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1. Introduction

Let A be an algebra over a field F . It becomes a Lie algebra if we introduce the Lie 

product [a, b] by [a, b] = ab − ba, a, b ∈ A. Let B be another algebra over F . A map 
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α : A → B preserves zero Lie products if [α(a), α(b)] = 0 whenever [a, b] = 0. Equiva-
lently, α preserves commutativity.

The first paper on commutativity preserving maps was published in 1976 by Watkins 
[10], who described bijective linear commutativity preserving maps on matrix algebras. 
Let Mn(F ) denote the algebra of matrices over F and In be its n × n identity matrix. It 
was shown under some mild technical restrictions that every commutativity preserving 

bijective linear map L : Mn(F ) → Mn(F ) is either of the form

L(X) = cS−1XS + f(X)In, X ∈ Mn(F ),

or

L(X) = cS−1XT S + f(X)In, X ∈ Mn(F ),

where c is a scalar, S ∈ Mn(F ) is an invertible matrix, f is a linear functional on Mn(F ), 
and XT denotes the transpose of X. Maps of these forms are traditionally called standard 

commutativity preserving maps. For the case with general algebras A and B, these forms 
can be stated in terms of automorphisms and anti-automorphisms.

Further developments went in two directions: analytic and algebraic. We will mention 

only two important results here. First, Omladič [8] extended Watkins’s result to the 

infinite-dimensional case. He described bijective linear maps preserving commutativity 

in both directions on the algebra of bounded linear operators on an infinite-dimensional 
Banach space.

Second, Brešar [2] described bijective commutativity preserving additive maps on 

prime rings under some technical restrictions. This description was the key to his famous 
solution of Herstein’s problem on Lie isomorphisms of prime rings. We refer the reader 
to Šemrl [9] for additional interesting results in the area of commutativity preservers.

In this paper, we will consider a seemingly similar problem. Let Mn(C) denote the 

algebra of n × n complex matrices and eij denote the matrix with 1 in the (i, j)-entry 

and zeros elsewhere. Let φ : Mn(C) → Mn(C) be a bijective linear map such that

φ(e12) = e12 and [φ(A), φ(B)] = e12 whenever [A, B] = e12, (1.1)

where A, B ∈ Mn(C) (this condition is referred to as “Property (1.1)” in the upcoming 

discussion). The purpose of the paper is to obtain a complete description of φ.
Recently, similar questions were considered in the case of ordinary products [4] and 

Jordan products [5]. In both cases, the maps were shown to be of the standard form.
To our surprise, this is not the case in our situation. However, the description is still 

“nice” with the exception of one entry.

Theorem 1. If n ≥ 5 and φ : Mn(C) → Mn(C) is a bijective linear map such that 

φ(e12) = e12 and [φ(A), φ(B)] = e12 whenever [A, B] = e12, then there exists an invertible 

matrix P and a linear functional f on Mn(C) such that, for (i, j) �= (2, 1),
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(1) φ(eij) = P −1eijP + f(eij)In, or

(2) φ(eij) = −P −1ejiP + f(eij)In.

In either case, φ(e21) = xe21 + X, where x ∈ C is nonzero and X ∈ Mn(C) has a zero 

(2, 1)-entry.

The assumption that n ≥ 5 is imposed because the restriction of a map satisfying 

Property (1.1) on a subalgebra isomorphic to Mn−2(C) will be a commutativity preserv-
ing map (see Theorem 6 below).

The fact that φ(e21) completely avoids description stems from the following key ob-
servation, which we present here with proof. Note that the symbol (hij) represents an 

n × n matrix with entries hij ∈ C, 1 ≤ i, j, ≤ n.

Theorem 2. If A = (aij) and B = (bij) are matrices such that [A, B] = e12, then 

a21 = b21 = 0.

Proof. Suppose for the sake of contradiction that there are matrices A, B ∈ Mn(C) such 

that [A, B] = e12 and a21 �= 0 (resp. b21 �= 0). Since rank([A, B]) = 1, it follows from The-
orem 1 in Guralnick [6] (or Theorem 1.4 in Laffey [7]) that A and B are simultaneously 

triangularizable; that is, there exists an invertible matrix P ∈ Mn(C) such that PAP −1

and PBP −1 are upper-triangular matrices. However, since tr(A[A, B]) = a21 �= 0 (resp. 
tr(B[A, B]) = b21 �= 0), it follows from Theorem 3.1 in Bourgeois [1] that A and B are 

not simultaneously triangularizable, a contradiction. �

Example. Maps satisfying Property (1.1) need not preserve commutativity. Let φ :
Mn(C) → Mn(C) be a linear map that acts as the identity map on all eij ∈ Mn(C)
except e21, and let φ(e21) = e21 + e12. Clearly such a map is bijective and satisfies 
Property (1.1), and is of the form (1) from Theorem 1. However, [e21, e23] = 0 while 

[φ(e21), φ(e23)] = e13.

We believe Theorem 1 is of interest for two reasons. First, we have not encountered 

a linear preserver problem whose solutions resemble those of the main theorem. Second, 
this shows that maps preserving nonzero Lie products cannot be expected a priori to 

have the same descriptions as maps preserving zero Lie products.

2. Preliminary results

Fix an A ∈ Mn(C). Let C(A) denote the set {X ∈ Mn(C) : [A, X] = 0}. This set is 
called the centralizer of A. In Watkins [10], the author passes the commutativity preserver 
problem to the rank-one preserver problem using a matrix theoretical result concerning 

centralizers. While the commutator relation in Property (1.1) prevents us from repeating 

the argument in full, some information regarding specific centralizer subalgebras can be 

deduced.
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Lemma 3. If φ : Mn(C) → Mn(C) is a bijective linear map that satisfies Property (1.1), 
then

(1) [φ(A), e12] = 0 whenever [A, e12] = 0,

(2) [φ(A), φ(e11)] = 0 whenever [A, e11] = 0, and

(3) [φ(A), φ(e22)] = 0 whenever [A, e22] = 0.

In other words, φ(C(e12)) ⊆ C(e12), φ(C(e11)) ⊆ C(φ(e11)), and φ(C(e22)) ⊆ C(φ(e22)).

Proof. If [A, e12] = 0, then [e11 + A, e12] = e12. By Property (1.1), [φ(e11 + A), φ(e12)] =
e12, and so [φ(e11), φ(e12)] +[φ(A), φ(e12)] = e12 by linearity. The first summand is equal 
to e12, hence [φ(A), φ(e12)] = 0. Statements (2) and (3) follow from a similar analysis of 
the Lie products [e11, e12 − A] = e12 and [A + e12, e22] = e12, respectively. �

The preceding result is simply a consequence of linearity. Performing more delicate 

computations generates relations among (almost all) matrix units, as follows.

Lemma 4. If n ≥ 3 and φ : Mn(C) → Mn(C) is a bijective linear map that satisfies 

Property (1.1), then

(1) [φ(eii), φ(ejk)] = 0 if i /∈ {j, k} and (j, k) �= (2, 1),
(2) [φ(eii + ejj), φ(eij)] = 0 if (i, j) �= (2, 1),
(3) φ(In) = λIn for some nonzero λ ∈ C.

Proof. Suppose that i /∈ {j, k}. Since ejk commutes with eii, the cases when i = 1 or 
i = 2 follow directly from statements (2) and (3) of Lemma 3. In particular, if j = k, 
then [φ(eii), φ(ejj)] = 0 whenever i = 1, 2 and i �= j. So we may assume that i ≥ 3. 
Since [e11 + e1k, e12 + eii] = e12, we have that [φ(e11 + e1k), φ(e12 + eii)] = e12. But 
e1k commutes with e12 and e11 commutes with eii, so we conclude by Lemma 3 that 
[φ(e1k), φ(eii)] = 0. Hence (1) holds if j = 1. Likewise, since [eii + e22, ej1 − e12] = e12

whenever j �= 2, we conclude that [φ(eii), φ(ej1)] = 0. Hence (1) also holds if k = 1.
Assume now that j �= 1 and k �= 1. Since [e11 + eii, e12 + ejk] = e12, we have that 

[φ(e11 + eii), φ(e12 + ejk)] = e12. But ejk commutes with e11 and eii commutes with e12, 
so it must be that [φ(eii), φ(ejk)] = 0. The proof of (1) is complete.

Now we will show that [φ(eii + ejj), φ(eij)] = 0. If i = j, there is nothing to prove, 
so assume i �= j. Suppose first that i = 1 and j = 2. Since [φ(e11), φ(e12)] = e12 and 

[φ(e22), φ(e12)] = −e12, the linearity of the Lie product shows that [φ(e11+e22), φ(e12)] =
0 directly. Suppose that i = 1 and j ≥ 3. Since [e11 + ejj , e1j + e12] = e12, we have 

that [φ(e11 + ejj), φ(e1j) + e12] = e12. But ejj commutes with e12, so we conclude that 
[φ(e11 + ejj), φ(e1j)] = 0. Replacing e1j with ej1 and repeating this argument also shows 
that [φ(e11 + ejj), φ(ej1)] = 0.
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Assume that i = 2 and j ≥ 3. Since [e22 + ejj , e2j − e12] = e12, it follows from 

linearity that [φ(e22 + ejj), φ(e2j)] = 0. An analogous argument also shows that [φ(e22 +
ejj), φ(ej2)] = 0.

Lastly, if both i ≥ 3 and j ≥ 3, observe that [e11 + eii + ejj , e12 + eij ] = e12. Since 

eij commutes with e11 and eii, ejj commute with e12, we have by Lemma 3 that [φ(eii +
ejj), φ(eij)] = 0. Thus statement (2) holds for all pairs (i, j) except (2, 1).

Consider φ(eij), where (i, j) �= (2, 1). From linearity and statements (1) and (2), it 
follows that [φ(In), φ(eij)] = 0. From bijectivity, we conclude that dim C(φ(In)) ≥ n2−1. 
The first lemma in Watkins [10] states that if dim C(A) > n2 − 2n + 2, then A is a scalar 
multiple of the identity. Thus φ(In) = λIn for some nonzero λ ∈ C, proving statement 
(3). The proof of the lemma is complete. �

Lemma 5. If φ : Mn(C) → Mn(C) is a bijective linear map that satisfies Property

(1.1), then there exist rank-one matrices E11, E22 and scalars λ11, λ22 such that φ(e11) =
E11 + λ11In and φ(e22) = E22 + λ22In. Furthermore, E11 is a matrix consisting of 

precisely one row vector (resp. column vector) and E22 is a matrix consisting of precisely 

one column vector (resp. row vector).

Proof. The first part of the proof occurs as special cases of the first lemma appearing in 

Watkins [10], which is reproduced here. From our Lemma 3, the centralizers of e11 and e22

are mapped into the centralizers of φ(e11) and φ(e22), respectively. Since φ is bijective and 

the dimension of the subalgebra C(e11) is n2−2n +2, then n2−2n +2 ≤ dim C(φ(e11)). If 
n2−2n +2 < dim C(φ(e11)), then φ(e11) must be a scalar matrix. This is impossible since 

φ also maps the identity to a scalar matrix by Lemma 4, contradicting the injectivity 

of φ. Hence dim C(φ(e11)) = n2 − 2n + 2, and so φ(e11) = E11 + λ11In where E11 is a 

rank-one matrix. An analogous argument shows that φ(e22) = E22 + λ22In, where E22

is a rank-one matrix.
The forms of E11 and E22 will now be determined. If φ(e11) = (aij) and φ(e22) = (bij), 

then [φ(e11), e12] = e12 and [e12, φ(e22)] = e12 by Property (1.1), so

φ(e11) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 + a11 a12 a13 · · · a1n

0 a11 0 · · · 0
0 a32 a33 · · · a3n

...
...

...
. . .

...
0 an2 an3 · · · ann

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

φ(e22) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

b22 b12 b13 · · · b1n

0 1 + b22 0 · · · 0
0 b32 b33 · · · b3n

...
...

...
. . .

...
0 bn2 bn3 · · · bnn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.



V. Ginsburg et al. / Linear Algebra and its Applications 593 (2020) 212–227 217

By the previous remarks, we have that

E11 =

⎛

⎜

⎜

⎜

⎜

⎝

1 + a11 − λ11 a12 a13 · · · a1n

0 a11 − λ11 0 · · · 0
0 a32 a33 − λ11 · · · a3n

...
...

...
. . .

...
0 an2 an3 · · · ann − λ11

⎞

⎟

⎟

⎟

⎟

⎠

and

E22 =

⎛

⎜

⎜

⎜

⎜

⎝

b22 − λ22 b12 b13 · · · b1n

0 1 + b22 − λ22 0 · · · 0
0 b32 b33 − λ22 · · · b3n

...
...

...
. . .

...
0 bn2 bn3 · · · bnn − λ22

⎞

⎟

⎟

⎟

⎟

⎠

.

However, since E11 and E22 are rank-one matrices, then either

E11 =

⎛

⎜

⎜

⎜

⎜

⎝

1 a12 a13 · · · a1n

0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎠

, or E11 =

⎛

⎜

⎜

⎜

⎜

⎝

0 a12 0 · · · 0
0 −1 0 · · · 0
0 a32 0 · · · 0
...

...
...

. . .
...

0 an2 0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎠

(2.1)

and either

E22 =

⎛

⎜

⎜

⎜

⎜

⎝

0 b12 0 · · · 0
0 1 0 · · · 0
0 b32 0 · · · 0
...

...
...

. . .
...

0 bn2 0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎠

, or E22 =

⎛

⎜

⎜

⎜

⎜

⎝

−1 b12 b13 · · · b1n

0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎠

. (2.2)

But [φ(e11), φ(e22)] = [E11, E22] = 0, so if E11 and E22 are both row matrices, then 

[E11, E22] = 0 implies that E22 is a multiple of E11, which contradicts bijectivity of σ1. 
Hence if E11 is the row (resp. column) matrix in equation (2.1), E22 must be the column 

(resp. row) matrix in equation (2.2). �

The calculations performed thus far have illustrated much of the structure of the map 

on the key elements e11, e22, and e12. These matrix units have nontrivial multiplication 

with the first two rows and columns of matrices in Mn(C), but have trivial multiplication 

with the subalgebra generated by matrices of the form

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 · · · 0
0 0 0 · · · 0
0 0 v33 · · · v3n

...
...

...
. . .

...
0 0 vn3 · · · vnn

⎞

⎟

⎟

⎟

⎟

⎠

.
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Therefore, in what follows, we compose several linear transformations with φ to pass 
to a map σ3 that fixes e11, e22, and e12 and satisfies Property (1.1). This ensures that 
σ3, which will arise from strategically changing bases and adding scalar multiples of 
the identity, does not destroy the structure of φ. However, the new map does preserve 

commutativity on the above subalgebra isomorphic to Mn−2(C). This means a complete 

description is obtainable for the restriction of σ3 (and therefore for φ as well, after 
reversing the composition).

Theorem 6. Let φ : Mn(C) → Mn(C) be a bijective linear map that satisfies Property

(1.1) and let V ⊆ Mn(C) be the subalgebra of matrices of the form (vij) with vij = 0
whenever i ≤ 2 or j ≤ 2. The restriction of φ to V is a standard commutativity preserving 

map; that is, the restriction of φ to V is either of the form

(1) φ(A) = dU−1AU + h(A)IV , or

(2) φ(A) = dU−1AT U + h(A)IV

where d is a scalar, U ∈ Mn(C) an invertible matrix, h a linear functional on Mn(C), 
and IV = e33 + e44 + · · · + enn.

Proof. Let σ1 : Mn(C) → Mn(C) be the linear map defined by σ1(A) = φ(A) −g1(A)In, 
where g1 is a linear functional on Mn(C) chosen so that σ1 is bijective with g1(e11) = λ11, 
g1(e22) = λ22, and g1(e12) = 0 (see Lemma 5 above); in other words,

σ1(e11) = E11, σ1(e22) = E22, σ1(e12) = e12,

respectively. It also follows immediately that [σ1(A), σ1(B)] = [φ(A), φ(B)] for all A, B ∈

Mn(C), so σ1 certainly satisfies Property (1.1). We may also insist that σ1(In) = In by 

choosing g1(In) = λ − 1 for λ as in part (3) of Lemma 4.
Lemma 5 presents two possible definitions for the map σ1 based on the forms of E11

and E22 Ideally, one would like to pass to a map that fixes e11, e22, and e12 directly, 
which can be done as follows.

If E11 is the row matrix in equation (2.1) and E22 is the column matrix in equation 

(2.2), the condition [E11, E22] = 0 implies that a12 + b12 +
∑n

k=3 a1kbk2 = 0 for the 

matrix entries. Using this relation, there is an invertible matrix U1 such that

U1E11U−1
1 = e11, U1E22U−1

1 = e22 and U1e12U−1
1 = e12, (2.3)

given by
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U1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 a12 a13 a14 · · · a1n

0 1 0 0 · · · 0
0 −b32 1 0 · · · 0
0 −b42 0 1 · · · 0
...

...
...

...
. . .

...
0 −bn2 0 0 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

U−1
1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 b12 −a13 −a14 · · · −a1n

0 1 0 0 · · · 0
0 b32 1 0 · · · 0
0 b42 0 1 · · · 0
...

...
...

...
. . .

...
0 bn2 0 0 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

If E11 is the column matrix in equation (2.1) and E22 is the row matrix in equation 

(2.2), the condition [E11, E22] = 0 implies that a12 + b12 −
∑n

k=3 b1kak2 = 0. Using this 
relation, there is an invertible matrix U2 such that

−U2E11U−1
2 = e11, −U2E22U−1

2 = e22, and − U2e12U−1
2 = e21 (2.4)

given by

U2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 −1 0 0 · · · 0
1 −b12 −b13 −b14 · · · −b1n

0 a32 1 0 · · · 0
0 a42 0 1 · · · 0
...

...
...

...
. . .

...
0 an2 0 0 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

U−1
2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a12 1 b13 b14 · · · b1n

−1 0 0 0 · · · 0
a32 0 1 0 · · · 0
a42 0 0 1 · · · 0
...

...
...

...
. . .

...
an2 0 0 0 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

If U3 = (U−1
2 )T , taking the transpose through equation (2.4) yields

−U3(E11)T U−1
3 = e11, −U3(E22)T U−1

3 = e22, and − U3(e12)T U−1
3 = e12. (2.5)

Therefore the automorphism σ2 defined by A �→ U1σ1(A)U−1
1 or the negative anti-

automorphism σ2 defined by A �→ −U3σ1(A)T U−1
3 satisfies

σ2(e11) = e11, σ2(e22) = e22, and σ2(e12) = e12. (2.6)
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With either determination of E11 and E22, equation (2.6) guarantees that σ2 satisfies 
Property (1.1); in particular, that σ2 satisfies the centralizer conclusion of Lemma 3. 
However, since σ2 fixes the matrix units e11, e22, and e12, the map σ2 must preserve the 

respective centralizers as subalgebras. This means that if A ∈ V, then [σ2(A), e11] =
[σ2(A), e22] = [σ2(A), e12] = 0, which shows an inclusion σ2(V) ⊆ C(e11) ∩ C(e22) ∩
C(e12). But C(e11) ∩ C(e22) ∩ C(e12) is precisely the set V + CIn. It is therefore possible 

to define a bijective linear map σ3 : Mn(C) → Mn(C) by

σ3(A) = σ2(A) − g3(A)In,

where g3 is a linear functional on Mn(C) chosen so that σ3 is bijective, fixes e11, e22, e12, 
σ3(V) ⊆ V, and σ3(In) = In. With this definition, σ3 has the property that 
[σ3(A), σ3(B)] = [σ2(A), σ2(B)] for all A, B ∈ Mn(C), so certainly σ3 satisfies Prop-
erty (1.1).

Choose A, B ∈ V such that [A, B] = 0. Since [e11 + A, e12 + B] = e12, a direct 
application of Property (1.1) and linearity yields that [σ3(A), σ3(B)] = 0. Thus σ3 is 
a commutativity preserver on a subalgebra V (which is isomorphic to Mn−2(C), where 

n −2 ≥ 3). By the first theorem of Watkins [10] (the n −2 = 3 case is handled by Brešar, 
Šemrl [3]), the restriction of σ3 to V is a standard commutativity preserving map of the 

form

σ3(A) = cS−1AS + f(A)IV

or

σ3(A) = cS−1AT S + f(A)IV ,

where c is a nonzero scalar, S ∈ V is an invertible matrix, f is a linear functional on V, 
and IV is the matrix e33 + e44 + · · · + enn (which acts as the identity on the subalgebra 

V). With a complete description of the restriction of σ3 to V, the complete description 

of the restrictions of σ2, σ1, and φ to V as standard commutativity preserving maps is 
obtained by applying the inverse maps. The proof is complete. �

3. Proof of the main result

While the proof of Theorem 1 will technically be a continuation of the argument of 
Theorem 6, another technical lemma will be helpful.

Lemma 7. Let φ : Mn(C) → Mn(C) be a bijective linear map that satisfies Property

(1.1), with n ≥ 4. If i �= l and j �= k, then φ has the following properties:

(1) [φ(eij), φ(ekl)] = 0 for i �= 2 and l �= 1.
(2) [φ(e2j), φ(e2l)] = 0 for j, l ≥ 3.
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(3) [φ(ei1), φ(ek1)] = 0 for i, k ≥ 3.

Proof. Note that in (1), the cases when i = j or k = l are covered by Lemma 4. We may 

therefore assume without loss of generality that i �= j and k �= l.
Suppose i �= 2 and l �= 1. We prove (1) first under a stronger restriction that 1 /∈

{j, k}. Since [e11 + eij , e12 + ekl] = e12, by linearity we have that [φ(e11), φ(e12)] +
[φ(e11), φ(ekl)] + [φ(eij), φ(e12)] + [φ(eij), φ(ekl)] = e12. The first summand is equal to 

e12 by hypothesis. Notice [φ(e11), φ(ekl)] = [φ(eij), φ(e12)] = 0 by Lemma 3. We conclude 

that [φ(eij), φ(ekl)] = 0.
In fact, the assumption that k �= 1 and j �= 1 can be removed. Indeed, suppose k = 1. 

Since i �= l and j �= 1 is assumed, the Lie product [eij − el2, e1l] is equal to e12. By 

hypothesis and linearity, we conclude that [φ(eij), φ(e1l)] = 0.
Now suppose j = 1. Consider the Lie product [ei1+e1l, ekl+el2]. Since i �= 2 and l �= 1, 

this Lie product is equal to e12. Because [ei1 + e1l, el2] = [e1l, ekl + el2] = e12, we have 

that [φ(ei1), φ(el2)] = [φ(e1l), φ(ekl)] = 0. It follows from linearity and the above that 
[φ(ei1), φ(ekl)] = 0. The proof of (1) is complete.

We now show that (2) holds. Consider the equation [λe2j +e12 −λe1l, λe2l −e11] = e12

for λ ∈ C. By linearity, we have

λ2[φ(e2j), φ(e2l)] − λ2[φ(e2l), φ(e1l)] + λ[φ(e12), φ(e2l)]

+ λ[φ(e1l), φ(e11)] − λ[φ(e11), φ(e2j)] + [φ(e11), φ(e12)] = e12.

By hypothesis, [φ(e11), φ(e12)] = e12. By Lemma 4 we can see that [φ(e11), φ(e2j)] =
0. We also have that [φ(e1l), φ(e2l)] = 0 as a special case of statement (1). Finally, 
adding together the two equations obtained by taking λ = 1 and λ = −1 yields that 
[φ(e2j), φ(e2l)] = 0.

The proof of (3) uses the same technique. Consider the Lie product [λei1 + e12 +
λek2, λek1 + e22] = e12 for λ ∈ C. As in (2), by adding equations for λ = 1 and λ = −1, 
we conclude that [φ(ei1), φ(ek1)] = 0. �

Remark 8. Theorem 2 gives some explanation as to why φ is generally not a standard 

commutativity preserver map on Mn(C). However, φ does have the standard form on 

an (n2 − 1)-dimensional subspace of Mn(C) and this is the best we can hope to achieve. 
We are now in a position to prove Theorem 1, but the proof is long and full of many 

details to check. It involves passing from σ4 to σ6 with several more computations in the 

intermediate steps. It suffices to show that σ6 fixes all matrix units except e21, and can 

be accomplished in three steps:

Step 1: Define σ4 so that e11, e22, and e12 are fixed, σ4 acts as the identity on V, and 

that σ4 sends matrix units to multiples of themselves, up to the addition of a 

scalar matrix.
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Step 2: Define σ5 to subtract away the scalar matrix obtained in Step 1, so that σ5

sends matrix units to themselves with a nonzero coefficient, and describe the 

relationship among all such coefficients.
Step 3: Use the coefficients to define σ6 so that σ6(eij) = eij whenever (i, j) �= (2, 1).

Then the successive compositions φ → σ1 → σ2 → · · · → σ6 can be reversed to obtain 

the final form of φ.

Proof of Theorem 1. Recall the definition of σ3 : Mn(C) → Mn(C) as in the proof of 
Theorem 6. The ultimate goal is to show that φ is either an automorphism or negative 

anti-automorphism, up to the addition of a scalar matrix. We may assume without loss of 
generality that the restriction of σ3 to V is of the form σ3(A) = cS−1AS + f(A)IV , since 

the negative anti-automorphism case can still be obtained even under this assumption.
For all A ∈ Mn(C), define σ4 : Mn(C) → Mn(C) to be the bijective linear map given 

by

σ4(A) = Qσ3(A)Q−1,

where Q = e11 + e22 + S, which is clearly invertible because S is. Since σ3 fixes e11, e22

and e12, so does σ4. In order to show that σ4 has the remaining desirable properties in 

Remark 8, the linear functional f : V → C must be identically zero and c must be equal 
to 1.

For convenience, denote σ := σ4. Let j ≥ 3 and consider σ(e1j) = (aij). Since σ(e1j)
commutes with e22 and e12, it follows that

σ(e1j) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a11 0 a13 a14 · · · a1n

0 a11 0 0 · · · 0
0 0 a33 a34 · · · a3n

0 0 a43 a44 · · · a4n

...
...

...
...

. . .
...

0 0 an3 an4 · · · ann

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3.1)

For any p, q ≥ 3 with j �= p, Lemma 4 and Lemma 7 imply that

[σ(e1j), σ(epq)] = [σ(e1j), cepq + f(epq)IV ] = 0. (3.2)

Suppose first that p = q. Using the form given by equation (3.1), expanding equation 

(3.2) reveals that the non-diagonal entries of σ(e1j) in the pth row and pth column, 
except for those entries in the first row, are identically zero. This means σ(e1j) is of the 

form
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σ(e1j) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a11 0 a13 a14 · · · a1n

0 a11 0 0 · · · 0
0 0 a33 0 · · · 0
0 0 0 a44 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · ann

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3.3)

The centralizer of e1j is generated by the set {ekl : j �= k, l �= 1} ∪ {e11 + ejj} and has 
dimension n2 − 2n + 2 over C. Note that e21 is not contained in the centralizer of e1j ; in 

other words, if ekl commutes with e1j , then σ(ekl) commutes with σ(e1j) by Lemma 7. 
We have σ(C(e1j)) ⊆ C(σ(e1j)) and, arguing as in Lemma 5, dim C(σ(e1j)) = n2−2n +2. 
It follows that σ(e1j) = E1j + λ1jIn, where λ1j is a scalar and E1j is a rank-one matrix. 
This implies that a11 = a33 = · · · = ann = λ1j and

E1j =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 a13 · · · a1n

0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Returning to equation (3.2), we now have

[E1j , cepq + f(epq)IV ] = 0. (3.4)

Expanding the Lie product produces the system of equations

ca1p + f(epq)a1q = 0, f(epq)a1k = 0, for k �= q. (3.5)

Take q = j. If a1j = 0, then the first equation implies that a1p = 0 for all p �= j. In 

this case, E1j = 0, a contradiction. Take k = j. Since n ≥ 5, we may choose q �= j, 
and consider the second equation in (3.5), for if a1j �= 0, then f(epq) = 0. In the first 
equation, this implies that a1p = 0 for all p �= j. Hence E1j = a1je1j , and so

σ(e1j) = a1je1j + a11In, a1j �= 0. (3.6)

Let k ≥ 3 and consider σ(ek2) = (bij). Since e21 also does not commute with ek2, it 
must be that dim C(σ(ek2)) = n2 − 2n + 2. Employing the same constructions as above 

but adjusted for the second column, we conclude that

σ(ek2) = bk2ek2 + b11In, bk2 �= 0. (3.7)

Since a1j �= 0 as above, it was shown that f(epq) was identically zero for all indices 
p and q such that p �= j and q �= j. If j′ ≥ 3 is another index distinct to j, it follows 
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that f(epq) = 0 for all indices p and q such that p �= j′ and q �= j′. Proceeding in this 
way across the row, it follows that the linear functional f on V must be identically zero. 
Furthermore, since σ(In) = In and e11, e22 are fixed by σ, we have σ(IV) = IV . Hence 

the calculation

σ(IV) =
∑

p≥3

σ(epp) = cIV

shows that c = 1, so σ acts as the identity on V, as desired.
There are subtle differences in handling σ(e2l) and σ(ei1) because e21 does commute 

with e2l and ei1 for i, l ≥ 3. We show the form of σ(e2l) = (cij) for l ≥ 3 directly.
First, for all j ≥ 3, Lemma 7 implies that [σ(e2l), σ(e1j)] = 0. By equation (3.6), this 

reduces to [σ(e2l), e1j ] = 0. From this calculation, it follows readily that c11 = cjj for all 
j �= 2. Also by the above, the fact that σ fixes every diagonal matrix unit implies that 
every non-diagonal entry of σ(e2l) except for the (2, l)-entry is zero. Therefore, σ(e2l) is 
of the form

σ(e2l) = c2le2l + c11(e11 + e33 + · · · + enn) + c22e22. (3.8)

We expect that c11 = c22 and that c2l �= 0, but it requires justification. Consider also 

the matrices σ(e2l′) = (c′
ij) and σ(e2l′′) = (c′′

ij), with l, l′, l′′ ≥ 3 all distinct. Each of these 

matrices is also of the form of equation (3.8). Assume that c2l = c′
2l′ = c′′

2l′′ = 0; i.e., that 
σ(e2l), σ(e2l′), σ(e2l′′) are diagonal matrices in which only the (2,2)-entry differs from the 

rest in each matrix. Notice that {e2l, e2l′ , e2l′′} forms a basis of a 3-dimensional subspace 

of Mn(C). However, {σ(e2l), σ(e2l′), σ(e2l′′)} under this assumption forms the basis of 
a 2-dimensional subspace, which contradicts bijectivity. Without loss of generality, we 

may conclude that c2l �= 0.
Now, by Lemma 7, we have that [σ(e2l), σ(e2l′)] = 0. Since c2l �= 0, computing this Lie 

product shows that c′
11 = c′

22 = c′
33 = · · · = c′

nn (and that c11 = c22 = c33 = · · · = cnn

when c′
2l′ �= 0). Now, if c′

2l′ = 0, then σ(e2l′) is a scalar matrix, which contradicts 
bijectivity (note that σ fixes the identity matrix because σ3 does). So c′

2l′ �= 0 as well, 
and the same argument shows that c′′

2l′′ �= 0.
Since c′

2l′ �= 0, it follows that c11 = c22, as desired. Hence for l ≥ 3,

σ(e2l) = c2le2l + c11In, c2l �= 0. (3.9)

We can also show that σ(ei1) = (dij) for all i ≥ 3 has the analogous form using the 

same argument, modified appropriately for the first column instead of the second row. 
Therefore, we have that for all i ≥ 2,

σ(ei1) = di1ei1 + d11In, di1 �= 0. (3.10)

At this point, Step 1 has been completed. Step 2 involves describing the nonzero 

coefficients appearing in equations (3.6) through (3.10).
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Let v ≥ 3 be fixed. For the two matrix units e1v and e2v, let σ(e1v) = (aij) and 

σ(e2v) = (cij). Consider the expression [e22 + e1v + e2v, e11 − e12] = e12. By linearity and 

our hypothesis, we have that

[σ(e22), σ(e11)] − [σ(e22), σ(e12)] + [σ(e1v), σ(e11)]

− [σ(e1v), σ(e12)] + [σ(e2v), σ(e11)] − [σ(e2v), σ(e12)] = e12.
(3.11)

The first, fourth, and fifth summands are equal to zero by Lemma 3. The second sum-
mand is equal to e12 by hypothesis, which simplifies equation (3.11) to:

[σ(e1v), σ(e11)] − [σ(e2v), σ(e12)] = 0.

Computing these Lie products shows that the first summand is equal to −a1vev1, and 

the second is equal to −c2vev1, so we conclude that a1v = c2v. The coefficients are equal 
across the columns in the first and second rows.

Let u ≥ 3 be fixed. For the two matrix units eu1 and eu2, let σ(eu2) = (bij) and 

σ(eu1) = (dij). Observe that [e12 + eu1 + eu2, e22 − e12] = e12, so

[σ(e12), σ(e22)] − [σ(e12), σ(e12)] + [σ(eu1), σ(e22)]

− [σ(eu1), σ(e12)] + [σ(eu2), σ(e22)] − [σ(eu2), σ(e12)] = e12.
(3.12)

The first summand is equal to e12 and the second summand is trivially zero. The third 

and sixth summands are equal to zero by Lemma 3. This simplifies to

[σ(eu2), σ(e22)] − [σ(eu1), σ(e12)] = 0.

Using the definition of σ appearing in equation (3.7) and equation (3.10), the first sum-
mand is equal to bu2eu2 and the second is equal to du1eu2. Thus du1 = bu2, so the 

coefficients are equal across the rows in the first and second columns.
Now take u = v. Let σ(e1u) = (aij), σ(eu2) = (bij), σ(e2u) = (cij), and σ(eu1) =

(dij). By hypothesis, [σ(e1u), σ(eu2)] = e12 implies that a1ubu2 = 1 directly. But by the 

previous analysis, we have that a1u = c2u and bu2 = du1. We conclude that

a1u = c2u = b−1
u2 = d−1

u1 . (3.13)

The previous equation (3.13) says that the four nonzero coefficients sharing an index 

u satisfy a certain inverse relationship. But we can say something stronger; in fact, every 

matrix σ(eij) with i ≤ 2 and j ≥ 3 has the same nonzero coefficient and every matrix 

σ(eij) with i ≥ 3 and j ≤ 2 has the same inverse coefficient to the above. Indeed, 
let r, s ≥ 3, r �= s. Let σ(e1r) = (aij) and σ(e1s) = (xij). Consider the expression 

[e12 + e1r − e1s, ers + ess + e22] = e12. By linearity and Property (1.1), we have that
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[σ(e12), σ(ers)] + [σ(e12), σ(ess)] + [σ(e12), σ(e22)] + [σ(e1r), σ(ers)] + [σ(e1r), σ(ess)]

+ [σ(e1r), σ(e22)] − [σ(e1s), σ(ers)] − [σ(e1s), σ(ess)] − [σ(e1s), σ(e22)]

= e12.

(3.14)

The third summand is equal to e12 by hypothesis. The first, second, sixth, and ninth 

summands are equal to zero by Lemma 3, while the fifth and seventh summands are also 

equal to zero by Lemma 4, which simplifies equation (3.14) to

[σ(e1r), σ(ers)] − [σ(e1s), σ(ess)] = 0.

The first summand is equal to a1re1s while the second summand is equal to x1se1s. It 
follows that a1r = x1s. Once the nonzero coefficients are identical across rows in the 

first two rows, by equation (3.13), this allows all nonzero coefficients to be determined. 
For instance, if σ4(e13) = (aij), denote β := a13. Every nonzero coefficient of σ4(eij) for 
i ≤ 2 and j ≥ 3 is β, while every nonzero coefficient of σ4(eij) for i ≥ 3 and j ≤ 2 is 
β−1. This motivates the definition of σ5 as follows.

Let g5 be a linear functional on Mn(C) that is identically zero on e11, e22, and e12. 
In addition, for all other eij , (i, j) �= (2, 1), define g5 to be the (1,1)-entry of σ4(eij). In 

particular, g5 vanishes on V. Define

σ5(eij) = σ4(eij) − g5(eij)In.

Clearly this map is bijective, linear, and satisfies Property (1.1). In addition, for (i, j) �=
(2, 1) σ5 has

σ5(eij) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

βeij , i ≤ 2, j ≥ 3

β−1eij , i ≥ 3, j ≤ 2

eij , i, j ≥ 3

(3.15)

Now, Step 2 is complete. Proceeding to Step 3, we can now easily and confidently 

transform σ5 into the identity map with a final change of basis. Let σ6 : Mn(C) → Mn(C)
be a bijective linear map defined by σ6(eij) = C−1σ5(eij)C, where C = β(e11 + e22) +
e33 + · · · + enn. Then by equation (3.15), it follows that σ6(eij) = eij for (i, j) �= (2, 1).

Since the sequential composition φ → σ1 → σ2 → · · · → σ6 is bijective at every 

step, we may reverse the composition so that φ has the form (1) or (2) appearing in 

the statement of Theorem 1. The negative anti-automorphism case (2) is covered by the 

definition of σ2 (see equation (2.3) and equation (2.5)). Finally, while φ(e21) cannot be 

determined, it must be the case that φ(e21) = xe21 +X, where x �= 0 and the (2,1)-entry 

of X is zero; otherwise, φ would fail to be bijective. The proof is complete. �
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