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A B S T R A C T

Permutation tests have a long history in testing hypotheses of independence between nodal attributes and
network structure, though they are often thought less informative than parametric modeling techniques. In this
paper, we show that when the nodal attribute is random assignment to a treatment condition, permutation tests
provide a valid test of the causal effect of treatment. We discuss existing test statistics used in network per-
mutation tests and propose several new statistics. In simulations we find that these statistics perform well
compared to parametric tests and that specific statistics can be selected to provide power against common
network models. We illustrate the methods with gene-wide association study performed on randomized study
participants and an observational study of gender membership on Scandinavian corporate boards.

1. Introduction

As a tool to relate nodal covariates to network features, permutation
tests have a long history in the network analysis literature. Dating back
to at least Mantel (1967), permutation approaches work by relabeling
nodes uniformly at random, leading to a constrained permutation on
the observed network's adjacency matrix. The permuted adjacency
matrix is then compared to a matrix expressing a variable measured for
each dyad through some type of correlation measure. If the observed
relationship between the network and the variable is extreme compared
to values observed under the permutations, the researcher can reject
the hypothesis that the network and the variable are statistically in-
dependent.

Such permutation tests are attractive as they require very few as-
sumptions, compared to parametric graph models.1 This simplicity,
however, is sometimes thought to be a limiting factor as well. As part of
a broader survey of network analysis techniques, Snijders (2011) lar-
gely dismisses permutation approaches, saying “[permutation] ap-
proaches are useful, but they are not discussed further here because
they regard network structure as nuisance rather than substance and do
not attempt to model network dependencies” (p. 134). The goal of this
paper is to show that permutation approaches have significant merit as
a tool in network analysis. First, for causal questions when the nodal

covariate of interest is the treatment assignment of a randomized con-
trolled trial, we show that randomization tests of no treatment effect are
precisely permutation tests of independence between the treatment and
the network. This permits testing causal hypotheses without requiring
strong assumptions on the network's data generating process. Second,
through careful selection of a test statistic researchers can make tests
sensitive to specific network structure, such as increased clustering or
centrality associated with the nodal covariate or treatment assignment.
Even if the larger goal is modeling, permutation and randomization
tests can be used to refine the early model building process before
committing to a particular set of assumptions for a network's data
generating process.

Causal attributions are difficult in any context and particularly
vexing in network analysis. In recent years, the Neyman–Rubin causal
model, also known as the “potential outcomes framework”, has become
a valuable tool for framing causal inference in statistical terms (for
discussions from a non-network perspective, see Imbens and Rubin
(2015) and Hernán and Robins (2019)). In this model, observations are
thought to have a set of fixed potential outcomes, each revealed by a
particular treatment assignment. When treatment is assigned in-
dependently of the potential outcomes, statistical analysis reveals the
causal effect of treatment. As randomized controlled trials exhibit
precisely this form of treatment assignment, the potential outcomes
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framework justifies their claim to the “gold standard” of causal in-
ference, and we place special emphasis on networks measured after
nodes are randomly assigned to treatment conditions. See Matous and
Wang (2019) for a recent example of this type of study design.

In most statistical applications of the Neyman–Rubin model, it is
assumed that the assignment of one unit does not influence the po-
tential outcomes of other units (Rubin, 1980). These strong in-
dependence assumptions seem out of place in a network analysis con-
text (Fienberg, 2012).2 To avoid this difficulty, we highlight the role of
a specific null hypothesis, the sharp null hypothesis of no effect, which
states that the observed network would have been identical under any
possible treatment assignment. This null hypothesis naturally leads to a
testing strategy in which treatment assignment is repeatedly shuffled in
order to create a null distribution (Fisher, 1935; Rosenbaum, 2002,
2010), a procedure which we describe as a “randomization test.”
Randomization tests justify inference on the known randomization
mechanism, rather than appealing to stronger parametric assumptions.
Outside of the network context, an extensive literature has shown how
regression modeling fails to take into account the true stochastic nature
of randomized treatment and can lead to biased effect estimates (Berk,
2004; Freedman, 2008a,c,b). In our simulation results, we see that
parametric network analysis methods can achieve excellent power to
reject false null hypotheses when parametric assumptions are true.
When assumptions fail to hold, however, Type I error can be re-
markably poor.

When treatment assignment is performed using complete random
assignment — the number of treated and control nodes is fixed, with all
assignments equally probable — randomization tests are equivalent to
permutation tests using a categorical nodal variable (Maritz, 1981). At
the heart of randomization and permutation tests is a test statistic that
maps the permuted node labels and observed network to a scalar value.
Test statistics vary in their functional form and, consequently, are
sensitive to different alternative hypotheses, deviations from the null
hypothesis of independence between the network and the nodal attri-
bute. Mantel (1967) proposed a linear statistic, equivalent to the cor-
relation between the network and treatment indicators, and similar
approaches were introduced in several other disciplines (Whaley, 1983;
Good, 2005, chapter 10). Linear statistics also form the basis of
“quadratic assignment procedure” (QAP) methods that use linear re-
gression techniques to define test statistics (Baker and Hubert, 1981;
Krackhardt, 1987, 1988; Dow and de Waal, 1989; Nyblom et al., 2003).
Edge count statistics can also be non-linear. We propose using the
probability mass function of the edge counts as a test statistic. A similar
approach can also be found in Chen and Friedman (2017), who pro-
posed a Mahalanobis distance based on edge counts in the context of
high dimensional inference. Interestingly, this statistic is quadratic in
the within treatment and control group edge counts and can be shown
to be similar to the coefficient of determination (R2) from a QAP re-
gression. As these methods are functions of edge counts within sub-
graphs defined by the nodal attribute, they tend to be sensitive against
alternatives that change the number of edges within groups, but may be
less sensitive to alternatives that change higher order properties of the
graph. We also introduce statistics that are sensitive to treatment effects
that increase clustering or centrality for nodes with different levels of
the treatment assignment. We show that these statistics can be selected
to provide power to detect the presence of treatment effects in the
network, including those corresponding to several well known network
formation models.

The rest of the paper is arranged as follows. In Section 2.1 we review

causal inference approaches to randomized trials that use the rando-
mization procedure as the “reasoned basis” for inference (Fisher, 1935),
in particular how this approach can be extended to networks. In Sec-
tions 2.2 and 2.3 we develop local and global tests that are sensitive to
the various ways in which treatments can influence network features. In
Section 3 we evaluate the statistical properties of the proposed methods
in a variety of simulated networks. In Section 4 we apply the methods to
a gene-wide association study after a randomized controlled trial and to
a network of board members for a set of Norwegian companies. Section
5 concludes with a brief discussion.

2. Method

2.1. Causal inference for networks

Consider n units in a study with a random treatment Z=(Z1, Z2, …,
Zn)′, where Zi ∈ {0, 1}. As Z is controlled by the researcher, the dis-
tribution of Z is known. Typically, and throughout this document, Z is
generated by selecting n1 units for treatment, setting Zi=1 and se-
lecting the remaining n0 units to receive control, setting Zi=0. For
simplicity, we take all Z to be equally probable. Extensions with con-
strained randomization, when units are first blocked by similar char-
acteristics for example, are immediate. To simplify later notation, for
any variable write Z(k) = (I(Z1= k), I(Z2= k), …, I(Zn= k))′, where I is
the indicator function.

In the potential outcomes framework (Neyman, 1923), each unit's
response is a fixed value indexed by the treatment assignment:
Yi= yi(Z), with Y= y(Z)= (y1(Z), y2(Z), …, yn(Z))′. Unit i would have
response yi(z) if Z= z, but for some other treatment assignment u, the
response would be yi(u). We say that a treatment has an effect if
yi(z)≠ yi(u) for at least one unit i. By the fundamental problem of
causal inference (Holland, 1986), we cannot observe both y(z) and y(u),
so we must perform inference to determine if treatment has an effect. In
this paper we use a sharp null hypothesis of no effect that states H0 : y
(z)= y(u) for all z and u. Under this hypothesis, for any treatment
assignment Z, we would have observed precisely the same outcome y,
and a null distribution for the hypothesis results from evaluating a test
statistic T(Z, y) over the distribution of Z keeping y fixed.

While the null hypothesis is quite specific, there are many possible
alternative hypotheses that would have y(z)≠ y(u) for at least some z
and u. The researcher can focus attention on one particular alternative
hypothesis through the choice of the test statistic T(Z, y). For example,
a difference of means statistic would be sensitive to treatments that
made the two groups different on average, but insensitive to treatments
that only operated on the variance of the outcome. Under the null
hypothesis, the distribution of T(Z, y) is entirely determined by the
distribution of Z, and inference proceeds by enumerating, or sampling
from, Z to compute the distribution of T (Fisher, 1935; Maritz, 1981;
Rosenbaum, 2002). When the statistic T is selected such that large
values of T indicate evidence against the null hypothesis in favor of the
alternative, the p-value of the test is given by

= =+p T T I T Tz y Z y z y Z Z y z y( , ) Pr( ( , ) ( , )) Pr( ) ( ( , ) ( , )),
Z

where z and y are the observed treatment and outcome and Ω is the
sample space of possible assignments. An analogous statistic, p−(z, y),
computes an appropriate tail probability when small values of T are
evidence against the null. In general, two-sided tests can be constructed
using p(z, y)= 2min(p+(z, y), p−(z, y)) (Cox, 2006, chapter 3).

While the definition of p(z, y) encompasses any treatment assign-
ment mechanism, in this paper we focus on complete random assign-
ment for which Pr(Z= z)= (n1 ! (n− n1) !)/n !. In this situation, ran-
domization tests are mathematically equivalent to two-sample
permutation tests (Maritz, 1981). Nevertheless, we emphasize that
permutation tests do not necessarily imply a causal interpretation
outside of random assignment. With this caveat in mind, throughout the

2 Our interest in this paper is networks measured after treatment. There is also
a developing literature that extends the Neyman–Rubin model inference for
numeric outcomes in the presence of pre-treatment networks that may allow
treatment to spillover from treated to control nodes (Rosenbaum, 2007; Bowers
et al., 2013; Choi, 2017; Aronow and Samii, 2017; Athey et al., 2018).
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rest of the paper, for simplicity we refer to “treatment” and “control”
groups, even in situations in which the group labels were not randomly
assigned.The randomization inference approach generalizes to net-
works in a natural way. Consider applying treatment to n1 of the n units
and then measuring a simple network for those for all n units (i.e., an
undirected network with no self-loops). Rather than focus on the n
subjects in the experiment, we shift focus to the m= n(n−1)/2 pos-
sible connections between them. As with other types of outcomes, we
can posit the existence of potential networks composed of potential edges.
Each dyad (i, j), i < j, may have one of four possible treatment as-
signments, depending on whether i, j, both, or neither is treated. If we
assume that edge (i, j) would behave in the same fashion if either one of
its endpoints were treated, we can state the treatment levels as

= +W Z Z {0, 1, 2},i jij writing W=(W12, W13, …, W(n−1)n)′. For each
dyad (i, j), let yij(W)= 1 if units i and j have a link following treatment
W and yij(W)= 0 otherwise.

If treatment had no effect, then we would observe the same network
y under all treatment assignments. We can apply randomization in-
ference to the network by selecting a test statistic T(W, y). In the next
section, we consider statistics that operate on y directly. In Section 2.3
we consider test statistics T(Z, g(y)) that operate on y through a func-
tion g that summarizes each node's position within the network.
Throughout both sections we emphasize alternatives for which the test
statistics are expected to exhibit high power, the probability of rejecting
a false null hypothesis. By selecting statistics that have high power
against interesting alternatives, researchers can detect interesting
treatment effects in the network.

2.2. Local approaches

In this section, we discuss test statistics that operate on local fea-
tures of the graph, with locality defined by the treatment and control
subgraphs. In general, these statistics tabulate some feature within each
of the treatment and control subgraphs and compare the two groups on
this feature. These statistics can be expressed through cross classifying
edges by treatment assignment, and they bear a strong resemblance to
graph models descended from log-linear models (Holland and
Leinhardt, 1981; Fienberg and Wasserman, 1981b,a). Unlike ap-
proaches based on logistic regression or other parametric models,
however, inference is non-parametric, using randomization or permu-
tation to provide valid tests.

As in the previous section, let Yij(W)= 1 when there is a link in the
network between i and j. Define W(k) = (I(W12= k), I(W13= k), …, I
(W(n−1)n= k))′. We notate the number of dyads with the treated group
as m2= n1(n1− 1)/2, the number of dyads in the control group as
m0= n0(n0− 1)/2, and the number of treated-control dyads as
m1= n1n0. We label the total number of edges in the network as
R= Y′Y. Cross classifying the edges by treatment assignment leads to
the edge count statistics R2=W(2)′Y, R0=W(0)′Y, and R1=W(1)′Y, the
edges within and across the treated and control groups, respectively.
Under the sharp null hypothesis of no effect, or the equivalent per-
mutation hypothesis, the total number of edges R is a fixed value,
though R2, R1, and R0 will vary under different treatment assignments.
We discuss several test statistics that use these edge counts to capture
the relationship of treatment with the network.

Mantel (1967) introduced a family of permutation tests based on
linear test statistics of the form TMantel =Y′U. Statistics of this form
have been popularized under the title of quadratic assignment proce-
dure (QAP) methods in the behavioral sciences (Baker and Hubert,
1981), where “quadratic” refers to the number of nodes, rather than the
number of edges. As a linear sta/tistic, Mantel's statistic can also be
derived from a bivariate linear regression of Y on U, leading to exten-
sions that can include additional covariates (Krackhardt, 1987, 1988;
Dekker et al., 2007). As a special case, when
U= aW(2) + bW(1)+ cW(0), Mantel's statistic is a linear combination of
the edge counts: TMantel(R2, R1, R0)= aR2+ bR1+ cR0. Selecting

particular values for a, b, and c makes the test sensitive to particular
alternative hypotheses. Dow and de Waal (1989) used (a=1/m2,
b=0, c=0) to test how much more compact the treatment group was
than the rest of the graph, (a=0, b=1/m1, c=0) to test how close the
treatment group would be to the rest of the network, and (a=1/m2,
b=−1/m1, 0) to combine these tests. Nyblom et al. (2003) also con-
sidered the case when only a is non-zero and extended the method to
consider other nodal covariates.

Methods based on edge counts should be expected to have good
power against alternative hypotheses that have consistent effects within
or across the treatment and control groups. If treatment is thought to
induce effects only between treated units, but not between treated and
control units or within the control group, a useful statistic can be
constructed by setting (a=1/m2, b=0, c=0), or equivalently (a=1/
m2, b=−1/(m1+m0), c=−1/(m1+m0)). Similarly, if the treatment
regime makes both treated and control units similarly insular, the sta-
tistic that sets (a=0, b=1/m1, c=0) should be sensitive to deviations
from the null hypothesis. For less well specified alternatives, using
(a=1/m1, b=0, c=−1/m0) may be a good general choice. We ex-
plore the power of the last statistic against several network formation
models in Section 3.

Linear combinations of R2, R1, and R0 are not the only method by
which these edge counts can be applied. Motivated by using networks
to reduce the size of high-dimensional two-sample testing, Chen and
Friedman (2017) proposed a Mahalanobis distance computed from R2
and R0:

=T R R
R µ
R µ

R µ
R µ( , ) .CF 2 0

2 2

0 0
20

1 2 2

0 0 (1)

The moments μ2= Rm2/m, μ0= Rm0/m, and Σ20 (given in Appendix A)
can be computed from combinatorial analysis under the sharp null
hypothesis (Frank, 1977, 1978; Chen and Friedman, 2017). As R2 or R0
vary from their respective expected values, TCF will increase. In large
samples, R2 and R0 are approximately normal (Chen and Friedman,
2017), suggesting TCF will have good power against alternative hy-
potheses for which μ2 and μ0 are different and Σ20 remains largely
unchanged.

In small or moderate networks, however, the distribution of (R2, R0)
may be decidedly non-normal, so these power properties may not hold.
To motivate the next statistic, observe that

=
=
= =

+ P T R R T r r
P T R R T r r
P R R r r R R r r

p ( ( , ) ( , ))
(exp{ ( , )} exp{ ( , )})
(f( , ) f( , )) P( f( , ) f( , )),

CF CF2 0 2 0

CF 2 0 CF 2 0

2 0 2 0 2 0 2 0

where f is the distribution function for a normal distribution with mean
(μ2, μ0) and variance Σ20. In small samples, where the distribution is not
necessarily normal, the true probability mass function (PMF) of (R2, R0)
can still be used as test statistic:

=T R R f R R( , ) ( , ),PMF 2 0 2 0 (2)

where f is the probability mass function of (R2, R0). Under the null
hypothesis of no effect, f depends on the precise structure of the net-
work and must be found by either complete enumeration of all possible
Z or by sampling from Z using a Monte Carlo approach.

The relationship between TCF and TPMF is similar to different test
statistics used in applying Fisher's exact test for a binary outcome in the
non-network setting. In this setting the test statistic has the well-known
hypergeometric distribution, and Freeman and Halton (1951) suggested
using the hypergeometric PMF as a test statistic in two-tailed tests.
Similar to the TCF statistic, Radlow and Alf (1975) suggested a χ2 sta-
tistic instead. Gibbons and Pratt (1975) and Agresti (2013, Section
3.5.3) discussed the relative merits of these approaches, which may be
informative in selecting between TCF and TPMF. In our experience, both
methods perform similarly, particularly when the permutation dis-
tribution of TCF is used rather than the normal approximation. Since the
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true PMF of (R2, R0) is not known in advance, for even moderate net-
works it must be estimated, which does induce some additional error
that tends to make the test conservative.

Another method of using edge counts in a non-linear way comes
from the connection between TMantel and linear regression. In a bi-
variate ordinary least squares (OLS) regression of Y on W(k), it is
straightforward to show that the estimated coefficient for W(k) is pro-
portional to Rk− μk, where μk is the expected value for Rk under the
null hypothesis of no effect. Extending the regression to include all
three indicators W(0), W(1), and W(2), but necessarily no intercept, a
statistic based on the coefficient of determination3 is equivalent to

= + +T R R R R
m

R
m

R
m

( , , ) .CoD 2 1 0
0
2

0

1
2

1

2
2

2

For details, see Appendix B. As this statistic is quadratic in the three Rk,
it can be expected to perform similarly to TCF, though it does not ac-
count for the covariance between the edge counts. As we will see in
Section 3, TCF and TCoD exhibit nearly equivalent power in a wide
variety of contexts, with one occasionally exhibiting slightly more
power than the other. TCoD therefore has the advantage of being slightly
simpler to calculate than TCF, while providing nearly identical perfor-
mance in many settings.

Edge count statistics are not the only feature of a graph that can be
used in a randomization or permutation test. Statistics that count tri-
angles, paths of a certain length, or other local features could be used in
place of the edge counts statistics. Alternatively, researchers might wish
to use higher order features of the graph not easily described by any
local feature. In the next section, we propose methods that incorporate
global aspects of the graphs, such as clusters and graph topology in
order to test the sharp null hypothesis of no effects.

2.3. Global approaches

In the previous section, we considered statistics that operated by
splitting the network into treatment and control subgraphs and com-
paring features of the two subgraphs, such as edge counts. In this sec-
tion, we introduce statistics that analyze the entire graph and reduce
the graph to a vector of node level summaries. Critically, the first step in
this process, analyzing the entire graph, is done without respect to the
observed treatment assignment. Only after performing this analysis is
the treatment assignment information used to construct a randomiza-
tion test.

Our first set of test statistics are constructed by applying community
detection algorithms to the graph.4 In this paper, we focus on graph
partitioning algorithms that generate a single label for each node:
C∈ {0, …, k−1}n. We use these labels to construct a 2× k table
counting treatment and control nodes in each cluster. Under the sharp
null hypothesis that treatment had no effect, we would have seen ex-
actly the same network, and therefore the clustering algorithm would
have provided exactly the same labels for any treatment assignment. In
the simplest case when k=2, we have reduced the network to a binary
variable measured for each node. With the total number assigned to
treatment and control conditions fixed, and the number of units in each
cluster fixed under the null hypothesis of no effect, then Z′C follows a

hypergeometric distribution (Fisher, 1935). The hypothesis can then be
tested using Fisher's exact test. For k > 2 clusters, several extensions
exist that generalize the 2× 2 methods to 2× k tables (Agresti, 1992;
Hirji and Johnson, 1996).

Fig. 2 provides a graphical representation of using clustering to
create a hypothesis test. For a small simulated network and treatment
assignment, the figure shows the initial network, clustering without
treatment assignment labels, adding the labels back, and cross classi-
fying the node-cluster counts. In this example, spectral clustering was
performed to partition the graph into two blocks, though any other
clustering procedure may be used.

Researchers have identified many other global properties of graphs
that can be used to describe their topology. Those methods that assign
numerical or ordinal scores to nodes can be used to construct tests as
well. One key area of inquiry in social network analysis is ranking nodes
on their “centrality” to the network. There are several different mea-
sures of centrality (Freeman, 1978), typically based on either graph
theoretic quantities such as the number of paths in which a node is
present (Borgatti, 2005; Borgatti and Everett, 2006) or spectral de-
composition of the graph (Bonacich, 1972, 2007).

We use the spectral definition of centrality that defines centrality as
the eigenvector of the largest eigenvalue λ of the adjacency matrix A:
Ax= λx . For each node, xi can be thought of as proportional to the sum
of the centrality scores of i's neighbors, where λ is the constant of
proportionality. While it may sound circular, this definition captures
the fact that central nodes are those that are connected to other central
nodes. When there are multiple disconnected components to the graph,
there will be multiple eigenvectors for λ, with the ith entry being non-
zero for only one vector for each node i. In that case, we take xi to be the
non-zero entry for any of the matching eigenvectors. To perform in-
ference, the xi values can be ranked to perform a
Wilcoxon–Mann–Whitney (WMW) test of the hypothesis that treatment
had no effect on the network (Lehmann, 1975; Maritz, 1981). Fig. 1
plots the network used in the previous example with node sizes pro-
portional to the rank of the centrality of the node, as measured by ei-
genvector centrality.

3. Simulations

In the following simulations, we investigate statistical properties of
the randomization and permutation tests discussed in this paper. In
particular, we investigate the Type I and Type II error, the probability
of rejecting true and false null hypotheses, respectively. To investigate
Type I error, we generate networks and then assign treatment and
control labels uniformly at random, independent of the network. To
investigate the power (i.e., not making a Type II error), we first assign
treatment to the nodes and then allow the treatment assignment of
nodes to influence the formation of edges. Using several common net-
work generation methods, we parameterize the model to include the
treatment assignment in increasingly influential ways. We fix α=0.05
and find the simulations in which the null hypotheses are rejected.

All simulations contain 100 units with 50 of those assigned to the
treatment condition. We allocate the first 50 nodes to the treatment
condition and allocate the remaining nodes to the control condition. For
each of k=500 replications, a network is generated and the strict null
hypothesis of no effect is tested at the α=0.05 level using several test
statistics. We consider the following test statistics:

• Edge Diff: The difference of edge proportions within the treated and
control groups, T(R2, R0)= R2/m2− R0/m0, used in a two-tailed
test.
• CF: The Mahalanobis statistic of Chen and Friedman used in a ran-
domization test.
• CoD: The coefficient of determination from a QAP regression on
indicators created for each level of W∈ {0, 1, 2}n used in a rando-
mization test.

3 The coefficient of determination is more commonly known as the “multiple
R2” and is used to simultaneously describe the strength of the linear relation-
ship between the outcome and predictors while also explaining the percentage
of variance in the outcome reduced by the fitted regression. Here we use the
slightly longer title, “coefficient of determination,” to disambiguate it from the
squared total number of edges. We thank an anonymous reviewer for prompting
us to consider this statistic.

4 Reviews of community detection algorithms can be found in Schaeffer
(2007), Fortunato (2010), Coscia et al. (2011), Nascimento and de Carvalho
(2011), Fortunato and Castellano (2012), Harenberg et al. (2014), Amelio and
Pizzuti (2014), and Bedi and Sharma (2016).
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• Clustering: A Fisher’s exact test applied to the clusters resulting from
spectral clustering.
• Centrality: A Wilcoxon–Mann–Whitney test applied to nodal eigen-
vector centrality.

Even though the size of the experiment is not large, the probability
mass function (PMF) statistic required more Monte Carlo samples than
were feasible with reasonable computation size. For a single experi-
ment, adding more samples is not too onerous, but within a simulation
with 500 replications, computation became untenable.

To compare the randomization and permutation methods with a
well-known parametric approach, we tested the hypothesis of no effect
using an exponential random graph model (ERGM). Similar to the
methods that use R2, R1, and R0, we fit the ERGM with a coefficient for
each of =W k, 1, 2, 3k

ij
( ) . We also include a term for the geometrically

weighted edgewise shared partner (GWESP) distribution (Hunter,
2007). This term requires a decay parameter, which can be estimated
within the ERGM (Hunter and Handcock, 2006) but is computationally
expensive. For each parameter tested, we estimate the decay parameter
on 10 networks without including the treatment indicator coefficients,
then use the average estimated decay in the models fit on the 500 si-
mulation replications. Again as a necessary computational step, each
model is fit using maximum pseudo-likelihood. To test the hypothesis
that Y is independent ofW, an F-test is performed to compare the fit of
the full ERGM to one that only includes the GWESP term.

We considered five different data generating processes for the net-
works and parameterized these processes to vary between having no
treatment effect and a large treatment effect on some aspect of the
network. The five methods are

• An exponential random graph model in which treated units are more
likely to form edges.
• A stochastic block model with blocks defined by treatment assign-
ment with varying within and across block edge probabilities.
• A latent space model in which treatment status determines latent
positions.

Fig. 1. A graphical representation of using
community detection to form a hypothesis test
of the sharp null of no effects. Panel (a) shows
an example network with treated (black) and
control (gray) nodes. In panel (b), the treatment
assignments are ignored and clustering is per-
formed. In panel (c), treatment labels are re-
turned and assignment-cluster totals are used to
form panel (d).

Fig. 2. Example network from Fig. 2 with node sizes proportional to the rank of
eigenvector centrality.
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• A preferential attachment model in which treated units are more
desired than control nodes.
• A process in which treated neighbors in an Erdös-Renyi graph are
more likely to complete a triangle.

For all data generation methods, we tuned the processes so that graphs
had similar densities, with about 15% of the possible dyads forming
edges. Fig. 3 shows example networks for each data generating process

with the relevant treatment effect parameter set to no treatment effect,
a moderate treatment effect, and a large treatment effect. We describe
the simulation techniques in more detail in the following paragraphs.

We begin our simulations with perhaps the most common network
formation model: an exponential random graph model. To include a
treatment effect, the linear index for edge (i, j) is given by
−2+ β(Zi+ Zj−1). The parameter β is varied from 0 to 0.3. As β
increases, dyads with treated endpoints will be much more likely to

Fig. 3. Example networks for each data generating process used in the simulation studies. For each type of network, the left graph shows no treatment effect, the
center graph shows moderate treatment effects, and the right graph shows strong treatment effects. The value after the title gives the exact parameter value, which
corresponds to the horizontal axis in Fig. 4.
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form an edge compared to those without any treated nodes, making the
treated units both more clustered and having more edges into the
control group. By setting the intercept term to −(2+ β), the overall
density of the graph will remain relatively consistent across parameter
values. The model also includes a term to increase the number of tri-
angles in the network, though this term does not depend on the treat-
ment assignment. Fig. 4(a) shows the results of the simulation. When
β=0, the null hypothesis is in fact true, and all methods are able to
meet their specified nominal level. With the exception of the clustering
statistic, all methods exhibit similar power, rejecting nearly all net-
works as β approaches 0.3. Among these, edge count difference statistic
performs slightly better than the others. The data generation process for
these networks made treated units more likely to form edges with both
treated and control nodes, and the spectral clustering statistic was un-
able to separate the group, generating effectively no power in this si-
mulation.

It may seem surprising that the ERGM test is the least powerful
among tests with non-negligible power, but note that the ERGM test is
specified with a slightly broader model that includes specific terms for
the control edges and the geometrically weighted edgewise shared
partner distribution, neither of which was used in the simulated net-
works. In other simulations (not reported), testing using only the
coefficient for the treated nodes leads to power comparable to the edge
count difference statistic, but caused serious issues with Type I error in
other simulations. The broader specification is more generally applic-
able, at the cost of some power in this specific example.

The second simulation generates the network from a stochastic
block model (SBM). In this model, the treatment and control groups

define two latent communities. All edges between nodes in the same
community occur with probability pwithin, independently. All across
group edges occur with probability pacross. We parameterize the simu-
lation by the ratio of these two probabilities θ= pwithin/pacross and vary
θ ∈ [1, 1.5]. In order to keep the overall density of the network similar
to the ERGM simulation, we fix the marginal probability of an edge at
0.15 and find pwithin and pacross such that their ratio is θ. Fig. 4(b) shows
the results of these simulations with θ on the x-axis. In this simulation,
the ERGM, CF and CoD statistics perform virtually identically, all
achieving the best power curve of any test. Somewhat surprisingly, the
clustering based statistic only exhibits modest power. While we em-
ployed a spectral clustering method, it may be that other clustering
techniques could better detect the SBM structure and reject the null
hypothesis of no effect more frequently. The centrality statistic does not
perform well in this simulation, which makes sense as treatment and
control groups are symmetric in their edge probabilities. The edge
difference test also performed poorly due to the effect of treatment
operating equally on both R2 and R0. Again, all tests are able to meet
their nominal Type I level.

In the third simulation, we use a one-dimensional latent space
model. Each node i is given a location on the real line Xi∼N(Ziμ, 1),
with μ varying from 0 to 2. The probability of an edge between any two
nodes i and j is given by (9− μ)−1/2 exp(−(Xi− Xj)2). The leading
(9− μ)−1/2 was selected to keep the overall number of edges similar to
the ERGM and SBM simulations. Fig. 4(c) shows the clustering statistic
generally outperforms the others. The CF statistic just edges out the
QAP statistic. The centrality statistic exhibits some power, though it
grows slowly as average distance between the treated and control

Fig. 4. Power plots for the five permutation test statistics and the ERGM parametric test for a variety of data generation methods. Each model is parameterized by the
x-axis. The y-axis is the probability of rejecting the null hypothesis at the α=0.05 level.
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groups increases. In this simulation, the ERGM based test performs
moderately well, with proper Type I error and power not much less than
the best performing methods. Again the simple edge count difference
statistic displays very little power due to the symmetry of the treated
and control latent space distributions.

In the fourth simulation, we generate a “scale free” network where
few nodes have very high degree and most nodes have very low degree.
Pairs of nodes (i, j) are drawn with probabilities pi and pj, respectively,
and an edge is formed between i and j. The process is repeated until the
density of graph is approximately 0.15, again to match the previous
simulations. Nodes with higher probabilities of being sampled will have
many more neighbors than those with low probabilities. To assign
probabilities, we use the latent positions Xi from the previous simula-
tion. All nodes are ranked such that ai=1 implies that node i has the
highest Xi and ai= n implies node i has the smallest Xi. Then pi ∝ 1/ai,
such that == p 1i

n
i1 . As the parameter μ, the difference between the

means of the treatment and control latent distributions, increases, the
most preferred nodes are increasingly composed of the treated group.
Fig. 4(d) shows that the centrality statistic performs the best for this
data generating process, with QAP, CF, and edge difference statistics
also performing well. As in the first simulation, treated nodes will form
edges with both treated and control units at a high rate, and accord-
ingly the cluster statistic has no power at any value of θ. While the
ERGM test appears to have one of the strongest power curve, this comes
at a cost of rejecting the true null hypothesis at about 10 times the
allowed Type I error rate. It would appear that the parametric as-
sumptions of the test mistake unrelated network structure for treatment
effects in this type of network.

In the fifth simulation, we take an algorithmic approach to network
generation. First, we generate an Erdös-Renyi random graph with edge
probability θ1. After assigning treatment and control labels to the
nodes, for all treated nodes i and j that do not already have an edge but
do share at least one treated neighbor, a new edge is added with
probability θ2, which is varied from 0 to 0.3 over the simulation. Based
on θ2, we select θ1 so that the overall density is again 0.15 in ex-
pectation. Fig. 4(e) shows similar results to the first simulation, with the
ERGM fit performing slightly better. With some additional edges with
the treated group, the clustering statistic exhibits some power, but
much less than any of the other methods.

While not an exhaustive list of ways in which networks could be
generated, the five selected models cover many of the most common
approaches used in network analysis. Looking across these simulations,
we see that both the CF Mahalanobis distance statistic and the coeffi-
cient of determination from a QAP regression are frequently the best
performing, often having the greatest power or nearly greatest power. If
researchers suspect that treatment induces a latent space model or a
preferential attachment model, the clustering or centrality statistics
would be a better choice. The parametric exponential random graph
model generally had competitive power, but struggled in the face of
deviations from the parametric assumptions in the latent space and
preferential attachment models.

4. Data applications

4.1. Gene wide association study

Tsavachidou et al. (2009) conducted a 2× 2 factorial randomized
controlled trial to test the effect of selenium and vitamin E to combat
the progression of prostate cancer. Both selenium and vitamin E had
been identified in a previous observational study of prostate cancer as
potentially having positive benefits. Subjects were recruited from pa-
tients scheduled to undergo a prostatectomy due to existing prostate
cancer. Overall, 39 patients were recruited. After 3–6 weeks of treat-
ment (placebo, selenium, vitamin E, or both), 39 subjects underwent
surgery to remove their prostates. Cells were collected and subjected to
expression assay. The original study selected cells in three different

regions of the excised prostate: epithelial cells, stroma cells, and tumor
cells. As only epithelial cells assays are available for all 39 patients, we
focus on only those data in this analysis.

After collecting the microarray expression data, Tsavachidou et al.
(2009) fit two-way ANOVA models for the two main effects as well as
the interaction effect, assuming normally distributed error terms. With
nearly 14,000 genes under study, the researchers applied a beta-uni-
form mixture model to control the false discovery rate at the 2% level.
Comparing the placebo to selenium, vitamin E, and combination
treatments, the researchers found 2109 differentially expressed genes,
with 1329 of those significant comparisons coming from the selenium-
placebo contrasts, and concluded that there were significant differences
between the treatment conditions with respect to gene expression.

As an alternative to the parametric methods employed in the ori-
ginal publication, we apply the randomization inference network
methods proposed in this paper. We create a gene co-expression net-
work in which nodes are subjects and edges are present between sub-
jects that have a similar pattern of gene expression, looking across all
genes in the microarray assay. Within each subject, we rank all genes by
expression level. Overall rates of expression may vary for subjects for
idiosyncratic reasons; transforming expression levels into ranks within
subjects allows for a common scale. We then compute the correlation of
ranks between subjects. From these correlations, an edge is added be-
tween i and j if either i or j is in the other's top ten largest correlations.
Fig. 5 shows the resulting network for the 39 subjects and 74 edges.
Nodes are labeled by their treatment assignment.

After collapsing the treatment categories to subjects that received
any selenium (the selenium and combination therapy groups) and those
that did not (the vitamin E and pure control groups), we test the null
hypothesis of no effect on the network using the randomization tests
discussed in this paper: the difference of edges within the treatment and
control groups, the coefficient of determination from a full QAP re-
gression, the Mahalanobis statistic of Chen and Friedman, the prob-
ability mass function for the group edge counts, a Fisher's exact test
applied to the results of spectral clustering, and a
Wilcoxon–Mann–Whitney test applied to node eigenvector centrality.
Table 1 reports the p-values for the sharp null hypothesis of no effects
for the six statistics. The strongest result was found for the clustering
statistic. If treatment truly had no effect, the observed concordance
between cluster membership and treatment assignment group observed
was extremely unlikely, suggesting that treatment lead to distinct pat-
terns in gene expression. Fig. 6 shows the clusters found when using the
clustering statistic. Visually, the treated units (black circles) largely
separate from the control units (white squares). The p-value of 0.041
quantifies that this type of pattern would occur in very few random
assignments, providing evidence against the sharp null of no effects.

The statistics based on edge counts were somewhat split on the
evidence against the null. The two statistics that account the joint
distributions of R2 and R0 directly, with the CF and PMF statistics,
provided some evidence against the sharp null, but the simple edge
difference and QAP coefficient of determination did not. The centrality
statistic provided almost no evidence against the null, indicating
treated and control units were indistinguishable with respect to cen-
trality in the network.

Overall this pattern is most similar to the results reported for the
latent space model used in the simulation, in which clustering, CF, and
PMF were reasonably powerful, with the other statistics demonstrating
substantially less power. Further analysis using latent space models
may prove a useful way to capture a lower dimensional representation
of the effect of treatment on this network.

4.2. Female representation on corporate boards

Seierstad and Opsahl (2011) studied female representation on 384
corporate boards in Norway over the period of May 2002–August 2011.
On alternating months, they compiled lists of corporate boards and
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matched first names to lists of names that have clear gender reference.
Names that could not be easily matched were assigned a gender by
investigating corporate web sites. Seierstad and Opsahl (2011) created
networks of individuals with a link between any two people who served
on the same board in the same month.

We investigate the network created by the union of networks of
board members for the period of October 2010 to August 2011, com-
prising six individual networks. Fig. 7 shows the network with female
members in white and male members in black, as well as the degree
distribution. Perhaps most striking about this network is the large
number of small components and one large central component. By
construction, any node in this network must have a degree of at least
one. 90% of nodes have a degree of 10 or less, with a few nodes having
degree as high as 39.

Table 2 shows the results of testing the null hypothesis that gender
labels can be shuffled uniformly at random. The non-linear edge count
statistics show strong evidence against the null with the p-value for the
CF and CoD statistics being equal to 1 in 100,000, the number of Monte
Carlo samples used. In other words, following 100,000 Monte Carlo
samples, none had higher CF or CoD statistics than those observed. The
p-value for the PMF statistic was small, though not nearly as definitive.
The edge difference statistic did not detect any evidence against the
null, nor did the global clustering and centrality statistics. This pattern

Fig. 5. The network derived from the gene expression data described in Tsavachidou et al. (2009) based on similarity of expression rates. Nodes are labeled by
treatment assignment: (p)lacebo, vitamin (e), (s)elenium, or (b)oth.

Table 1
Hypothesis tests of the sharp null of no effects for the network
derived from the gene-wide association study with randomly
assigned selenium intake (Tsavachidou et al., 2009).

p-Value

Edge difference 0.812
Coefficient of determination 0.244
Chen and Friedman 0.065
Probability mass function 0.059
Cluster 0.041
Centrality 0.883

Fig. 6. Network of selenium and placebo subjects with clusters identified. Black circles are control units. White squares are treated units.
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of results is suggestive of both the preferential attachment model in
which treatment increases the desirability of treated units and the
stochastic block model, though neither perfectly captures the pattern of
evidence. Norwegian law requires at least one woman per corporate
board, and this requirement may generate structure that sits somewhere
between the preferential attachment and stochastic block models.

5. Discussion

In this paper we considered the role of randomization and permu-
tation tests in the analysis of social networks. While permutation tests
have a long history in network analysis, they are often perceived as

being of limited investigative value. We demonstrated the utility of
selecting statistics that possess power against meaningful alternatives
and introduced several new statistics to provide researchers with more
opportunities to test against specific alternatives. Many opportunities
exist to harness other network statistics to be used in permutation and
randomization tests.

Throughout the paper, we emphasized that randomization tests
permit causal interpretations of networks when testing the specific null
hypothesis that treatment had no effect. To be clear, the methods in-
vestigated in this paper present a particular model of causal events, in
which the treatment assignment mechanism is known to precede the
network. The potential outcomes model has proven useful in other
areas of social and behavioral investigation, and we hope that this
paper spurs additional developments under this framework in the net-
work analysis context.

Consistent with literature outside of network analysis, our simula-
tions showed that parametric methods can be quite powerful when the
assumptions are met but can also perform poorly when those assump-
tions are violated. On the other hand, the permutation and randomi-
zation tests presented were able to maintain acceptable power, at least
across multiple statistics, while consistently meeting expectations for
Type I error rates. As discussed in the analysis section, rejecting hy-
potheses using non-parametric methods can then lead to modeling
using parametric forms. This suggests permutation tests have a role to

Fig. 7. Gender co-membership on publicly listed boards in Norway in 2010 and 2011. Panel (a) shows the network itself. White nodes are female members and black
nodes are male members. Board members share an edge if both members served on the same board at some point during the study period. Panel (b) shows the degree
distribution.

Table 2
Hypothesis tests of the sharp null of no effects for the corporate
board co-membership network of Seierstad and Opsahl (2011).

p-value

Edge difference 0.443
Coefficient of determination < 0.001
Chen and Friedman <0.001
Probability mass function 0.076
Cluster 0.867
Centrality 0.222
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play as a model selection tool in a larger network analysis research
plan.
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Appendix A. Moments of R2, R0

The test statistic TCF requires computing the expected number of edges within the treated group (μ2) and the control group (μ0), as well as the
variance–covariance matrix Σ20, with entries σij. Let R be the number of edges in the network, n the number of nodes, n1 the number of units assigned
to the treatment condition, and n0= n− n1 the number of units assigned to control. Then
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1 and di is the degree of node i. A proof of these quantities is given in Chen and Friedman (2017).

Appendix B. QAP derivations

As noted in Dekker et al. (2007), under the restricted permutation of QAP or the methods proposed in this paper, the sample correlation between
Y andW(k), k ∈ {0, 1, 2} is a linear function of the estimated parameter forW(k) in a regression on Y, for any valid permutation of Y. In this appendix,
we show that function operates through Rk, the total number of edges with treatment assignment Wij= k. We also derive the relationship for the
coefficient of determination — often called R2, we use the longer title to avoid confusion with edge totals.

Recall the definitions Y′Y= R and Y′W(k) = Rk, with the property that R= R0+ R1+ R2. We begin with the sample correlation between the
network (as a vector of unique edges) and W(2), the indicator for edges with two treated end points:

<
Y W WY WCor( , ) ( ¯ ).

i j

(2)
ij ij

(2) (2)

There are m= n(n−1)/2 total units in Y and W(2). There are m2= n1(n1− 1)/2 entries where =W 1ij
(2) , so

=W m
m
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By definition, Y′W(2)= R2, so
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2

2

Under the sharp null hypothesis of no effect, or equivalently the permutation hypothesis, R is a fixed quantity, so using R2 is equivalent to the sample
correlation as a test statistic (i.e., tests that reject for large values of the sample correlation will also reject for large values of R2). Similar derivations
show
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where m0= n0(n0− 1) and m1=m−m2−m0= n1n0.
Bivariate QAP can also be used for linear combinations of R2, R1, and R0. Let = + +V aW bW cWij ij

(2)
ij
(1)

ij
(0). The correlation of Y and V is pro-

portional to

<
Y V VY VCor( , ) ( ¯ ),

i j
ij ij

where

= + +V am bm cm
m

¯ .2 1 0

By the same logic as the previous computations,
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In a regression of Y on the three indicators W(0), W(1), and W(2) (with no intercept), let = + +Y W W Wˆ ˆ ˆ ˆ
0

(0)
1

(1)
2

(2). For any regression, the
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coefficient of determination is

Y Y
Y Y

Y 1 Y 1
1 ( Ŷ) ( Ŷ)

( ¯ ) ( ¯ )
.

Expanding the numerator yields,

= +RY Y Y Y Y Y Y Y( ˆ ) ( ˆ ) 2 ˆ ˆ ˆ .

Define the design matrix for the regression as

=X W W W( ).(0) (1) (2)

Standard least squares results show that
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We break this second term into two pieces, Y X X X( ) 1 and X′Y. Breaking the first term into its constituent parts,
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Pre-multiplying by Y′,
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Separately, we see that

=
R
R
R

X Y .
0

1

2

Putting this all together,

= + +R
m

R
m

R
m

Y Ŷ .0
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The denominator from the coefficient of determination is
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Putting this together, we find the complete coefficient of determination,
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For any test that rejects when the coefficient of determination exceeds some constant c, the test would also reject when
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