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ABSTRACT

Lightning is a key driver of wildfire activity in Alaska. Quantifying its historical variability and trends
has been challenging because of changes in the observational network, but understanding historical and
possible future changes in lightning activity is important for fire management planning. Dynamically
downscaled reanalysis and global climate model (GCM) data were used to statistically assess lightning
data in geographic zones used operationally by fire managers across Alaska. Convective precipitation was
found to be a key predictor of weekly lightning activity through multiple regression analysis, along with
additional atmospheric stability, moisture, and temperature predictor variables. Model-derived estimates
of historical June—July lightning since 1979 showed increasing but lower-magnitude trends than the ob-
served record, derived from the highly heterogeneous lightning sensor network, over the same period
throughout interior Alaska. Two downscaled GCM projections estimate a doubling of lightning activity
over the same June-July season and geographic region by the end of the twenty-first century. Such a
substantial increase in lightning activity may have significant impacts on future wildfire activity in Alaska
because of increased opportunities for ignitions, although the final outcome also depends on fire weather
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conditions and fuels.

1. Introduction

Wildfire has a prominent role in the boreal forests of
Alaska in summer. Although most fires are started by
human activity, approximately 90% of the area burned
each year is from wildfires started by lightning (Shulski
and Wendler 2007). These lightning-ignited wildfires
have been occurring, primarily in interior Alaska, for
thousands of years (Lynch et al. 2004). The amount of
area burned has increased in recent decades, with an
increased frequency of extreme years compared to when
formal records first began in the 1940s (Kasischke et al.
2010). The magnitude and extremes of historical Alaska
fire seasons have been shown to be linked with broader
modes of climate variability (Duffy et al. 2005; Hess
et al. 2001; Macias Fauria and Johnson 2006) and an-
thropogenic climate change (Partain et al. 2016). Future
climate projections also anticipate increased wildfire
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activity in Alaska over the next century (Melvin et al.
2017; Veraverbeke et al. 2017; Young et al. 2017, 2019).
Therefore, understanding the historical drivers, variabil-
ity, and trends and evaluating possible future changes
of lightning activity are important to ultimately tell the
story of wildfires in Alaska.

Lightning activity has been a concern in the Alaska fire
weather research community since at least the 1950s. The
first study of lightning activity in Alaska was conducted
by Sullivan (1963) who estimated thunderstorm develop-
ment using surface weather charts and found that surface
convergence and stability were key to their development.
This study was later followed by analysis of lightning/
thunderstorm activity through satellite retrievals (Biswas
and Jayaweera 1976) and records maintained by the
Bureau of Land Management (Grice and Comiskey
1976) that established the first lightning climatologies
for Alaska. The network of lightning sensors currently
used to monitor lightning activity in Alaska underwent
initial testing in the late 1970s (Krider et al. 1980).
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Since its initial deployment, the detection sensors have
been upgraded several times. These changes have led
to changes in both the coverage and accuracy/efficiency
of the network (Dissing and Verbyla 2003; Farukh and
Hayasaka 2012; Farukh et al. 2011a; Fronterhouse
2012), resulting in a heterogeneous record in both space
and time.

Climatologies developed through various historical
studies of observed lightning activity show that most
thunderstorms occur in interior Alaska in June-July
(Biswas and Jayaweera 1976; Grice and Comiskey
1976; Reap 1991). The thunderstorms that generate
this lightning activity are generally driven by either
the air mass or synoptic forcing in Alaska (Biswas and
Jayaweera 1976). As is the general case with thun-
derstorms, instability is a key driver and has been
shown to be a potential proxy for lightning activity in
Alaska (Farukh et al. 2011a; Reap 1991; Sullivan
1963). Thunderstorm activity has also been shown to
be enhanced due to land surface characteristics such
as vegetation and topography (Dissing and Verbyla
2003). In addition, burn scars from earlier wildfires
may increase the potential for thunderstorm devel-
opment (Molders and Kramm 2007).

The recent large fire years of 2004, 2005, and 2015
have all been attributed to lightning ignitions (Farukh
et al. 2011b; Partain et al. 2016; Wendler et al. 2011).
Efforts to better predict lightning and lightning-caused
fires have been ongoing and have ranged from statisti-
cal approaches (Duffy et al. 2005; Farukh et al. 2011a;
Reap 1991) to atmospheric circulation map-type analy-
sis (Henry 1978). Given the recent increases in wildfire
activity (Kasischke et al. 2010) and projections for
continued increases (Melvin et al. 2017), understanding
how lightning activity has changed or might change in
the future is needed to better plan for future fire seasons.
Globally, lightning activity is anticipated to increase as
the climate warms over the next century according to
model projections (Krause et al. 2014; Price and Rind
1994). Lightning and lightning-caused fires are also
projected to increase in the contiguous United States
(Romps et al. 2014) and in Alaska over the same period
(Veraverbeke et al. 2017).

While the studies highlighted above provide gen-
eral indications of wildfire trends, there is a need for
more quantitative assessments of historical and fu-
ture projections of lightning activity across Alaska.
This paper studies lightning on weekly to seasonal
scales over specific geographic regions (i.e., Predictive
Service Areas) used operationally by fire managers to
provide information that can support long-term de-
cision making. Novel aspects of this study also include
the use of dynamically downscaled climate data to
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evaluate lightning in Alaska and an assessment of
historical trends.

2. Data and methods

Dynamically downscaled reanalysis and global cli-
mate model (GCM) simulations of future climate were
used to analyze historical and projected lightning ac-
tivity in Alaska. The ER A-Interim reanalysis (Dee et al.
2011) was downscaled for the period 1979-2015 to pro-
vide the historical observations. The historical and
RCPS8.5 emission scenario simulations from two GCMs
of phase 5 of the Coupled Model Intercomparison
Project (CMIP5) were downscaled for 1970-2100.
The two GCMs were the Geophysical Fluid Dynamics
Laboratory Coupled Physical Model, version 3 (GFDL),
and National Center for Atmospheric Research
Community Climate System Model, version 4 (CCSM).
The ERA-Interim reanalysis was selected because it was
one of the best-performing products over the Alaska
and Arctic domains (Lader et al. 2016; Lindsay et al.
2014). Walsh et al. (2018) show that CCSM and GFDL
ranked first and third, respectively, among 21 CMIP5
GCMs in the simulation of the seasonal cycles of tem-
perature, precipitation, and sea level pressure over
Alaska. RCP8.5 is the highest forcing scenario with the
greatest degree of warming in Alaska over lower sce-
narios such as RCP4.5 (Markon et al. 2018), and it was
selected because observed carbon dioxide emissions
have continued to best track RCP8.5 (Peters et al. 2013).

The reanalysis and GCM projection data were dy-
namically downscaled using the Advanced Research
version of the Weather Research and Forecasting
(WRF) Model (ARW; Skamarock et al. 2008) over the
entire Alaska domain [see Fig. la in Bieniek et al.
(2016)]. The model provided 20-km spatial resolution
data that better account for the complex topography
of Alaska than the relatively coarse (100-200km) re-
analysis or GCM data, and the output was saved at
hourly time increments (Bieniek et al. 2016). Although
20-km spatial resolution is still generally too coarse
to evaluate individual thunderstorms, it provides de-
tailed meteorological data that can be used to evaluate
the general atmospheric characteristics associated with
weekly to seasonal lightning activity over broader re-
gions as in our study. The WRF Model was reinitialized
at 48-h intervals with an additional 6-h spinup time
and a spectral nudging procedure that constrained
the downscaled fields to be consistent with the driving
reanalysis or GCM. Clouds and precipitation in the
WRF Model were parameterized by the Morrison
2-moment (Morrison et al. 2009) and Grell 3D cumulus
schemes. Shortwave and longwave radiative effects were
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FIG. 1. Map of Alaska PSAs and locations of the lightning sensors (points) as of 2017. Interior
PSAs have gray hatching.

parameterized by the Rapid Radiative Transfer Model
for GCMs (Iacono et al. 2008). Boundary layer and
surface layer processes utilized the Mellor-Yamada—
Janji¢ (Janji¢ 1994) and Janji¢ eta (Monin—Obukhov)
schemes, respectively. A thermodynamic sea ice model
(Zhang and Zhang 2001) was coupled with the Noah
land surface model used within WRF to better model
the thermal conditions over sea ice. The WRF Model
configuration, physics, and temperature and precipita-
tion output are described and evaluated in detail in
Bieniek et al. (2016).

Observed cloud-to-ground lightning strike data were
obtained from the Alaska Lightning Detection Network
(ALDN) for 1986-2015 (1987 and 1989 were not in-
cluded in our analysis due to missing data). The ALDN
data consist of the location, date, and time of each
lightning strike determined by a network of magnetic-
direction-finding stations (see locations of the stations as
of 2017 in Fig. 1). To best work with these data, the
number of lightning strikes over land were counted
within each 20-km grid box each day on the same grid as
the dynamically downscaled meteorological data de-
scribed above. The count of strikes was produced at a
daily scale and then summed over each week for the
evaluation. This procedure ultimately resulted in weekly
20-km grids of observed lightning strike counts covering
all of Alaska over 1986-2015 but they required addi-
tional homogenization prior to conducting our analysis.

The network of ALDN lightning sensors used to
produce the weekly observed lightning strike count grids
was first developed in the 1970s (Krider et al. 1980) and

has been upgraded and expanded multiple times since
(Farukh and Hayasaka 2012; Fronterhouse 2012). These
upgrades have changed the detection accuracy and ef-
ficiency, especially after 2000 when sensors were up-
graded to Vaisala Impact ES sensors and detection
efficiency increased from 40%-80% to 80%-90%
(Farukh and Hayasaka 2012; Farukh et al. 2011a). The
network was further upgraded to a completely new set of
time-of-arrival sensors (operated by TOA Systems, Inc.)
after 2012. These changes in detection efficiency and
accuracy through the record make the data challenging
to use for assessing the variability and trends of lightning
over the historical period. One key difference from the
original network was that the post-2012 sensors counted
the individual strokes per flash rather than only the
flashes of lightning. That switch resulted in a change in
the character of the data after 2012. To correct for this
specific issue, the lightning data were homogenized by
exploiting the strike multiplicity information that was
included in the pre-2012 data, which provides an esti-
mate of the number of strokes that occurred within each
flash of lightning. The multiplicity parameter (i.e., the
number of strokes) was summed for the pre-2012 data
instead of counting each flash that occurred in each
20-km grid box. This simple approach provides an esti-
mated number of lightning strokes each year over the
1986-2011 period that is more in line with how lightning
was observed during the 201215 period in the interior
(Fig. 2). On average this procedure increased the light-
ning counts in 1979-2011 by approximately 1.5 times.
The final gridded observed lightning product representing
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FIG. 2. May-August counts of lightning strikes across the interior
PSAs for the historical network (1986-2012; blue), the new up-
graded sensor network (2012-15; orange), and the historical ho-
mogenized strike counts (gray). The homogenized data are used in
this study and are referred to as the observed data unless other-
wise noted.

the number of lightning strokes across all of Alaska for
19862015 will be analyzed in this study. Hereinafter,
these gridded homogenized lightning data will be re-
ferred to as the observations unless otherwise noted. In
addition, we will hereinafter refer to lightning strikes
rather than strokes for simplicity. It is important to note
that, while we took steps to homogenize the observed
lightning data, many heterogeneities still exist that re-
quire considerable caution when interpreting variabil-
ity and change using these data. These heterogeneities
specifically include changes in sensor coverage espe-
cially in regions outside of interior Alaska where light-
ning may not have been observed earlier in the historical
record. Similar issues had to be addressed in the light-
ning climatology studies performed for the contiguous
United States by Koshak et al. (2015) with regard to
various upgrades in the National Lightning Detection
Network.

The analysis in this study was conducted statewide and
aggregated over 21 Predictive Service Areas (PSAs; see
map in Fig. 1). These PSAs are used by fire man-
agers and weather forecasters at the Alaska Interagency
Coordination Center and the Alaska Fire Service to
operationally assess fire risk. The 20-km downscaled
weather/climate parameters and observed lightning data
were masked and aggregated to the PSAs. Conducting
our analysis following the PSAs makes the results from
the study more readily useable to the Alaska fire man-
agement community. The large geographic extent of the
PSA does not allow for the evaluation of lightning at
the scale of individual thunderstorms, which was not the

VOLUME 59

focus of this study. Instead, the focus of this study is on
the broader weekly to monthly variability of lightning
activity for which a coarser spatial scale is warranted.
We focused our analysis on the interior Alaska subset of
the PSAs (hereinafter referred to as the interior PSAs):
Tanana Valley-West, Tanana Zone-South, Koyukuk
and Upper Kobuk, Lower Yukon, Upper Yukon Valley,
Copper River Basin, Tanana Zone-North, and Tanana
Valley-East. The interior PSAs were selected as a focus
of our study because they have had the most consistent
lightning observations through time, encompass most of
Alaska’s historical burned areas (Shulski and Wendler
2007), and are primarily located within the interior cli-
mate divisions (Bieniek et al. 2012). Results for the
other PSAs will be shown for reference when applicable
but they contain higher uncertainty because of the more
limited and heterogenous records of lightning observa-
tions available in those regions.

The observed lightning and reanalysis data were re-
lated and explored in the context of multiple linear re-
gression analysis at a weekly time scale within each
PSA. The weekly time scale was selected to capture
the shorter duration of synoptic events that lead to
subseasonal to seasonal variability of lighting activity
without attempting to capture the more local and shorter
time scale meteorological conditions that drive individual
thunderstorms. The weekly aggregated lightning data and
the five reanalysis predictor variables (discussed below)
were fit over 1999-2014 using the weeks in June—July by
least squares regression. This training period was se-
lected because most of the years had relatively stable
sensor coverage and excluded the years of 1986-98 and
2015 for evaluation purposes. The 1999-2014 period also
incorporates the years in 1999-2011 that were homog-
enized as described earlier in this section, therefore
some uncertainty was likely added to the fitting data.
However, it was necessary to have enough years of data
to best represent the atmospheric conditions that lead
to lightning activity in Alaska, so those years were in-
cluded. It is also very challenging to accurately compare
the results of the regression models with the 1986-98
observations for many PSAs since sensor coverage was
sparse, especially earlier in the record. The atmospheric
predictor variables considered were convective precip-
itation amount, 2-m temperature, dewpoint tempera-
ture, 500-hPa height, and the 850-500-hPa temperature
difference. These predictor variables were considered as
they have all been evaluated in prior studies of Alaska
lightning activity (e.g., Reap 1991; Peterson et al. 2010).
We focused our regression analysis on the June—July
period since that is the core period of Alaska lightning
activity, therefore the use of the regression models be-
yond these months should only be done with caution.
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FIG. 3. Monthly average number of lightning strikes in each 20-km grid box over 1986-2015 for (a) May, (b) June,
(c) July, and (d) August.

The best-fit regression model for each PSA was deter-
mined by the stepwise Akaike information criteria
(AIC) approach (Wilks 2006). The regressions were
analyzed using Pearson’s correlation and also domi-
nance analysis (Budescu 1993) to determine the relative
contribution of each predictor variable in the variability
of the model-estimated lightning activity. Trends were
evaluated through the Theil-Sen trend estimator ap-
proach, and the percent change was determined using
the applicable endpoint values of the regression line.
The statistical significance of the correlations was as-
sessed using a two-tailed Student’s ¢ test at the 95%
level. The significance of the trends was evaluated by the
Mann-Kendall trend test.

3. Results and discussion
a. Historical lightning climatology

The gridded monthly averaged observed lightning
over 1986-2015 is shown for May, June, July, and
August in Fig. 3. Most lightning activity occurs in June
and July, with some 20-km grid cells in the interior of
Alaska receiving more than 30 strikes per month on
average. Climatologically, very little lightning occurs

along the coasts and on the North Slope even during the
peak months. These findings are spatially consistent with
the earlier lightning climatologies developed for Alaska
(Biswas and Jayaweera 1976; Grice and Comiskey 1976;
Reap 1991). In contrast to June and July, very little
lightning activity occurs in May and August. What little
lightning occurs in these months is also mostly in the
interior.

The total number of strikes each May—August season
was summed over the interior PSAs and is shown in
Fig. 4. The average number of lightning strikes in the
interior over the summer is 13786 with a standard de-
viation of 8662. The four years that exceeded 1 standard
deviation above the mean lightning strikes occurred
after 2000 and were 2004, 2005, 2015, and 2007. The
Alaska fire seasons of 2004, 2005, and 2015 are three of
the four the largest seasons as measured by the total area
burned on record, and lightning was cited as a key driver
for their large magnitudes (Farukh et al. 2011b; Partain
et al. 2016; Wendler et al. 2011). The 2007 season had
below-average area burned due to relatively wet fuels
from rainfall that limited fire growth even though there
were many lightning-caused fires.

Lightning is a result of thunderstorms and convection.
The dynamically downscaled convective precipitation
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F1G. 4. May-August interior PSA average convective precipi-
tation from the downscaled ERA-Interim reanalysis (blue) and
observed number of lightning strikes (orange).

variable output from the WRF cumulus parameteriza-
tion scheme was considered as a potential simple esti-
mate of thunderstorm activity. When the downscaled
reanalysis convective precipitation was compared with
the lightning observations summed over the interior,
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there was an overall correlation of 0.53 (Fig. 4). This
correlation indicates that seasons with higher lightning
activity occur in conjunction with enhanced convec-
tive precipitation and this is especially apparent for the
peak lightning years after 2000. The correspondence of
lightning and convective precipitation also extends cli-
matologically over the entire May—August season. The
1979-2015 monthly average downscaled ERA-Interim
convective precipitation is shown in Fig. 5. Like the
lightning climatologies shown in Fig. 3, the largest
amounts of convective precipitation occur on average in
June and July with lesser amounts in May and August.
The core months and region of lightning activity in in-
terior Alaska align well with the climatological con-
vective precipitation based on this analysis.
Precipitation from WRF has been used to broadly
evaluate observed lightning activity in other regions
(Giannaros et al. 2015; Yair et al. 2010) and in GCMs
(Magi 2015). Typically, there is higher lightning activity
with higher convective precipitation amounts in obser-
vations (Gungle and Krider 2006). The results of these
prior studies, while not conducted in Alaska, are con-
sistent with our findings. However, one additional ca-
veat for Alaska is that lightning also occurs in dry
thunderstorms in which precipitation does not reach the

b) Jun

d) Aug

4 12 20 28 36 44 52 60 68 76 84 92 100

FIG. 5. Monthly average amount of the downscaled ERA-Interim reanalysis convective precipitation (mm) over
1979-2015 for (a) May, (b) June, (c) July, and (d) August.
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TABLE 1. Multiple regression coefficients for estimating weekly lightning strike numbers in each PSA. Coefficients are shown for
convective precipitation (CP), 850-500-hPa temperature difference (dT), 2-m dewpoint temperature (Td), 2-m temperature (T2m), and
500-hPa heights (500 hPa). Blank cells indicate predictor variables that were not included in the regression equation for each PSA after

stepwise AIC model reduction.

PSA Intercept CP dT Td T2m 500 hPa
Northern Panhandle 4.0 14.5
Central Panhandle 1.2 32 53 =51 4.2
Southern Panhandle 14 1.7 0.9
Matanuska Valley and Anchorage 29.4 233 24.9 -16.8
Kenai Peninsula 10.9 13.8 17.4 -23.7
Tanana Valley-West 924.4 431.7 187.6 396.5
Susitna Valley 253.6 116.6 260.5 —126.3
Tanana Zone-South 1438.6 1278.3 456.8
Koyukuk and Upper Kobuk 289.9 124.8 156.2 226.9 —114.1
Lower Yukon 546.5 564.1 139.3 —-175.3 241.6
Middle Yukon 651.5 435.5 267.6 101.5
Upper Yukon Valley 2055.3 1192.3 289.2 504.5
Copper River Basin 301.1 146.4 363.0 —178.1
Kodiak Island 0.3
North Slope 361.3 228.4 318.1 232.4 —237.0
Tanana Zone-North 842.3 338.5 273.8 354.5
Seward Peninsula 230.1 316.2 76.7 —98.2 68.2
Bristol Bay and Alaska Peninsula 221.2 211.9 97.5 110.7
Yukon-Kuskokwim Delta 199.0 149.3 79.5
Tanana Valley-East 397.2 180.4 223.8 —84.6
Kuskokwim Valley 826.7 590.2 246.1 201.2

ground and can lead to greater likelihoods that wildfires
will be ignited (Peterson et al. 2010). Dry thunder-
storms would not be accurately reflected under the hy-
pothesis that more convective precipitation leads to
more lightning. As a result, convective precipitation
only explains a portion of the variability of lightning at
the monthly to seasonal scale.

To create a more complete picture of the local
climate-scale drivers of lightning, additional predictor
variables were compared with lightning at the weekly
scale using multiple linear-regression analysis. These
predictors include stability, humidity and temperature
variables, described below and in section 2 (data and
methods), that help to better account for conditions
where lightning may occur but convective precipitation
amounts are low. These variables were selected as they
are associated with known “‘rules of thumb” in the
Alaska weather forecasting community and are gener-
ally consistent with similar studies evaluating the me-
teorological drivers of Alaska lightning (i.e., Calef et al.
2008; Farukh et al. 2011a; Peterson et al. 2010; Reap
1991; Veraverbeke et al. 2017). The analysis was con-
strained to the PSA level for best consistency with
Alaska fire manager needs while accounting for regional
variations in lightning—climate links across the state. The
downscaled reanalysis parameters specifically consid-
ered as predictor variables were convective precipita-
tion, the 850-500-hPa temperature difference (dT), 2-m

dewpoint temperature, 2-m temperature, and 500-hPa
height. The variables were first normalized by sub-
tracting the mean and dividing by the standard deviation
and then analyzed using multiple regressions to find the
optimal models for each PSA. The normalized vari-
ables were then used as predictors to reduce the impacts of
the biases in the downscaled ERA-Interim reanalysis
(Bieniek et al. 2016). The final results for each PSA and the
values of the coefficients of the regression equation are
given (when applicable) in Table 1. When the regression
estimates of lightning were compared with the observa-
tions over June-July (Fig. 6) all PSAs had correlations
greater than 0.30 while many in the interior exceeded 0.5.

The amount of weekly observed lightning vari-
ance explained by the regression model estimates and
the contribution of individual predictors are shown in
Table 2. Convective precipitation accounted for most of
the variance explained for most PSAs, especially those
located in the interior. Multiple prior studies have sim-
ilarly evaluated lightning and/or lightning-ignited fires in
Alaska by regression analysis (Calef et al. 2008; Farukh
et al. 2011a; Reap 1991; Veraverbeke et al. 2017). As in
our analysis, most prior studies considered stability
predictor variables such as convective available poten-
tial energy (CAPE) or the 850-500-hPa lapse rate (as in
our study) and additional variables such as wet-bulb
temperature (e.g., Koshak et al. 2015; Jayaratne and
Kuleshov 2006; Williams and Renno 1993), surface
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FIG. 6. Correlations R of June-July regression estimates of
lightning strike counts vs observations for 1986-2015 for each PSA.
Darker red shading corresponds to higher correlation values. All
correlations were significant at the 95% or greater level except for
the Tanana Zone-South and Lower Yukon PSAs.

temperature, and dewpoint. However, all studies had
an eye to different spatial and time scales. While our
analysis looked at weekly/PSA estimates of lightning,
our results and the final predictor variables were broadly
consistent with the prior lightning-regression studies
in Alaska.

Since convective precipitation is a key driver in
the regression models for most PSAs the question of
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lightning that occurs in thunderstorms with little or no
precipitation is of concern since some lightning activity
could be missed even when considering the additional
nonprecipitation predictor variables. In this analysis we
focus on weekly-to-seasonal-scale lightning variability;
therefore, an analysis of precipitation for individual
strikes and thunderstorms is beyond the scope of this
study. However, analysis of weekly precipitation and
lightning data will highlight if lightning also occurred
during dry conditions in each PSA. Figure 7 shows a
comparison of the ranges of all of the interior PSA June—
July weekly averaged convective precipitation amounts
when one or more strikes occurred in the corresponding
PSA during the week for 1999-2015. Likewise, the
amounts of convective precipitation were also binned
for weeks in the same PSAs where no lightning was
observed are shown for comparison (Fig. 7). Weeks with
observed lightning activity (Fig. 7a) covered a broad
range of convective precipitation amounts in the inte-
rior, and the results also show that many weeks have
lightning even within the lowest 0-1 mm day ' bin. The
modeled estimates based on our predictors (Fig. 7b)
shows very similar results, although the model has about
15% fewer PSA-week lightning events than the obser-
vations in the lowest 0-1 mmday ' range. Therefore,
the PSA regression models reasonably capture lightning
activity even during weeks with relatively low precipi-
tation amounts.

TABLE 2. Coefficient of determination R? for each PSA determined by dominance analysis and the total value for the weekly fitting
period of 1999-2014. Values are shown for convective precipitation (CP), 850-500-hPa temperature difference (dT), 2-m dewpoint
temperature (Td), 2-m temperature (T2m), and 500-hPa heights (500 hPa). Cells are blank if the predictor variable was not part of the

regression equation for the PSA.

PSA CP dT Td T2m 500 hPa Total fitted

Northern Panhandle 0.10 0.10
Central Panhandle 0.02 0.04 0.02 0.03 0.11
Southern Panhandle 0.09 0.03 0.12
Matanuska Valley and Anchorage 0.15 0.08 0.02 0.25
Kenai Peninsula 0.08 0.07 0.09 0.25
Tanana Valley-West 0.05 0.14 0.14 0.33
Susitna Valley 0.09 0.15 0.03 0.27
Tanana Zone-South 0.37 0.03 0.40
Koyukuk and Upper Kobuk 0.11 0.10 0.10 0.02 0.32
Lower Yukon 0.19 0.09 0.05 0.02 0.34
Middle Yukon 0.20 0.14 0.01 0.34
Upper Yukon Valley 0.24 0.06 0.04 0.33
Copper River Basin 0.03 0.09 0.03 0.16
Kodiak Island

North Slope 0.11 0.13 0.07 0.04 0.36
Tanana Zone-North 0.07 0.05 0.07 0.19
Seward Peninsula 0.22 0.09 0.05 0.01 0.36
Bristol Bay and Alaska Peninsula 0.12 0.09 0.02 0.23
Yukon-Kuskokwim Delta 0.14 0.08 0.22
Tanana Valley-East 0.17 0.14 0.02 0.33
Kuskokwim Valley 0.18 0.10 0.01 0.30
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F1G. 7. June-July counts of weekly average convective pre-
cipitation amounts when one or more lightning strikes were
(a) observed and (b) estimated by the regression models over any
interior PSA for 1999-2015. Solid gray bars indicate the counts for
cases when at least one or more lightning strikes were present in a
PSA, and hatched bars indicate counts of weeks when no strikes
were present.

b. Past and anticipated variability and trends

Evaluating the variability and trends of the historical
lightning data has been challenging due to the hetero-
geneities that arise from the upgrades made to the net-
work since its inception (Farukh and Hayasaka 2012;
Farukh et al. 2011a). Therefore, it is informative to
compare the observed lightning trends with the model
estimates output by the regressions over the histori-
cal period. The percent change of the observed
and regression-estimated lightning from the downscaled
ERA-Interim reanalysis are shown for each PSA for
June—July in Figs. 8a and 8b. The observed lightning
over 1986-2015 (Fig. 8a) increased by more than 100%
in most PSAs with a few, notably the North Slope and
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Koyukuk and Upper Kobuk, above 10000% and 500%,
respectively. The downscaled reanalysis estimates of
lightning over 1979-2015 were much more subdued with
increases ranging from —4% to 62% in the interior
PSAs (Fig. 8b). The trends were even lower in the re-
analysis estimates when considered over the 1986-2015
period (not shown). Averaged over all of the interior
PSAs, the June-July observed lightning increased by
98% while the reanalysis estimated an increase of
17% (Fig. 9a), however only the observed trend was
significant at the 90% level. The trend of the observed
lightning was therefore approximately one order of
magnitude greater than the regression-estimated light-
ning from the reanalysis over a similar time period. Only
one PSA, Tanana Valley-West, had similar trends in
both the observations and the reanalysis estimates
(~10% change). Fairbanks is located in this PSA and
has been the focus of the lightning detection network
since its initial deployment and may have a more
physically realistic trend through time than the other
PSAs where additional lightning sensors have been
added later and therefore have steeper and likely
spurious trends.

Given the large differences between the trends in
the observed and the modeled estimates of historical
lightning, a closer look into the historical June—July
lightning for the observed (corrected and uncorrected)
and model estimates are shown for the Tanana Valley-
West and Yukon-Kuskokwim Delta PSAs (Fig. 10).
These two PSAs provide contrasting views since the
Tanana Valley-West PSA (Fig. 10a) contains Fairbanks
and has the longest history of lightning sensor coverage
while the Yukon-Kuskokwim Delta PSA (Fig. 10b) has
always had limited sensor coverage. The corrected and
uncorrected observations of lightning and modeled es-
timates based on the downscaled reanalysis for the
Tanana Valley-West PSA both experienced a similar
order of magnitude of change, 9.8% and 7.4%, respec-
tively, over 19862015, while the uncorrected lightning
experienced a more significant change of 73.3% due to
the change in the accounting of lightning strokes/flashes
later in the record. In contrast, the coastal Yukon-
Kuskokwim Delta PSA experienced changes of 536.2%
and 178.5% in the uncorrected and corrected observa-
tions, respectively, while the modeled estimates showed a
relatively slight decline of —6.9%. Here, the uncertainty
of the strike data is much larger since sensor coverage
has been limited through time. Therefore, regions like
the Yukon-Kuskokwim Delta PSA show a much greater
sensitivity in the variability of lightning strike counts
due to changes in the network than those in the inte-
rior where lightning sensors have been in operation
throughout the record and should be viewed with caution.
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FIG. 8. Percent change of June—July lightning strike counts based on Theil-Sen trend estimators for the
(a) observations over 19862015, and regression-estimated lightning derived from downscaled (b) ERA-Interim
over 1979-2015 and (c) CCSM and (d) GFDL over 2005-2100. Darker red shading corresponds to higher positive
percent change. Trends that are statistically significant at the 95% or greater level are shown in boldface.

However, these findings cannot conclusively prove that
the steeper trends in the observations were due to
changes in the sensor network as that would be an in-
volved, if not unwieldy task, and is therefore beyond the
scope of this study. Assessing the individual predictor
variables gives additional insight into the possible vari-
ability and change of Alaska lightning activity over the
historical record.

Convective precipitation was found to be a key vari-
able based on the regression analysis in the preceding
section. Over the interior PSAs, the June—July convec-
tive precipitation based on the downscaled ERA-
Interim reanalysis increased by 5.5% over 1979-2015
(Fig. 9b). The 850-500-hPa temperature difference,
dewpoint temperature, 2-m temperature, and 500-hPa
height predictors increased by 0.2%, 5%, 6%, and 0.2%,
respectively (Figs. 9c—f). No interior PSA predictor
variable trends were statistically significant at the 95%
or greater level. Direct validation of the WRF Model-
derived convective precipitation variable is not possible
from observations, however trends of precipitation at
the climate divisions scale in the interior were rela-
tively weak and mixed sign in June and July over 1981-
2012 (Bieniek et al. 2014). Therefore, it is unlikely that

convective precipitation has increased appreciably
since 1979.

While the predictors are based on a downscaled re-
analysis and not direct station observations like the
lightning observations, none of the predictor values
has a magnitude of change over the historical period that
would suggest a doubling of lightning. It is likely that the
relatively steep trends in the observed lightning dataset
are spurious due to the changes in the sensor network
noted earlier and that the reality of the lightning trend
is better reflected by downscaled reanalysis-regression
estimates of lightning activity. Consequently, our anal-
ysis suggests that lightning activity has increased over
the last 30+ years in the interior PSAs by about 17%
(approximately +240 strikes per year). There are few
studies that have documented trends in lightning ac-
tivity in Alaska. Veraverbeke et al. (2017) show that
lightning-ignited fires have increased in frequency by
4.82% yr~ ' over 1975-2015. This value is considerably
higher than the change in the amount of lightning
strikes estimated by the downscaled reanalysis predictors
(~0.4% yr ). However, ignitions and fire spread are also
dependent on the dryness of fuels and fire weather con-
ditions (temperature, wind, relative humidity), which may
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FIG. 9. June-July interior PSA (a) observed and modeled lightning strike counts, and lightning predictor variable
anomalies for (b) convective precipitation, (c) 850-500-hPa temperature difference, (d) dewpoint temperature,
(e) 2-m temperature, and (f) 500-hPa height. Historical lightning observations are shown in black in (a), and the
downscaled estimates/variables from ERA-Interim, CCSM, and GFDL are shown in red, blue, and green, re-
spectively, in (a)-(f). Anomalies are relative to the 1981-2010 mean.

explain why the number of fire ignitions has increased
faster than the amount of lightning activity over the
historical record. For example, summer temperatures
have increased in interior Alaska over the past 60-70 years
(Bieniek et al. 2014).

Much of the future variability of wildfire in Alaska
depends on how lightning activity is anticipated to
change over the next century. Figures 8c and 8d show the
percent change of June—July lightning activity estimates
anticipated over 2005-2100 derived from the normalized

predictor variables of the downscaled CCSM and GFDL
model projections. Both models anticipate increases in
lightning strike numbers throughout mainland Alaska. The
CCSM projection suggested a greater percentage change
over zones along the coasts than the GFDL. The overall
June-July lightning strike activity for the interior PSAs is
anticipated to increase by 103% (+655 strikes per year)
and 125% (+994 strikes per year) for the CCSM and
GFDL, respectively, over 20052100 (Fig. 9a). These
general trends are statistically significant at the 95% or

020z dunr g uo 1sanb Aq ypd 60206 | POWEN/0Z8196¥/6€ | L/9/6G/Pd-alolie/owel/B10 d0s)eWe s|euInol/:djy wouy papeojumoq



1150 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY

2.5x10° : : : :
®— Uncorrected a )
Corrected
® 2x10* | Model Estimates i 4
2
a ¢
2 15xi0' L 1
= n
= " f
= | e
5 1x10* L ool 4 o e 1
E @ al \ M
: A Fibesg
= & . ¢ @ ‘,i-\‘*f" If ] :‘ i
5000 - o) Y, o Sl | I “ A
o L A8 a® « | *
**eq '3 4
0 1 1 1 1 1 I 1 L
1980 1985 1990 1995 2000 2005 2010 2015
Year
6000 T T T T T
®— Uncorrected : b )
+— Corrected
" 9000 = &— Model Estimates ]
2
7 4000 | o
(o))
c
i= 13
_'5-, 3000 1
-
‘s in}
] 2000 |- &
£ ?
=1 #
= p
1000 - &7
3¢ 1 . ]
g WO GAT S
. Lot TTRE e ¥ty s LI
1980 1985 1990 1995 2000 2005 2010 2015
Year

FIG. 10. June—July counts of lightning strikes from uncorrected
(black lines with filled circles) and corrected (gray lines with open
circles) observations, and regression model estimates (red lines
with open squares) for the (a) Tanana Valley-West and (b) Yukon-
Kuskokwim Delta PSAs. The best-fit lines by linear regression are
shown as dashed lines for reference, with their colors matching the
corresponding variables.

greater level. The anticipated increase in June—July
interior lightning activity is reflected in the pro-
jected increases seen in nearly all of the predic-
tor variables (Figs. 9b-f). The only exception to
the positive trends in the predictor variables is for
the 850-500-hPa temperature difference stability
parameter from GFDL (Fig. 9¢c). The GFDL stability
parameter shows an anticipated decline of approxi-
mately 0.02°Cyr~" over 20052100, indicative of in-
creasing stability.

Lightning activity is anticipated to increase globally
and regionally under climate change according to
various models, scenarios, and statistical approaches
(Krause et al. 2014; Price and Rind 1994; Romps et al.
2014). Veraverbeke et al. (2017) evaluated future pro-
jections of June—July lightning activity in interior Alaska
among five CMIP5 models, using a regression approach
as in our study, and found an average increase of 59%
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from the period of 1980-2004 to 2050-74. Over a similar
period, our projections from CCSM and GFDL anticipate
68%—-132% increases in our analysis, respectively, under
the RCP8.5 emission scenario. Much of the differ-
ence among the models in this case is due to greater
variability in the CCSM lightning estimates during 2050-74
than in GFDL (Fig. 9a). Our results are generally within
the 41% error/uncertainty bounds given by Veraverbeke
et al. (2017), and our projections yield even higher uncer-
tainty. While additional downscaled emission scenarios
were not available for this study, it could also be surmised
that a lower emissions scenario like RCP4.5 would yield
more subdued increases in lightning activity since the
projected warming is not as pronounced as in RCP8.5 for
Alaska and cooler surface temperatures typically result in
lower rates of convection. All told, our analysis and the
prior studies all highlight that lightning activity is likely to
increase substantially by 2100 in interior Alaska during
June—July under climate change even if there is uncer-
tainty about the final magnitude of the change.

4. Conclusions

Lightning is a key driver of large wildfire in Alaska,
and our analysis shows that summer lightning activity
has increased over the historical record in interior
Alaska, albeit with a much lower magnitude of change
than the observations from ALDN would suggest. This
increasing trend in historical lightning activity was esti-
mated from modest increases in convective precipitation
and other predictor variables derived from the dynami-
cally downscaled ERA-Interim reanalysis. Although di-
rect validation of a model-derived quantity such as
convective precipitation is not possible using station ob-
servations, average summer precipitation trends over the
interior better matched the modest increase in convective
precipitation than the steeper increasing ALDN trends.

Downscaled future projections indicate that lightning
activity may double by the end of the twenty-first cen-
tury relative to current values. Such an increase in
lightning strikes frequency in June—July could increase
ignitions if fuel conditions remain the same as in present
or worsen. If summers become generally wetter, then
the impact on wildfires would be offset. Additional study
is needed to incorporate changes in fire weather condi-
tions, fuels, and lightning ignitions to fully capture how
wildfire may evolve over the next century.
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