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1. Introduction

Recall that a ring is called Brown–McCoy radical if it cannot be homomorphically
mapped onto a simple ring with identity. Similarly, a ring is called Behrens radical
if it cannot be homomorphically mapped onto a ring with a non-zero idempotent.

One of the equivalent statements of the Koethe problem is whether a polynomial
ring over a nil ring is Jacobson radical [6]. Although many believe that the answer
is negative, several positive approximations to a solution have been found. For
instance, Puczy�lowski and Smoktunowicz proved in 1998 that a polynomial ring
over a nil ring is Brown–McCoy radical [8]. A few years later, Beidar et al. showed
that a polynomial ring over a nil ring is Behrens radical [1]. It was not known for a
long time whether a polynomial ring in several variables over a nil ring is Brown–
McCoy radical. Then in 2018, the question was answered positively using techniques

‖Corresponding author.
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from Convex Geometry [4]. However, it is still unknown whether a polynomial ring
in several variables over a nil ring is Behrens radical.

The study of differential polynomial rings over locally nilpotent rings is an active
area of research [2, 3, 5, 7, 9, 10]. One of the most significant results occurred in
2014: Smoktunowicz and Ziembowski solved Shestakov’s problem by proving that
a differential polynomial ring over a locally nilpotent ring may not be Jacobson
radical [10]. Furthermore, in a recent paper [5], Greenfeld et al. asked many ques-
tions about the properties of differential polynomial rings. Our result is related to
one of their problems [5, Question 6.5]: does there exist a differential polynomial
ring over a locally nilpotent ring that can be mapped onto a ring with a non-zero
idempotent? This question was answered negatively by Chebotar [3]. We extend
this result to differential polynomial rings in several commuting variables.

Let δ1, . . . , δp : R → R be derivations of a ring R. The differential polynomial
ring R[X1, . . . , Xp; δ1, . . . , δp] is defined such that for all r ∈ R and 1 ≤ j ≤ p,
Xjr = rXj + δj(r). Our first result is the following:

Theorem 1. Let δ1, δ2, . . . , δp be derivations of a locally nilpotent ring R. Then
the differential polynomial ring R[X1, . . . , Xp; δ1, . . . , δp] in commuting variables
X1, . . . , Xp cannot be mapped onto a ring with a non-zero idempotent.

Before stating our next result, we recall that a derivation δ over a ring R is
called locally nilpotent if for every r ∈ R, there exists a positive integer n such that
δn(r) = 0.

Theorem 2. Let δ be a derivation of a locally nilpotent ring R, and let d be a
derivation of R[X ; δ] such that d(R) ⊆ R, d�R is locally nilpotent, and dn(aX) −
Xdn(a) ∈ R for all a ∈ R and positive integers n. Then the ring R[X ; δ][Y ; d]
cannot be mapped onto a ring with a non-zero idempotent.

Remark 3. Observe that any derivation d such that d(R) = 0 and d(RX) ⊆
R satisfies the conditions of Theorem 2. In particular, the derivative d(p(X)) =

d
dX (p(X)) satisfies these conditions.

Furthermore, note that for any fixed r ∈ R, the inner derivation d(p(X)) =
[p(X), r] satisfies the conditions of Theorem 2.

We conclude this section with a question: Are the technical conditions on the
derivation d in Theorem 2 necessary?

2. Proofs

We follow Chebotar’s approach in [3] to prove Theorem 1. Given elements e and x
of a ring R, we define [e, x]0 = e, [e, x]1 = [e, x] = ex−xe, and [e, x]k = [[e, x]k−1, x]
for k > 1. Given elements x1, . . . , xp ∈ R and non-negative integers k1, . . . , kp, we
denote by [e, x̄]k1,...,kp the expression [. . . [e, x1]k1 , . . . , xp]kp and denote by x̄k1,...,kp
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the expression xk1
1 . . . x

kp
p . Our first lemma is a folklore result related to the general

Leibniz rule:

Lemma 4. Let e, x1, . . . , xp be elements of a ring R and n1, . . . , np be non-negative
integers. Then

ex̄n1,...,np =
n1∑

i1=0

. . .

np∑
ip=0

(
n1

i1

)
. . .

(
np

ip

)
x̄i1,...,ip [e, x̄]n1−i1,...,np−ip .

Another useful result is the following:

Lemma 5. Let e, x1, . . . , xp be elements of a ring R with e2 = e. Then for any
non-negative integers k1, . . . , kp, we have

[e, x̄]k1,...,kp =
k1∑

i1=0

· · ·
kp∑

ip=0

ri1,...,ipe[e, x̄]i1,...,ip

for some ri1,...,ip ∈ R.

Proof. We use induction on p ≥ 1. Note that when p = 1, the result follows
from [3, Lemma 4].

Suppose the result holds for p = l − 1, and consider the case of l variables. We
induct on kl ≥ 0. Observe that the case kl = 0 reduces to the case p = l − 1.

Suppose the statement holds for all kl < m, where m is some positive integer.
Then

[[e, x̄]k1,...,kl−1 , xl]m =
k1∑

i1=0

· · ·
kl−1∑

il−1=0

[ri1,...,il−1e[e, x̄]i1,...,il−1 , xl]m

=
k1∑

i1=0

· · ·
kl−1∑

il−1=0

m∑
il=0

(
m

il

)
[ri1,...,il−1e, xl]il

[[e, x̄]i1,...,il−1 , xl]m−il

by the Leibniz rule. Note that for il > 0, we can write [[e, x̄]i1,...,il−1 , xl]m−il
in the

desired form by our inductive hypothesis. When il = 0,

[ri1,...,il−1e, xl]il
[[e, x̄]i1,...,il−1 , xl]m−il

= [ri1,...,il−1e, xl]0 [[e, x̄]i1,...,il−1 , xl]m

= ri1,...,il−1e[[e, x̄]i1,...,il−1 , xl]m,

which is also of the desired form. Thus, the result follows.

Let EndK(V ) be the K-algebra of linear transformations of the K-vector space
V . Our main lemma for our proof of Theorem 1 is the following:

Lemma 6. Let N be a locally nilpotent subalgebra of EndK(V ). Suppose that e =∑n1
i1=0 · · ·

∑np

ip=0 x̄
i1,...,ipai1,...,ip is an idempotent of EndK(V ) such that x1, . . . , xp ∈

EndK(V ) are commuting endomorphisms and [ai1,...,ip , x̄]k1,...,kp ∈ N, where 0 ≤
ij, kj ≤ nj for all 1 ≤ j ≤ p. Then e = 0.
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Proof. Let S be the subalgebra of N generated by elements of the form

[ai1,...,ip , x̄]k1,...,kp ,

where 0 ≤ ij, kj ≤ nj for all 1 ≤ j ≤ p. Because N is locally nilpotent and S is
a finitely generated subalgebra of N , S is nilpotent. Then we can find subspaces
0 = V0 ⊆ V1 ⊆ · · · ⊆ VM = V such that S(Vl) = Vl−1 for all 1 ≤ l ≤M .

We will show that if kj ≤ nj for all 1 ≤ j ≤ p, e[e, x̄]k1,...,kp(Vl) = 0 for all
1 ≤ l ≤M .

We use induction on l ≥ 1. Consider the case l = 1. Then we have

e[e, x̄]k1,...,kp(V1) = e

n1∑
i1=0

· · ·
np∑

ip=0

[x̄i1,...,ipai1,...,ip , x̄]k1,...,kp(V1)

= e

n1∑
i1=0

· · ·
np∑

ip=0

x̄i1,...,ip [ai1,...,ip , x̄]k1,...,kp(V1)

= 0

since [ai1,...,ip , x̄]k1,...,kp ∈ S and S(V1) = 0.
Suppose e[e, x̄]k1,...,kp(Vm−1) = 0, and consider any v ∈ Vm. We have

e[e, x̄]k1,...,kp(v) = e

n1∑
i1=0

· · ·
np∑

ip=0

[x̄i1,...,ipai1,...,ip , x̄]k1,...,kp(v)

=
n1∑

i1=0

· · ·
np∑

ip=0

ex̄i1,...,ip [ai1,...,ip , x̄]k1,...,kp(v)

=
n1∑

i1=0

· · ·
np∑

ip=0

ex̄i1,...,ip(ui1,...,ip),

where each ui1,...,ip ∈ Vm−1. By Lemma 4,

e[e, x̄]k1,...,kp(v)

=
n1∑

i1=0

· · ·
np∑

ip=0

ex̄i1,...,ip(ui1,...,ip)

=
n1∑

i1=0

· · ·
np∑

ip=0

i1∑
i′1=0

· · ·
ip∑

i′p=0

(
i1
i′1

)
. . .

(
ip
i′p

)
x̄i′1,...,i′p [e, x̄]i1−i′1,...,ip−i′p(ui1,...,ip).

Using Lemma 5, we can rewrite each [e, x̄]i1−i′1,...,ip−i′p (ui1,...,ip) in the form∑i1−i′1
i′′1 =0 · · ·∑ip−i′p

i′′p =0 ri′′1 ,...,i′′p e[e, x̄]i′′1 ,...,i′′p (ui1,...,ip), where each ri′′1 ,...,i′′p ∈ EndK(V ).
By the inductive hypothesis, each of these terms is 0, so e[e, x̄]k1,...,kp(v) = 0, as
desired.

Thus, e(V ) = e(VM ) = 0, so we conclude that e = 0.
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Proof of Theorem 1. To prove Theorem 1 we follow the proof of [3, Theorem 1],
using several variables instead of a single variable and replacing Lemmas 3, 4, and 5
with our Lemmas 4, 5, and 6, respectively.

Suppose there is a locally nilpotent ring R with derivations δ1, δ2, . . . , δp such
that the differential polynomial ring R[X1, . . . , Xp; δ1, . . . , δp] in commuting vari-
ables X1, . . . , Xp can be mapped onto a ring with a non-zero idempotent. Then
there exists a surjective homomorphism ϕ from R[X1, . . . , Xp; δ1, . . . , δp] onto a
subdirectly irreducible ring A such that there is a non-zero idempotent e in the
heart of A. Note that A must be a prime ring whose extended centroid K is a field.
Let Q be the Martindale right ring of quotients of A.

For j ∈ {1, . . . , p}, let xj : A → A be the map given by xj(ϕ(t)) := ϕ(Xjt)
for all t ∈ R[X1, . . . , Xp; δ1, . . . , δp]. We claim that each xj is a well-defined
map. Suppose ϕ(t) = 0 and ϕ(Xjt) �= 0. Since A is prime, there must be
t′ ∈ R[X1, . . . , Xp; δ1, . . . , δp] such that ϕ(t′)ϕ(Xjt) �= 0. We also have

ϕ(t′)ϕ(Xjt) = ϕ(t′Xjt)

= ϕ(t′Xj)ϕ(t)

= 0,

which is a contradiction.
Note that each xj : AA → AA is an endomorphism of a right A-module AA, so

each xj is in Q. Let the subring of Q generated by A and x1, . . . , xp be denoted
by A′, and let the ring obtained by adjoining unity to R be denoted by R#. Let
ψ : R#[X1, . . . , Xp; δ1, . . . , δp] → A′ be an additive map such that ψ(X i

j) = xi
j for

any j ∈ {1, . . . , p} and any non-negative integer i, and such that ψ(t) = ϕ(t) for
all t ∈ R[X1, . . . , Xp; δ1, . . . , δp]. Note that ψ is a homomorphism extending ϕ. We
can write a non-zero idempotent e ∈ A ⊆ A′ as

e = ϕ


 n1∑

i1=0

· · ·
np∑

ip=0

X i1
1 . . . X ip

p ri1,...,ip




= ψ


 n1∑

i1=0

· · ·
np∑

ip=0

X i1
1 . . .X ip

p ri1,...,ip




=
n1∑

i1=0

· · ·
np∑

ip=0

xi1
1 . . . xip

p ai1,...,ip

=
n1∑

i1=0

· · ·
np∑

ip=0

x̄i1,...,ipai1,...,ip ,

where n1, . . . , np are non-negative integers, ri1,...,ip ∈ R, and ψ(ri1,...,ip) = ai1,...,ip .
Let D be the subring of A′ generated by x1, . . . , xp and all ai1,...,ip with 0 ≤

ij ≤ nj . Let B = D ∩ ψ(R). Note that B and the subalgebra BK of Q are locally
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nilpotent. The subalgebra DK of A′K is finitely generated, so it can be embedded
into EndK(V ) for some K-vector space V . Then we can assume that xj ∈ EndK(V )
for j ∈ {1, . . . , p} and that these xj commute with each other. We have that N =
BK ⊆ EndK(V ) is locally nilpotent and that e =

∑n1
i1=0 · · ·

∑np

ip=0 x̄
i1,...,ipai1,...,ip ∈

EndK(V ) is a non-zero idempotent. By applying Lemma 6, we conclude that e = 0,
which is a contradiction. Therefore, we have proved the result.

Before we prove our next theorem, we need an auxiliary result.

Proposition 7. Let δ be a locally nilpotent derivation of a locally nilpotent ring R,
and let d be a derivation of R[X ; δ]. Then the ring R[X ; δ][Y ; d] cannot be mapped
onto a ring with a non-zero idempotent.

Proof. Observe that since R is a locally nilpotent ring and δ is a locally nilpotent
derivation of R, the differential polynomial ring R[X ; δ] is locally nilpotent. There-
fore, by [3, Theorem 1], R[X ; δ][Y ; d] cannot be mapped onto a ring with a non-zero
idempotent.

Proof of Theorem 2. Note that for any positive integer m and any a ∈ R, we
have

[Y ma,X ] = Y maX −XY ma

=
m∑

i=0

(
m

i

)
di(aX)Y m−i −X

m∑
i=0

(
m

i

)
di(a)Y m−i

=
m∑

i=0

(
m

i

)
(di(aX) −Xdi(a))Y m−i.

By assumption, di(aX) −Xdi(a) ∈ R for 1 ≤ i ≤ m, and we know

d0(aX) −Xd0(a) = −δ(a) ∈ R.

Observe that d�R is a derivation on R since d(R) ⊆ R, so [Y ma,X ] is an element
of the differential polynomial ring R[Y ; d�R].

Define the map δ′ : R[Y ; d�R] → R[Y ; d�R] by δ′(p(Y )) = −[p(Y ), X ] for all
p(Y ) ∈ R[Y ; d�R]. Note that δ′ is a derivation and that δ′(a) = δ(a) for all a ∈ R.
Then R[X ; δ][Y ; d] = R[Y ; d�R][X ; δ′]. Since d�R is locally nilpotent, the result
follows from Proposition 7.
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