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Abstract—Brain-inspired Hyperdimensional (HD) computing
models cognition by exploiting properties of high dimensional
statistics— high-dimensional vectors, instead of working with
numeric values used in contemporary processors. A fundamental
weakness of existing HD computing algorithms is that they
require to use floating point models in order to provide ac-
ceptable accuracy on realistic classification problems. However,
working with floating point values significantly increases the HD
computation cost. To address this issue, we proposed QuantHD,
a novel framework for quantization of HD computing model
during training. QuantHD enables HD computing to work with
a low-cost quantized model (binary or ternary model) while
providing a similar accuracy as the floating point model. We
accordingly propose an FPGA implementation which accelerates
HD computing in both training and inference phases. We evaluate
QuantHD accuracy and efficiency on various real-world applica-
tions, and observe that QuantHD can achieve on average 17.2%
accuracy improvement as compared to the existing binarized
HD computing algorithms which provide a similar computation
cost. In terms of efficiency, QuantHD FPGA implementation can
achieve on average 42.3x and 4.7x (34.1x and 4.1x) energy
efficiency improvement and speedup during inference (training)
as compared to the state-of-the-art HD computing algorithms.

Index Terms—Brain-inspired computing, Hyperdimensional
computing, Energy-efficiency, FPGA Acceleration

I. INTRODUCTION

With the emergence of the Internet of Things (IoT), tech-
nological advances are continually creating more data than
what we can handle [1]. Today, many IoT applications analyze
data by running machine learning algorithms in data centers.
However, it is well-known that existing learning algorithms
may be overcomplex for many real-world applications [2].
Simpler algorithms can also deliver the same task with lower
computational complexity and hardware/energy requirements.
For instance, Deep Neural Networks (DNNs) are used for
complicated classification problems such as image classifica-
tion tasks, e.g., ImageNet dataset [3]. However, the computa-
tional complexity and memory requirements of DNNs makes
them inefficient for a broad variety of real-life embedded
applications. Therefore, it is crucial to design a light-weight
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learning method since in IoT systems sending all the data to
the cloud for processing is not scalable, cannot guarantee real-
time response [4].

Brain-inspired Hyperdimensional (HD) computing [5], [6]
has been proposed as a light-weight learning methodology.
HD computing is developed based on the fact that brains
compute with patterns of neural activity which are not readily
associated with numbers [5]. HD computing builds upon a
simple set of operations with random HD vectors, is robust in
the presence of hardware failures. It also offers an alternative
computational paradigm that can be applied to learning prob-
lems [5], [6]. The first step in HD computing is to encode
all data points to a high-dimensional space. During training,
HD computing linearly combines the encoded hypervectors in
order to create a hypervector representing each class. During
inference, the classification task is performed by checking
the similarity of an encoded query hypervector with all class
hypervectors and returning the class with the highest similarity
score. In this work, we argue that in most practical appli-
cations, HD computing algorithms require to be trained and
tested using floating point values. HD computing with binary
model provides significant low classification accuracy which
often is not acceptable by users. On the other hand, working
with floating point values increases the HD computation cost
and hinders use of HD as a light-weight classifier.

In this work, we observe that the low classification accuracy
of HD computing using binarized/quantized model is due to
the weakness of the existing training procedure [7]. In this
paper, we proposed QuantHD, a novel quantization framework
which enables HD computing to be trained and tested on a
low-cost binary/ternary model with high classification accu-
racy. The main contributions of the paper are listed below:

o To the best of our knowledge, this is the first HD
computing framework which enables model quantization
with minimal impact on the classification accuracy. We
develop an iterative training approach which adapts the
HD model to work with the quantized values.

o QuantHD significantly accelerates HD computing during
training and inference by removing the majority of non-
binary computations from the similarity check. Unlike the
existing HD computing algorithms that require the use of
floating point model, QuantHD performs similarity check
with the quantized (binary/ternary) model. The quantized
model simplifies the costly cosine similarity to more
hardware-friendly metrics such as Hamming distance.

o We accordingly proposed a pipelined FPGA implemen-
tation which accelerates both training and inference by
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reducing the cost of the associative search. We evaluate
QuantHD on several practical classification problems,
including face and activity recognition. OQur evaluations
show that QuantHD can improve the HD classification
accuracy by 17.2% as compared to the existing HD
computing algorithms [8], [9]. In terms of efficiency,
QuantHD FPGA implementation can achieve on average
34.1x and 4.1x (42.3x and 4.7x) energy efficiency
improvement and speedup during training (inference) as
compared to the state-of-the-art HD computing algo-
rithms [9], [8]. Comparing QuantHD with multi-layer
perceptron and binarized neural network classifiers, we
observe that QuantHD can provide 8.2x and 13.4x faster
computing in training and testing respectively, while
providing similar classification accuracy.

II. HYPERDIMENSIONAL COMPUTING

Hyperdimensional computing can be applied to different
learning problems. Here we focus on classification, one of the
most popular supervised learning algorithms. Figure 1a shows
an overview of HD computing for classification. The first step
of HD classification is to use the encoding module to map
data points to a high-dimensional space. The training module
combines the encoded hypervectors in order to create a model
representing each class. The information in each class stored as
a pattern of values distributed in D = 10,000 dimensions. The
class hypervectors represents a trained model and are placed in
the associative memory. During inference, the same encoding
module maps the input data to high-dimensional space. The
reasoning task finds a class hypervector which has the most
similarity to a query hypervector. In the following, we explain
the details of encoding, training, and similarity check used for
inference.

A. Encoding

The first step of HD is to encode each data point into a
hypervector. Original data point is assumed to have n features
ie., f={(f1,...fu). Our goal is to encode each feature into
a hypervector that has D dimensions, e.g., D = 10,000. Each
feature vector in original domain stores the feature values and
their corresponding positions.

Encoding alphabets: To differentiate the position of each
feature, we exploit a set of randomly generated base hyper-
vectors, i.e., {B;,By,...,B,}, where n is the feature size of an
original data point (B; € {0,1}”). Due to random generation
and the size of hypervector, the base hypervectors are nearly
orthogonal [10], meaning that the vectors only have about 50%
common elements:

where 6 is the Hamming distance similarity between the
two hypervectors. The feature hypervectors are more likely
to be orthogonal when dimensionality, D, is large enough
as compared to the size of the feature vector in the original
domain (D >> n).

We also differentiate the feature values using a set of
hypervectors. We first find the minimum and maximum feature

values across all training data points, say {fuin, fmax}> and
then discretize the values to m different levels. Note that this
discretization can happen linearly or non-linearly depending
on the feature distributions. We select the discretization by
looking at the distribution of the feature values. We generate
a single hypervector represent each level, {L;,Lo,...,L,}.
For the first level, L;, we generate a single hypervector
representing fii,. Then each time, we select D/m random
bits and flip them to generate the next level hypervector. This
process ensures that the last level hypervector, L,,, is nearly
orthogonal to L, while other level hypervectors are correlated.
For example, hypervectors assign to neighbor levels have a
high correlation as they have at most D/m bits difference.
Aggregation The encoding of each data point occurs by
binding (XORing) each base hypervector with the correspond-
ing level hypervector. For each feature, the level hypervector is
selected as the nearest quantized level close to absolute feature
value. Finally, we add all the results for all the features:

H =B, oL, + B,®L, (1)

where L; € {Ly,...,L,}, and & denotes an XOR operation.

+ ByoLy+...

B. HD Training

The HD training happens with the encoded hypervectors.
HD computing is its fast learning capability. Most existing HD
computing algorithms perform the training in a single iteration.
The training adds all the encoded data points that belong
to the same class. For example of face recognition problem,
HD computing creates two hypervectors representing “Face”
and “No-face” classes. These hypervectors can be created by
separately adding all encoded hypervectors which have the
“Face” and "No-face” labels.

C. Inference: Non-binary or Binary Model?

In HD computing, the trained model has non-binarized
elements with positive or negative floating point values. The
existing HD computing methods [15], [16], [8], [17], [18]
binarize the class hypervectors to eliminate costly Cosine
operation used for the associative search. In addition, most
of the existing hardware accelerators for HD computing only
accelerate the binary model [16], [19]. We observe that HD
computing using binary hypervectors cannot provide accept-
able classification accuracy on the majority of practical prob-
lems. Table I reports the HD classification accuracy for four
classification applications includingspeech recognition [11],
activity recognition [12], physical monitoring [13], and face
detection [14]. The results are reported for the based HD
computing [9] using binary and non-binary class elements.
Note that the baseline HD is using Ngram-based encoding
which is different from one explained in Section II-A. In
this table, N and n are the numbers of classes and features
respectively. To get an acceptable classification accuracy, HD
computing requires to use class hypervectors with non-binary
elements. For example, for face recognition, HD computing
with binary model gets 68.4% accuracy, which is much lower
than 95.9% accuracy that HD using a non-binary model can
achieve.
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(a) Classification Overview

Fig. 1. Overview of HD computing for classification.
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TABLE I
CLASSIFICATION ACCURACY AND EFFICIENCY OF HD RUNNING ON NON-QUANTIZED AND BINARY MODEL.

Floating-point Model Binary Model

Applications Features (n) Classes (k) Accuracy  Execution (ms) | Accuracy  Execution (ms)
Speech Recognition [11] 617 26 91.1% 11.8 88.1% 1.6
Activity Recognition [12] 561 6 93.8% 3.6 77.4% 0.6
Physical Monitoring [13] 52 12 88.9% 8.0 85.7% 1.1

Face Detection [14] 608 2 95.9% 4.7 68.4% 0.7

The results in Table I also compare the execution time
of HD with binary and non-binarized models running on
embedded devices (Raspberry Pi 3) using ARM Cortex A53
CPU. Our results show that HD with floating-point model
provides on average 17.5% higher accuracy, but is 6.5 slower
as compared to HD computing with the binary model. The
lower efficiency of the non-binary model comes from the
costly Cosine similarity metric which involves a large number
of additions and multiplications.

III. PROPOSED QUANTHD
A. Overview

In this section, we present QuantHD, a novel framework for
quantization of HD computing model during training. Quan-
tHD enables quantizing (binarizing/ternarizing) of the HD
model with no or minor impact on the classification accuracy.
QuantHD consists of three main steps; (i) Initial training:
it creates an initial HD model by accumulating all encoded
hypervectors corresponding to each class. The initial training
step is the same as conventional HD computing algorithms.
(i) Quantization, which projects the HD model to a binary
or ternary model. Since the HD model has been trained to
work with the floating-point values, the quantization results
in a significant quality loss. (iii) Retraining compensates
the quality loss due to the model quantization. QuantHD
iteratively retrains the HD model such that it adopts to work
with the quantized model.

B. QuantHD Framework

Initial Training: QuantHD trains the class hypervectors
by accumulating all encoded hypervectors which belong to
the same class. As Figure 2a shows, each accumulated hy-
pervector represents a class. For example, for an application

with k classes, the initial HD model contains k non-quantized
hypervectors {Cy,...,Ci}, where C; € N” (@).

Model Projection: We develop a model projection
method which maps this model to a quantized hypervectors,
{C{,...,C}}, with binary or ternary representation (@). The
binary and ternary models represent the class hypervectors
using {0,1} and {—1, 0, + 1} elements respectively. The
details of model quantization are explained in Section III-C.

Iterative Learning: Although the initial trained model
provides high classification accuracy, the quantization of the
model significantly degrades the accuracy. This accuracy
degradation comes from mapping the binary domain which
does not preserve distances between the vectors. To com-
pensate for the possible quality loss, QuantHD supports a
retraining procedure which iteratively modifies the HD model
in order to adapt it to work with the quantization constraints.
QuantHD keeps both quantized and non-quantized models. For
each data point in the training dataset, say H, we first quantize
the encoded hypervector, H?, and then check its similarity with
the quantized model. The similarity metric is the Hamming
distance for the binary model and dot product for the ternary
model (@). If the quantized model correctly classifies H? ,
we do not update the model. However, if H? is incorrectly
classified, we only update the non-quantized model, while the
quantized model stays the same. This update happens on two
class hypervectors; a class that data is misclassified to (Cyiss),
and a class that data point belongs to (C,p). Since in HD
the information stored as a pattern of distribution in high-
dimensional space, the update of the non-quantized model can

perform by(@):
Cmiss = Cmiss —aH and Cmatch = Cmatch +aH

where o is a learning rate (0 < o < 1). Note that although
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Fig. 2. (a) QuantHD framework overview. (b) Binarizing and ternarizing the trained HD model.

the similarity check performs on the quantized model, we
only update the non-quantized model, while the quantized
model stays the same. Similarly, after once epoch or iteration
across all training examples, the new non-quantized models
are written back to the quantized model (@).

Model Validation: We examine the classification accuracy
of the projected model on the validation data, which is 5%
of the training data(@). If the projected model accuracy is
changed less than &, we send the new model to inference to
perform the reset of computation; otherwise, we start retraining
the quantized model by checking the similarity of all training
data points and accordingly updating the non-quantized model
(@). Note that the QuantHD stops after a pre-defined number
of iterations if the convergence condition does not satisfy. For
all experiments in this paper, we use € = 0.01 and limit the
maximum number of iterations to 30.

Figure 3a,b show the classification accuracy of QuantHD
with a binary model during different retraining iterations. The
results are reported for speech recognition (ISOLET) and face
recognition (FACE) applications using three different learning
rates. Note that, here we use the encoding module introduced
in Section II-A which provides higher accuracy than the
baseline HD computing reported in Table I. Our evaluation
shows that QuantHD using small learning rate slow down
the learning process. For example, QuantHD with o = 0.01
cannot get the maximum accuracy in 30 retraining iterations.
Increasing the learning rate to o = 0.05 improves the learning
speed and the final classification accuracy. However, using a
learning rate of alpha = 0.3 or larger increases the fluctuation
on the accuracy during the retraining phase and can cause
possible divergence. Figure 3c,d shows the impact of learning
rate on the classification accuracy of QuantHD using binary
and ternary models. Our result shows that QuantHD provides
maximum classification accuracy using a learning rate of
around o = 0.05. Note that retraining the original QuantHD
model with non-quantized values requires o > 1 (= 1.5 -2)
for fast and stable training.

C. Details of Model Quantization

After training the HD model, the class hypervectors is
represented using non-quantized (integer or floating point)
elements which can take negative or positive values. The goal
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Fig. 3. QuantHD classification accuracy during (a,b) different retraining
iterations, and (c,d) using different learning rates.

of model quantization is to map these values to a new domain
where the computation can be performed with much higher
efficiency. Here we explain how we quantize the hypervectors
to binary and ternary domains.

Binary Model: QuantHD binarizes the model using the
sign function by assigning all positive and negative elements
to 1 and O bits respectively. In fact, binarization maps each
class hypervector from NP to {0,1}”. Unlike the fixed-
point/floating-point model which uses costly cosine metric,
binary model exploits Hamming distance for similarity check.

Ternary Model: The HD model can also be mapped into a
ternary domain where each class element can take {—1, 0, +
1} values. Ternarization gives more flexibility to a model to
select more suitable weights during quantization (shown in
Figure 2b). In the ternary model, the similarity check performs
using the dot product between the hypervectors.

Ternarization determines the sparsity of the model by se-
lecting a boundary where the elements can get -1, 0, and +1
values. One naive way is to normalize the class hypervectors
and linearly split a range between minimum and maximum
feature into three equal regions. Each class elements can be
assigned to one of the regions depending on the dimension
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values. For example, we can assign numbers in rage of
[—b,+b] to zero, while [—1,—b] and [+b, 1] are assigned
to -1 and +1 respectively (see Figure 2b). This method does
not properly work since the class values are not uniformly
distributed. Instead, we observe that in all of our tested datasets
the class hypervectors have a Gaussian distribution. We can
select the ternarization boundary to balance the portion of
dimensions that are assigned to O value.

The boundary values can set based on the data distribution
and its variance (o). Figure 4 also shows the impact of
the ternarization boundary on the classification accuracy of
two applications: activity recognition (UCIHAR) and speech
recognition (ISOLET). The x-axis in a graph shows the ternary
boundary which changes from 0 to 0.8c. Increasing the b
boundary at first improves the classification accuracy by giving
more flexibility to the weights to be zero. This also results in
higher sparsity of the ternarized model. However, increasing
the b boundary more than a specific value results in lower
classification accuracy, since high sparsity in the trained model
may result in information loss.

IV. FPGA IMPLEMENTATION

HD computing can be implemented in different hardware
platforms such as CPU, GPU, or FPGA. Due to a large
amount of bit-wise operations exist in training and inference
of HD computation, FPGA is a suitable candidate for efficient
HD computing acceleration. QuantHD has three main phases:
training, retraining, and inference. These phases are sharing
similar blocks. For example, the encoding is a commonly used
block in all phases. Similarly, the retraining and inference are
using associative search block on their computation.

A. Encoding Acceleration

The encoding happens based on two sets of pre-generated
hypervectors: level hypervector ({Lj,...,L,}) and base hy-
pervectors ({By,...,B,}) [7], [9], [8]. Both base and level
hypervectors are binary, B;,L; € {0, 1}?. This binary represen-
tation enables FPGA to store each dimension of level and base
hypervector using a single bit. Figure 5 shows an overview
of the FPGA implementation of the encoding module. En-
coding module first reads the feature values, assigns them to
pre-generated level hypervectors (@). Each feature value is
compared with m quantized feature values and then assigned
to a level with the closest distance (@). For each feature,

the encoding module performs the XOR operation between the
level hypervector and the corresponding base hypervector, i.e.,
B; ©L; for " feature index, where L; € {Li,...,L,} (@®).
Finally, for each dimension, the results of XOR operations are
accumulated using an adder working in a pipeline structure
(@®). All encoding operations, including the XOR and adders
are implemented using LookUp Tables (LUTs) and Flip Flops
(FFs).

Depending on the number of features, n, and hypervectors
dimensionality, D, FPGA may not have enough resources to
generate all D dimensions of encoded hypervector once at
a time. In that case, our implementation performs encoding
only on d dimensions of the level and base hypervectors
(d < D). We further discuss about the encoding throughput
at Section IV-B)

B. Training Acceleration

Training involves in the accumulation of all encoded
hypervectors corresponding to a class, where each hypervector
represents using D non-quantized values. FPGA performs the
addition of the encoded hypervectors using DSP blocks. Since
the training does not share many resources with the encoding
module, they can be run in parallel to accelerate the training.
Figure 5 shows an overview of the FPGA implementation of
the training module. When an encoding module generates the
d dimensions of the encoded hypervector, DSPs accumulate
the previously d encoded dimensions with the corresponding
class hypervector. The encoding and training modules are
working in a pipeline structure, which results in hiding the
latency of the encoding module. Depending on a class that
the data point belongs to (a tag bit shown in Figure 5),
FPGA reads the class hypervectors (@). Then, this class
hypervector is accumulated with the encoded hypervector in
a tree-based adder (@) To accelerate the training, we sort
the data such that all data points corresponding to a class
process sequentially. Note that this sorting can have negative
impact on the classification accuracy. As it has been shown by
several work [20], [21], training with randomly shuffled data
reduces the chance of over-fitting; thus results in providing a
higher classification accuracy. For example, in ISOLET, we
observe that QuantHD provides 0.7% higher accuracy if it
trains on shuffled data. Here, we sort training data point in
order to improve the FPGA efficiency. This sorting enables
the accumulation operation happens on a class hypervector
without accessing another class hypervector from the internal
FPGA block RAM (BRAM). Finally, the accumulated class
hypervector can be written back into the BRAM block (@®).

The value d can be limited either by the encoding or training
module. In the encoding module, the maximum d which can be
generated at each iteration depends on the features size, and
it is limited by the number of available LUT/FF resources.
On the other hand, the maximum d value that training module
can process depending on the number of available DSPs on
the FPGA. For applications such as physical monitoring with
n =75 features and k = 6 classes, the number of DSPs limits
the d value to 64. However, for face recognition with n = 608
features and k = 2 classes, the d value is limited to 192 by
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in Figure 6¢). For binarization, all dimensions with a smaller —«_____~ =~ — ——— y
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other dimensions get 1" bit. Similarly, ternarization happens
similarly by comparing each class element with two threshold
values. As we discussed in Section III-C, we assign values
smaller than a TH; = u —0.420 to 7017, values larger than
THy = u+0.420 to ’117, and other values to ”00”. FPGA
stores both quantized and fixed-point models to perform the
retraining.

Associative Search: During retraining and inference, HD
requires to perform the associative search over the training
and testing data respectively. The existing HD computing
algorithms [8] perform the retrain on the non-quantized model.
Thus, they require to use costly cosine similarity during
retraining. In contrast, QuantHD associative search happens
on the quantized model. The search over quantized model sig-
nificantly accelerates the retraining/inference procedure since
it avoids the costly cosine similarity between a query and non-
quantized model.

Figure 6a shows an overview of the FPGA implementing
the associative search block. Regardless of using a binary or

Quantize
Thresholds

(¢) Quantization

Fig. 6. Hardware acceleration of inference and retraining; (a) associative
search of the binary query with the quantized model. (b) Updating non-
quantized model in case of misclassification. (c) Quantization of the model.
(d) similarity metric used for quantized model.

a ternary model, our approach uses binary query hypervector
(H?) to perform the similarity check. The binarization of the
query hypervector happens right after the encoding module
by comparing each element with n/2, where n is the number
of features in the application. In our implementation, the
encoding and associative search modules are working in a
pipeline structure. As we explained, the encoding module
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cannot generate all D = 10,000 dimensions of a query hy-
pervector in a single iteration. Therefore, when associative
search performs the similarity check on d dimensions of a
query hypervector, the encoding module generates the next
d dimensions of a query hypervector. In associative search,
we first read the first d dimensions of all class hypervectors
and then perform the similarity of the binary query with each
class hypervector. Figure 6d shows the FPGA implementation
supporting dot product between a single class and a query
hypervector. Depending on the model, i.e., binary or ternary,
the class elements can be represented using one or two bits.
For the binary model, class elements represent using a single
bit. Thus, the similarity check between a query and the class
hypervectors simplifies to Hamming distance. As Figure 6d
shows, this operation can be implemented using a single
XOR gate. For ternary model, each class element represents
using two bits, where {01, 00, 11}. In the ternary model
using two bits to represent each class value, the similarity
search can be implemented using two AND, a NOT, and an
OR gates. The similarity logic in both binary and ternary
models create a single bit for each dimension. The results
of similarity logic, which are d bits, are added together in a
d-bits tree-based adder (Shown in Figure 6a). This d window
sequentially moves through all class/query dimensions to cover
all D dimensions.

Model Update: In the case of an incorrect match, the
retraining uses another module to update the non-quantized
model (Figure 6b). For each data point in training data,
QuantHD checks the result of a similarity search with the label
of training data. In the case of misclassification, the "Update
Indices” generates the address of two classes that need to
be updated. FPGA reads those class hypervectors which are
already stored in distributed RAM blocks and updates them by
addition and subtraction of them with a query hypervector (H).
Finally, the class hypervectors are written back into distributed
RAM blocks. QuantHD continues the search operation on the
next encoded data points using the same quantized model.
Finally, QuantHD quantizes the model (Figure 6b) after going
over the entire training data. This process continues iteratively
for a pre-defined number of iterations.

V. EVALUATION
A. Experimental Setup

We implement and verify the functionality of QuantHD
training and inference using Verilog. We synthesize the code
on Xilinx Vivado Design Suite [22] and implement it on
the Kintex-7 FPGA KC705 Evaluation Kit. We used Vivado
XPower tool to estimate the device power. All QuantHD
software support including training, retraining, and inference
have been implemented on CPU. For CPU, the QuantHD has
been written in C++ and optimized to provide the maximum
performance on embedded devices (Raspberry Pi 3) using
ARM Cortex A53 CPU. As a baseline, we compare the
accuracy and efficiency of QuantHD with state-of-the-art HD
computing algorithm [9], [7], multi-level perceptron [23], and
binary neural network [24] implemented on FPGA. To show
the advantage of QuantHD in both algorithm and hardware

aspects, we implement the baseline HD computing using the
same implementation as QuantHD, explained in Section IV.
Table II summarizes the evaluated datasets. The tested bench-
marks range from relatively small datasets collected in a
small IoT network, e.g., PHYSICAL, to a large dataset which
includes hundreds of thousands of images of facial and non-
facial data. Note that in image-like data, QuantHD works
on features which are extracted from the original data. For
example, we use Histogram of Oriented Gradients (HOG)
feature extraction for Face Detection problem. In contrast,
the convolution layer in neural networks can directly extract
information from the original image. Our future work in to
include feature extraction as a part of the encoding method.

B. Accuracy

Table III compares the classification accuracy of Quan-
tHD using binary and ternary models with the state-of-the-
art HD computing algorithm using binary and non-quantized
models [9]. The baseline uses Ngram-based encoding, while
QuantHD uses the encoding proposed in Section II-A. To have
a fair comparison, we give an advantage to the baseline HD
to retrain the non-quantized model for the same number of
iterations as QuantHD model. The results also reported for the
baseline HD with the binary model, when the HD models have
been turned into binary once after the training. For QuantHD,
the models have been retrained for 40 iterations with ¢o¢ = 0.05
learning rate. For ternary models, we use ternary boundary
b =0.420 which results in maximum classification accuracy.

Our evaluation shows that the baseline HD provides high
classification accuracy using non-quantized model. However,
in baseline model, both training and retraining are significantly
costly. The training process involves retraining that involves
several iterations of the similarity check over non-quantized
model. Similarly, in the inference phase, the associative search
between query and trained model required costly consine met-
ric. The binarization of the baseline model has been proposed
to reduce the inference cost, by replacing cosine with Ham-
ming distance similarity. However, this binarization used inthe
baseline HD computing [9], [8] has two main disadvantages:
(1) it results in a significant drop in the classification accuracy,
as the model never trained to work with this constraint. (ii)
The retraining is as costly as the non-quantized model as the
similarity check needs to perform using the cosine metric.

QuantHD addresses the several existing issues in the HD
computing algorithms. QuantHD provides an iterative pro-
cedure which enables the HD to learn to work with binary
or ternary models. In addition, QuantHD defines a learning
rate for training procedure which further improves the HD
classification as compared to prior work with no learning rate
(a = 1). Our evaluation on Table III shows that QuantHD
using binary and ternary models can provide comparable
accuracy to the non-quantized model. The accuracy is higher
for the ternary model as it gives more flexibility to the training
module to select better class values. Our evaluation shows that
QuantHD using binary and ternary models provide on average
16.2% and 17.4% higher accuracy as compared to the baseline
HD computing [9] using a binary model (See Table III). In

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 29,2020 at 21:16:24 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2954472, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

TABLE II
DATASETS (n: FEATURE SIZE, k: NUMBER OF CLASSES).
Data Train Test
n K Size Size Size Description/State-of-the-art Model
ISOLET 617 | 26 | 19MB 6,238 1,559 Voice Recognition [11]
UCIHAR | 561 12 | 10MB 6,213 1,554 Activity recognition(Mobile)[12]
PAMAP2 75 5 240MB | 611,142 101,582 Activity recognition(IMU)[13]
FACE 608 2 1.3GB 522,441 2,494 Face recognition[14]
EXTRA 225 4 140MB 146,869 16,343 Phone position recognition[25]
TABLE III - — . N
COMPARISON OF QUANTHD CLASSIFICATION ACCURACY WITH THE | WM initial Training Bl Baseline HD [XBinary Mode! [ Ternary Model
STATE-OF-THE-ART HD COMPUTING. 5 10°
Baseline HD QuantHD g 10"
Non-Quantized  Binary | Non-Quantized — Binary  Ternary 2
ISOLET 91.1% 88.1% 95.8% 94.6%  953% S
UCIHAR 93.8% 77.4% 98.1% 96.5%  97.2% = 10°
PAMAP2 88.9% 85.7% 92.7% 913%  92.7% =
FACE 95.9% 68.4% 96.2% 94.6%  95.4% o
CARDIO 93.7% 90.9% 97.4% 953%  97.7% i 401
EXTRA 70.2% 66.7% 74.1% 72.6%  74.0% ISOLET UCIHAR PAMAP2 FACE
Average 88.9% 95% | 924% 90.8% 92.1% _
7]
o
£
addition, we observe that QuantHD accuracy using binary and =
ternary models is 1.9% and 3.1% higher than baseline HD %
using non-quantized model. @
w

C. Training Efficiency

We compare the QuantHD with the baseline HD computing
in terms of training/retraining efficiency. All HD-based designs
have the same performance/energy during the generation of
the initial training model. However, during retraining which
involves the significant training cost, they have different
computation efficiency. In the baseline HD, the retraining is
performed by checking the similarity of each training data
point with the non-quantized model. This search significantly
increases the cost of retraining, since the associative search
in the non-quantized domain is much more costly than binary
or ternary domains. In contrast, the retraining in QuantHD
performs by checking the similarity of training data points
with the binary/ternary model. After each similarity check,
QuantHD updates the non-quantized model by adding and
subtracting a query hypervector from two class hypervectors.
Figure 7 compares the energy consumption and execution time
of the baseline HD and QuantHD. Our evaluation shows that
QuantHD with the binary (ternary) model can achieve on
average 36.4x and 4.5x (34.1x and 4.1x) energy efficiency
improvement and speedup as compared to the baseline HD
computing algorithm.

D. Inference Efficiency

Figure 8 compares the energy consumption and execution
time of running a single query in the baseline HD computing
with QuantHD using binary and ternary models. All reported
results are the average energy and execution time of a single
prediction, processed on the entire test data. In QuantHD, the
encoding and associative search modules are working in a
pipeline stage. Therefore, the execution time of the encoding
module hides under the execution time of the associative

ISOLET

UCIHAR PAMAP2 FACE

Fig. 7. Energy consumption and execution time of QuantHD, conventional
HD and BNN during training

search search. However, FPGA still needs to pay the cost of
energy consumption in the encoding module (as shown in top
graph in Figure 8).

We used Vivado XPower tool to estimate the device power.
Our evaluation shows that HD using the non-quantized model
is the most inefficient design due to its significant cost during
the associative search. Regardless of the training procedure,
the binary models provide the maximum efficiency during
inference. We also observe that for most of the applications,
both binary and ternary models can provide higher efficiency
than BNN due to their lower number of computations. The
results show that QuantHD using binary and ternary model
can achieve 45.7x and 42.3x energy efficiency improvement
and 5.2x and 4.7 x speedup as compared to baseline HD while
providing comparable accuracy.

Figure 9 shows the energy consumption and execution time
of our FPGA implementation with AMD Radeon R390 GPU
and ARM Cortex A53 CPU during the inference. All platforms
run the baseline HD code using non-quantized model with
D = 10,000 dimensions. For each application, the results of
energy and execution time are normalized to GPU running
HD computing with D = 10,000 dimensions. Our evaluation
shows that for all tested applications, FPGA can provide on
average 7.6x (5.9x) lower energy consumption and 1.7x
(41.5x) faster computation as compared to the GPU (CPU)
when running HD in full dimension. The higher efficiency
of the FPGA comes from its optimized implementation, high
level of parallelism, and storing the HD model close to the
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Fig. 9. Normalized Energy consumption and execution time of our FPGA as
compared to GPU.

computing units.

E. QuantHD Trade-off: Dimensionality

HD computing has been designed to work with the pattern
of vectors in high-dimensional space, i.e., D = 10,000. The
correct dimensions depend on the actual dataset. However,
we can reduce the hypervectors dimension to accelerate both
training and testing computation. Figure 10 shows the impact
of dimensionality on the classification accuracy of different
applications using non-quantized, ternary, and binary models.
Our evaluation shows that QuantHD using binary/ternary
model can provide similar accuracy as QuantHD with the non-
quantized model when the dimensionality is high. However,
QuantHD using all models starts losing accuracy when the
hypervector dimensions reduce. This accuracy drop is higher
for the binary and ternary model since they use low accurate
metric, i.e., Hamming distance, for similarity check. Dimen-
sion reduction also increases the gap between the accuracy
of the non-quantized and quantized model. In particular, we
observe a large accuracy drop on QuantHD with the binary
model when the dimensionality gets lower than 8000. The
results show that QuantHD using D = 8000 can achieve similar
classification accuracy as full dimensionality while providing
17.6% energy efficiency and 14.3% speedup. In addition,
QuantHD using ternary model can provide 26.4% and 19.8%
(34.9% and 27.9%) energy efficiency and speedup while
providing 1% (2%) quality loss, as compared to QuantHD
with full dimension.
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Fig. 10. Impact of dimension reduction on the accuracy of QuantHD with
binary and ternary models.

TABLE IV
RESOURCE UTILIZATION OF FPGA DURING TRAINING, RETRAINING, AND
INFERENCE.
d LUT FF DSP BRAM
Training Initial 128 96%  22% 79%  32%
Baseline 32 23% 18% 93% 31%
Retraining  Binary 128 92% 16% 8% 10%
Ternary 192 95% 18% 8% 13%
Baseline 32 16% 12%  88%  31%
Inference Binary 224 93% 32% 0% 7%
Ternary 192 97% 34% 0% 9%

E. Breakdown

Table IV compares the resource utilization of QuantHD
using non-quantized, binary, and ternary models. The results
are reported for UCIHAR datasets with n = 561 features,
k =12 classes and using D = 10,000. In terms of resource
utilization, all models are using the same utilization for en-
coding and initial training. The difference of these methods is
on the associative search where the non-quantized model takes
larger resource to implement a similarity check. The larger
associative memory in ternary model reduces the encoder size
since these blocks are both implemented using the same LUT
and FFs logics. Therefore, the lower number of dimensions
can be generated by the encoder at each time. Our results
in Table IV show that while in QuantHD with the non-
quantized model, the DSP utilization is the main bottleneck
of retraining and inference performance. However, QuantHD
using binary/ternary model can provide higher performance
by removing the necessity of DSPs to perform the associative
search. Therefore, QuantHD with the quantized model pro-
cesses a larger d in parallel.

G. QuantHD vs. Other Algorithms

As a light-weight classifier, we compared QuantHD accu-
racy and efficiency with the state-of-the-art light-weight clas-
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TABLE V
COMPARISON OF QUANTHD WITH MLP AND BNN IN TERMS OF ACCURACY, EFFICIENCY, AND MODEL SIZE.

MLP/BNN Accuracy CPU Training (s) FPGA Inference (us) Model Size
Topologies MLP BNN HD MLP  BNN HD MLP BNN  HD MLP BNN HD
ISOLET | 617-512-256-26 | 95.8% 96.1% 95.8% | 2.08 17.69 031 | 27.39 524 040 | 1.81MB 56.7KB  65.0KB
UCIHAR | 561-512-256-12 | 97.3% 959% 97.2% 1.04 8.32 0.12 | 2143 518 0.37 | 1.68MB 52.7KB  30.0KB
PAMAP2 75-512-256-6 95.8% 942% 92.7% | 0.61 4.75 0.07 | 13.07 3.78 0.35 | 0.68MB 21.3KB 15.0KB
FACE 608-512-256-2 96.1% 96.1% 95.4% | 0.56 4.30 0.04 | 17.68 5.11 0.34 | 1.77MB  55.3KB 5.0KB

sifiers including Multi-Layer Perceptron (MLP) and Binarized
Neural Network (BNN). For MLP and BNN, we used the
similar models proposed in [24] and made a small modifi-
cation in input and output layers to run different applications
(shown in Table V). We use Keras with Tensorflow backend
to train the MLP (BNN) models using Adam optimizer for
10 (100) epochs and learning rate of 0.01. Dropout with a
drop rate of 0.5 is applied to DNN layers. Table V lists
the classification accuracy and the training/inference execution
time of all algorithms. The training results are reported on
an embedded device (Raspberry Pi 3) using ARM Cortex
AS53 CPU. All testing results are reported on Kintex-7 FPGA.
For testing, we used the same BNN implementation available
on [24] to synthesize the networks on Kintex-7 FPGA. For
BNN models, we used the best design parameters (# of SIMD
and processing elements) which result in maximum resource
utilization and performance. For MLP models, we used the
framework proposed in [23] to implement MLP high-level
code on FPGA efficiently.

Our evaluation shows that QuantHD can provide compa-
rable accuracy to advanced algorithms while providing much
faster computation in both training and testing. For example,
QuantHD is on average 8.2x and 67.4x faster than MLP
and BNN during training, when running on ARM Cortex
AS53 CPU. In addition, using FPGA acceleration for training,
QuantHD can further achieve 48.9x speedup as compared to
ARM CPU. Similarity during testing, QuantHD achieves on
average 48.1x and 13.4x speedup as compared to the MLP
and the BNN models, while providing the similar classification
accuracy. Table V also compares the QuantHD, MLP, and
BNN in terms of model size. Our evaluation shows that
QuantHD can provide on average 52.2x and 1.6x smaller
model size as compared to MLP and BNN respectively.

VI. RELATED WORK

The idea of HD computing has been mapped into several
practical problems including supervised, semi-supervised, and
unsupervised learning tasks [26], [27], [28], [29]. For classi-
fication, many existing approaches use HD computing for a
single-pass training [9], [30]. For example, the work in [9]
proposed a text classification algorithm based on random in-
dexing. However, this method of training provides significantly
lower classification accuracy on practical applications. Work
in [8] proposed a retraining approach which improves the HD
computing accuracy by iteratively updating the HD model
over the training dataset. However, this approach forces both
retraining and inference phases to use associative search on

the fixed-point model which requires costly cosine metric for
similarity check. In addition, the lack of definition of learning
rate results in low stability and possible divergence during
the retraining. Prior work tried to binarize the model after
the retraining to reduce the inference cost [7], [8]. However,
this approach results in a significant drop in classification
accuracy. Moreover, the retraining is still expensive as it needs
to be processed on the fixed-point model. In contrast, we
propose a novel framework which enables both retraining
and inference phases to perform on a quantized model using
hardware friendly similarity metrics, i.e., Hamming distance.
Our approach introduces the definition of the learning rate
in retraining and adapts the HD model to work with the
quantization constraints.

On the other side, prior work tried to design efficient
hardware to accelerate HD computing, focusing on binary
hypervectors. Work in [19], [31], [16], [32], [33] designed in-
memory architecture based on emerging non-volatile memory
to accelerate HD computation. For example, work in [16]
showed three memory-centric hardware to accelerate the as-
sociative search in 10,000 dimensions. However, since these
hardware are working with binary hypervectors, they pro-
vide very low classification accuracy on practical applications
(explained in Section II-C). Work in [34], [35] proposed
an efficient implementation of HD computing on FPGA, by
exploiting the sparsity to enhance computation efficiency. Our
proposed framework enables model quantization, and it opens
a new opportunity for binary-based hardware to be used for
a wide range of classification problems. In addition, unlike
prior work that accelerates HD computing at inference, we
proposed FPGA implementation which accelerates all phases
on HD computing including training, retraining, and inference.

VII. CONCLUSION

In this paper, we propose a novel framework for model
quantization of Hyperdimensional computing. In contrast to
prior work that quantization results in a significant quality
loss, QuantHD enables binarization and ternarization of the
HD model with minimal impact of the accuracy. QuantHD
is an adaptive framework which retrains the HD model to
compensate for the possible quality loss due to quantization.
Our framework is general and can be used for any types
of quantization or enabling sparsity in HD computing. We
observe that the gain of quantization is more evident in high-
dimensional space. Going toward more restricted quantization,
e.g., binarization, dimension reduction has a more destructive
impact on the quality of the model. Therefore, a designer can
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devise to either process HD computing using a low dimen-
sional non-quantized model or high-dimensional quantized
model, depending on the underlying platform.
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