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ABSTRACT

In this paper,we showthat a linear, bijectivemap f : Mn(C) → Mn(C)

such that f (X)f (Y) = N whenever XY = M, for M, N rank-one nilpo-
tents, is of the form f (X) = cU−1XU for an invertible U ∈ Mn(C) and
a non-zero c ∈ C. We extend this result to show in general that,
given any M and N in the ring, M, of N × N infinite matrices over
a field F with finitely many non-zero entries, a linear, bijective map
f : M → M, such that f (X)f (Y) = Nwhenever XY = Mmust satisfy
f (XY) = cf (X)f (Y) for all X , Y ∈ M and c ∈ F.
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1. Introduction

LetR be a ring. We say that the map f : R → R preserves zero products if, for all x, y ∈

R, xy = 0 implies f (x)f (y) = 0. Maps that preserve zero products have been well stud-

ied; for example, in [1–4], one can find characterizations of bijective, linear, zero product

preserving maps on group algebras, von Neumann algebras, prime algebras, and matrices

over division rings. Each of these results comes to the same conclusion: the map must be

the product of a central element and a homomorphism. This description is known as the

standard form.

From this field of study, two main branches have emerged. The first is zero product

determined algebras, initiated in [5]. The other branch involves maps that preserve cer-

tain products (e.g. the Jordan product, x ◦ y = xy + yx) or certain distinguished elements

(other than zero), and this is the main focus of this paper.

A natural extension of zero product preserving maps are maps that preserve the (ordi-

nary) product of non-zero elements; that is, a map f : R → R such that, for some

fixed a, b ∈ R, f (x)f (y) = b whenever xy = a. Chebotar et al. studied this for a = 1 and

R = D, a division ring [6]. Lin andWong generalized this result toR = Mn(D) [7]. Each

of these results describes themap as a standard solution. The first authorwas able to expand
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the result, studying the case when a = k is invertible and R = D [8]. However, in this

case, the form of the map is slightly different from the standard solution; in particular,

it was shown that f (x) = λϕ(x), where ϕ is a homomorphism, but λ is not necessarily a

central element. This was then generalized to R = Mn(D) by the first author, Hsu, and

Kapalko [9]. Finally, the case where a, b are rank-one idempotents in the ringR = Mn(C)

was studied by the first author. This result found that f is, again, a standard solution [10].

Let us say a few words on products other than the ordinary product. In [9], Catalano

et al. classified maps preserving the Jordan product (i.e. maps such that f (x) ◦ f (y) = m

whenever x ◦ y = k for some fixedm and k), and in this case, the map behaves in same way

as zero Jordan product preserving maps. On the other hand, a very surprising result comes

from considering maps that preserve the Lie product, [x, y] = xy − yx for all x, y ∈ R. In

[11], Ginsburg et al. described the maps such that [f (x), f (y)] = m whenever [x, y] = k

and proved in the case whenm = k is a rank-one nilpotent that the description is different

from that of the zero Lie product preserving maps.

Taking into account the result by [11], it is now not obvious that ordinary product pre-

serving maps will be of the standard form that appears in the zero product preserving

case. We will show in this paper that the analogous case of a rank-one nilpotent product

preserving map will indeed be of the standard form.

Theorem 1.1: Let n ≥ 4 and fix N,M ∈ Mn(C) rank-one nilpotent matrices. Let f :

Mn(C) → Mn(C) be a linear, bijective map such that

f (X)f (Y) = N whenever XY = M. (1)

Then f (X) = cU−1XU for some invertible U ∈ Mn(C) and non-zero c ∈ C.

We can in fact extend this result using the same proof technique to show that equal

product preserving maps of infinite matrices with finitely many non-zero coefficients can

be classified.

Theorem 1.2: LetM denote the ring of N × N infinite matrices over a field F with finitely

many non-zero entries. Let M,N ∈ M be any matrices. Let f : M → M be a linear,

bijective map such that

f (X)f (Y) = N whenever XY = M. (2)

Then f (XY) = cf (X)f (Y) for all X,Y ∈ M and non-zero c ∈ F.

2. Proof of Theorem 1.1

We define eij to be the matrix unit with 1 in the (i, j)-entry and 0 elsewhere. We note

that any rank-one nilpotent matrix is similar to the matrix e12; that is, we may write

CMC−1 = e12 = DND−1 for some invertible matrices C,D ∈ Mn(C). In particular, if we

let X′ = CXC−1 for all X ∈ Mn(C) and define f ′(X′) = Df (X)D−1 (which is clearly a
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bijective linearmap), then property (1) is equivalent to the property thatX′Y ′ = e12 implies

f ′(X′)f ′(Y ′) = e12.

However, we note that f is of the form cU−1XU if and only if f ′ is of the same form.

Therefore, it suffices to prove the result for any bijective linear map f satisfying

f (X)f (Y) = e12 whenever XY = e12. (3)

LetX be the set of all matrices with all rows zero except (possibly) one, and letY be the set

of all matrices with all columns zero except (possibly) one. Furthermore, letXr be a subset

of X such that each element in Xr has at most r non-zero entries, and analogously, let Yr

be a subset of Y such that each element of Yr has at most r non-zero entries.

By a zero-r pair, we denote a pair (Xr,Yr) ∈ Xr × Yr such that XrYr = 0. Additionally,

we say that f preserves zero products on zero-r pairs if

f (Xr)f (Yr) = 0

for all zero-r pairs (Xr,Yr).

Lemma 2.1: If XrY = 0 for Xr ∈ Xr, Y ∈ Y , 2 < r ≤ n, then there exist X2 ∈ X2 and

Xr−1 ∈ Xr−1 such that X2Y = 0, Xr−1Y = 0, and Xr = X2 + Xr−1.

Additionally, if XYr = 0 for X ∈ X , Yr ∈ Yr, 2 < r ≤ m, then there exist Y2 ∈ Y2 and

Yr−1 ∈ Yr−1 such that XY2 = 0, XYr−1 = 0, and Yr = Y2 + Yr−1.

Proof: Let Xr be the row vector with r entries x1, . . . , xr and zeros elsewhere. Let

Y = (y1 . . . yn)
T . We can assume that all the xi are non-zero, since r is arbitrary, so if any

xi is zero, we can reduce to the case of r−1 and disregard the entry xi.

We assume x1 is the first non-zero entry of Xr. Suppose first that y1 = 0. We can take

X2 = (x1 0 . . . 0) and Xr−1 = Xr − X2 as our decomposition.

In the case when y1 �= 0, we can assume there exist some non-zero xj and yj, since this

would otherwise contradict XrY = 0. Let X2 = (x1 0 . . . 0 x′
j 0 . . . 0) be a vector with

only 1st and jth entry non-zero, and let x′
j be such that x1y1 + x′

jyj = 0. Then we can take

Xr−1 = Xr − X2 as our decomposition.

The second statement can be proved identically. �

Corollary 2.1: Let XrYr = 0 for Xr ∈ Xr, Y ∈ Yr, 2 ≤ r ≤ n. Then

(1) there exist X21 , . . . ,X2k ∈ X2 such that Xr = X21 + · · · + X2k and X2iYr = 0 for all i.

(2) there exist Y2i1 , . . . ,Y2ili
∈ Y2 (depending on X2i) such that Yr = Y2i1 + · · · + Y2ili

and

X2iY2ij = 0 for all i, j.

(3) XrYr = X21Y211 + · · · + X21Y21l1
+ · · · + X2kY2k1 + · · · + X2kY2klk

, and each (X2i ,

Y2ij) is a zero-2 pair.

Proof: Using Lemma 2.1, we can write Xr = X21 + Xr−1, where X21 ∈ X2 and Xr−1 ∈

Xr−1. Furthermore, we know X21Yr = 0 and Xr−1Yr = 0. Repeating this process at most

r−3 additional times, we can findX22 , . . . ,X2k whereXr = X21 + · · · + X2k ,X2i ∈ X2, and

X2iYr = 0. Thus, we have proved (1).
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We will now consider X2iYr for i ∈ {1, . . . , k}. As before, we may use Lemma 2.1 and

induction to get that Yr = Y2i1 + · · · + Y2ili
where Y2ij ∈ Y2 and X2iY2ij = 0; and so we

have proved (2).

The last statement of the corollary follows directly from parts (1) and (2). �

Corollary 2.2: If f preserves zero products on zero-2 pairs, then f preserves zero products.

Proof: Assume f (X2)f (Y2) = 0 for any zero-2 pair (X2,Y2). Suppose then (Xr,Yr) is a

zero-r pair. By Corollary 2.1, we may write

f (Xr)f (Yr) = f (X21 + · · · + X2k)f (Yr)

=

k∑

i=1

f (X2i)f (Yr)

=

k∑

i=1

f (X2i)f (Y2i1 + · · · + Y2ili
)

=

k∑

i=1

li∑

j=1

f (X2i)f (Y2ij),

where (X2i ,Y2ij) is a zero-2 pair for all i, j. Then, since f preserves zero products on zero-2

pairs, we have f (Xr)f (Yr) = 0.

We can pick r = n, which gives that f preserves zero products on the product of a single

non-zero row with a single non-zero column. Since any matrix can be written as the sum

of its rows (or alternatively, columns), it is straightforward to see that f preserving the zero

product on the product of rows and columns will imply that f preserves the zero product

in general. Thus, the lemma is proven. �

We can then formulate a more general theorem on linear maps fromMn(C) to itself.

Lemma2.2: If f : Mn(C) → Mn(C) is a linear, bijectivemap, n ≥ 4, and f satisfies (3), then

f preserves zero products on zero-2 pairs.

Proof: Let (X2,Y2) be a zero-2 pair. Since X2 is a row vector, the first index of the matrix

units will be the same, so we may rewrite X2 = c1eij + c2eil. Similarly with Y2, a column

vector, Y2 = d1ejk + d2elk. Since we assume n ≥ 4, we may pick some m �= j, m �= l. We

can define X′
2 = X2 + e1m, Y

′
2 = Y2 + em2. Then

X′
2Y

′
2 = X2em2 + e1mY2 + e1mem2 + X2Y2 = e12.

From (3), it follows that

f (X′
2)f (Y

′
2) = f (X2)f (em2) + f (e1m)f (Y2) + f (e1m)f (em2) + f (X2)f (Y2) = e12.

By our choice ofm, we knowalready that e1mY2 = 0, so f (e1m)f (em2 + Y2)must be equal to

e12. Using the linearity of f, we can expand this equation to f (e1m)f (em2) + f (e1m)f (Y2) =
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e12. By property (3), since e1mem2 = e12, we see that f (e1m)f (em2) = e12, which gives that

f (e1m)f (Y2) = 0. We can do the same on the other side, multiplying (e1m + X2)em2 = e12,

so

f (e1m)(f (em2) + f (X2)) = f (e1m)f (em2) + f (X2)f (em2) = e12.

As before, f (e1m)f (em2) = e12, and thus f (X2)f (em2) = 0.

Combining with the above paragraph gives that

f (X′
2)f (Y

′
2) = f (X2)f (em2) + f (e1m)f (Y2) + f (e1m)f (em2) + f (X2)f (Y2)

= e12 + 0 + 0 + f (X2)f (Y2) = e12,

so finally, f (X2)f (Y2) = 0. �

One can see that Corollary 2.2 and Lemma 2.2 together give us that the map f in

Theorem 1.1 preserves the zero product. To obtain the complete form of f, we invoke the

following result by Chebotar, et al.:

Theorem 2.1 ([12], Corollary 2.4): Let θ : Mn(C) → Mn(C) be a bijective linear map

preserving zero products, where n ≥ 2. Then there exist an invertible matrix U ∈ Mn(C)

and a non-zero c ∈ C such that θ(X) = cU−1XU for all X ∈ Mn(C).

Thus, the form described in Theorem 1.1 is obtained, and the proof is complete.

3. Proof of Theorem 1.2

We will now prove the second theorem.

Lemma 3.1: A map f satisfying the conditions in Theorem 1.2 preserves zero products.

Proof: Suppose A,B ∈ M such that AB = 0. Since A, B, and M have finitely many non-

zero entries, there exists a positive integern such thatA = E11AE11,B = E11BE11, andM =

E11ME11, where E11 =
∑n

i=1 eii. We then define E12 =
∑n

i=1 ei,n+i and E21 =
∑n

i=1 ei+n,i.

We will denoteM12 = E11ME12.

Let X denote the matrix A + M12; that is, the matrix with A in the upper left cor-

ner and M in the next n × n block to the right. In the same way, let Y denote the

matrix B + E21. We can observe that XY = M. Thus, by the defining property of f,

f (X)f (Y) = N. By definition of Y, we may rewrite f (X)f (Y) = f (X)f (B) + f (X)f (E21).

We note that since XE21 = M, we have f (X)f (E21) = N. Thus, f (X)f (B) = 0. Similarly,

we may rewrite f (X)f (Y) = f (A)f (Y) + f (M12)f (Y) = N. But, as with the decomposi-

tion of Y, by observation, M12Y = M, so f (M12)f (Y) = N. Thus, f (A)f (Y) = 0. Since
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f (A)f (Y) = f (X)f (B) = 0, we may write

f (A)f (B) + f (A)f (E21) = 0 (4)

and

f (A)f (B) + f (M12)f (B) = 0. (5)

It follows from (4) and (5) that f (A)f (E21)= f (M12)f (B). SinceM12E21 =M, f (M12)f (E21)

= N. We then note that

f (M12)f (Y) = f (M12)f (B) + f (M12)f (E21) = N

implies f (M12)f (B) = f (A)f (E12) = 0.

Thus, fully expanding the terms,

f (X)f (Y) = f (M12)f (E21) + f (A)f (E21) + f (M12)f (B) + f (A)f (B) = N.

By above, f (M12)f (E21) = N, f (A)f (E21) = 0, and f (M12)f (B) = 0, so f (A)f (B) = 0.

Thus, f preserves zero products. �

We cite the following theorem to obtain the form of f given in the statement of

Theorem 1.2:

Theorem 3.1 ([2], Theorem 1): Let θ : M → M be a bijective linear map preserving

zero products. Then there exists a non-zero c ∈ F such that θ(XY) = cθ(X)θ(Y) for all

X,Y ∈ M.

Thus, Theorem 1.2 is proven.
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