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1. Introduction

Let R be a ring. We say that the map f : R — R preserves zero products if, for all x, y €
R, xy = 0 implies f(x)f(y) = 0. Maps that preserve zero products have been well stud-
ied; for example, in [1-4], one can find characterizations of bijective, linear, zero product
preserving maps on group algebras, von Neumann algebras, prime algebras, and matrices
over division rings. Each of these results comes to the same conclusion: the map must be
the product of a central element and a homomorphism. This description is known as the
standard form.

From this field of study, two main branches have emerged. The first is zero product
determined algebras, initiated in [5]. The other branch involves maps that preserve cer-
tain products (e.g. the Jordan product, x o y = xy + yx) or certain distinguished elements
(other than zero), and this is the main focus of this paper.

A natural extension of zero product preserving maps are maps that preserve the (ordi-
nary) product of non-zero elements; that is, a map f: R — R such that, for some
fixed a,b € R, f(x)f (y) = b whenever xy = a. Chebotar et al. studied this for a = 1 and
‘R = D, adivision ring [6]. Lin and Wong generalized this result to R = M,,(D) [7]. Each
of these results describes the map as a standard solution. The first author was able to expand
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2 L. CATALANO AND M. CHANG-LEE

the result, studying the case when a = k is invertible and R = D [8]. However, in this
case, the form of the map is slightly different from the standard solution; in particular,
it was shown that f(x) = A¢(x), where ¢ is a homomorphism, but X is not necessarily a
central element. This was then generalized to R = M, (D) by the first author, Hsu, and
Kapalko [9]. Finally, the case where a, b are rank-one idempotents in the ring R = M,,(C)
was studied by the first author. This result found that f is, again, a standard solution [10].

Let us say a few words on products other than the ordinary product. In [9], Catalano
et al. classified maps preserving the Jordan product (i.e. maps such that f(x) o f(y) = m
whenever x o y = k for some fixed m and k), and in this case, the map behaves in same way
as zero Jordan product preserving maps. On the other hand, a very surprising result comes
from considering maps that preserve the Lie product, [x,y] = xy — yx forallx,y € R.In
[11], Ginsburg et al. described the maps such that [f(x),f(y)] = m whenever [x,y] =k
and proved in the case when m = k is a rank-one nilpotent that the description is different
from that of the zero Lie product preserving maps.

Taking into account the result by [11], it is now not obvious that ordinary product pre-
serving maps will be of the standard form that appears in the zero product preserving
case. We will show in this paper that the analogous case of a rank-one nilpotent product
preserving map will indeed be of the standard form.

Theorem 1.1: Let n >4 and fix N,M € M,(C) rank-one nilpotent matrices. Let f :
M, (C) — M, (C) be a linear, bijective map such that

fX)f(Y) = N whenever XY = M. (1)

Then f(X) = cU~XU for some invertible U € M,,(C) and non-zero c € C.

We can in fact extend this result using the same proof technique to show that equal
product preserving maps of infinite matrices with finitely many non-zero coeflicients can
be classified.

Theorem 1.2: Let M denote the ring of N x N infinite matrices over a field I with finitely
many non-zero entries. Let M,N € M be any matrices. Let f : M — M be a linear,
bijective map such that

fX)f(Y) = N whenever XY = M. (2)

Then f(XY) = cf X)f(Y) forall X, Y € M and non-zero c € F.

2. Proof of Theorem 1.1

We define e;; to be the matrix unit with 1 in the (i, j)-entry and 0 elsewhere. We note
that any rank-one nilpotent matrix is similar to the matrix ej»; that is, we may write
CMC~! = e;, = DND™! for some invertible matrices C, D € M, (C). In particular, if we
let X’ = CXC™! for all X € M,,(C) and define f'(X') = Df(X)D~! (which is clearly a
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bijective linear map), then property (1) is equivalent to the property that X'Y’ = e}, implies
FEOf(Y) = en.

However, we note that f is of the form cU!XU if and only if f’ is of the same form.
Therefore, it suffices to prove the result for any bijective linear map f satisfying

F(X)f(Y) = e;» whenever XY = ey5. (3)

Let X be the set of all matrices with all rows zero except (possibly) one, and let ) be the set
of all matrices with all columns zero except (possibly) one. Furthermore, let &} be a subset
of X such that each element in &} has at most r non-zero entries, and analogously, let ),
be a subset of ) such that each element of ), has at most r non-zero entries.

By a zero-r pair, we denote a pair (X,,Y;) € &, x V; such that X, Y, = 0. Additionally,
we say that f preserves zero products on zero-r pairs if

f(Xr)f(Yr) =0

for all zero-r pairs (X, ;).

Lemma 2.1: If X,Y =0 for X, € X}, Y € V,2 < r < n, then there exist X, € X, and
X1 € X_qysuchthat X,V =0, X, 1Y =0,and X, = X, + X,_1.

Additionally, if XY, =0 for X € X, Y, € Vr, 2 < r < m, then there exist Y, € YV, and
Y1 € Vr_ysuchthat XY, =0, XY,_1 =0,and Y, =Y, + Y,_;.

Proof: Let X, be the row vector with r entries xj,...,x, and zeros elsewhere. Let
Y = (1...yx)T. We can assume that all the x; are non-zero, since r is arbitrary, so if any
x; is zero, we can reduce to the case of r—1 and disregard the entry x;.

We assume x is the first non-zero entry of X,. Suppose first that y; = 0. We can take
X5 =(x10...0)and X,—; = X, — X, as our decomposition.

In the case when y; # 0, we can assume there exist some non-zero x; and yj, since this
would otherwise contradict X, Y =0. Let X, = (x; 0 ... 0 x; 0 ...0) be a vector with
only st and jth entry non-zero, and let x; be such that x1y; 4 x;y; = 0. Then we can take
X,—1 = X; — X, as our decomposition.

The second statement can be proved identically. |

Corollary 2.1: Let X,Y, =0for X, € X, Y€ V,, 2 <r < n. Then

(1) there exist Xy,,...,X5, € X5 such that X, = X5, + -+ + X5, and X5, Y, = 0 for all i.
(2) thereexistYy,,...,Ys, € ) (dependingonX,,)suchthatY, =Yy, +---+ Yy, and
Xy, Y, = Oforalli,j. l
3) XY, = X0, Yo+ + Xy Y2111 + -+ szYZkl + - +X2kY2klk’ and each (Xzi,

Y>;) is a zero-2 pair.

Proof: Using Lemma 2.1, we can write X, = X5, + X;—1, where X, € &> and X,_; €
X,_1. Furthermore, we know X5, Y, = 0 and X,_;Y, = 0. Repeating this process at most
r—3 additional times, we can find X»,, . .., X5, where X, = X5, + - - + X3,, X5, € A5, and
X5,Y, = 0. Thus, we have proved (1).
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We will now consider X, Y, for i € {1,...,k}. As before, we may use Lemma 2.1 and
induction to get that Y, = Y5, +--- + Y2izi where Yy, € YV, and Xy, Yy, = 0; and so we
have proved (2).

The last statement of the corollary follows directly from parts (1) and (2). [ |

Corollary 2.2: If f preserves zero products on zero-2 pairs, then f preserves zero products.

Proof: Assume f(X3)f(Y2) = 0 for any zero-2 pair (X3, Y3). Suppose then (X;,Y,) is a
zero-r pair. By Corollary 2.1, we may write

JEIf(Yy) =f(Xo, + -+ + X5)f (V)

k
= > fX)f(Yy)

i=1

k
= Zf(XZf)f(YZA +e T+ Yzil,-)

i1
kol

= Z Zf(XZi)f(Yzij),
i1 j=1

where (X3, Y2;) is a zero-2 pair for all 4, j. Then, since f preserves zero products on zero-2
pairs, we have f(X,)f(Y;) = 0.

We can pick r = n, which gives that f preserves zero products on the product of a single
non-zero row with a single non-zero column. Since any matrix can be written as the sum
of its rows (or alternatively, columns), it is straightforward to see that f preserving the zero
product on the product of rows and columns will imply that f preserves the zero product
in general. Thus, the lemma is proven. n

We can then formulate a more general theorem on linear maps from M, (C) to itself.

Lemma2.2: Iff : M,,(C) — M, (C) is alinear, bijective map, n > 4, and fsatisfies (3), then
f preserves zero products on zero-2 paits.

Proof: Let (X3, Y,) be a zero-2 pair. Since X is a row vector, the first index of the matrix
units will be the same, so we may rewrite X, = cjejj + c2¢;;. Similarly with Y3, a column
vector, Y2 = djejx + daej. Since we assume n > 4, we may pick some m # j, m # I. We
can define X, = X5 + e1m, Yy = Y2 + emp. Then

XéYé =Xoema +e1mY2 + e1menn + XoY2 = enn.
From (3), it follows that
FXDf(Yy) =f(X)f (em) + ferm)f (Y2) + flerm)f (em2) + f(X2)f (Y2) = era.

By our choice of m, we know already thate;,, Y2 = 0,50 f (e1n)f (em2 + Y2) must be equal to
e12. Using the linearity of f, we can expand this equation to f (e1n)f (em2) + f (e1m)f (Y2) =
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e12. By property (3), since eymemz = e12, we see that f(e1m)f (em2) = e12, which gives that
f(eim)f (Y2) = 0. We can do the same on the other side, multiplying (e1,, + X2)em = e12,
)

fleim)(f(em2) + f(X2)) = f(eim)f (em2) + f(X2)f (em2) = ern.

As before, f(e1m)f (em2) = e12, and thus f(X2)f (ep2) = 0.
Combining with the above paragraph gives that

FXOF (YY) = f(X2)f (em2) + f(erm)f (Y2) + f(erm)f (em2) + f (X2)f (Y2)
=epn+0+0+f(X2)f(Y2) = e,

so finally, f(X2)f (Y2) = 0. [ |

One can see that Corollary 2.2 and Lemma 2.2 together give us that the map f in
Theorem 1.1 preserves the zero product. To obtain the complete form of f, we invoke the
following result by Chebotar, et al.:

Theorem 2.1 ([12], Corollary 2.4): Let 0 : M,(C) — M,(C) be a bijective linear map
preserving zero products, where n > 2. Then there exist an invertible matrix U € M,(C)
and a non-zero ¢ € C such that 0(X) = cU_lXUfor allX € M,(C).

Thus, the form described in Theorem 1.1 is obtained, and the proof is complete.

3. Proof of Theorem 1.2

We will now prove the second theorem.

Lemma 3.1: A map f satisfying the conditions in Theorem 1.2 preserves zero products.

Proof: Suppose A, B € M such that AB = 0. Since A, B, and M have finitely many non-
zero entries, there exists a positive integer n such that A = Ey1AEy, B = E;1BE;,and M =
Ey1MEj;, where Eyp = )1 eji. We thendefine E1; = Y1 ejuqiand Exp = D iy €ifn,i.
We will denote M, = E11 ME;j,.

Let X denote the matrix A + M;,; that is, the matrix with A in the upper left cor-
ner and M in the next n x n block to the right. In the same way, let Y denote the
matrix B+ E;;. We can observe that XY = M. Thus, by the defining property of f,
fX)f(Y) = N. By definition of Y, we may rewrite f(X)f(Y) = f(X)f (B) + f(X)f (E21).
We note that since XE»; = M, we have f(X)f(E21) = N. Thus, f(X)f(B) = 0. Similarly,
we may rewrite f(X)f(Y) = f(A)f(Y) + f(M12)f(Y) = N. But, as with the decomposi-
tion of Y, by observation, MY = M, so f(Mi2)f(Y) = N. Thus, f(A)f(Y) = 0. Since
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FAFY) =f(X)f(B) = 0, we may write
FASB) + f(A)f (Ex) =0 (4)

and

F(Af(B) + f(M12)f (B) = 0. (5)

It follows from (4) and (5) that f(A)f (E21) =f (M12)f (B). Since M12E>1 = M, f (M12)f (E21)
= N. We then note that

fM)f(Y) = f(M12)f (B) + f(M12)f (E21) = N

impliesf(Mlz)f(B) = f(A)f(Elz) =0.
Thus, fully expanding the terms,

fXOfY) = f(M12)f (Ea1) + f(A)f (Ea1) + f (M12)f (B) + f(A)f(B) = N.
By above, f(M12)f(E21) = N, f(A)f(E2) =0, and f(M2)f(B) =0, so f(A)f(B) =0.

Thus, f preserves zero products. |

We cite the following theorem to obtain the form of f given in the statement of
Theorem 1.2:

Theorem 3.1 ([2], Theorem 1): Let 6 : M — M be a bijective linear map preserving
zero products. Then there exists a non-zero ¢ € IF such that 0(XY) = c0(X)0(Y) for all
X, Y e M.

Thus, Theorem 1.2 is proven.
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