapid decrease of benthic
diversity in the lower part of the Union Springs Formation
(Fig. 2).

Following the Bakoven event, the Stony Hollow Event
marks an influx of taxa migrating chiefly from paleoequato-
rial waters in western Canada, including benthic fauna of
brachiopods, bivalves, Straparollus gastropods and aulo-
porid corals (DeSantis et al., 2007, DeSantis and Brett,
2011). In the Appalachian Basin it is best developed in east-
ern New York, where mid-Marcellus strata represent rela-
tively intermediate depth biofacies, in the Stony Hollow,
Hurley and Cherry Valley Members. The Stony Hollow
Member, in the upper part of the Union Springs Forma-
tion, laterally shifts to dark gray to black shales of the
Bakoven Member in eastern New York (Griffing and Ver
Straeten, 1991). However, across central to western New
York, the Hurley and Cherry Valley Members still retain
elements of the Stony Hollow fauna (50 species in total,
Fig. 2a) with a greater percentage of pelagic fauna relative
to a more limited benthic fauna (DeSantis, 2010). This
westward decreasing trend of relative benthic assemblage
diversity corresponds to a relatively poorly oxygenated
water column, most notably in the Cherry Valley (Fig. 2a).

Lastly, the East Berne shale in Oatka Creek strata is
linked to the Late Eifelian global biocrisis known as the

Kacak Event, defined by total loss of the Stony Hollow
fauna and abrupt conodont turnovers (DeSantis et al.,
2007; DeSantis and Brett, 2011). Hypoxic-anoxic condi-
tions were suggested for the Kacdk Event, often based on
the presence of black shale. Both I/Ca and metal concentra-
tions (Fig. 2) show slightly more improved oxygenation
conditions from basinward Hurley-Cherry Valley strata
upwards into the East Berne. The Kacak Event in this
region is apparently represented by the migration of the
classic Hamilton Group fauna into the Appalachian Basin
in the oldest well oxygenated facies within the lower 1/3
of the Oatka Creek Formation and equivalent strata
(Brett and Baird, 1995). These observations suggest that
sea-level changes and climate conditions might have played
important roles in these biotic turnovers (House, 2002;
DeSantis et al., 2007; Brett et al., 2009; DeSantis and
Brett, 2011).

5.5. Reconciling pO, rise and marine anoxia

A broader and important question for the paleo-redox
community is how to reconcile a growing body of evidence
for atmospheric pO, rise and the traditional view of fre-
quent anoxia in global oceans during the Devonian. On
one hand, the timing of pO, change needs to be more pre-
cisely pinned down for comparison with the occurrences of
marine black shale and faunal turnovers, which will then
reveal whether the rise of atmospheric pO, was coeval with
widespread ocean anoxia. On the other hand, estimates on
the spatial extent of Devonian ocean anoxia also need to be
improved, since new proxies (e.g. U isotope) start to indi-
cate a surprisingly low percentage of global anoxic seafloor
during episodes of widespread black shale deposition
(Clarkson et al., 2018). It is also important to consider
the vertical O, gradient in the water column. In this study,
the Devonian global redox context (Fig. 5) and local proxy
trends (Fig. 2) appear to indicate that organic-rich Devo-
nian shales might have been formed with a relatively well-
oxygenated upper water column but anoxic bottom waters.
Future studies providing a more nuanced picture of spatial
and temporal evolutions of Devonian redox conditions may
lead to new insights into how the Earth system responded
to major changes in the biosphere.

6. CONCLUSIONS

In the northern Appalachian Basin, I/Ca ratios recorded
in the Onondaga Formation and lower to middle Marcellus
subgroup (Union Springs and lower part of the Oatka
Creek formations) are consistent with the rising atmo-
spheric pO,, most likely due to the proliferation of vascular
plants during the Devonian Period. At a shorter timescale
(Eifelian to lower Givetian Stages), the I/Ca signal shifted
from a persistently well-oxygenated conditions in the upper
water column in the Onondaga Formation to fluctuating
redox in the lower Marcellus subgroup. I/Ca ratios echo
the variations in redox-sensitive metal data indicating
anoxic bottom water conditions during the onset of
organic-rich shale deposition. These variations are broadly
consistent with regional fauna turnovers and sea-level
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changes. Our results also point to the need to further disen-
tangle the nuanced dynamics between changing atmosphere
oxygen level, ocean redox conditions and biotic responses.
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