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1. Introduction

Recall that a ring is called Brown—-McCoy radical if it cannot be homomorphically
mapped onto a simple ring with identity. Similarly, a ring is called Behrens radical
if it cannot be homomorphically mapped onto a ring with a non-zero idempotent.

One of the equivalent statements of the Koethe problem is whether a polynomial
ring over a nil ring is Jacobson radical [6]. Although many believe that the answer
is negative, several positive approximations to a solution have been found. For
instance, Puczylowski and Smoktunowicz proved in 1998 that a polynomial ring
over a nil ring is Brown-McCoy radical [8]. A few years later, Beidar et al. showed
that a polynomial ring over a nil ring is Behrens radical [I]. It was not known for a
long time whether a polynomial ring in several variables over a nil ring is Brown-—
McCoy radical. Then in 2018, the question was answered positively using techniques
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from Convex Geometry [{]. However, it is still unknown whether a polynomial ring
in several variables over a nil ring is Behrens radical.

The study of differential polynomial rings over locally nilpotent rings is an active
area of research [2], [3] [5] [7, O] [T0]. One of the most significant results occurred in
2014: Smoktunowicz and Ziembowski solved Shestakov’s problem by proving that
a differential polynomial ring over a locally nilpotent ring may not be Jacobson
radical [T0]. Furthermore, in a recent paper [5], Greenfeld et al. asked many ques-
tions about the properties of differential polynomial rings. Our result is related to
one of their problems [5, Question 6.5]: does there exist a differential polynomial
ring over a locally nilpotent ring that can be mapped onto a ring with a non-zero
idempotent? This question was answered negatively by Chebotar [3]. We extend
this result to differential polynomial rings in several commuting variables.

Let 61,...,6, : R — R be derivations of a ring R. The differential polynomial
ring R[X1,...,X,;01,...,0,] is defined such that for all » € R and 1 < j < p,
X;r=7rX; +9;(r). Our first result is the following:

Theorem 1. Let 61,02,...,0, be derivations of a locally nilpotent ring R. Then
the differential polynomial ring R[X1,...,Xp;01,...,0p] in commuting variables
X1,...,X, cannot be mapped onto a ring with a non-zero idempotent.

Before stating our next result, we recall that a derivation § over a ring R is
called locally nilpotent if for every r € R, there exists a positive integer n such that
d"(r) = 0.

Theorem 2. Let § be a derivation of a locally nilpotent ring R, and let d be a
derivation of R[X ;0] such that d(R) C R, dlg is locally nilpotent, and d™(aX) —
Xd"(a) € R for all a € R and positive integers n. Then the ring R[X;d][Y;d]
cannot be mapped onto a ring with a non-zero idempotent.

Remark 3. Observe that any derivation d such that d(R) = 0 and d(RX)
R satisfies the conditions of Theorem [2 In particular, the derivative d(p(X))
% (p(X)) satisfies these conditions.

Furthermore, note that for any fixed » € R, the inner derivation d(p(X))
[p(X), ] satisfies the conditions of Theorem [2

N

We conclude this section with a question: Are the technical conditions on the
derivation d in Theorem B necessary?

2. Proofs

We follow Chebotar’s approach in [3] to prove Theorem [l Given elements e and x
of aring R, we define [e,z]o = e, [e,z]1 = [e, 2] = ex — e, and [e, x]r = [[e, z]x—1, 7]
for k > 1. Given elements z1,...,7, € R and non-negative integers ki,...,ky,, we
denote by [e, Z]k,,....x, the expression [...[e,z1]k,,. .., 2k, and denote by zF1--F»
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the expression xlfl .. .xl;p. Our first lemma is a folklore result related to the general
Leibniz rule:

Lemma 4. Lete,xi,...,x, be elements of a ring R and nq, . ..,n, be non-negative
integers. Then

ni np n n
ez — E E (Z ) (Z,p)x“"“’“’[e,x]nl—u,...,np—ip.
i1=0  ip=0 N1 P

Another useful result is the following:

Lemma 5. Let e,21,...,x, be elements of a ring R with e = e. Then for any
non-negative integers ki, ..., ky, we have
k1 kp

[6 1‘ ki,.. Z Z Tir,ei e x]ll»

for some r;, i € R.

Proof. We use induction on p > 1. Note that when p = 1, the result follows
from [3, Lemma f].
Suppose the result holds for p =1 — 1, and consider the case of [ variables. We
induct on k; > 0. Observe that the case k; = 0 reduces to the case p =1 — 1.
Suppose the statement holds for all k; < m, where m is some positive integer.
Then
ki—1

k1
[[e’j]kla--wkl—l’xl]m = Z T Z [’ril»---ﬂ;l—le[e’j]il7~~~»il—17xl]m

i1=0 i—1=0

k1 ki—-1 m
= Z Z Z ( ) Th,m,iz—le?xl]iz [[67i.]ihnwiz—nxl]m*iz
i1:0 Zl 1= Oll

by the Leibniz rule. Note that for ¢; > 0, we can write [[e, Z];, ..
desired form by our inductive hypothesis. When i; = 0,

1o l’l]m—il in the

[Th,m,iz—lev‘rl]iz [[67ﬂih...:iz—ul‘l]m*iz = [Ti1,~~~>iz—1evxl]0 [[e7i']i1,~~~>iz—17xl]m

= ri1,~~~7il—le[[e7 j"]il,m,iz—l ) xl]ﬂ’w

which is also of the desired form. Thus, the result follows. |

Let Endg (V) be the K-algebra of linear transformations of the K-vector space
V. Our main lemma for our proof of Theorem [ is the following:

Lemma 6. Let N be a locally nilpotent subalgebra of Endg (V). Suppose that e =
2?11:0 e an—o Fiteip i, ,....i, 5 anidempotent of Endg (V') such that i, ..., x, €
Endg (V) are commuting endomorphisms and [a;, .. i,, T|k,,..k, € N, where 0 <
ij,k; <nj forall1 <j <p. Then e =0.
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Proof. Let S be the subalgebra of N generated by elements of the form

[aih...,ipv "E]klruvkp’

where 0 < i;,k; < nj for all 1 < j < p. Because N is locally nilpotent and S is
a finitely generated subalgebra of N, S is nilpotent. Then we can find subspaces
0=VCWV, C---CVy =V such that S(V}) =V,_q forall 1 <1< M.

We will show that if k; < n; for all 1 < j < p, ele,Z]g,,...x, (Vi) = 0 for all
1<I< M.

We use induction on [ > 1. Consider the case [ = 1. Then we have

e[e’j}khm»kp(vl):ez Z T lpalh ips Tk by (V1)

I
9]
al

B

cosips Tk ek (V1)

=0
since [a4,,....i,, Z)ky,... .k, €S and S(V1) = 0.
Suppose ele, Z]g, ...k, (Vin—1) = 0, and consider any v € V;,,. We have

ni np

ele. Ty, (V) =€) Y [F s iy Ty, (V)

i1=0  ip=0

=> - Z €T Py iy By ey (V)

i1:0 ’Lp—O

— 3
—E E ex™ ot (ugy ),

i1=0  ip=0
where each u;, ..., € V1. By Lemma H]

ele, Tk, ...k, (V)

Z
E ez’ o (Ui iy)

ip=0

2
EEE ) O

ip=01,=0 i = p

Using Lemma [, we can rewrite each [e,Z];,—s,. i~ (Ui,...i,) In the form
. ./ . -/
11 —1 ip—1 _
Zi;’:ol -~-Zig:0" 7"i’1’,...ﬂ‘g€[€»x]i;/,...,ig (iy,...i,), Where each T,y € Endg (V).
By the inductive hypothesis, each of these terms is 0, so ele, Z]x, ...k, (v) = 0, as
desired.

Thus, e(V) = e(Var) =0, so we conclude that e = 0. |
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Proof of Theorem [} To prove Theorem [l we follow the proof of Bl Theorem[],
using several variables instead of a single variable and replacing Lemmas 3,4, and [l
with our Lemmas @] Bl and [, respectively.

Suppose there is a locally nilpotent ring R with derivations 41,62, ...,d, such
that the differential polynomial ring R[X7, ..., Xp;01,...,0,] in commuting vari-
ables Xi,..., X, can be mapped onto a ring with a non-zero idempotent. Then
there exists a surjective homomorphism ¢ from R[X;,...,X,;d1,...,0,] onto a
subdirectly irreducible ring A such that there is a non-zero idempotent e in the
heart of A. Note that A must be a prime ring whose extended centroid K is a field.
Let @ be the Martindale right ring of quotients of A.

For j € {1,...,p}, let z; : A — A be the map given by z;(p(t)) = p(X,t)
for all t € R[Xy,...,Xp;01,...,0p). We claim that each z; is a well-defined
map. Suppose ¢(t) = 0 and ¢(X;t) # 0. Since A is prime, there must be
t' € R[X1,...,Xp;01,...,0,] such that ¢(t')¢(X;t) # 0. We also have

o(t)p(X;t) = p(t'X;t)
= o(t'X;)ep(t)
= 0,
which is a contradiction.

Note that each ; : Ay — A4 is an endomorphism of a right A-module A4, so
each x; is in Q. Let the subring of @) generated by A and z1,...,z, be denoted
by A’, and let the ring obtained by adjoining unity to R be denoted by R#. Let
¢ R*[X1,..., Xp;01,...,6,] — A’ be an additive map such that ¢(X}) = 2% for
any j € {1,...,p} and any non-negative integer ¢, and such that 1(t) = o(t) for
all t € R[Xq1,...,X,;01,...,0p). Note that ¢ is a homomorphism extending ¢. We
can write a non-zero idempotent e € A C A’ as

ni Np
— i1 ip,.. )
e=¢ E E X ...prr“,,,,,lp

i1=0  i,=0

n1

np
— (31 ip .. )
= E E X -.-Xp"hl,...,zp

i1=0  i,=0

ny

p
i1 ip . .
E E R e L T

i1=0  ip=0

n1 Tp
E e E Fi15elp g .
x a’Ll,...ﬂ,p?

i1=0  i,=0

where n1,...,n, are non-negative integers, r;, .. ;, € R, and ¢(ry, . i,) = as,
Let D be the subring of A" generated by x1,...,2, and all a;, ... ;, with 0 <
i; <nj. Let B =D Ny(R). Note that B and the subalgebra BK of @) are locally
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nilpotent. The subalgebra DK of A’K is finitely generated, so it can be embedded
into Endg (V') for some K-vector space V. Then we can assume that z; € Endg (V)
for j € {1,...,p} and that these z; commute with each other. We have that N =
BK C Endg (V) is locally nilpotent and that e = Y1 - - an—o Thetra €

Endg (V) is a non-zero idempotent. By applying Lemmal@l we conclude that e =0,
which is a contradiction. Therefore, we have proved the result. O

Before we prove our next theorem, we need an auxiliary result.

Proposition 7. Let § be a locally nilpotent derivation of a locally nilpotent ring R,
and let d be a derivation of R[X;0]. Then the ring R[X;0][Y;d] cannot be mapped
onto a Ting with a non-zero idempotent.

Proof. Observe that since R is a locally nilpotent ring and § is a locally nilpotent
derivation of R, the differential polynomial ring R[X; 4] is locally nilpotent. There-
fore, by [3, Theorem[], R[X;d][Y; d] cannot be mapped onto a ring with a non-zero
idempotent. O

Proof of Theorem Note that for any positive integer m and any a € R, we
have

Y™a,X]=Y"aX — XY™a

- (5o (oo~
—Z( )dl (aX) — Xd'(a))Y™ "

By assumption, d*(aX) — Xd'(a) € R for 1 < i < m, and we know
d’(aX) — Xd°(a) = —6(a) € R

Observe that d[p is a derivation on R since d(R) C R, so [Y™a, X] is an element
of the differential polynomial ring R[Y’; d[ ]

Define the map & : R[Y;dlg) — R[Y:dlg] by &(p(Y)) = —[p(¥V), X] for all
p(Y) € R[Y;d|y]. Note that §’ is a derivation and that §'(a) = d(a) for all a € R.
Then R[X;6][Y;d] = R[Y;d[g][X;d']. Since d[p is locally nilpotent, the result
follows from Proposition [2. O
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