

Differential polynomial rings in several variables over locally nilpotent rings

Fei Yu Chen*,[§], Hannah Hagan^{†,¶} and Allison Wang^{‡,||}

^{*}*Department of Mathematics, University of California
Berkeley, CA 94720, USA*

[†]*Department of Mathematics, Vanderbilt University
Nashville, TN 37235, USA*

[‡]*Department of Mathematics, California Institute of Technology
Pasadena, CA 91125, USA*

[§]*denniscchen@berkeley.edu*

[¶]*hannah.j.hagan@vanderbilt.edu*

^{||}*aywang@caltech.edu*

Received 1 August 2018

Accepted 10 August 2019

Published 15 October 2019

Communicated by I. Shestakov

We show that a differential polynomial ring over a locally nilpotent ring in several commuting variables is Behrens radical, extending a result by Chebotar.

Keywords: Behrens radical; differential polynomial ring; locally nilpotent ring.

Mathematics Subject Classification 2010: 16N40

1. Introduction

Recall that a ring is called *Brown–McCoy radical* if it cannot be homomorphically mapped onto a simple ring with identity. Similarly, a ring is called *Behrens radical* if it cannot be homomorphically mapped onto a ring with a non-zero idempotent.

One of the equivalent statements of the Koethe problem is whether a polynomial ring over a nil ring is Jacobson radical [6]. Although many believe that the answer is negative, several positive approximations to a solution have been found. For instance, Puczyłowski and Smoktunowicz proved in 1998 that a polynomial ring over a nil ring is Brown–McCoy radical [8]. A few years later, Beidar *et al.* showed that a polynomial ring over a nil ring is Behrens radical [1]. It was not known for a long time whether a polynomial ring in several variables over a nil ring is Brown–McCoy radical. Then in 2018, the question was answered positively using techniques

|| Corresponding author.

from Convex Geometry [4]. However, it is still unknown whether a polynomial ring in several variables over a nil ring is Behrens radical.

The study of differential polynomial rings over locally nilpotent rings is an active area of research [2, 3, 5, 7, 9, 10]. One of the most significant results occurred in 2014: Smoktunowicz and Ziembowski solved Shestakov's problem by proving that a differential polynomial ring over a locally nilpotent ring may not be Jacobson radical [10]. Furthermore, in a recent paper [5], Greenfeld *et al.* asked many questions about the properties of differential polynomial rings. Our result is related to one of their problems [5, Question 6.5]: does there exist a differential polynomial ring over a locally nilpotent ring that can be mapped onto a ring with a non-zero idempotent? This question was answered negatively by Chebotar [3]. We extend this result to differential polynomial rings in several commuting variables.

Let $\delta_1, \dots, \delta_p : R \rightarrow R$ be derivations of a ring R . The differential polynomial ring $R[X_1, \dots, X_p; \delta_1, \dots, \delta_p]$ is defined such that for all $r \in R$ and $1 \leq j \leq p$, $X_j r = r X_j + \delta_j(r)$. Our first result is the following:

Theorem 1. *Let $\delta_1, \delta_2, \dots, \delta_p$ be derivations of a locally nilpotent ring R . Then the differential polynomial ring $R[X_1, \dots, X_p; \delta_1, \dots, \delta_p]$ in commuting variables X_1, \dots, X_p cannot be mapped onto a ring with a non-zero idempotent.*

Before stating our next result, we recall that a derivation δ over a ring R is called *locally nilpotent* if for every $r \in R$, there exists a positive integer n such that $\delta^n(r) = 0$.

Theorem 2. *Let δ be a derivation of a locally nilpotent ring R , and let d be a derivation of $R[X; \delta]$ such that $d(R) \subseteq R$, $d|_R$ is locally nilpotent, and $d^n(aX) - X d^n(a) \in R$ for all $a \in R$ and positive integers n . Then the ring $R[X; \delta][Y; d]$ cannot be mapped onto a ring with a non-zero idempotent.*

Remark 3. Observe that any derivation d such that $d(R) = 0$ and $d(RX) \subseteq R$ satisfies the conditions of Theorem 2. In particular, the derivative $d(p(X)) = \frac{d}{dX}(p(X))$ satisfies these conditions.

Furthermore, note that for any fixed $r \in R$, the inner derivation $d(p(X)) = [p(X), r]$ satisfies the conditions of Theorem 2.

We conclude this section with a question: Are the technical conditions on the derivation d in Theorem 2 necessary?

2. Proofs

We follow Chebotar's approach in [3] to prove Theorem 1. Given elements e and x of a ring R , we define $[e, x]_0 = e$, $[e, x]_1 = [e, x] = ex - xe$, and $[e, x]_k = [[e, x]_{k-1}, x]$ for $k > 1$. Given elements $x_1, \dots, x_p \in R$ and non-negative integers k_1, \dots, k_p , we denote by $[e, \bar{x}]_{k_1, \dots, k_p}$ the expression $[\dots [e, x_1]_{k_1}, \dots, x_p]_{k_p}$ and denote by $\bar{x}^{k_1, \dots, k_p}$

the expression $x_1^{k_1} \dots x_p^{k_p}$. Our first lemma is a folklore result related to the general Leibniz rule:

Lemma 4. *Let e, x_1, \dots, x_p be elements of a ring R and n_1, \dots, n_p be non-negative integers. Then*

$$e\bar{x}^{n_1, \dots, n_p} = \sum_{i_1=0}^{n_1} \dots \sum_{i_p=0}^{n_p} \binom{n_1}{i_1} \dots \binom{n_p}{i_p} \bar{x}^{i_1, \dots, i_p} [e, \bar{x}]_{n_1-i_1, \dots, n_p-i_p}.$$

Another useful result is the following:

Lemma 5. *Let e, x_1, \dots, x_p be elements of a ring R with $e^2 = e$. Then for any non-negative integers k_1, \dots, k_p , we have*

$$[e, \bar{x}]_{k_1, \dots, k_p} = \sum_{i_1=0}^{k_1} \dots \sum_{i_p=0}^{k_p} r_{i_1, \dots, i_p} e [e, \bar{x}]_{i_1, \dots, i_p}$$

for some $r_{i_1, \dots, i_p} \in R$.

Proof. We use induction on $p \geq 1$. Note that when $p = 1$, the result follows from [3, Lemma 4].

Suppose the result holds for $p = l - 1$, and consider the case of l variables. We induct on $k_l \geq 0$. Observe that the case $k_l = 0$ reduces to the case $p = l - 1$.

Suppose the statement holds for all $k_l < m$, where m is some positive integer. Then

$$\begin{aligned} [[e, \bar{x}]_{k_1, \dots, k_{l-1}}, x_l]_m &= \sum_{i_1=0}^{k_1} \dots \sum_{i_{l-1}=0}^{k_{l-1}} [r_{i_1, \dots, i_{l-1}} e [e, \bar{x}]_{i_1, \dots, i_{l-1}}, x_l]_m \\ &= \sum_{i_1=0}^{k_1} \dots \sum_{i_{l-1}=0}^{k_{l-1}} \sum_{i_l=0}^m \binom{m}{i_l} [r_{i_1, \dots, i_{l-1}} e, x_l]_{i_l} [[e, \bar{x}]_{i_1, \dots, i_{l-1}}, x_l]_{m-i_l} \end{aligned}$$

by the Leibniz rule. Note that for $i_l > 0$, we can write $[[e, \bar{x}]_{i_1, \dots, i_{l-1}}, x_l]_{m-i_l}$ in the desired form by our inductive hypothesis. When $i_l = 0$,

$$\begin{aligned} [r_{i_1, \dots, i_{l-1}} e, x_l]_{i_l} [[e, \bar{x}]_{i_1, \dots, i_{l-1}}, x_l]_{m-i_l} &= [r_{i_1, \dots, i_{l-1}} e, x_l]_0 [[e, \bar{x}]_{i_1, \dots, i_{l-1}}, x_l]_m \\ &= r_{i_1, \dots, i_{l-1}} e [[e, \bar{x}]_{i_1, \dots, i_{l-1}}, x_l]_m, \end{aligned}$$

which is also of the desired form. Thus, the result follows. \square

Let $\text{End}_K(V)$ be the K -algebra of linear transformations of the K -vector space V . Our main lemma for our proof of Theorem 1 is the following:

Lemma 6. *Let N be a locally nilpotent subalgebra of $\text{End}_K(V)$. Suppose that $e = \sum_{i_1=0}^{n_1} \dots \sum_{i_p=0}^{n_p} \bar{x}^{i_1, \dots, i_p} a_{i_1, \dots, i_p}$ is an idempotent of $\text{End}_K(V)$ such that $x_1, \dots, x_p \in \text{End}_K(V)$ are commuting endomorphisms and $[a_{i_1, \dots, i_p}, \bar{x}]_{k_1, \dots, k_p} \in N$, where $0 \leq i_j, k_j \leq n_j$ for all $1 \leq j \leq p$. Then $e = 0$.*

Proof. Let S be the subalgebra of N generated by elements of the form

$$[a_{i_1, \dots, i_p}, \bar{x}]_{k_1, \dots, k_p},$$

where $0 \leq i_j, k_j \leq n_j$ for all $1 \leq j \leq p$. Because N is locally nilpotent and S is a finitely generated subalgebra of N , S is nilpotent. Then we can find subspaces $0 = V_0 \subseteq V_1 \subseteq \dots \subseteq V_M = V$ such that $S(V_l) = V_{l-1}$ for all $1 \leq l \leq M$.

We will show that if $k_j \leq n_j$ for all $1 \leq j \leq p$, $e[e, \bar{x}]_{k_1, \dots, k_p}(V_l) = 0$ for all $1 \leq l \leq M$.

We use induction on $l \geq 1$. Consider the case $l = 1$. Then we have

$$\begin{aligned} e[e, \bar{x}]_{k_1, \dots, k_p}(V_1) &= e \sum_{i_1=0}^{n_1} \dots \sum_{i_p=0}^{n_p} [\bar{x}^{i_1, \dots, i_p} a_{i_1, \dots, i_p}, \bar{x}]_{k_1, \dots, k_p}(V_1) \\ &= e \sum_{i_1=0}^{n_1} \dots \sum_{i_p=0}^{n_p} \bar{x}^{i_1, \dots, i_p} [a_{i_1, \dots, i_p}, \bar{x}]_{k_1, \dots, k_p}(V_1) \\ &= 0 \end{aligned}$$

since $[a_{i_1, \dots, i_p}, \bar{x}]_{k_1, \dots, k_p} \in S$ and $S(V_1) = 0$.

Suppose $e[e, \bar{x}]_{k_1, \dots, k_p}(V_{m-1}) = 0$, and consider any $v \in V_m$. We have

$$\begin{aligned} e[e, \bar{x}]_{k_1, \dots, k_p}(v) &= e \sum_{i_1=0}^{n_1} \dots \sum_{i_p=0}^{n_p} [\bar{x}^{i_1, \dots, i_p} a_{i_1, \dots, i_p}, \bar{x}]_{k_1, \dots, k_p}(v) \\ &= \sum_{i_1=0}^{n_1} \dots \sum_{i_p=0}^{n_p} e \bar{x}^{i_1, \dots, i_p} [a_{i_1, \dots, i_p}, \bar{x}]_{k_1, \dots, k_p}(v) \\ &= \sum_{i_1=0}^{n_1} \dots \sum_{i_p=0}^{n_p} e \bar{x}^{i_1, \dots, i_p} (u_{i_1, \dots, i_p}), \end{aligned}$$

where each $u_{i_1, \dots, i_p} \in V_{m-1}$. By Lemma 4,

$$\begin{aligned} e[e, \bar{x}]_{k_1, \dots, k_p}(v) &= \sum_{i_1=0}^{n_1} \dots \sum_{i_p=0}^{n_p} e \bar{x}^{i_1, \dots, i_p} (u_{i_1, \dots, i_p}) \\ &= \sum_{i_1=0}^{n_1} \dots \sum_{i_p=0}^{n_p} \sum_{i'_1=0}^{i_1} \dots \sum_{i'_p=0}^{i_p} \binom{i_1}{i'_1} \dots \binom{i_p}{i'_p} \bar{x}^{i'_1, \dots, i'_p} [e, \bar{x}]_{i_1-i'_1, \dots, i_p-i'_p} (u_{i_1, \dots, i_p}). \end{aligned}$$

Using Lemma 5, we can rewrite each $[e, \bar{x}]_{i_1-i'_1, \dots, i_p-i'_p} (u_{i_1, \dots, i_p})$ in the form $\sum_{i''_1=0}^{i_1-i'_1} \dots \sum_{i''_p=0}^{i_p-i'_p} r_{i''_1, \dots, i''_p} e[e, \bar{x}]_{i''_1, \dots, i''_p} (u_{i_1, \dots, i_p})$, where each $r_{i''_1, \dots, i''_p} \in \text{End}_K(V)$. By the inductive hypothesis, each of these terms is 0, so $e[e, \bar{x}]_{k_1, \dots, k_p}(v) = 0$, as desired.

Thus, $e(V) = e(V_M) = 0$, so we conclude that $e = 0$. □

Proof of Theorem 1. To prove Theorem 1 we follow the proof of [3, Theorem 1], using several variables instead of a single variable and replacing Lemmas 3, 4, and 5 with our Lemmas 4, 5, and 6, respectively.

Suppose there is a locally nilpotent ring R with derivations $\delta_1, \delta_2, \dots, \delta_p$ such that the differential polynomial ring $R[X_1, \dots, X_p; \delta_1, \dots, \delta_p]$ in commuting variables X_1, \dots, X_p can be mapped onto a ring with a non-zero idempotent. Then there exists a surjective homomorphism φ from $R[X_1, \dots, X_p; \delta_1, \dots, \delta_p]$ onto a subdirectly irreducible ring A such that there is a non-zero idempotent e in the heart of A . Note that A must be a prime ring whose extended centroid K is a field. Let Q be the Martindale right ring of quotients of A .

For $j \in \{1, \dots, p\}$, let $x_j : A \rightarrow A$ be the map given by $x_j(\varphi(t)) := \varphi(X_j t)$ for all $t \in R[X_1, \dots, X_p; \delta_1, \dots, \delta_p]$. We claim that each x_j is a well-defined map. Suppose $\varphi(t) = 0$ and $\varphi(X_j t) \neq 0$. Since A is prime, there must be $t' \in R[X_1, \dots, X_p; \delta_1, \dots, \delta_p]$ such that $\varphi(t')\varphi(X_j t) \neq 0$. We also have

$$\begin{aligned} \varphi(t')\varphi(X_j t) &= \varphi(t'X_j t) \\ &= \varphi(t'X_j)\varphi(t) \\ &= 0, \end{aligned}$$

which is a contradiction.

Note that each $x_j : A_A \rightarrow A_A$ is an endomorphism of a right A -module A_A , so each x_j is in Q . Let the subring of Q generated by A and x_1, \dots, x_p be denoted by A' , and let the ring obtained by adjoining unity to R be denoted by $R^\#$. Let $\psi : R^\#[X_1, \dots, X_p; \delta_1, \dots, \delta_p] \rightarrow A'$ be an additive map such that $\psi(X_j^i) = x_j^i$ for any $j \in \{1, \dots, p\}$ and any non-negative integer i , and such that $\psi(t) = \varphi(t)$ for all $t \in R[X_1, \dots, X_p; \delta_1, \dots, \delta_p]$. Note that ψ is a homomorphism extending φ . We can write a non-zero idempotent $e \in A \subseteq A'$ as

$$\begin{aligned} e &= \varphi \left(\sum_{i_1=0}^{n_1} \dots \sum_{i_p=0}^{n_p} X_1^{i_1} \dots X_p^{i_p} r_{i_1, \dots, i_p} \right) \\ &= \psi \left(\sum_{i_1=0}^{n_1} \dots \sum_{i_p=0}^{n_p} X_1^{i_1} \dots X_p^{i_p} r_{i_1, \dots, i_p} \right) \\ &= \sum_{i_1=0}^{n_1} \dots \sum_{i_p=0}^{n_p} x_1^{i_1} \dots x_p^{i_p} a_{i_1, \dots, i_p} \\ &= \sum_{i_1=0}^{n_1} \dots \sum_{i_p=0}^{n_p} \bar{x}^{i_1, \dots, i_p} a_{i_1, \dots, i_p}, \end{aligned}$$

where n_1, \dots, n_p are non-negative integers, $r_{i_1, \dots, i_p} \in R$, and $\psi(r_{i_1, \dots, i_p}) = a_{i_1, \dots, i_p}$.

Let D be the subring of A' generated by x_1, \dots, x_p and all a_{i_1, \dots, i_p} with $0 \leq i_j \leq n_j$. Let $B = D \cap \psi(R)$. Note that B and the subalgebra BK of Q are locally

nilpotent. The subalgebra DK of $A'K$ is finitely generated, so it can be embedded into $\text{End}_K(V)$ for some K -vector space V . Then we can assume that $x_j \in \text{End}_K(V)$ for $j \in \{1, \dots, p\}$ and that these x_j commute with each other. We have that $N = BK \subseteq \text{End}_K(V)$ is locally nilpotent and that $e = \sum_{i_1=0}^{n_1} \dots \sum_{i_p=0}^{n_p} \bar{x}^{i_1, \dots, i_p} a_{i_1, \dots, i_p} \in \text{End}_K(V)$ is a non-zero idempotent. By applying Lemma 6, we conclude that $e = 0$, which is a contradiction. Therefore, we have proved the result. \square

Before we prove our next theorem, we need an auxiliary result.

Proposition 7. *Let δ be a locally nilpotent derivation of a locally nilpotent ring R , and let d be a derivation of $R[X; \delta]$. Then the ring $R[X; \delta][Y; d]$ cannot be mapped onto a ring with a non-zero idempotent.*

Proof. Observe that since R is a locally nilpotent ring and δ is a locally nilpotent derivation of R , the differential polynomial ring $R[X; \delta]$ is locally nilpotent. Therefore, by [3, Theorem 1], $R[X; \delta][Y; d]$ cannot be mapped onto a ring with a non-zero idempotent. \square

Proof of Theorem 2. Note that for any positive integer m and any $a \in R$, we have

$$\begin{aligned} [Y^m a, X] &= Y^m aX - XY^m a \\ &= \sum_{i=0}^m \binom{m}{i} d^i(aX) Y^{m-i} - X \sum_{i=0}^m \binom{m}{i} d^i(a) Y^{m-i} \\ &= \sum_{i=0}^m \binom{m}{i} (d^i(aX) - X d^i(a)) Y^{m-i}. \end{aligned}$$

By assumption, $d^i(aX) - X d^i(a) \in R$ for $1 \leq i \leq m$, and we know

$$d^0(aX) - X d^0(a) = -\delta(a) \in R.$$

Observe that $d|_R$ is a derivation on R since $d(R) \subseteq R$, so $[Y^m a, X]$ is an element of the differential polynomial ring $R[Y; d|_R]$.

Define the map $\delta' : R[Y; d|_R] \rightarrow R[Y; d|_R]$ by $\delta'(p(Y)) = -[p(Y), X]$ for all $p(Y) \in R[Y; d|_R]$. Note that δ' is a derivation and that $\delta'(a) = \delta(a)$ for all $a \in R$. Then $R[X; \delta][Y; d] = R[Y; d|_R][X; \delta']$. Since $d|_R$ is locally nilpotent, the result follows from Proposition 7. \square

Acknowledgments

We would like to thank our advisor Dr. Mikhail Chebotar for his help and guidance. We would also like to thank the Department of Mathematical Sciences at Kent State University for its hospitality. The authors are supported in part by the NSF, grant DMS 1653002.

References

- [1] K. I. Beidar, Y. Fong and E. R. Puczyłowski, Polynomial rings over nil rings cannot be homomorphically mapped onto rings with nonzero idempotents, *J. Algebra* **238** (2001) 389–399.
- [2] J. P. Bell, B. W. Madill and F. Shinko, Differential polynomial rings over rings satisfying a polynomial identity, *J. Algebra* **423** (2015) 28–36.
- [3] M. Chebotar, On differential polynomial rings over locally nilpotent rings, *Israel J. Math.* **227** (2018) 233–238.
- [4] M. Chebotar, W.-F. Ke, P.-H. Lee and E. R. Puczyłowski, On polynomial rings over nil rings in several variables and the central closure of prime nil rings, *Israel J. Math.* **223** (2018) 309–322.
- [5] B. Greenfeld, A. Smoktunowicz and M. Ziembowski, Five solved problems on radicals of Ore extensions, *Publ. Mat.* **63** (2019) 423–444.
- [6] J. Krempa, Logical connections among some open problems in non-commutative rings, *Fund. Math.* **76** (1972) 121–130.
- [7] P. P. Nielsen and M. Ziembowski, Derivations and bounded nilpotence index, *Int. J. Algebra Comput.* **25** (2015) 433–438.
- [8] E. R. Puczyłowski and A. Smoktunowicz, On maximal ideals and the Brown-McCoy radical of polynomial rings, *Comm. Algebra* **26** (1998) 2473–2482.
- [9] A. Smoktunowicz, How far can we go with Amitsur’s theorem in differential polynomial rings, *Israel J. Math.* **219** (2017) 555–608.
- [10] A. Smoktunowicz and M. Ziembowski, Differential polynomial rings over locally nilpotent rings need not be Jacobson radical, *J. Algebra* **412** (2014) 207–217.