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Abstract

The dynamics of an SIS epidemic patch model with asymmetric connectivity matrix is
analyzed. It is shown that the basic reproduction number Ry is strictly decreasing with
respect to the dispersal rate of the infected individuals. When Ry > 1, the model admits
a unique endemic equilibrium, and its asymptotic profiles are characterized for small
dispersal rates. Specifically, the endemic equilibrium converges to a limiting disease-
free equilibrium as the dispersal rate of susceptible individuals tends to zero, and the
limiting disease-free equilibrium has a positive number of susceptible individuals on
each low-risk patch. Furthermore, a sufficient and necessary condition is provided
to characterize that the limiting disease-free equilibrium has no positive number of
susceptible individuals on each high-risk patch. Our results extend earlier results for
symmetric connectivity matrix, providing a positive answer to an open problem in
Allen et al. (SIAM J Appl Math 67(5):1283-1309, 2007).

Keywords SIS epidemic patch model - Asymmetric connectivity matrix -
Asymptotic profile

Mathematics Subject Classification 92D30 - 37N25 - 92D40

1 Introduction

Various mathematical models have been proposed to describe and simulate the trans-
missions of infectious diseases, and the predictions provided by those models may
help to prevent and control the outbreak of the diseases (Anderson and May 1991;
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Brauer et al. 2008; Diekmann and Heesterbeek 2000). The spreading of the infectious
diseases in populations depends on the spatial structure of the environment and the
dispersal pattern of the populations. The impact of the spatial heterogeneity of the
environment and the dispersal rate of the populations on the transmission of the dis-
eases can be modeled in discrete-space settings by ordinary differential equation patch
models (Allen et al. 2007; Arino and van den Driessche 2003; Lloyd and May 1996;
Wang and Zhao 2004) or in continuous-space settings by reaction-diffusion equation
models (Allen et al. 2008; Fitzgibbon and Langlais 2008; Wang and Zhao 2012).

In a discrete-space setting, Allen et al. (2007) proposed the following susceptible-
infected-susceptible (SIS) epidemic patch model:

ds; . — ST -
d_tjzdSZ(ijSk_ijSj)_gj jTJ +yilj, J €%,

i1 P it (1.1)
di; + 5 = = BiSjl 7. '
L =a Ljly — Lijlj) + =—= —y;jlj, jeQ,

di Ilgz( Jjklk kj ,/) Sj +Ij Vilj J

where 2 = {1,2,...,n} withn > 2. Here Ej (t) and 71 (t) denote the number of the
susceptible and infected individuals in patch j at time ¢, respectively; §; denotes the
rate of disease transmission and y; represents the rate of disease recovery in patch j;
ds, dy are the dispersal rates of the susceptible and infected populations, respectively;
and L jk = 0 describes the degree of the movement of the individuals from patch & to
patch j for j, k € . A major assumption in Allen et al. (2007) is that the matrix (L k)
is symmetric. In Allen et al. (2007), the authors defined the basic reproduction number
Ry of the model (1.1); they showed that if Ry < 1 the disease-free equilibrium is
globally asymptotically stable, and if Ry > 1 the model has a unique positive endemic
equilibrium. Moreover, the asymptotic profile of the endemic equilibrium as dg — 0
is characterized in Allen et al. (2007), and the case d; — 0 is studied in Li and Peng
(2019) recently. We remark that there are extensive studies on patch epidemic models,
see Almarashi and McCluskey (2019), Eisenberg et al. (2013), Gao and Ruan (2011),
Gao et al. (2019), Jin and Wang (2005), Li and Shuai (2009, 2010), Salmani and
van den Driessche (2006), Tien et al. (2015), Wang and Zhao (2004, 2005) and the
references therein. The corresponding reaction-diffusion model of (1.1) was studied
in Allen et al. (2008) where the dispersal of the population is modeled by diffusion. A
similar model with diffusive and advective movement of the population is studied in
Cui et al. (2017), Cui and Lou (2016), and more studies on diffusive SIS models can
be found in Deng and Wu (2016), Jiang et al. (2018), Kuto et al. (2017), Li and Peng
(2019), Li et al. (2018), Magal et al. (2018), Peng (2009), Peng and Liu (2009), Peng
and Yi (2013), Tuncer and Martcheva (2012), Wu et al. (2017), Wu and Zou (2016)
and the references therein.

The assumption that the matrix (L jk) 18 symmetric in Allen et al. (2007), Li and
Peng (2019) is similar to the assumption of diffusive dispersal in reaction-diffusion
models. However, asymmetric (e.g. advective) movements of the populations in space
are common, and so in this paper we consider (1.1) with (L jk) being asymmetric
and establish the corresponding results in Allen et al. (2007), Li and Peng (2019).
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Moreover, we will provide solutions to some of the open problems in Allen et al.
(2007) without assuming (L jk) 1s symmetric: (1) we prove that the basic reproduction
number Ry is strictly decreasing in dy; (2) we partially characterize the asymptotic
profile of the S-component of the endemic equilibrium as dg — 0. The monotonicity
of Ry has also been proven recently in [11], Gao (2019), Gao and Dong (2020) with
Bi,vi > 0 foralli € Q, while this assumption will be dropped in our result. We
also establish the asymptotic profile of the endemic equilibrium as d; — 0 when L is
asymmetric, which extends the results of Li and Peng (2019) in which L is assumed
to be symmetric.
Denote .
Lk, J#k,
Ljk=1- Z Lyj, j=k,
ke, k#j

where L j; is the total degree of movement out from patch j € €2. We rewrite (1.1) as:

ds; - _
d_j:dSZL/kSk_ A +yilj, e,
ﬂ—dZLT—i— ILILT NS S
a 1 jklk = Yilj, ]

keQ J J

Let H~ and H™ denote the sets of low-risk and high-risk patches, respectively; that
is,
H ={jeQ:Bj<yj} and H' ={j e Q: B; > y;j}.

Define the patch reproduction number Ry; = B;/y;. Hence a high-risk patch is one
where the patch reproduction number Ry; > 1, while a low-risk patch is one where
Ryj < 1. We impose the following four assumptions:

(Ag) Bj =0and y; > Oforall j € Q;dg,d; > 0;

(A1) The connectivity matrix L := (L j;) is irreducible and quasi-positive (meaning
that off-diagonal entries are nonnegative);

(A2) S;(0)>0,1;(0)>0,and

N = "[5;(0) +1,;(0)] > 0; (1.3)
je

(A3) H™ and H are nonempty, and Q = H~ U H™.

By adding the 2n equations in (1.2), we see that the total population is conserved in
the sense that

N=>"[Sj()+1;@)] forany t>0. (1.4)
JEQ

We remark that (Ag)—(A3) are assumed in Allen et al. (2007) with L being symmetric
in addition.
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Throughout the paper, we use the following notations. For n > 2,

R ={u=(up,....,up)" :u; eR forany i =1,...,n},

R = {u=(ur,...,un)" :u; >0 forany i =1,...,n}. (1.5)
For an n x n real-valued matrix A, we denote the spectral bound of A by
s(A) := max{Re(}) : A is an eigenvalue of A},
and the spectral radius of A by
p(A) ;== max{|A| : A is an eigenvalue of A}.
The matrix A is nonnegative if all the entries of A are nonnegative. The matrix A is
zero if all the entries of A are zero. The matrix A is positive if A is nonnegative and

not zero. The matrix A is quasi-positive (or cooperative) if all off-diagonal entries of
A are nonnegative.

Letu = (uy, ..., un)T and v = (vq, ..., vn)T be two vectors. We write u > v if
u; >v;foralli =1,...,n.Wewriteu > vifu; > v; foralli =1, ..., n, and there
exists o such that u;, > v;,. We write u > vifu; > v; foralli =1,...,n. We say

u is strongly positive if u > 0.

The rest of the paper is organized as follows. In Sect. 2, we prove that model
(1.2)—(1.3) admits a unique endemic equilibrium if Ry > 1 and that Ry is strictly
decreasing in dj. In Sect. 3, the asymptotic profile of the endemic equilibrium is
studied in two cases, ds — 0 and d; — 0. In Sect. 4, we consider a toy example
where the connectivity matrix corresponds to a star graph.

2 The basic reproduction number

In this section, we study the properties of the basic reproduction number Ry of model
(1.2). The following result on the spectral bound of the connectivity matrix L follows
directly from the Perron-Frobenius theorem.

Lemma 2.1 Suppose that (A1) holds. Then s(L) = 0 is a simple eigenvalue of L with
a strongly positive eigenvector o, where

n
o= (al,...,otn)T, aj >0 forany j e, and Zai =1. 2.1
i=1

Moreover, there exists no other eigenvalue of L corresponding with a nonnegative
eigenvector.

In the rest of the paper, we denote a the positive eigenvector of L as specified in
Lemma 2.1.
Then we observe that model (1.2)—(1.3) admits a unique disease-free equilibrium.
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Lemma 2.2 Suppose that (Ap)—(A2) hold. Then mocAiel (1.2)~(1.3) has a unique
disease-free equilibrium (Sy, ..., S,,0, ..., 0T with S; =aj;N.

Proof At the disease-free equilibrium (), ..., 5,.0.....0)7, L($;,.... §)T =o0.
It follows from Lemma 2.1 that there exists k € R such that §; = « jk forany j € Q.
Since } ;.o Sj = k Y jeq®j =N, we have k = N. This completes the proof. O

We follow the next generation matrix approach Diekmann and Heesterbeek (2000),
van den Driessche and Watmough (2002) to compute the basic reproduction number.
Specifically, the two matrices representing new infections and transfer are determined
respectively:

F =diag(Bj), V =diag(y;)—d;L, 2.2)

and the basic reproduction number Ry is thus defined as
Ro=p(FV™).

We recall the following well-known result [see, e.g., Berman and Plemmons (1994),
Corollary 2.1.5]:

Lemma 2.3 Suppose that P and Q are n x n real-valued matrices, P is quasi-positive,
Q is nonnegative and nonzero, and P + Q is irreducible. Then, s(P + a Q) is strictly
increasing for a € (0, 00).

By Lemma 2.3, if y; (j € £2) are not all zero, then V is invertible and therefore an
M -matrix. Then, we have the following result.

Proposition 2.4 Suppose that (Ag)—(A1) hold and y; (j € 2) are not all zero. Then
the following statements hold:

(1) Ro — 1 has the same sign as s(F — V) = (dIL +diag(Bj — yj)).
(ii) If Ry < 1, the disease-free equilibrium (S, ..., 8,0, ...,007 of (1.2)=(1.3) is
globally asymptotically stable; if Ry > 1, the disease-free equilibrium is unstable.

Proof Result in (i) and the local stability result in (ii) follow immediately from (van
den Driessche and Watmough 2002, Theorem 2). If Ry < 1, the global attractivity
of the disease free equilibrium can be established similarly as the one in Allen et al.
(2007, Lemma 2.3). O

The following result on the monotonicity of the spectral bound was proved in [11,
Theorem 3.3 and 4.4], which is related to Karlin’s theorem on the reduction principle
in evolution biology (Altenberg 2012; Altenberg et al. 2017; Karlin 1982).

Lemma 2.5 Suppose that (A1) holds. Let f; € R for j € Q. Then the following two
statements hold:

Q) If (f1,..., fn) is amultiple of (1,...,1), then s (dIL + diag(fj)) = f].
@Gi) If (f1,..., fn) is not a multiple of (1, ..., 1), then s (dIL + diag(fj)) is strictly
decreasing for d; € (0, 00).
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2332 S.Chenetal.

Moreover,
li diL +di ) = .
d,linos( (L +diag(f})) rjr_leaéf]
and

Jim s (dr L+ diag(f7) = > fia.
je

Now we prove the monotonicity of the basic reproduction number Ry with respect
to d;. Note that this result was also proved in Gao (2019), Gao and Dong (2020) with
an additional assumption 8;, y; > O forall j € Q. If y; = 0, we set B;/y; = o0
when B; > 0and 8;/y; = 0 when 8; = 0.

Theorem 2.6 Suppose that (Ag)—(A1) hold and y; (j € Q) are not all zero. Then
Ry is strictly decreasing for d;j € (0, 00) if (B1, B2, ..., Bn) is not a multiple of
V1, 725+ Vo)

Proof Clearly, Ry = Ry(d;) > 0 for d; € (0, 0c0). We claim that

min ﬂ—j < Rp < max ﬂ—] 2.3)

JEQ Y JEQ Yj

To see this, we first assume y; > Oforall j € Q. Then, we have F| < F < F,, where

F = <min '3—J> diag(y;), > = (max &> diag(y;).
JER Y JEQ Y

Therefore,
p(FiVH <p(FVTYH < p(Rvh, (2.4)

where F and V are defined by (2.2). Since

,....,DV=W1,...,v0), (I,...,)F = (min&> W1y eves Vi),
Jje

Vi

(1,....,1)F, = (mag &) W ey V), 2.5)

JeR yj

we have

o(F1 V™" = min ﬁ—f, p(F,V™1) = max ﬂ—f.
JEQ Y JEQ Y
This, together with (2.4), implies (2.3). It is not hard to check that (2.3) still holds
when y; > 0. Indeed, if y;, = B, = 0 for some jo € €, the arguments above still
hold as Bj,/vj, = 0.1f yj, = 0 and B, > 0 for some jy € 2, then Bj,/y;j, = 0o. We
can replace the jo-th entry of Fj by O to obtain the first inequality of (2.3), and the
second inequality of (2.3) is trivial.
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Let
po(dr) =

) 2.6
Ro(dr) (26)

and
Mdp,a) i =s(—V +aF)=s (d1L +aF — diag(yj)) .

The following discussion is divided into two cases.

Case 1 For any a € (0, 00), (aB1 — 1, - .., aB, — yy) is not a multiple of (1, ..., 1).
Then we see from Lemma 2.5 that for any fixed a > 0, A1(dy, a) is strictly decreasing
for d; € (0, 00). Let ¢ > 0 be the corresponding eigenvector of V ~! F with respect
to p(V~'F). Then

diL¢ — diag(y;)¢ + po(d)) Fé = 0.

Since L is irreducible, it follows that ¢ > 0 and A1 (d;, no(dy)) = 0 for any d; > O.
Let d} > d12. Then, by Lemma 2.5,

G ) 1 (2o 4
=1 (d,z, 1o (d})) A (d,‘,uo (d,‘)) =0, 2.7

which implies that

Mo (d}) > o (dzz) .

As a consequence, [o(dy) is strictly increasing for d; € (0, 00).

Case 2 There exists a > 0 such that (aB; — yi,...,aB, — yn) is a multiple of
(1,...,1). That is, there exists k € R such that

@pr —y1,...,aB, —yn) =k, ..., 1).

Clearly, a is unique and k # 01if (81, B2, - . ., Bn) is not a multiple of (y1, y2, ..., Vu).
If kK > 0, then B; > O forall j € Q and

. i 1
Rp > min & > —,
jeQ Vj a

which implies that uo(d;) < a for any d; > 0. It follows from Lemma 2.5 that
A1(dg, a) is strictly decreasing for d; € (0, 0o) for any fixed a < a. Similarly to Case
1,letd] > di,andthen i (d;, po (d}))is strictly decreasing for d; since j10(d}) < a.
Therefore, (2.7) holds, and wo(dy) is strictly increasing for d; € (0, 00).

Ifk <0, then y; > Oforall j € 2 and

Bi 1
Ry < max - < -,
JEQ Y; a
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which implies that po(d;) > a for any d; > 0. The rest of the proof is similar to the
case of k > 0. O

The limiting behaviors of Rp asd — 0 or d — oo can be established as follows.

Theorem 2.7 Suppose that (Ao)—(A1) hold and y; (j € Q) are not all zero. Then the
basic reproduction number Ry = R(d) satisfies the following:

oo
hm Ro(d)) = maxﬂ— and lim Ry(d;) = @
je 14 dj—o0 Z.ieﬂ ojy;

Remark 2.8 If L is symmetric, then ; = 1/n and thus

o B
lim Ro(d)) = @
dr—00 Z,/esz Vi

agreeing with the result for symmetric connectivity matrix in Allen et al. (2007, Lemma
3.4).

Proof Let 1uo(dy) and Aq(dy, a) be defined as in the proof of Theorem 2.6. Noticing
that wo(dy) is increasing in dy, let

= lim po(dy) and wp = lim po(dy),
d;—0 dj—o0
where 1 € [0, 00) and uy € (0, oo]. By Lemma 2.5, for any a > 0,

hm rdp,a) = max{a,B] yj} and lim Ai(d;,a) = Z(aﬂj—yj)otj. (2.8)
dj—o0 s

Since A1 (df, no (dy)) = 0, we have

max(uif; =y} =0 and ) (u2p; = yjej = 0. 2.9)
je

Indeed, to see the first equality, for given € > 0 there exists d; > 0such that U1 —€ <
no(dy) < 1 + € foralld; < d;. By Lemma 2.3, we have

A (g, 1 —€) < A1 (dr, po (d) =0 < A1 (dr, w1 +€) foralld; <dj.
By (2.8), we have

max{(u1 — €)B; — y;} <0 <max{(u1 +€)B; — y;}.
JEQ JEQ

Since € > 0 is arbitrary, we obtain the first equality. The other equality in (2.9) can be
proved similarly.
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It follows from (2.9) that

i o iBi
lim Ro(d;) > max '8—/ and lim Ro(d;) = M7
d;—0 je Vi dj—o0 ZA/EQ ojy;

where the equality holds for d; — 0 if there exists no j € €2 such that 8; = y; = 0.
Noticing (2.3), the proof is complete. O
3 The endemic equilibrium

In this section, we consider the endemic equilibrium of model (1.2)—(1.3). Let d =
dy/ds throughout this section. The equilibria of (1.2)—(1.3) satisfy

ds Y LS — biSil; +yil; =0, je,
= S;i+1;
BjSil; .
diy Ll + =yl =0, jeq. 3.1
por S;i+1;
> (Sj+1I)=N.
je

Firstly, we study the existence and uniqueness of the endemic equilibrium. Then,
we investigate the asymptotic profile of the endemic equilibrium as dg — 0 and/or
d; — 0, while the ratio d = dj/ds may approach 0, oo, or a positive constant.

3.1 The existence and uniqueness
In this section, we show that (1.2)—(1.3) has a unique endemic equilibrium if Ry > 1.
Motivated by Allen et al. (2007), we first introduce an equivalent problem of (3.1).

Lemma 3.1 Suppose that (Ag)—(A3) hold. Then (Sy, ..., Sy, 11, ..., I)T is a non-
negative solution of (3.1) if and only if

. . K v K v
(S],...,Sn,h,...,]n):<KS],...,KSn,ZI],...,ZI,,),
where (5‘1,...,5’,,,}1,...,in)satisﬁes
dss‘j-l-lvj:aj, j€Q,
.. dsBi1; , (3.2)
dIZij[k+[j Bj—vj— A, — =0, jeQ,
koo d](aj—lj)-i-dslj
and ON
K = ! (3.3)

Y ieaSi+1))
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2336 S.Chenetal.

Proof Clearly, from (3.1), we have Zkeﬂ Lji (dsSk +diIx) = 0 for any j € Q.
Then it follows from Lemma 2.1 that there exists « > 0 such that

dsSj+djlj =«kaj; forany je Q. 3.4

Let g i
;==L [, =" 3.5)

K K

Then dSS‘j + fj = «; for any j € Q. Plugging (3.4)—(3.5) into the second equation
of (3.1), we see that I ; satisfies the second equation of (3.2). Since

.

NZZ(S]'—I-]]'):KZ(S]'-{-E),
jeQ jeQ

(3.3) holds. This completes the proof. O

From Lemgna 3.1, to analyze the solutions of (3.2), we only need to consider the
equations of /; in (3.2). We consider an auxiliary problem of (3.2).

Lemma 3.2 Suppose that (Ag)—(A3) hold and Ry > 1. Then, for any d > 0, the
following equation

VR ,Bjij .
dy ijlk"'lj ,Bj—yj_f =0, je,
];2 dlaj —1;)+1; (3.6)
0< Ij =y, ] e Q,
admits exactly one non-trivial solution I= (i], R in)T, where 0 < fj < aj for

any j € Q. Moreover, Ivj is monotone increasing in d € (0, 0o) for any j € Q.

Proof Since Ry > 1, s (d;L + diag(Bj —y;)) > 0. Let

iy =1 (B —vi— L , (3.7)
d(Olj — Ij) + [j
and consider the following problem
dl; - S
— —q ZL,k1k+f,~(1j), je, t>0. (3.8)
di keQ

. . \T
Letg(l) = (g] ,...,gnI )) be the vector field corresponding to the right hand
side of (3.8), and let

v v w\T v
U=ti=(h.....I,) eR":0=1;<a; jeq).
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Then U is positive invariant with respect to (3.8), and for any Ieu,
Djg(I) = d; L + diag(f}(I)).

which is irreducible and quasi-positive. Let ¥; be the semiflow induced by (3.8). By
Smith and Waltman (1995, Theorem B.3), W; is strongly positive and monotone.
Forany A € (0, 1) and I; € (0, «;], we have

72 72
MBI MBI
d(O{j—)\.Ivj)—i—)Lij d(dj—ij)%—ij
dxajﬂ,-i]?(l -

= < = = — >0, 3.9
[daj — Alj) + Aljlld(e; — 1) + 1]

fiGI) —rfdy) =—

and the strict inequality holds for at least one j. This implies that g(Iv ) is strictly sub-
linear on U [see Zhao and Jing (1996) for the definition of strictly sublinear functions].
Noticing s (d1L +diag(B; — yj)) > 0, it follows from Zhao (2017, Theorem 2.3.4)
[or (Zhao and Jing 1996, Corollary 3.2)] that there exists a unique I > 0in U such
that every solution in U\{0} converges to I. Moreover, if I; = «; for some j € €,
then 13 < —y; < 0, which implies that ij € (0,a;) forany j € Q.

Suppose di > d». Let 10 = (f](i), e IV,Ei))T be the unique strongly positive
solution of (3.6) with d = d; fori = 1,2, and let I (1) = (11" (), ..., I\? (1))T be
the solution of (3.8) with d = d; fori = 1,2, and I'V(0) = I®(0) € U\{0}. Then
forany j € €,

[ 7(1)
dr o P
j M, 7 i
=di ) L + 1 (ﬂj—)/j— =1 _1>
di keQ ! dl(aj—l; ))+I;)
BiI"
>d ZL,/kl_k(l) + 1 (,Bj Vi~ '—Jl m— ) . (3.10)
keQ ! dr(aj — ]} )) 4 ]/( )

It follows from the comparison principle that I_/Q)(t) > 1 ;2) (t) for any t+ > 0 and
j € . Therefore, f}l) = lim;_ o f}l)(t) > i;z) = lim;— o I_;z)(t) forany j € Q. O

Lemma 3.2 was proved in Allen et al. (2007) when L is symmetric by virtue of the
upper and lower solution method. Here we prove it without assuming the symmetry
of L by the monotone dynamical system method.

By Lemmas 3.1-3.2, we can show that model (1.2)—(1.3) has a unique endemic
equilibrium if Ry > 1.
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2338 S.Chenetal.

Theorem 3.3 Suppose that (Ag)—(A3) hold and Ry > 1. Then (1.2)—(1.3) has exactly
two non-negative equilibria: the disease-free equilibrium and the endemic equilibrium

. .o« I
(StvevesSus Do ) = (181, kS0 S8 ) 3.11)
dy dy
where .
y oaj—1; diN
§; =5 k= o (3.12)
ds > jeaiS;+1))
and (i], e, in)T is the unique strongly positive solution of (3.6) withd = d;/ds.
Proof This result follows from Lemmas 3.1-3.2. m]

3.2 Asymptotic profile with respect to ds

In this subsection, we study the asymptotic profile of the endemic equilibrium of
(1.2)—(1.3) as ds — 0. We suppose that (Ag)—(A3) hold throughout this subsection.
Moreover, we observe that R is independent of dg. Therefore, we assume Ry > 1
throughout this subsection so that the endemic equilibrium exists for all dg > 0.

We first study the asymptotic profile of « and [, where « and [; are defined in
Theorem 3.3.

Lemma3.4 Ifds — O, thenk — Oand I; — O forany j € Q.

0]

o1 such that limy,; oo dém) = 0, we denote the cor-

Proof For any sequence {dgm)}
responding endemic equilibrium by (Sfm), LS Il(m), .., 1), Since I;m) €
(0, N1, there exists a subsequence {déml )}[’i] such that lim;_ o I](.m’ ) — I;-“ for some

I* €[0,N].Forj e H,

"y Lps™ < 1" (B; —v) < 0.
ke

Since S,Em’) € (0, N]forany ! > 1 and k € Q, we have

lim d{"" Y " Ljs{™ =0,

[—o0
keQ2

which implies /7 = 0. Therefore /; — O asds — Ofor j € H™.

Since dsS;j+djlj = kaj forany j € 2, and H™ # by (A3), we have k — 0 as
. N ; koj —dsS;
ds — 0. This in turn implies that for j € HT, I; = — — 0 as ds — 0.

1
O

Lemma3.5 For each j € %, ij is monotone decreasing in ds € (0,00) and
limdsﬁo Ivj = Ivj* € (0, Oéj].
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Proof We notice that (I ) is the positive solution of (3.6) withd = dj/ds. By Lemma
3.2, I is monotone mcreasmg in d, which implies that I is monotone decreasmg in

ds for each j € Q. Since 1., € (0, orj) from Lemma 3.1, we have limyg_.¢ 1‘, = 1] S
(0, Olj]. O

From Lemma 3.5, we denote
={j€§2:0<1v;-k<ocj}, and JT ={jeQ: I =aj}. (3.13)
Clearly Q = J~ U JT. We show that J~ is nonempty.

Lemma 3.6 The set J~ is nonempty, and H— C J~.

Proof Suppose that there exists j € €2 such that 8; — y; < 0 and i;‘ = a;. By (3.6),
we have

d; Zijik + ij(ﬂj -yj) =0.
ke

Taking ds — 0 on both sides, we have

> L +diLjjo; = aj(y; — Bj) > 0. (3.14)
k#j.keQ

Since

Z Ljrax +djLjja; =0,
ket j keQ

and Iv;.‘ € (0, oj] for any j € 2, we have

Z iji]: —i—d]ijOlj <0,
k). keQ

which contradicts with (3.14). Therefore, H— C J . O

By virtue of the above lemma, we can prove the following result about the asymp-
totic profile of S;. The proof is similar to Allen et al. (2007, Lemma 4.4), and we omit
it here.

Lemma 3.7 Let J~ be defined as above. Then

(i) limgs o al
D lmgg0—= ——————~
ds > kes— (@ = If) N
(ii) Forany j € @ limgg0S; = ——————~—(at; — I7).
Zke]* (ax — Ilj) !
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Similar to Allen et al. (2007, Lemma 4.5), we can prove that J* is nonempty.
Lemma 3.8 The set J ' is nonempty.

For some further analysis of J* with respect to d;, we define

—dLy, i,ke H-, j #k,
M=(Mjk)jkeH_, where M = J / i J
' —diLj;—Bj—vj), j.keH™, j=k,
(3.15)
Then M is an M-matrix, and M ! is positive. Therefore, the following system
—d; Y Ll —(Bj—yplj=di Y Ljox, jeH, (3.16)
keH— keH*
h i lution (1}) e - =( *) _
as a unique solution (/) jey o e
Define
/ aj, JE€ HT,
and denote 0
hid) =d Yy Ll + B —ypa;. jeH? (3.18)
ke

The following result describes the asymptotic profile of the endemic equilibrium
asds — 0.

Theorem 3.9 Suppose that (Ag)—(A3) holdand Ry > 1 Let(Sl, e, Sp. Iy oo )T
be the unique endemic equilibrium of (1.2)—(1.3) and I= (11 v, I)T be the unique
strongly positive solution of (3.6)withd = dj/ds. Then the following statements hold:

(1) limgg—0(St, ... Su, D1y ..o L) = (S), ..., 85, 0,...,0).
(i) Ifh;j(dr) > O forall j € HY, then J* = HT and J= = H™. Moreover,

o
—— N, for jeH™
st = Z (o — ) (3.19)
keH~
0, for je HT.

(i) Ifhj,(dr) < Oforsome jo € HY andhj(dy) # Oforany j € H, then H= G J~
and J* G H™. Moreover, there exists ji € H™ such that S}, > 0and S; > 0 for
any j € H™.

Proof (i) follows from Lemma 3.4. Without loss of generality, we assume H~ =
{1,2,...,p}and HY = {p + 1, ..., n} for some p > 0. Then
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and M = (Mjk)lgj,kgp is defined as in (3.15). Since
P n
- |:dIZij0!k+(,3j - y,»)a,} >d; Y Ljay for 1 <j<p,
k=1 k=p+1
p n
- {dl > Ljkai +(B) - y,-)ajf} =d; ), Ljoy for 1<j<p. (320
k=1 k=p+1
and M~}

is positive, we have a;f € [0,a;) forany I < j < p. Since L is irreducible,

it is not hard to show that oc;’f >0forany 1 < j < p.

Define
[dl > peo Lk + (B — v 1
. [dl S wea Lok + (B2 — ) 1o
G(ds, I) = B
[di Sheq Lutdic+ By = v
where I = (I,..., I)T. Let 10 = (i(o)

dsIy +dj(a) — il)]

—dspi 1}

dsh +d; (e — iz)] —dsp, 1}

dsly +dien = 1) | = dsp, T2

1), Then G(0, 1©) = 0. More-

over, 1f (3.6) has a solutlon I withd = d[/ds, then G(ds, I) = 0; if G(ds, I) =0

with T = (11, ..
withd = d; /ds
A direct computation shows that

I )T satisfying 0 < 1 < aj, then I is a nontrivial solution of 3.6)

;G (0.19) = (V) kee

where
dj(aj — )Lk,
di(aj —aj) (diLj; + Bj —v))),
Vik =10,

I1<j=<p k#],
1<j=<p, k=,
p+1=<j=<n, k#j,

—d; |:d1 ZijIVk(O) + (Bj —Vj)otj] prl=j=n k=j.

ke

Therefore, we have

;G (0.17) = (

Vi %
0V
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where V} is a p X p matrix
((m —af)(diLiy+ B1 —y1) di(ey — o)Ly -+ dr(a; —af)Lip
V| =
dl(ap - a;)Lpl dl(ap - a;;)LpZ s (Olp - O‘f;F;)(dILlp + ,Bp - Vp)

and V, = diag(—h;(d;)) is a diagonal matrix. It is not hard to check that V; is
non-singular. Indeed, V; has negative diagonal entries and nonnegative off-diagonal
entries. Moreover, the sum of the j-th row of Vj is

p P
dr Zijotj +(Bj —yja; —d; Zijaf —(Bj —vpe;
k=1 k=1

n
=d; ZijOlj + B —vpa; =B —vja; <0,
k=1

where we use (3.16) and Lemma 2.1. Therefore, V] is strictly diagonally dominant
and invertible (—V; is an M-matrix). Hence if hj(d;) # O for all j € HT, Vir)
is invertible. It follows from the implicit function theorem that there exist a constant
8 > 0, a neighborhood N (I'?) of I”) and a continuously differentiable function

I(ds) = (I, ds), ..., I, ds)T :10,8] = N(I)

sucfvl that for any dg € [0, ], the unique solution of G (ds, I ) = 0in the neighborhood
N ) is I (dg) and I (0) = 1.

Differentiating G (ds, I (ds)) = 0 with respect to dg at dg = 0, and using the
definition of IV;O), we have

di(aj —a?) [d; DLk + Bj — v (0)} —Bj@)*=0. 1<j<p.
ke

—d, {dl YLl +(B) - y,»)a,} 10
ke

:—d[(){jZijIVIEO)—{—)/jOt? >0, p—|—1 S] <n.
ke

If hj(d;) > Oforall j € HT, then f]f(O) < 0 for every j € H™. This implies that
fj (ds) ~ aj + ij/. (0)ds < aj for j € HT if dg > 0 is sufficiently small. Moreover
for j € H™, Ij(ds) ~ Of; < «a; for small dg > 0. Therefore, I is a nontrivial
solution of (3.6), and I=1 by the uniqueness of the positive solution of (3.6). Since
limgg—o I = I'®, we have J* = HT and J~ = H~. By Lemma 3.7, we have

ES
j N f . _
= or j e H,
J ds—0 ZkeH*(ak - Oé;:
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and §7 = dléjr_l)lon =0forje Ht.

On the other hand, if there exists jo € H * such that & jodr) < 0, then I ;0 0) >0,
which implies that 1, (ds) ~ aj, + Ij’.0 (0)ds > aji, so I is not a solution of (3.6) with
d = d;/ds. Therefore, limgg_.o I # I'", which yields H~ G J~ and J* G H™.
Then there exists j; € HT such that S;’f] > 0. This completes the proof. O

The function & j (d;) in Theorem 3.9 is critical in determining the asymptotic profile
of the endemic equilibrium as dg — 0. The next result explores further properties of
the function 4 ;(dy).

Proposition 3.10 Suppose that (Ag)—(A3) hold, and H= = {1,2,..., pland HT =
{p+1,...,n}forsome p > 0. Then forany p+1 < j < n, h;(dy) is either constant
or strictly decreasing in dj. Moreover,

hpy1(dp) (y1 — Bray (Bp+1 — Yp+1)p+1
lim : =—-Nm~! : + : ,
dj—o0 . : .
hn(dy) (Vp - ,3[7)06[, (Bn — Yn)otn
and
hp1(dr) (Bp+1 = Yp+1)p+1
lim . = : ,
d;—0 . .
hn(dy) (ﬁn - Vn)an

where M = (mij)isa px pmatrixwithm;; = —L;; for1 <i, j < pandl\? = ()

isan (n — p) x p matrix withiijj = LGy pyjforl <i <n—pand1 < j <p,ie

L= <_M *) .
N *
Proof First we claim that ¥ is strictly increasing in dj for each 1 < j < p. To see
this, we differentiate both sides of (3.16) with respect to d; to get

P p n
—d; Y L) =Bj—yp@) =Y Lpaf= > Ljox, 1<j<p. (321)
k=1 k=1 k=p+1

Combining (3.16) and (3.21), we have

P
—d; Y L)) — Bj —ypie)) =d; ' (yj — Bj)a >0, 1<j=<p.
k=1

Since M is an M-matrix and 8; < y; for1 < j < p, (aj)’ is strictly positive. This
proves the claim.
By the fact that oe;f € (0, aj) and the monotonicity of oz;’.‘ ford; € (0, 00), the limits

Texistfor 1 < j < p. It follows that limg, ¢ af =0.

limg, 0 oz;'-‘ and limg, o0 o
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Dividing both sides of (3.16) by d; and taking d;y — oo, we have

p n
=Y Lj lim af= Y Lpo, 1<j<p.
k=1

dj—o0
k=p+1
Therefore,
lim of =«a;, 1<j<p. (3.22)
d]—)OO J

Next we claim that a;f + dI(a;f)’ <ajforall1 < j < pandd; > 0. To see this,
by (3.21), we have

P n
=Y Ll +die)) < > Ljgon, 1<j<p.
k=1 k=p+1
By the definition of «;,
P n
— ZijOék = Z Ljag, 1<j=<p. (3.23)
k=1 k=p+1
Then, it follows that
p
=D L +di(e)) — o) <0.
k=1

Then the claim follows from the fact that M is an M-matrix.
Differentiating & j (d;) with respect to dy, we find

P n
Wid) =Y Liaf +di@))+ > Ljox, p+1<j=<n.
k=1 k=p+1
It follows from (3.23) that
p
Wid) =Y Lilaf +di(ef) —ax). p+1<j<n.
k=1

Since a;f + d,(oe;f)’ <ajforall 1 < j < p, either h/j(dI) <Oor h/j(dl) = 0 for all
di>0andp+1<j §n(h’j(d1) =O0foralld; >0if Ljy =0foralll <k < p;
otherwise h;(d;) < O for all d; > 0). Therefore, h(d;) is either strictly decreasing
or constant foralld; > Oand p+1 < j <n.
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Finally, we compute the limit of /;(d;). By (3.16) and Lo = 0, we have

p
—d; Y Ljnleg — o) — (B — yp)aj —at) = —(Bj —vpaj, 1<j<p.
k=1

Letu; =dj(ej —aj), 1 < j < p. Then,

P
Bj —vj) .
—Zijuk— ‘/d—ljuj =—Bj—vpaj, 1=j=p.
k=1

Taking d; — oo, we find

P
=Y Ljx lim we=—(B;—ypa;, 1<j<p
k—1 d[—)OO

So, we have
75 1 — B
. us - | =B
lim =M .
dj—o0 : :
up (yp - :Bp)ap
Since

n 14
hi(d)) =d; Yy Ljox +dr Y Lixleg — o) + (Bj — vj)e
k=1 k=1

P
==Y L+ Bj—vpej, p+1<j=<n,

k=1
we have

hp1(dr) 75 (Bp+1 — Vp+1)pt1
, hpi2(dy) _ up (Bp+2 — Yp+2)op42

lim . = —N lim . .

dj—o0 : dj—0o0 :

hn(dy) Up (Bn — vn)otn
(1 — Bai (Bp+1 — Vp+1)pt1

_ wm 2 —'ﬁz)az N (ﬁp+2_lfp+2)ap+2

(vp — Bpap (Bn — vu)o

The limit of 4 (d;) as d; — 0 follows from (3.22) and the definition of & (d;). O
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Now we have the following results summarizing the dynamics of (1.2)—(1.3) when
the diffusion rate of the infectious population d; varies and the diffusion rate of the
susceptible population dg tends to 0.

Corollary 3.11 Suppose that (Ag)—(Az) hold. Let (S}, ---, S;,0, -+, O be the lim-
iting disease-free equilibrium as ds — 0 defined as in Theorem 3.9. Then there exists
dy € (0, 00] and d;* € (0, d}] such that

1. when 0 < d; < d;‘, Ro(d;) > 1 and there exists a unique endemic equilibrium
(St, -+, S, I, -+, I)T of (1.2)~(1.3); and when d; > d, Ro(d;) < 1 and the
disease-free equilibrium is globally asymptotically stable.

2. When0 <dy <dy*, Ht =J T and H- = J~; and ST > 0for j e H- = J~,
S;f =0for j € H™ = J* as defined in (3.19).

3. When di* < d; < d* and except a finite number of d;’s, Ht = J* U J,
H™ = J,, where J~ = J U J, suchthat J| # 0, and S}‘f > 0forjelJ,
St =0forje JT.

Proof From the condition (A3) and Theorem 2.7, Ry > 1 for small d; > 0. From the
monotonicity of Ry shown in Theorem 2.6, either (i) there exists a unique d; > 0
such that Ro(d;) = 1 and when Ry > 1 when d; > d¥, or (ii) Rg > 1 foralld; > 0.
We denote d;‘ = o0 in the case (ii). The uniqueness of endemic equilibrium is shown
in Theorem 3.3, and the global stability of the disease-free equilibrium when Ry < 1
can be established similarly as in Allen et al. (2007, Lemma 2.3).

For0 <d; <dj, hj(d;) > Oforall j € H™ and small d; > 0 from Proposition
3.10. Then from part (ii) of Theorem 3.9, ford; > Osmall, H* = JTand H~ = J~;
and §% > O0for je H- =J~,S7 =0forj € H™T = J7 as defined in (3.19). From
the monotonicity of 4 (d;) shown in Proposition 3.10, either (i) there exists a unique
d;* € (0,dy) suchthathj(d;) > Oforall j € H7T andd € (0, di*)yand h o (df*) =0
forsome jo € Ht,or(ii) hj(d;) > Oforall j € HT andd € (0, d}). Weletd;* = d
in case (ii). In case (i), the monotonicity of & j,(d;) implies that 4 j,(d;) < O for all
d; € (d*,dy), and except a finite number of d;’s, hj(d;) # O for d; € (dy*, d}).
Thus results in part (iii) of Theorem 3.9 hold for all d; € (d}*, d}) except a finite
number of d;’s. |

We show that the condition on the function 4 (d;) is comparable to the conditions
on d; given in Allen et al. (2007).

Proposition 3.12 Suppose that (Ag)—(Az) hold and L is symmetric. Define

Ly= Y Ly Li= Y Ly (3.24)
jeH—, j#k jeH*, j#k
If
1 Ly Lf

— > max + X s
di  keH* B — vk keH- Br — Yk

then hj(dy) > O forall j € HY.

(3.25)
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Proof Assume on the contrary that 2 (d;) < 0 forsome j € H'. Leto), = min{e;
k € H™}. Since L is symmetric, ; = 1/n for all j € Q. Then, we have

1
hild) = o+ — i P — i . .
jld =di Y7 Ligerf+— 1 di Y0 Lix+Bj—vyj| <0 (3.26)
keH— keHt
Since j € HT and Lj; = —L;‘ — LJT, we have ZkeH+ Ljx = —L;. Therefore,
by (3.26) and the definition of ¢, we have dIL;ot,’; + rll [—dIL]T + B8 — yj] <0,

which implies
vj—Bj+diL;
< (3.27)
d;L”
J
Bym € H™ and (3.16), we have

dy Z Lmkot}: +d; Z Lok + (Bm — Vm)Ol;Z =0,
keH— keHt

which impiles

L+
di Y Lk(ef —ap) —diLha, + di=" + (B = ym)er,, = 0.
keH~ k#m

+
By the definition of o, we have —d; L} o +d Ln—’” + (B — Ym)e, < 0. Therefore,

+
iy, + < no.
—Bm + Ym +drLy,
It then follows from (3.27) that
diL} _ vj —Bj+diL;
—Bm +¥m +diLi ~ diL; ’

which can be simplified as

m — B)(vj — Bj) + (vj — BAI Ly + (vm — Bm)diL; = 0.
Dividing both sides by d; (v, — Bm)(y; — B;) (which is negative), we obtain

1 L+ L, Lt L
— < m__ 4 < max + max

di =~ Bu—vm Bj—vyj ~ jeH Bj—vyj jeH+ Bj—V;

which is a contradiction. Therefore, 7 ;(d;) > Oforall j € H +, O
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Remark 3.13 1. By Theorem 3.9, the unique endemic equilibrium converges to a
limiting disease-free equilibrium as ds — 0. Moreover, the limiting disease-free
equilibrium has a positive number of susceptible individuals on each low-risk
patch. This is in agreement of the results in Allen et al. (2007) which assumes L
is symmetric.

2. In Allen et al. (2007), the distribution of susceptible individuals as dg — 0 on
high-risk patches is left as an open problem. In Theorem 3.9, we show that the
distribution of susceptible individuals on high-risk patches depends on the function
hj(dp): S;’f = 0 on each high-risk patch if z;(d;) > 0 for all j. In Proposition
3.10, we have shown that /;(d;) is monotone in d;. As a consequence, there
exists d;* > 0 such that §% = 0 on each high-risk patch when 0 < d; < dj*. This
partially solves an open problem in Allen et al. (2007).

3. The sharp threshold diffusion rate d;* is characterized by the smallest zero of
function £ (d) on any high-risk patch j. When L is symmetric, a lower bound of
dy* is shown in Proposition 3.12 and also Allen et al. (2007, Theorem 2):

_ -1

ok Ly LZ— e

d;” > | max + max =d7. (3.28)
keH* B — vk keH™ Bt — Yk

It is an interesting question to have a more explicit expression or estimate of d;*

when L is not symmetric.

3.3 Asymptotic profile with respect to d; and ds

We suppose that (Ag)—(A3) hold throughout this subsection, and we consider the
asymptotic profile of the endemic equilibrium of (1.2)—(1.3) as df — 0. The case
that L is symmetric was studied in Li and Peng (2019) recently, and we consider
the asymmetric case here. For simplicity, we assume y; > 0 for any j € Q. Since
limg, o Ry = Teaé Bj/vj > 1, wehave Ry > 1 (s (d/L + diag(B; — y;)) > 0) and

the existence and uniqueness of the endemic equilibrium for sufficiently small d;.
Firstly, we consider the asymptotic profile of positive solution of (3.6) as d;j — O.

The proof is similar to that of Theorem 3.9, and we put it in the Appendix. We denote

(x)+ =0ifx <0and (x);+ =xifx > 0.

Lemma 3.14 Suppose that (Aog)—(A3z) hold and y; > O for all j € Q. Let I =

(I, ..., I)T bethe unique strongly positive solution of (3.6). Then the following two
statements hold:

(i) Foranyd > 0, butd; — 0,
i daj (ﬁ/ - Vj)+
T dBi = v+

(ii) As (dy,d) — (0, 00) (or equivalently, (dy, 1/d) — (0,0)),

jeq. (3.29)

fj—>0f0rj€H_ and ij—>ajf0rj€H+.
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We also have the following result on an auxiliary problem. The proof is similar to
that of Lemma 3.2, and we also put it in the Appendix. We note that U = I /d, where
I is defined in Lemma 3.2.

Lemma 3.15 Suppose that (Aog)—(A3) hold and Ry > 1. Then for any d € [0, 1), the
following equation

B;jU; )
d L»kUk+U-(ﬁ-—y»—— —0, jee,
2L I\PTT T (L= dyU; (3.30)

ke
Uj=0 J €,
has a unique strongly positive solutionU = (Uy, ..., U,,)T. Moreover, U j is monotone

decreasing ind € [0, 1), and

lim Uj Y9 (ﬂj - )/j)+

= Ve icq 331
d—0 g+ (1 —dy; "’ (3-31)

By virtue of Lemmas 3.14 and 3.15, we have the following results.

Theorem 3.16 Suppose that (Ao)—(A3) hold and y; > O for all j € Q. Let
Sty Sy, Iy, L)T be the unique endemic equilibrium of (1.2)—(1.3). Let
di > 0andd :=d;/ds — do € [0, o). Then the following statements hold:

(1) Ifdo = O, then

N (Bi—vi),
Si = Nai(ﬂ ooy yfv(ﬂ ooy e
k\Pk—Vk k\Pk—Vk
D ke [O‘k + T+] D ke [“k + TJr]
(3.32)
@ii) If dp € (0, 00), then
iy 0 (B = vi),
s Tdo(Bi — v+ + v e q
o e ok + (1 — do) el ] U
ke [ %k 0 dBe—vi)++re
N 0l/(IBJ — y])+
ok (Be—vi) ’ ’ '
2 keq [“k +d - dO)m]
(iii) If dy = oo, then
Naj c H-
—1 J 9
S; — { Zken- % I; =0, jeq. (3.34)
0, jeHt,
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Proof Let
U=,....0)T =1/d=/d,... TI,/d7,

where 1 is the unique strongly positive solution of (3.6) with d = d;/ds. Then U is
the unique strongly positive solution of (3.30). It follows from Theorem 3.3 that

dN(aj — ij) NI;
Sj= —, Ij = — (3.35)
D ke [d(ak -l + Ik] 2 ke [d(ak — I+ Ik]
or equivalently,
N(a; —dU; NU;
S; (@; —dU;) I ] (3.36)

- ZkeQ [(“k - dlv]k) + &k] ST ZkeQ I:(Olk - dlv]k) + lv]k] .

(i) Let U = (U l(l), e, (},E’)) be the unique strongly positive solution of (3.30)
withd = d; fori = 1,2, where di = 0 and d» = 1/2. Then by Lemma 3.15, for
d € (0, 1/2) we have

U](.Z) <U; < V;”. (3.37)

Therefore, if j € H™, then

lim U; < lim 0P =o0.
(d1.d)—(0,0) d—0 4

Next we consider the case j € H™. Notice that {(} j} is bounded when d; and d are
small. Then for any sequences d;m) — 0 and d" — 0, there are subsequences
{d;m’)}fil and {ci("”)}loil such that the corresponding solution UJ(.I) of (3.30) with
di = d"™ and d = d™ satisfies lim;_ o 17;” = U}. It follows from (3.37) that
Ut = limg, o U> > 0. Substituting U; = U, d = d" and d; = d}""" into
(3.30) and taking ! — oo on both sides, we see that

. BiU?
U; (ﬂj_yj——jv* =0,
oj + Uj
which implies that

lim U= M jeq. (3.38)
(d;.d)—(0,0) 7 Yj

This, combined with (3.36), implies (3.32).
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(i) Let 10 = (I, ..., I[{")T be the unique strongly positive solution of (3.2)
with d = d; fori = 1, 2, where d| = dy/2 and dp = 2dy. We see from Lemma 3.2
that, for d € [dy/2, 2dp], Ij(.l) <I;< 1;2) forany i € Q. Therefore, if j € H™, then

I; < lim I® =o.

lim
(dg.d)—(0.do) di—0 /

Next we consider the case j € HT. Note that (I j}is bounded. Then for any sequences
d;m) — 0 and d" — dy, there are subsequences {d;m’)}j’il and {d(’"’)}fi1 such
that the corresponding solution Ivjq) of (3.6) withd; = d;m’ ) and d = d™ satisfies
limy_ oo IV]@ = IV]* It follows from (3.29) that i;‘ > limy, 0 i}l) > (. Substituting

I; = Iv;l), d=d"™ andd; = d;m’) into (3.6) and taking [ — oo on both sides, we
see that

y BiI*

It ,3'—)/'—+ =0,

’(" T dote — I+ 1
which implies that

.. doaj (B —vi),

lim P = , jEeQ. (3.39)
drd)—©,000 7 do(Bj —Vvj)+ + V)
This, combined with (3.35), implies (3.33).
(iii) By Lemma 3.14, we have

. 0 e H™
im =] ST (3.40)

(dr.d)—(0,00) aj, jeHT.
This, together with (3.35), implies (3.34). O

Remark 3.17 Above we consider the asymptotic profile of the endemic equilibrium
(St, -, Sy, I, -, I,)T asd; — 0.If dy is fixed or tends to a positive number, then
the limits of S; and I; satisfy (3.32). If dy also tends to zero, we have the following
results:

1. if d; and dg are infinitesimals of the same order, then the limits of S; and /; satisfy
(3.33).

2. if dg is an infinitesimal of higher order than d;, then the limits of S; and /; satisfy
(3.34).

4 An example

In this section, we illustrate the results in Sections 2-3 to a heterogeneous landscape
of a star graph; see Fig. 1. Specifically, the graph consists of a hub, labelled as 1,
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Fig.1 The star migration graph

and n — 1 leaves, labelled as 2, 3, ..., n, respectively; the migration rate from the
hub to each leaf i (2 < i < n) is a;—1 while from leaf i to the hub is b;_1. This
kind of heterogeneous landscapes have previously been applied to study the disease
outbreak around a metropolitan area or water source, such as measles (Bjgrnstad et al.
2002), leptospirosis (Saldafia and Barradas 2018), and cholera (Shuai and Van den
Driessche 2015). Also the hub and leaves can be explained as a central deme and the
corresponding colonies, respectively; see, for example Karlin (1982).
The connectivity matrix L corresponding to the star graph can be rewritten as:

n—1
— Z a; b1 by b3 bn—1
i=1
ai -by 0 o - 0
L= a 0 —-b 0 - 0o |- 4.1
as 0 0 —=b3 .- 0
an—1 0 0 0 te —bn—l
Denote r; = a;/b; fori = 1,...,n — 1. A direct computation of the positive eigen-

vector of L gives

1 T Tn—1
o = ) 9 e ey )
14+s 1+s 1+s

where s = Z:’l:_]l r;. In order to investigate the joint effect of asymmetric connectivity
and high-/low-risk patches, we assume that the hub (patch 1) and one leaf (say, patch
2) are of high-risk, and all other leafs are of low-risk. That is,

(A) H* ={1,2)and H~ = {3,...,n).
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For this situation, straightforward computations yield

o aj5 J = 1’ 27
];0) = diaj_1o

dibj—1+vy; —B;’

j=3,...,n,
and

n—1 n
dioyag—1bg—1
hi(d;) =d — ) ax)ay +biax + +ai(B1 —y1),
! ! kz:; kz:; drbg—1+ v — Bk Pr=m

ha(dr) =a2(B2 — y2) > 0.

It follows from Proposition 3.10 that £ (dy) is strictly decreasing and satisfies

n
lim 1 (d) = e1(Bi—y1) >0, and  lim hi(d)) = ar(Bi—y)+)_ ex(Be—wo)-
d[—)O d]—)OO k=3
(4.2)

By Lemma 2.5, we obtain

Jim s (di L+ diag(B; = v) = max (B =) > 0,

Jim s (d; L +diag(Bj —v)) = Y e (B~ vi).
— k=1

Since s (dIL +diag(B; — yj)) has the same sign as Ry — 1 and is strictly decreasing
for dj, we have the following result.

Proposition 4.1 Suppose ai, by > 0 fork = 1,...,n — 1 and (A) holds. Then the
following statements hold:

(i) IfZZ:l ok (B — k) > 0O, then Ry > 1 for any d; > 0. Moreover,

n
(1) if e (B —V1)+Zk=3 (B —yk) = 0, then J* = H and J~ = H™
forany d; > 0;

n
(i) ifa1(B1 — y1) + Zk_3 ax(Br — vk) < O, then there exists a unique d;*

such that hi(d;) =0, and J* = HT and J~ = H™ for 0 < d; < d**, and
Jt={lYand J~- =1{2,...,n},or J* ={2}and J~ = (1,3, ...,n} for
d1>d;6*.

.. n n

@Iy, (B —y) <O, thenen(Br—y) + ), (B~ ) <0, and
there exists df > 0 such that Ry > 1 for dj < df and Ry < 1 for d; > dj.
Moreover,

(i) ifd}* = dy, where d* is defined as in (ip), then J© = H" and J~ = H~
ford; < dj;
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(i) ifd7* < dj, then J* = HY and J~ = H™ ford; < dj*; and J* = {1}
andJ~ =1{2,...,nYorJT ={2YandJ~ ={1,3, ..., n}ford; € (>, dy).

Remark 4.2 From Proposition 4.1, we see that case (i1) could hold when 81 — y; is
sufficiently large; case (i2) could hold when 81 — y is sufficiently small but 8> — y»
is sufficiently large; and if both 81 — y; and B, — y» are sufficiently small, case (ii})
or (iip) could occur.

The asymptotic profile of the endemic equilibrium as d; — 0 can also be obtained
from Theorem 3.16. To further illustrate our results, we compare some numerical
examples of star graph with n = 4. Let

61 1 1 31 1 1 31 2 3
1 —10 0 1 —10 0 1 —10 0
La=lo o010l 8=l1 010 %=1 0-20
30 0 —1 10 0 -1 1 0 0 -3

Wechoose B1 = 3,80 =4,83=1,4=1,y1 =1, =1,y3 = 2,y4 = 3 such
that H* = {1,2} and H~ = {3,4}, and N = 100. The principal eigenvectors of
L,(p=AB,Clareas = (1/7,1/7,2/7,3/7), ap = (1/4,1/4,1/4,1/4), and
ac = (6/17,6/17,3/17,2/17) respectively. For the Laplacian matrices L, defined
above, Theorem 2.6 states that R is strictly deceasing in d; with

) B
lim R0=max{&:jeﬂ}:4 and lim Ry = —=—— = Rop,
d;—0 Vi dj—>0o0 ZjeQ ajyj

where Ry, (p = A, B, C)are Roa = 4/5, Rop = 9/7 and Roc = 47/24 respectively.
In Fig. 2, we plot Ry as a function of d; for the three cases, which confirms Theorem
2.6. Here, only for L4, Ry — 1 changes sign at dj ~ 8.478.

The sign of the function & (d;) at the high-risk patches defined in (3.18) plays an
important role in the asymptotic profile of the endemic equilibrium. For the above
example, the graphs of function 4 (d;) for j = 1, 2 are plotted in Fig. 2 for L4, Lp
and L¢. By Proposition 3.10, & j(d;) is constant or strictly decreasing in d;. For L4,
from (4.2), we have

2 6
lim hi(d;) = = d Ilim hi(d;) =—=,
d,lglo 1(dn) 7 an d1£noo 1(dn) 7

ho(dy) = 3/7 for all d; > 0, and h1(0.549) ~ 0. Since Zjesz aj(Bj —vyj) =
—3/7 < 0 and Proposition 4.1(ii), the profile of the endemic equilibrium changes at
di* ~ 0.549. Similarly for L, dj* ~ 3.21 but for L¢, hi(d;) > 0 for all d; > 0.

In Fig. 3, we plot the S component of the endemic equilibrium with L = L4 as
ds — 0, where S;.‘(dl) = limy; 0 S;(ds, dy) for j = {1,2,3,4}. We see that a
transition occurs at d = d;* ~ 0.549: JT ={1,2}and J~ = (3,4} ford; € (0, dr®),
and J* = {2} and J~ = {1, 3,4} ford; € (d}*,dy). A similar transition also occurs
for L = Lp with d;* ~ 3.21, but JT ={1,2} foralld; > O for L.
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The above numerical example verifies all theoretical results proved in previous
sections. It also partially shows the effect of dispersal patterns between patches on
the epidemic dynamics. Here Lp describes a symmetric dispersal between the hub
and leafs in which outflux equals to influx, L4 depicts a pattern that the outflux
(1, 2, 3) from the hub is larger than the influx (1, 1, 1), and L¢ describes the opposite
situation that the outflux (1, 1, 1) from the hub is smaller than the influx (1, 2, 3).
From Fig.4, we find that in addition to the declining of Ry in dj, it also holds that
Ro(Lc) > Ro(Lp) > Ro(L4) for the same d; > 0. This can be interpreted as that
the disease transmission rate is higher when people from satellite cities (leafs) come
to work in the city center (hub) during morning rush hours than the one when people
return to their suburb home after work in afternoon/evening rush hours. Such situation
has also been studied in Bjgrnstad et al. (2002) for measles transmission but with a
totally different approach. Detailed studies on these would involve non-autonomous
differential equations, which could be a research project in the future.

Acknowledgements The authors thank the anonymous reviewers for their thoughtful and constructive
comments, and Daozhou Gao for sharing the preprint Gao and Dong (2020) while completing this paper
and Chen et al. (Submitted).

5 Appendix

Proof of Lemma 3.14: (i) Define

- - Bl
dr Y reo Lui + L [ B1 —y1 — ——————
ke dla; — L)+ 1§
S 2D
. dr Y reo Lok + L (B2 — v2 — %
F(d;. D)= dlex=D)+hL) | (51
. Buln
dy Lyl + 1 — Y-
ZkeQ n n (ﬁn Vn Ay — 1) +1,
v . . T
and denote IV = (11(1), o 1151)> , where
y de; (B; — v
Y= d ( d y])+ for j € Q.
P dBi vty
Clearly, F(0, V) = 0, and D; F(0, [V) = diag(aj.”), where
Bji—vj<0, JEH,
y(1)
M _ da;B;1!
5 =1- Al <0, jeH* (5-2)

. . 2
[ (= 1)+ 1]
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Therefore, D iF (0, I (1)) is invertible. It follows from the implicit function theorem
that there exist d; > 0 and a continuously differentiable mapping

dr € [0,di1 v+ Id;) = (I1(d)), ..., [,d))T e R"

such that F(d;, I(d;)) = 0 and 1(0) = I'D.
Taking the derivative of F (dy, I (d;)) = 0 with respect to dy at d; = 0, we have

HO) 11(0)
o, | BO Lo
—diag(§ i ) ] =L
17(0) 1,(0)
Then - .
I{(0) 1(0)
1,0) o | 2O
= —diag(1/8; L |
I(0) 1,(0)

Since 1(0) = ID > 0, we see that f]’- (0) > 0 for j € H~, which implies that I=1,
and consequently, (3.29) holds.
(ii) Let n = 1/d. Define
[dl Y keq Lule+ B —yDh | |an — I + ﬂil] — ﬁﬁlilz

. [dl Siea Lokl + (Bo — ) o | |oa — I + T)fz] — o1}
H(d;,n,I)= - ,

[dl ZkeQ Lnkik + Bn — Vn)in o — in + ﬁin] - 77,371[3

and denote I® = (il(z), L IP)T  where

i(»2)= 0, jeH™,
4 oj, j€H+.

Clearly, H (0,0, 1®) = 0,and D; H(0,0, ?) = diag(aj.z)), where

. PR . ; H—
s@ _ 1% Bj—vp, JeH, 53
! {—aj(ﬂj—yj), jeH™ . 6
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Therefore, D iH (0,0, I (2)) is invertible. It follows from the implicit function theorem
that there exist d, n2 > 0 and a continuously differentiable mapping

dr, ) €10, da] x [0, m2] = T(dr,m) = (I1(d1, ), ..., L(dr, )T € R
such that H(d;, n, I(d;,n)) = 0and 1(0,0) = I®.

Taking the derivative of H (dy, 1, i(d,, n)) = 0 with respect to (d;, n) at (dy, n) =
(0, 0), we have

2 y(2)
ol; Ll
35 0,0y = Zea bl oy,
ady Yi —Bj
a1;
—(0,0) =0, j=HT.
3d,( ) J
Similarly, we have
al; B
—(0,0) =0, Jj=H",
817 )
ol; Vi
“L0,00=-—"L <0, j=H"
an (Bj —vjaj
Therefore, I = 1. This completes the proof of (ii). |

Proof of Lemma 3.15: We only need to consider the existence and uniqueness of the
solution for the case d = 0, and the other cases can be proved similar to Lemma 3.2.
Consider the following problem

du;(t)
dt

_ U
=d,ZijUk+Uj<ﬂj—yj—’3/—-’_),jesz. (5.4

ey Olj-i-Uj

Let g(U) = (g1 @), ..., 8n (U'))T be the vector field corresponding to the right hand
side of (5.4), and let ¥, be the semiflow induced by (5.4). As in the proof of Lemma 3.2,
R’ is positive invariant with respect to (5.4), ¥, is strongly positive and monotone, and
g(U) is strongly sublinear on R’ .Since Ry > 1, wehaves (d,L +diag(B; — yj)) >
0. Therefore, by Zhao and Jing (1996, Corollary 3.2), we have either

(1) for any initial Valu_e U € R% \{0}, the corresponding solution U(t) of (5.4)
satisfies lim; .~ |U (¢)| = o0,

or alternatively,

(i1) theEe exists a unique U > 0 such that every solution of (5.4) in R”} \ {0} converges
toU.

A direct computation implies that, for sufficiently large M,

V:{U:(U],...,Un)TERn:OijfMajv JEQ}
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is positive invariant with respect to (5.4). Therefore, (i) does not hold and (ii) must
hold. The monotonicity of U and (3.31) can be proved similarly as in the proof of
Lemmas 3.2 and 3.14, respectively. This completes the proof. O
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