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1. Introduction

Let A be an algebra over a field F. It becomes a Lie algebra if we introduce the Lie
product [a,b] by [a,b] = ab — ba, a,b € A. Let B be another algebra over F. A map
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a: A — B preserves zero Lie products if [a(a), a(b)] = 0 whenever [a,b] = 0. Equiva-
lently, o preserves commutativity.

The first paper on commutativity preserving maps was published in 1976 by Watkins
[10], who described bijective linear commutativity preserving maps on matrix algebras.
Let M, (F') denote the algebra of matrices over F' and I,, be its n x n identity matrix. It
was shown under some mild technical restrictions that every commutativity preserving
bijective linear map L : M, (F) — M, (F) is either of the form

L(X)=cST'XS + f(X)I,, X € M,(F),
or
L(X)=cST'XTS + f(X)I,, X € M,(F),

where ¢ is a scalar, S € M, (F) is an invertible matrix, f is a linear functional on M, (F),
and X7 denotes the transpose of X . Maps of these forms are traditionally called standard
commutativity preserving maps. For the case with general algebras A and B, these forms
can be stated in terms of automorphisms and anti-automorphisms.

Further developments went in two directions: analytic and algebraic. We will mention
only two important results here. First, Omladi¢ [8] extended Watkins’s result to the
infinite-dimensional case. He described bijective linear maps preserving commutativity
in both directions on the algebra of bounded linear operators on an infinite-dimensional
Banach space.

Second, Bresar [2] described bijective commutativity preserving additive maps on
prime rings under some technical restrictions. This description was the key to his famous
solution of Herstein’s problem on Lie isomorphisms of prime rings. We refer the reader
to Semrl [9] for additional interesting results in the area of commutativity preservers.

In this paper, we will consider a seemingly similar problem. Let M, (C) denote the
algebra of n x n complex matrices and e;; denote the matrix with 1 in the (¢, j)-entry
and zeros elsewhere. Let ¢ : M,,(C) — M,,(C) be a bijective linear map such that

P(e12) = e12 and [p(A), ¢(B)] = e1a whenever [A, B] = e1a, (1.1)

where A, B € M, (C) (this condition is referred to as “Property (1.1)” in the upcoming
discussion). The purpose of the paper is to obtain a complete description of ¢.
Recently, similar questions were considered in the case of ordinary products [4] and
Jordan products [5]. In both cases, the maps were shown to be of the standard form.
To our surprise, this is not the case in our situation. However, the description is still
“nice” with the exception of one entry.

Theorem 1. If n > 5 and ¢ : M,(C) — M,(C) is a bijective linear map such that
¢(e12) = e12 and [p(A), p(B)] = e12 whenever [A, B] = e1a, then there exists an invertible
matriz P and a linear functional f on M, (C) such that, for (i,j) # (2,1),
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(1) o(

o(eij) P~le;iP+ f(eij)ln, or
(2) o

eij
eij) = —P_lejiP + f(e”)ln

In either case, ¢(ea1) = xea; + X, where x € C is nonzero and X € M,(C) has a zero
(2,1)-entry.

The assumption that n > 5 is imposed because the restriction of a map satisfying
Property (1.1) on a subalgebra isomorphic to M,,_(C) will be a commutativity preserv-
ing map (see Theorem 6 below).

The fact that ¢(eq1) completely avoids description stems from the following key ob-
servation, which we present here with proof. Note that the symbol (h;;) represents an
n X n matrix with entries h;; € C,1 <14, j, < n.

Theorem 2. If A = (a;;) and B = (b;j) are matrices such that [A,B] = eia, then
a; = by = 0.

Proof. Suppose for the sake of contradiction that there are matrices 4, B € M,,(C) such
that [A, B] = e12 and a1 # 0 (resp. by # 0). Since rank([A, B]) = 1, it follows from The-
orem 1 in Guralnick [6] (or Theorem 1.4 in Laffey [7]) that A and B are simultaneously
triangularizable; that is, there exists an invertible matrix P € M, (C) such that PAP~!
and PBP~! are upper-triangular matrices. However, since tr(A[A, B]) = az; # 0 (resp.
tr(B[A, B]) = by # 0), it follows from Theorem 3.1 in Bourgeois [1] that A and B are
not simultaneously triangularizable, a contradiction. 0O

Example. Maps satisfying Property (1.1) need not preserve commutativity. Let ¢ :
M, (C) — M, (C) be a linear map that acts as the identity map on all e;; € M, (C)
except es1, and let ¢(es1) = ea1 + e1a. Clearly such a map is bijective and satisfies
Property (1.1), and is of the form (1) from Theorem 1. However, [es1,e23] = 0 while

[(e21), pleas)] = ers.

We believe Theorem 1 is of interest for two reasons. First, we have not encountered
a linear preserver problem whose solutions resemble those of the main theorem. Second,
this shows that maps preserving nonzero Lie products cannot be expected a prior:i to
have the same descriptions as maps preserving zero Lie products.

2. Preliminary results

Fix an A € M, (C). Let C(A) denote the set {X € M, (C) : [A, X] = 0}. This set is
called the centralizer of A. In Watkins [10], the author passes the commutativity preserver
problem to the rank-one preserver problem using a matrix theoretical result concerning
centralizers. While the commutator relation in Property (1.1) prevents us from repeating

the argument in full, some information regarding specific centralizer subalgebras can be
deduced.



V. Ginsburg et al. / Linear Algebra and its Applications 593 (2020) 212-227 215

Lemma 3. If ¢ : M,,(C) — M, (C) is a bijective linear map that satisfies Property (1.1),
then

2]

e12] = 0 whenever [A, e12] = 0,
), ®(e11)] = 0 whenever [A,e11] =0, and
¢(e22)] = 0 whenever [A, eas] = 0.

In other words, ¢(C(e12)) € Cle1z), ¢(C(e11)) € C(d(e1r)), and ¢(Clez)) € C(p(e22)).

Proof. If [A, e12] = 0, then [e11 + A, e12] = e12. By Property (1.1), [¢p(e11 + A), ¢(e12)] =
e12, and so [p(e11), dle12)]+ [@(A), d(e12)] = e12 by linearity. The first summand is equal
to e12, hence [¢(A), p(e12)] = 0. Statements (2) and (3) follow from a similar analysis of
the Lie products [e11, €12 — A] = e12 and [A + €12, €22] = €12, respectively. O

The preceding result is simply a consequence of linearity. Performing more delicate
computations generates relations among (almost all) matrix units, as follows.

Lemma 4. If n > 3 and ¢ : M,(C) — M,(C) is a bijective linear map that satisfies
Property (1.1), then

(1) [(eir), plejr)] = 0 if i ¢ {j, k} and (4, k) # (2,1),
(2) [(eii + ej5), dleiz)] = 0if (i, ) # (2, 1),
(3) ¢(I,) = A, for some nonzero A € C.

Proof. Suppose that i ¢ {j,k}. Since ej;, commutes with e;;, the cases when ¢ = 1 or
i = 2 follow directly from statements (2) and (3) of Lemma 3. In particular, if j = k,
then [¢(ei;), (e;;)] = 0 whenever ¢ = 1,2 and i # j. So we may assume that i > 3.
Since [e11 + €1k, €12 + €] = e1a, we have that [d(er1 + eir), d(e12 + €)] = e12. But
e1r commutes with e;s and e;; commutes with e;;, so we conclude by Lemma 3 that
[¢(e1r), @(ei;)] = 0. Hence (1) holds if j = 1. Likewise, since [e;; + €22, €1 — e12] = €12
whenever j # 2, we conclude that [¢(e;;), ¢(e;1)] = 0. Hence (1) also holds if k£ = 1.

Assume now that j # 1 and k # 1. Since [e11 + €45, €12 + €ji] = €12, we have that
[b(e11 +eis), o(e12 + k)] = e12. But e, commutes with e;; and e;; commutes with eqa,
so it must be that [¢(es;), ¢(ejx)] = 0. The proof of (1) is complete.

Now we will show that [¢(e;; + ej;), #(e;5)] = 0. If 4 = j, there is nothing to prove,
so assume i # j. Suppose first that ¢ = 1 and j = 2. Since [¢(e11), @(e12)] = e12 and
[0(e22), p(€12)] = —eqa, the linearity of the Lie product shows that [¢(e11+ea2), d(e12)] =
0 directly. Suppose that ¢ = 1 and j > 3. Since [e1; + €jj,e1j + e12] = eja, we have
that [¢(e11 + €j;), @(e1;) + e12] = e12. But e;; commutes with e, so we conclude that
[6(e11+¢€j5), p(e1;)] = 0. Replacing eq; with e;; and repeating this argument also shows
that [¢(e11 + €j;), ¢(ej1)] = 0.
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Assume that ¢ = 2 and j > 3. Since [ea2 + €j;,€2; — €12] = e12, it follows from
linearity that [¢(e22 + €;;), #(e2;)] = 0. An analogous argument also shows that [¢(ea2 +
€jj), d(ej2)] = 0.

Lastly, if both ¢ > 3 and j > 3, observe that [e11 + e;; + ¢, e12 + €;;] = eq2. Since
e;; commutes with ej1 and e;;, e;; commute with e12, we have by Lemma 3 that [¢(e;; +
ej;), ¢(eij)] = 0. Thus statement (2) holds for all pairs (, j) except (2,1).

Consider ¢(e;;), where (i,j) # (2,1). From linearity and statements (1) and (2), it
follows that [¢(1,,), ¢(e;;)] = 0. From bijectivity, we conclude that dim C(¢(I,,)) > n?—1.
The first lemma in Watkins [10] states that if dim C(A) > n? —2n+2, then A is a scalar
multiple of the identity. Thus ¢(I,,) = A, for some nonzero A € C, proving statement
(3). The proof of the lemma is complete. O

Lemma 5. If ¢ : M,(C) — M,(C) is a bijective linear map that satisfies Property
(1.1), then there exist rank-one matrices E11, E2a and scalars A11, Aaa such that ¢(e11) =
E11 + Mil, and ¢(ess) = Eag + Aool,. Furthermore, Ey1 is a matriz consisting of
precisely one row vector (resp. column vector) and Eag is a matrix consisting of precisely
one column vector (resp. row vector).

Proof. The first part of the proof occurs as special cases of the first lemma appearing in
Watkins [10], which is reproduced here. From our Lemma 3, the centralizers of e1; and eaq
are mapped into the centralizers of ¢(e11) and ¢(ea2), respectively. Since ¢ is bijective and
the dimension of the subalgebra C(e;) is n2 —2n+2, then n? —2n+2 < dim C(¢(e11)). If
n?—2n+2 < dim C(¢4(e11)), then ¢(ey1) must be a scalar matrix. This is impossible since
¢ also maps the identity to a scalar matrix by Lemma 4, contradicting the injectivity
of ¢. Hence dim C(é(e11)) = n? — 2n + 2, and so ¢(e11) = E11 + Ai11, where Eq; is a
rank-one matrix. An analogous argument shows that ¢(es2) = Eas + Aaal,,, where Eoo
is a rank-one matrix.

The forms of F1; and Ea, will now be determined. If ¢(eq1) = (a;;) and ¢(ea2) = (bij),
then [¢(e11),e12] = e12 and [e12, d(e22)] = e12 by Property (1.1), so

14+ann a2 a3z -+ a,
0 aill 0 0
d(e1r) = 0 az2  asz cc o Gsn |
0 Ap2 anp3 e Ann
bas b12 bis -+ bin
0 1+ boo 0 0
Plens) = 0 bsa bz -+ b3y
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By the previous remarks, we have that

1+a11 — A a2 a3 e ain
0 aip — )\11 0 e 0
By = 0 aszz asz — A1 - a3n
0 an2 an3 e Apn — )\11
and
bao — Aa2 b1z b3 e bin
0 ]. + b22 - )\22 0 “e 0
Eyy = 0 bsa b3z — Aag - bsn,
0 bn2 bn3 o bnn - A22

However, since F1; and FEsy are rank-one matrices, then either

1 a2 a3 -+ ain 0 a2 0 -+ 0
0 0 o --- 0 0O =1 0 --- 0
By = 0 0 o --- 0 . or Ey = 0 azx O --- O
0 0 0 - 0 0 aw 0 - 0
and either
0 b12 0 0 -1 b12 b13 bln
0O 1 0 0 0 0 0o --- 0
oy = 0 b3, 0 --- O . or FEgp— 0 0 0 0
0 by 0 0 0 0 0 - 0

217

(2.1)

(2.2)

But [¢(e11), d(e22)] = [E11, Faz] = 0, so if E1; and Ess are both row matrices, then
[E11, E22] = 0 implies that Fay is a multiple of Fy1, which contradicts bijectivity of ;.
Hence if Eq; is the row (resp. column) matrix in equation (2.1), Eae must be the column

(resp. row) matrix in equation (2.2). O

The calculations performed thus far have illustrated much of the structure of the map
on the key elements ej1, es2, and ejo. These matrix units have nontrivial multiplication
with the first two rows and columns of matrices in M, (C), but have trivial multiplication

with the subalgebra generated by matrices of the form

00 0 0
00 O 0
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Therefore, in what follows, we compose several linear transformations with ¢ to pass
to a map o3 that fixes e11, €29, and e1o and satisfies Property (1.1). This ensures that
o3, which will arise from strategically changing bases and adding scalar multiples of
the identity, does not destroy the structure of ¢. However, the new map does preserve
commutativity on the above subalgebra isomorphic to M,,_o(C). This means a complete
description is obtainable for the restriction of o3 (and therefore for ¢ as well, after
reversing the composition).

Theorem 6. Let ¢ : M,(C) — M, (C) be a bijective linear map that satisfies Property
(1.1) and let V C M, (C) be the subalgebra of matrices of the form (v;;) with v;; = 0
whenever i < 2 orj < 2. The restriction of ¢ toV is a standard commutativity preserving
map; that is, the restriction of ¢ to V is either of the form

(A) = dU AU + h(A)Iy, or
(A) =dUTATU + h(A) Iy

(1) ¢
(2) ¢
where d is a scalar, U € M,,(C) an invertible matriz, h a linear functional on M, (C),

and Iy = e33 + e+ + enn.

Proof. Let 01 : M,,(C) — M,,(C) be the linear map defined by o1(A) = ¢(A) — g1(A)I,,
where ¢; is a linear functional on M,,(C) chosen so that oy is bijective with g1 (e11) = A11,
g1(e22) = Aaga, and g1 (e12) = 0 (see Lemma 5 above); in other words,

oi(en) = E1i, o1(exw) = Exn, o1(e12) = e,

respectively. It also follows immediately that [o1(A), 01(B)] = [¢(A), ¢(B)] for all A, B €
M,,(C), so o certainly satisfies Property (1.1). We may also insist that o1([,) = I, by
choosing ¢g1(I,) = A — 1 for \ as in part (3) of Lemma 4.

Lemma 5 presents two possible definitions for the map o; based on the forms of F1;
and Fso Ideally, one would like to pass to a map that fixes ej1, €20, and eo directly,
which can be done as follows.

If Fy; is the row matrix in equation (2.1) and Fsy is the column matrix in equation
(2.2), the condition [Ey1, Eg] = 0 implies that aia + bia + Y. p_5 a1xbk2 = 0 for the
matrix entries. Using this relation, there is an invertible matrix U; such that

U1E11U;1 = €11, UlEQQUfl = €22 and U1612Uf1 = €12, (23)

given by
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1 a2 a3 aus Q1in
0 1 0 0 0
0 —b3o 1 0 0
Ul = 0 —b42 0 1 0 )
0 —by 0 o - 1
1 b2 —a13 —aia -+ —ain
0 1 0 0 cee 0
. 0 b3 1 0 cee 0
U1 =10 by 0 1 N 0
0 bpo 0 0 . 1

If Ey; is the column matrix in equation (2.1) and FEao is the row matrix in equation
(22), the condition [Ella EQQ] =0 implies that aio + blg — ZZ:?) blkakg =0. USiIlg this
relation, there is an invertible matrix Us such that

*UQEHU;l = €11, 7U2E22U271 = €22, and — U2€12U;1 = €21 (24)

given by
0 -1 0 0 0
1 —big —biz —buu -+ —bin
0 as2 1 0 s 0
UV2=10 asp 0 1 0 |
0 ans 0 0 1
ai12 1 b13 b14 bln
-1 0 0 0 0
1 asz2 0 1 0 0
Uy"=lagp 0 0 1 0
a2 0 0 o --- 1

If Us = (Uy; 1)T, taking the transpose through equation (2.4) yields
—U3(E11)TU§1 = €11, _Ug(EQQ)TUPTI = €22, and — Ug(elg)TUgl = €12. (25)

Therefore the automorphism oy defined by A + Ujo1(A)U; ! or the negative anti-
automorphism oy defined by A +— —Usa;(A)TU; ! satisfies

oz(e11) = e11, oa(exr) = ez, and o2(e12) = era. (2.6)
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With either determination of Eq; and FEao, equation (2.6) guarantees that oo satisfies
Property (1.1); in particular, that oo satisfies the centralizer conclusion of Lemma 3.
However, since o9 fixes the matrix units e, eas, and ey, the map oo must preserve the
respective centralizers as subalgebras. This means that if A € V, then [02(A4),e11] =
[02(A), e22] = [02(A),e12] = 0, which shows an inclusion o2(V) C C(e11) N C(e22) N
C(e12). But C(e11) NC(e22) NC(e12) is precisely the set V 4+ C1I,,. Tt is therefore possible
to define a bijective linear map o3 : M, (C) — M, (C) by

03(A) = 02(A) — g3(A) 1,

where g3 is a linear functional on M,,(C) chosen so that o3 is bijective, fixes e11, a2, €12,
o3(V) C V, and o3(l,) = I,. With this definition, o3 has the property that
[03(A),03(B)] = [02(A),02(B)] for all A,B € M,(C), so certainly o3 satisfies Prop-
erty (1.1).

Choose A,B € V such that [A,B] = 0. Since [e11 + A,e12 + B] = ej2, a direct
application of Property (1.1) and linearity yields that [o3(A),o3(B)] = 0. Thus o3 is
a commutativity preserver on a subalgebra V (which is isomorphic to M,,_2(C), where
n—2 > 3). By the first theorem of Watkins [10] (the n —2 = 3 case is handled by Bresar,
Semrl [3]), the restriction of o3 to V is a standard commutativity preserving map of the
form

03(A) = cSTTAS + f(A) Iy
or
o3(A) = cSTLATS + f(A) Iy,

where c¢ is a nonzero scalar, S € V is an invertible matrix, f is a linear functional on V,
and Iy is the matrix egs + eqq + - - - + €y, (which acts as the identity on the subalgebra
V). With a complete description of the restriction of o3 to V, the complete description
of the restrictions of 02,01, and ¢ to V as standard commutativity preserving maps is
obtained by applying the inverse maps. The proof is complete. O

3. Proof of the main result

While the proof of Theorem 1 will technically be a continuation of the argument of
Theorem 6, another technical lemma will be helpful.

Lemma 7. Let ¢ : M,(C) — M,(C) be a bijective linear map that satisfies Property
(1.1), withn > 4. If i # 1 and j # k, then ¢ has the following properties:

eij), Plerr)] =0 for i # 2 and | # 1.
(2) [#(e2;), plear)] = 0 for 5,1 > 3.
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(3) [o(ein), pler1)] =0 for i, k > 3.

Proof. Note that in (1), the cases when i = j or k = [ are covered by Lemma 4. We may
therefore assume without loss of generality that i # j and k # [.

Suppose i # 2 and [ # 1. We prove (1) first under a stronger restriction that 1 ¢
{j,k}. Since [e11 + eij,e12 + ex] = e1z, by linearity we have that [¢p(e11), p(e12)] +
[d(e11), d(err)] + [d(eij), dler2)] + [d(eij), d(err)] = er2. The first summand is equal to
e12 by hypothesis. Notice [¢p(e11), ¢(ext)] = [¢(ei;), ¢(e12)] = 0 by Lemma 3. We conclude
that [¢(ei;), ¢(er)] = 0.

In fact, the assumption that k £ 1 and j # 1 can be removed. Indeed, suppose k = 1.
Since ¢ # [ and j # 1 is assumed, the Lie product [e;; — €j2,€1;] is equal to eja. By
hypothesis and linearity, we conclude that [¢(e;;), ¢(e1)] = 0.

Now suppose j = 1. Consider the Lie product [e;; +e1;, exi+ej2]. Since i # 2 and | # 1,
this Lie product is equal to e1o. Because [e;1 + eqy, e12] = [e1r, ext + ei2] = e12, we have
that [p(ei1), d(e2)] = [@(enr), d(err)] = 0. It follows from linearity and the above that
[p(ein), p(err)] = 0. The proof of (1) is complete.

We now show that (2) holds. Consider the equation [)\egj +e1a—Aeyy, Aeg—eq1] = ega
for A € C. By linearity, we have

/\2[¢(62j)> @b(te)} - )‘2 [¢(e2l)7 ¢(€1l)] + )\[¢(€12)» ¢(e2l)}
+ Alp(enr), plein)] — Ap(err), dlez;)] + [dle1n), pler2)] = era.

By hypothesis, [¢(e11), #(e12)] = e12. By Lemma 4 we can see that [¢(e11), d(ez;)] =
0. We also have that [¢p(e1;), ¢p(ea)] = 0 as a special case of statement (1). Finally,
adding together the two equations obtained by taking A = 1 and A = —1 yields that
[¢(e2;), d(er)] = 0.

The proof of (3) uses the same technique. Consider the Lie product [Ae;; + e12 +
Aek2, Aeg1 + exn] = eqn for A € C. As in (2), by adding equations for A =1 and A = —1,
we conclude that [¢(e;1), d(ex1)] =0. O

Remark 8. Theorem 2 gives some explanation as to why ¢ is generally not a standard
commutativity preserver map on M, (C). However, ¢ does have the standard form on
an (n? — 1)-dimensional subspace of M,,(C) and this is the best we can hope to achieve.
We are now in a position to prove Theorem 1, but the proof is long and full of many
details to check. It involves passing from o4 to gg with several more computations in the
intermediate steps. It suffices to show that o¢ fixes all matrix units except es;, and can
be accomplished in three steps:

Step 1: Define o4 so that e;1,es0, and ejo are fixed, o4 acts as the identity on V, and
that o4 sends matrix units to multiples of themselves, up to the addition of a
scalar matrix.
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Step 2: Define o5 to subtract away the scalar matrix obtained in Step 1, so that o3
sends matrix units to themselves with a nonzero coefficient, and describe the
relationship among all such coefficients.

Step 3: Use the coefficients to define o so that og(e;;) = e;; whenever (4, j) # (2,1).

Then the successive compositions ¢ — 01 — g9 — -+ — 0 can be reversed to obtain
the final form of ¢.

Proof of Theorem 1. Recall the definition of o3 : M, (C) — M, (C) as in the proof of
Theorem 6. The ultimate goal is to show that ¢ is either an automorphism or negative
anti-automorphism, up to the addition of a scalar matrix. We may assume without loss of
generality that the restriction of o3 to V is of the form o3(A) = ¢cS7tAS + f(A) Iy, since
the negative anti-automorphism case can still be obtained even under this assumption.

For all A € M,(C), define o4 : M,,(C) — M, (C) to be the bijective linear map given
by

a4(A) = Qos(A)Q™,

where Q = e11 + eso + 5, which is clearly invertible because S is. Since o3 fixes €11, €22
and ez, so does 04. In order to show that o4 has the remaining desirable properties in
Remark 8, the linear functional f : ¥V — C must be identically zero and ¢ must be equal
to 1.

For convenience, denote o := 04. Let j > 3 and consider o(eq;) = (a;;). Since o(ey;)
commutes with ess and ey, it follows that

an 0 a3 aw - ain
0 ail 0 0 0
0 0 azz az4 -+ Q3p
0(61]) - 0 0 a43 Q44 - Q4n (31)
0 0 Anp3 QAap4 " Ann
For any p,q > 3 with j # p, Lemma 4 and Lemma 7 imply that
[0(e15), 0 (epq)] = [o(e15), cepg + f(epg) Iv] = 0. (3.2)

Suppose first that p = ¢. Using the form given by equation (3.1), expanding equation
(3.2) reveals that the non-diagonal entries of o(e;;) in the pth row and pth column,
except for those entries in the first row, are identically zero. This means o(ey;) is of the

form
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air 0 a3 aig -+ ai,
0 ail 0 0 0
0 0 ass 0 0
ole;))=1 0 0 0 au 0 (3.3)
0 0 0 0 - apn

The centralizer of ey, is generated by the set {ex : 7 # k,1 # 1} U{e11 +¢;;} and has
dimension n? — 2n 4+ 2 over C. Note that es; is not contained in the centralizer of e1;; in
other words, if ey commutes with eq;, then o(e;) commutes with o(eq;) by Lemma 7.
We have 0(C(ey;)) C C(o(e1;)) and, arguing as in Lemma 5, dim C(o(e1;)) = n?—2n+2.
It follows that U(elj) = Ey; + A1, where Ay; is a scalar and Ey; is a rank-one matrix.

This implies that a11 = ags = -+ = apn = A1; and
0 0 a3 -+ an
0 0 O 0
By = 0 0 O 0

;=

o0 0 - 0
Returning to equation (3.2), we now have
[E1j, cepg + flepg)Iv] = 0. (3.4)

Expanding the Lie product produces the system of equations

carp + f(epg)arg =0, flepg)arr =0, for k # q. (3.5)

Take ¢ = j. If a1; = 0, then the first equation implies that a1, = 0 for all p # j. In
this case, E1; = 0, a contradiction. Take £ = j. Since n > 5, we may choose ¢ # j,
and consider the second equation in (3.5), for if a1; # 0, then f(epy) = 0. In the first
equation, this implies that a;, = 0 for all p # j. Hence Fy; = ay;e15, and so

o(e1j) = arjerj + aiilp, aj # 0. (3.6)

Let k > 3 and consider o(eg2) = (b;;). Since es; also does not commute with ego, it
must be that dim C(o(eg2)) = n? — 2n + 2. Employing the same constructions as above
but adjusted for the second column, we conclude that

o(er2) = braera + bi1 1y, bra # 0. (3.7)

Since a1; # 0 as above, it was shown that f(e,q) was identically zero for all indices
p and ¢ such that p # j and ¢ # j. If 7/ > 3 is another index distinct to j, it follows
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that f(epq) = 0 for all indices p and ¢ such that p # j’ and ¢ # j'. Proceeding in this
way across the row, it follows that the linear functional f on V must be identically zero.
Furthermore, since o(I,,) = I,, and ey1, eas are fixed by o, we have o(Iy) = I,. Hence
the calculation

o(Iy) = ZU(ePP) =cly

p>3

shows that ¢ = 1, so o acts as the identity on V), as desired.

There are subtle differences in handling o(ez;) and o(e;1) because ea; does commute
with eg; and e;; for ¢,1 > 3. We show the form of o(es) = (¢;;) for | > 3 directly.

First, for all j > 3, Lemma 7 implies that [o(es;),0(e1;)] = 0. By equation (3.6), this
reduces to [o(eg;), e1;] = 0. From this calculation, it follows readily that ¢i; = ¢;; for all
j # 2. Also by the above, the fact that o fixes every diagonal matrix unit implies that
every non-diagonal entry of o(eg;) except for the (2,1)-entry is zero. Therefore, o(eg;) is
of the form

o(ex) = caear +cri(eir +e33+ -+ + enn) + ca2€22. (3.8)

We expect that ¢11 = co2 and that co; # 0, but it requires justification. Consider also
the matrices o(earr) = (c;;) and o(earr) = (¢f;), with 1,1, 1" > 3 all distinct. Each of these
matrices is also of the form of equation (3.8). Assume that co; = ¢}, = ¢, = 0; i.e., that
o(ear),o(ea ), o(eqrr) are diagonal matrices in which only the (2,2)-entry differs from the
rest in each matrix. Notice that {eq;, eor, €9 } forms a basis of a 3-dimensional subspace
of M, (C). However, {o(ea),o(ear),o(ea)} under this assumption forms the basis of
a 2-dimensional subspace, which contradicts bijectivity. Without loss of generality, we
may conclude that cg; # 0.

Now, by Lemma 7, we have that [o(eq;), o0(e2r)] = 0. Since co; # 0, computing this Lie
product shows that ¢}y = chy = ¢hs = -+ = ¢}, (and that c11 = co9 = ¢33 = -+ =
when ¢}, # 0). Now, if ¢}, = 0, then o(egy) is a scalar matrix, which contradicts
bijectivity (note that o fixes the identity matrix because o3 does). So cb; # 0 as well,
and the same argument shows that ¢, # 0.

Since ¢, # 0, it follows that ¢11 = c22, as desired. Hence for [ > 3,

o(ea) = coeq + c111y, car # 0. (3.9)

We can also show that o(e;1) = (d;;) for all ¢ > 3 has the analogous form using the
same argument, modified appropriately for the first column instead of the second row.
Therefore, we have that for all ¢ > 2,

o(ein) = dinesr + dir Iy, di # 0. (3.10)

At this point, Step 1 has been completed. Step 2 involves describing the nonzero
coefficients appearing in equations (3.6) through (3.10).
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Let v > 3 be fixed. For the two matrix units e;, and es,, let o(e1,) = (a;;) and
o(e2y) = (c;j). Consider the expression [eaa + €1, + €24, €11 — €12] = €12. By linearity and
our hypothesis, we have that

[0(e22), 0(e11)] — [0(e22), o (e12)] + [o(e10), o (e11)] (3.11)

—[o(e1v), 0(e12)] + [o(e2v), o(e11)] — [o(e2v), o(e12)] = e12.

The first, fourth, and fifth summands are equal to zero by Lemma 3. The second sum-
mand is equal to e by hypothesis, which simplifies equation (3.11) to:

[o(€10),0(e11)] — [o(e20), o(e12)] = 0.

Computing these Lie products shows that the first summand is equal to —aj,e,1, and
the second is equal to —caye,1, S0 we conclude that a1, = ca,,. The coefficients are equal
across the columns in the first and second rows.

Let u > 3 be fixed. For the two matrix units e,; and ey, let o(ey2) = (b;;) and
o(eq1) = (d;;). Observe that [e12 + €41 + €42, €22 — €12] = €12, SO

[0(e12), 0(e22)] — [o(e12), o (e12)] + [o(€ur), o(e22)] (3.12)

— [o(eur), o(e12)] + [o(euz), o(e22)] — [0(euz), o(€12)] = e12.

The first summand is equal to e;2 and the second summand is trivially zero. The third
and sixth summands are equal to zero by Lemma 3. This simplifies to

[o(euz), o(e22)] — [o(€u1), o(€12)] = 0.

Using the definition of o appearing in equation (3.7) and equation (3.10), the first sum-
mand is equal to byoe,s and the second is equal to dyieys. Thus dy1 = bye, so the
coefficients are equal across the rows in the first and second columns.

Now take u = v. Let o(e1y) = (aij),0(eu2) = (bij),0(e2,) = (cij), and o(ey1) =
(dij). By hypothesis, [o(e1x),0(€u2)] = €12 implies that ai,b,2 = 1 directly. But by the
previous analysis, we have that a1, = co, and by = d,;1. We conclude that

A1y = Cou = by =d ). (3.13)

The previous equation (3.13) says that the four nonzero coefficients sharing an index
u satisfy a certain inverse relationship. But we can say something stronger; in fact, every
matrix o(e;;) with ¢ < 2 and j > 3 has the same nonzero coefficient and every matrix
a(eij) with 4 > 3 and j < 2 has the same inverse coefficient to the above. Indeed,
let 7,s > 3,r # s. Let o(e1r) = (a;;) and o(e1s) = (z4;). Consider the expression
[e12 + €17 — €15, €rs + €55 + €22] = €12. By linearity and Property (1.1), we have that
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[0(e12), o (ers)] + [0 (e12), o(ess)] + [o(en2), o (e22)] + [o(€1r), o (ers)] + [o(e1r), o (ess)]
+ [o(err), o(e22)] — [o(e1s), o(ers)] — [o(e1s), o(ess)] — [o(e1s), 7 (e22)]

= €12.
(3.14)

The third summand is equal to e;o by hypothesis. The first, second, sixth, and ninth
summands are equal to zero by Lemma 3, while the fifth and seventh summands are also
equal to zero by Lemma 4, which simplifies equation (3.14) to

[o(e1r), o(ers)] — [o(e1s), o (ess)] = 0.

The first summand is equal to ai.e1s while the second summand is equal to x1se15. It
follows that a1, = x15. Once the nonzero coefficients are identical across rows in the
first two rows, by equation (3.13), this allows all nonzero coefficients to be determined.
For instance, if o4(e13) = (a;5), denote 3 := a13. Every nonzero coefficient of o4(e;;) for
i < 2and j > 3is 8, while every nonzero coefficient of o4(e;;) for ¢ > 3 and j < 2 is
B~1. This motivates the definition of o5 as follows.

Let g5 be a linear functional on M, (C) that is identically zero on ej1,e22, and ejs.
In addition, for all other e;;, (4,5) # (2,1), define g5 to be the (1,1)-entry of o4(e;;). In
particular, gs vanishes on V. Define

Us(eij) = 04(%‘) - 95(eij>ln'

Clearly this map is bijective, linear, and satisfies Property (1.1). In addition, for (i,j) #
(2,1) o5 has

0—5(6”—) - 5716ij7 1> 37 .] < 2 (315)

Now, Step 2 is complete. Proceeding to Step 3, we can now easily and confidently
transform o5 into the identity map with a final change of basis. Let o¢ : M,,(C) — M, (C)
be a bijective linear map defined by og(e;;) = Cto5(e;;)C, where C = B(e11 + e22) +
es3 + - -+ + enn. Then by equation (3.15), it follows that og(e;;) = e;; for (i,7) # (2,1).

Since the sequential composition ¢ — o1 — 02 — --- — 0g is bijective at every
step, we may reverse the composition so that ¢ has the form (1) or (2) appearing in
the statement of Theorem 1. The negative anti-automorphism case (2) is covered by the
definition of o9 (see equation (2.3) and equation (2.5)). Finally, while ¢(e21) cannot be
determined, it must be the case that ¢(ea1) = wea; + X, where x # 0 and the (2,1)-entry
of X is zero; otherwise, ¢ would fail to be bijective. The proof is complete. O
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