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Abstract. The effect of diffusion rates on the basic reproduction number of a general com-
partmental reaction-diffusion epidemic model in a heterogeneous environment is considered. It is
shown that when the diffusion rates tend to zero, the limit of the basic reproduction number is the
maximum value of the local reproduction number on the spatial domain. On the other hand, when
the diffusion rates tend to infinity, the basic reproduction number tends to the spectral radius of the
“average” next generation matrix. These asymptotic limits of basic reproduction number hold for a
class of general spatially heterogeneous compartmental epidemic models, and they are applied to a
wide variety of examples.
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1. Introduction. In mathematical modeling of infectious diseases, the basic
reproduction number Ry is a key indicator for disease transmission. When Ry < 1, the
disease declines and eventually vanishes, and when Ry > 1, the disease spreads in the
population, and an outbreak is possible [4]. Roughly speaking, the basic reproduction
number Ry is the average number of healthy people infected by one contagious person
over the course of the infectious period. In more mathematically rigorous terms, for
ODE epidemic models that are nonspatial, Ry is defined as the spectral radius of
the next generation matrix [13, 43|, which is established in a general framework of
compartmental disease transmission models. This definition is also generalized to
epidemic models with infinite-dimensional state space [41].

As the environment in which the disease spreads is spatially heterogeneous, the
transmission and spreading of the infectious disease is inevitably affected by the spatial
structure and heterogeneity of the environment. These factors can be incorporated
into underlying mathematical models to show the effect of spatial heterogeneity on
the disease transmission. The spatial structure and heterogeneity can be modeled in
a discrete space using an ODE patch model [1, 5, 29, 42], or they can be modeled in a
continuous space using a reaction-diffusion-advection PDE model [2, 11, 45, 48]. The
notion of the basic reproduction number is also extended to both classes of models.
In particular, a theory of basic reproduction numbers for general reaction-diffusion
compartmental disease transmission models was recently developed in [45].
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For spatially heterogeneous reaction-diffusion epidemic models, the basic repro-
duction number Ry usually depends on the diffusion rates of populations. For example,
in the reaction-diffusion SIS epidemic model considered in [2],

I = diAT + B(z) 25 — (@), z€9Q,t>0,
Sp = dsAS — B(x) 2L +y(@), z€Q,t>0,
o, =98,5=0, zed, t>0,

where B(z) is the transmission rate, vy(z) is the removal rate, and dr,dgs are the
diffusion rates of infectious and susceptible populations, respectively. It was shown
that the basic reproduction number is defined as

fQ Be?dx
fQ (dl‘qu‘z + 7¢2)

Moreover, it was shown in [2] that Ry has the following asymptotic profiles with
respect to the infectious population diffusion rate d;:
Blx)

1.2 lim Ry = max —, lim R
( ) d;r—0 0 zeQ ’)/(IIZ) dr—oo 0

(1.1) Rozsup{ T :¢€H1(Q),¢7é0}.

_ Jo Bdx
Jovdz

Notice that the quantity B(x)/y(z) is the local basic reproduction number at z when
there is no spatial movement; hence, the global basic reproduction number tends to
the maximum of local one as the diffusion rate tends to zero. On the other hand, the
limit of the basic reproduction number for a large diffusion rate is the ratio of the
average transmission rate and the average removal rate. Similar asymptotic profiles
for Ry were also obtained in [32, 40] for several kinds of other spatially heterogeneous
epidemic reaction-diffusion models. The results in [32] are based on the fact that R
equals the spectral radius of the product of the local basic reproduction number and
strongly positive compact linear operators with spectral radii one.

In this paper, we aim to characterize limiting profiles of the basic reproduction
number Ry for general spatially heterogeneous reaction-diffusion compartmental epi-
demic models for small or large diffusion rates.

We consider the reaction-diffusion compartmental epidemic model

(13) {aui/at:diAui—i—fi(x,u), reN t>0,1<i<n,

dyu; =0, €N, t>0,1<i<mn,

which was proposed in [45]. Here u; is the density of the population in the ith
compartment, d; > 0 is constant and represents the diffusion coefficient of population
u;, 2 is a bounded domain in RY (N > 1) with smooth boundary 99, v is the
outward unit normal vector at x € 052, and f;(x,u) is the reaction term in the ith
compartment. Moreover,

filz,u) = Fi(z,u) — Vi(z, u),

where F;(z,u) is the input rate of newly infected individuals in the ith compartment,
Vi(z,u) = V; (z,u) — V" (x,u), V;" (x,u) is the rate of transfer of individuals into the
ith compartment by all other means, and V; (z, u) is the rate of transfer of individuals
out of the ith compartment. More biological explanations of model (1.3) can be found

in [45]. In this paper, we will show the asymptotic profiles of Ry for model (1.3)
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as (dy,...,dy) — (0,...,0) and (di,...,d,) — (00,...,00). Our results indicate
that the trend set in [2, 32] holds true for epidemic models in a much more general
setting: In the small diffusion limit, the global basic reproduction number tends to
the maximum of the local basic reproduction number, and in the large diffusion limit,
the global basic reproduction number tends to some kind of spatial average of the
local basic reproduction number.

There are extensive results on reaction-diffusion epidemic models. The asymptotic
profiles of the endemic steady states were considered in [2, 35, 37, 48] and references
therein, and the global dynamics of the epidemic models can be found in [8, 12, 23,
25, 27, 31, 36, 46]. The effect of diffusion and advection rates on Ry and the stability
of the disease-free steady state for a reaction-diffusion-advection epidemic model was
considered in [11]; see also [10, 18, 22, 33| for reaction-diffusion-advection epidemic
models. The definition of Ry for time-periodic reaction-diffusion epidemic models was
given in [6, 26, 49], and the global dynamics for a time-periodic or almost time-periodic
reaction-diffusion SIS epidemic model was studied in [38, 44]. The reaction-diffusion
epidemic models with free boundary conditions were investigated in [9, 16, 28] and
references therein, and reaction-diffusion epidemic models with time delays were also
studied extensively; see, e.g., [7, 30, 47].

Throughout the paper, we use the following notations. For n > 1,

For a closed and linear operator A, we denote the spectral radius of A by r(A), the
spectral set of A by (A), and the spectral bound of A by

s(A) :=sup{ReX: A € 0(A)}.

Let P = (Pjj)i<ij<i and Q = (Qij)1<ij<i be I x 1 (I > 1) real-valued matrices, and
let Q(z) = (Qi5(x))1<i,j<i be an I x I matrix-valued function.

P > @ means P;; > Q;; for each 1 < 4,5 <.

P > @Q means P;; > Q;; for each 1 <4,7 <.

lim, sz, Q(z) = Q means lim,_,,, Q;;(x) = Q5 for each 1 < 4,5 < L.

The matrix P is called positive if all entries of P are nonnegative and there exists
at least one positive entry.

The matrix P is called zero if all entries of P are zero.

The matrix P is called cooperative (or quasi-positive) if all off-diagonal entries of
P are nonnegative, i.e., P;; > 0 for i # j.

Moreover, (dy,...,d,) —= (0,...,0) means max<;<, d; — 0.

(dv,...,dn) = (00,...,00) means minj <<, d; — 0.

The remaining part of the paper is organized as follows. In section 2, we show some
preliminaries for further applications. In sections 2 and 3, we show the asymptotic pro-
files of Ry for model (1.3) as (dy,...,d,) — (0,...,0) and (dy,...,d,) — (00,...,00),
respectively. In section 4, we apply the theoretical results to some concrete examples.

2. Some preliminaries. In this section, we recall the definition of basic re-
production number for reaction-diffusion epidemic models in [45]. Assume that the
population v = (ug,...,u,)" of model (1.3) is divided into two types: infected
compartments, labeled by ¢ = 1,2,...,m, and uninfected compartments, labeled by
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i=m+1,...,n. We set

(u17 )Ta us = (um+1,...,un)T,
(2 1) (dl, )T7 ds = (dm+17~">dn)T7
' d,AuI (dy Au1, oy Au)T ) dsAug = (dpy1 At - - - dpAuy) 7,
fr@u) = (fulm,w), s fn(ww)”, fo(@u) = (fnga(@,u), - fole, )"
Let

Us:={u>0:u;=0foranyi=1,...,m},

denote the set of all disease-free states of (1.3), and assume that model (1.3) has a
disease-free steady state

(2.2) W) = (0,...,0,u% 4 (2),...,ud(2)) ",

where u{(z) > 0 for any i =m +1,...,n and = € Q. Define the three matrices

OF;(xz,u
F(z,u) = (Fij(, u))1gi,j§m = (a(u)) )
J 1<i,5<m

Vi(x,u
(2.3) V(z,u) = (Vij(xvu))gi,jgm = <8(u)> ’
3 1<i,j<m
afier(xau))
M(x,u) = (M;;(x,u ii<nem =\ —a——— )
( ) ( j( ))1§ IS ( 8uj+m 1<i,j<n—m
and let
(2.4) Bu:=djAu—V (z,u%(z)) u,

which is associated with the homogeneous Neumann boundary condition d,u = 0.
The following assumptions are imposed on model (1.3) (see assumptions (A1)—(A6)
in [45]):
(A1) For each 1 < i < n, functions F;(z,u), V;" (z,u), V; (z,u) are nonnegative
and continuously differentiable on Q x R%.
A2) If u; =0, then V; =
A3) F; =0 for i > m.
A4) Ifu € U, then F; =V  =0fori=1,...,m.
A5) M(z,u’(z)) is cooperative for any x €  and

s (dsA + M(z,u’(z))) < 0.
(A6) —V (z,u’(z)) is cooperative for any x € 2 and
s(B) = s(d;A -V (z,u°(z))) < 0.

Assumptions (A1)—(A6) are satisfied for most reaction-diffusion epidemic models.
Denote

(2.5) X =C(QR") and X, =C (Q,R7).
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X is an ordered Banach space, and X is a positive cone with nonempty interior.
Let T'(t) be the semigroup generated by B on X; i.e., T(t) is the solution semigroup
associated with the following linear reaction-diffusion system:

(2.6) {8u1/8td1Au1V(x,uO(m)) ur, €8, t>0,

Oyur =0, x e, t>0.

It follows from the comparison principle (see [41, Theorem 3.12]) and assumption
(A6) that B is resolvent-positive, T'(t) is positive (i.e., T'(t) X+ C X4 for all t > 0),
s(B) <0, and —B~'¢ = [ T(t)¢dt for ¢ € X. Note that F(x,u’(z)) is a positive
matrix, and it can also be viewed as a positive operator on C(Q, R™):

¢ € C(UR™) = F (z,u’(2)) ¢.

Clearly, the linear operator B + F(z,u°(z)) is also resolvent-positive. Then the fol-
lowing holds from [45, section 3| (or [41, Theorem 3.5]).

PROPOSITION 2.1. Assume that (A1)-(A6) hold. Then the basic reproduction
number is defined by
Ry=r(-F(z,u"(2))B™").

Moreover, the following statements hold:

(i) Ro — 1 has the same sign as s(B + F(z,u’(x))).

(ii) If Ry < 1, then u®(x) is locally asymptotically stable for system (1.3).

Next we recall several results which will be used later. First, we have the following
comparison principle.

LEMMA 2.2. Assume that P;(x) (i = 1,2) are m x m cooperative matrices for any
x € Q, all entries of Pi(x) (i = 1,2) are continuous, and Py(x) > Pa(x). Let T;(t)
be the solution semigroup on X (defined in (2.5)) associated with the following linear
reaction-diffusion system:

(2 7) {8u1/8t:d1Au[+Pi(x)u[, xGQ, t >0,

dyur =0, x eI, t>0,

where drAuy is defined as in (2.1) and d; > 0 fori=1,...,m. Then Ty (t)¢p > Ta(t)d
for any ¢ € X4 and t > 0.

Proof. Denote U;(z,t) = T;(t)¢ for ¢ € X, and it follows from the comparison
principle of cooperative parabolic systems that U;(x,t) > 0 for any (z,t) € € x (0, c0)
and ¢ = 1,2. Let W(x,t) = Uy(x,t) — Us(x,t), and then W (x,t) satisfies

Wt:d[AW—‘rPg(.’I?)W—‘r(Pl(Z‘)—PQ(JJ)) Ui, z€Q, t>0,
(2.8) 8, =0, v Ed0, >0,
W(z,0) =0, xz € Q.

Note that Py(x) > Pa(z) and Uy (z,t) > 0 for any (z,t) € Q x (0,00). Again it follows
from the comparison principle of cooperative parabolic systems that W (x,t) > 0 for
any (z,t) € Q x (0,00). This completes the proof. d
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Second, we recall the Krein-Rutmann theorem (see [3, Theorems 3.1 and 3.2] or
[32, Theorem 2.5]).

LEMMA 2.3.

(i) Suppose that T : X — X is a positive compact linear operator with positive
spectral radius r(T'). Then r(T') is an eigenvalue of T with an eigenvector in
X2\ {0

(ii) Suppose that T : X — X is a strongly positive compact linear operator.
Then r(T) is positive and is a simple eigenvalue of T with an eigenvector in
Int(X4), and there is no other eigenvalue with a nonnegative eigenvector.
Moreover, if S : X — X is a linear operator such that S — T is strongly
positive, then r(S) > r(T).

Based on the Krein—Rutmann theorem in Lemma 2.3, we have the following two

results.

LEMMA 2.4. Let Ly, Ly be bounded, positive linear operators on X (defined in
(2.5)). Assume that Lip > Lad for any ¢ € X4 and that Lo is compact with positive
spectral radius r(Lgo). Then r(Ly) > r(La).

Proof. Tt follows from Lemma 2.3 that r(Ls) is an eigenvalue of Ls, and there
exists ¢ € Xy \ {0} such that ||@]lcc = 1 and Lo¢ = r(L2)¢. Then LT¢ > r™(La)d,
which implies that ||L}|| > r™(Ls). Therefore, r(L1) = lim, o0 ||L}||Y/™ > 7(Ly). O

Consider the following eigenvalue problem:

(2.9) diAD — P(2)® + aQ(x)® = AP, x € Q,

' d,® =0, x € 09,
where

(2.10) D= (d1,...,0m)7, diAD = (d1 A1, ..., dmAdy)T,

a >0, d; > 0fori= 1,....m, and P(a:) = (Pij (x))1§i7j§m and Q(l‘) = (Qij(x))lgi,jgm
are m X m matrices with continuous entries. Recall that an eigenvalue A of (2.9) is
called the principal eigenvalue if A € R and that for any eigenvalue such that # A,
we have Re < .

LEMMA 2.5. Assume that —P(x) is cooperative, Q(z) is positive for any x € Q,
and for any a € (0,00) there exists x4 € Q such that —P(x,) + aQ(z,) is irreducible.
Let A(a) be the principal eigenvalue of (2.9). Then A(a) is strictly increasing for
a € (0,00).

Proof. Since —P(z) + aQ(z) is cooperative for any z € Q and a > 0, it follows
from Lemma 2.3 that A(a) is well defined and

A(a) = sup{ReA : A is an eigenvalue of problem (2.9)}.
Let T°(t) be the solution semigroup associated with the linear parabolic system

Vi = diAV — P(2)V +aQ(x)V, t>0, z €,
(2.11) 8,V =0, t>0, = €dQ,
V(z,0) = Wo(x), x € Q.
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Then it follows from [39, Theorem 7.4.1] that T*(¢) is strongly positive and compact
for any @ > 0 and t > 0. Let a; > ag, ® € X1 \ {0}, and

Ur(a.t) = (U (@1, Ufm>(x,t))T _ 7 ()9,
(2.12) .
Us(z,t) = (Uél)(z,t), N .,UQ(m)(:z,t)) = T%(1)®.

Then Uy(z,t),Us(z,t) > 0 for any = € Q and ¢ > 0. It follows from Lemma 2.2 that
Ui(z,t) > Us(z,t) for any x € Q and ¢ > 0. Let W (x,t) = Uy (x,t) — Us(z,t), and we
see that U(z,t) satisfies

Wy = diAW — P(x)W 4+ a2Q(x)W + (a1 — a2)Q(x)Uz, t>0, z € Q,
(213) {a,W =0, t>0, €00,
W(z,0) =0, x e Q.

Note that Q(z) is positive for any = € Q and that Uj(z,t) > 0 for any z € Q and
t > 0. Then there exist 1 <4y < nand xy € Q such that 7, Qi (20) U (2o, 1) > 0
for any ¢ > 0, and consequently W, (z,t) > 0 for any # € Q and ¢t > 0. Note that
there exists x4, €  such that —P(x,,) + a2Q(24,) is irreducible. Then there exists
ig # 41 such that —P,,;, (T4,) + a2Qisi, (Ta,) > 0, which implies that W, (x,t) > 0 for
any z €  and t > 0. Following the above process, we could obtain that W (z,t) > 0
for any x € Q and ¢t > 0, which implies that T, (t) — T,,(t) is strongly positive for
any t > 0. It follows from Lemma 2.3 that

(2.14) 7 (Ty, (t)) > r (Ta,(t)) for any t >0,

It follows from [21, section 2] that A\(a) is an eigenvalue of problem (2.9). Then we see
from the spectral mapping theorem [34, Theorem 2.2.4] that (T, (t)) = eM®*. This,
combined with (2.14), implies that A(a1) > A(az). This completes the proof. O

3. The effect of diffusion rates. In this section, we show the asymptotic
profile of Ry for model (1.3) when all the diffusion rates are large or small.

3.1. Small diffusion rates. In this subsection, we consider the asymptotic pro-
file of Ry when (dy,...,d,) — (0,...,0). We first impose an additional assumption
for this case:

(A7) The disease-free steady state (0,...,0,ud, 1 (z),...,ul(x)) (defined in (2.2))

satisfies
lim ud (), ul (2
(3.1) (Aot seesd )= (0,..,0) +1(®) - (2))
= (c¢ma1(x),...,cp(x)) in C (Q,R”fm) ,
where ci(z) >0foranyr € Qand k=m+1,...,n.

In the next section, we will show that this assumption is not restrictive, and it is
satisfied for many kinds of epidemic models. Denote

(3.2) c(@) =(0,...,0,¢mi1(2), ..., cn() € C(QR"),
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and denote, for sufficiently small € (0 < € < min{c;(z) :i =m+1,...,n,z € Q}),

D ={(z,u1y...,up) tx €Q u; =0fori=1,...,m,
u; € [ei(x) — €,¢(x) + €] for i =m +1,. },
E'DC ,]

(z.u)€De 1<i,j<m
(3.3) Vs = ( max_V;;(z, u)) = < max OVi(z, u)) 7
(z,u)€DE 1<ij<m (z,u)eDE 6u] 1<ij<m
Fﬁ:( min  Fj; (sr:,u)) < )
(z,u)eDE 1<ij<m
OF;(z,u)

—-=C
F. = ( max Fj;(z, u)) = ( max 8) .
(z,u)€De 1<ij<m (z,u)€DE U 1<ij<m

Since D¢, C Dg, for 0 < €1 < €2, it follows that Fc and Vc are monotone increasing

for € > 0 and that F¢ and V¢ are monotone decreasing for € > 0. We will show that

these functions F V , F'¢, and V¢ are also continuous for € > 0 in the appendix.
Clearly, for € = 0, we have

Ve = (min V;j(x,c(m))> — (min W’c@”))) 7
z€Q 1<i,j<m z€Q Ou; 1<i,j<m

V= (maxtietn) = (max Ay

zen 1<i,j<m zen Ou; 1<ij<m
= (minrcn) = ()
z€Q 1<ij<m z€Q Ou; \<i j<m

—c OF;
Fy= (maxF,ﬂx,c(x))) = (max Z(x,c(x))) .
zeQ 1<4,5<m zeQ 8“] 1<i,j<m

Now we show the asymptotic profile of Ry as (d1,...,d,) — (0,...,0), and the method
is motivated by the one in [32].

THEOREM 3.1. Assume that (A1)—(A5) and (A7) hold,

mln ,

1<ij<m

b
(z,u)eDE j 1<i,j<m

EC

[}

(3.4) s (—VS) <0, s(=V§) <0 and r ((V8>1F8> > 0,

and that there exists g > 0 such that . 7

) ) c .
e 18 cooperative and F¢  1is positive, where

Vi, Ve, and F¢ are defined in (3.3). If the matriz =V (x,c(x)) + aF(z,c(x)) is
irreducible for any a > 0 and x € Q, where c(x) is defined in (3.2), then

3.5 li Ry = RS := -V, F(x, .

B3) i, g Fo = B = max [ (V@ ) e @)

Proof. Step 1. We show that there exist positive constants R, Ro, and Cy such
that Rg € [RO,RO] for any dy,...,dy > 0 and dpyyq,...,dy € (O Cy).

Since —V60 is cooperatwe and e is pos1t1ve for any x € Q, it follows from the
monotonicity of F., Vi, F°, and V¢ that —V? and —V¢ are cooperative and that
F. and F° are positive for any € € [0, ¢y]. Note that V¢ and V' are continuous with

€
respect to € (see Proposition A.1) and

lim V¢ = V5 and lim V', = V.
e—0

e—0
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It follows from [20, Theorem 2.5.1] that there exists €1 € (0,¢€p) such that
s(=V°) <0, s(=V.) <0 for any € € (0,¢].

Similarly, (V)1 F¢ is continuous with respect to € for € € (0,¢€1), and there exists
€2 € (0,€) such that r((V{)~1ES) > 0 for any e € (0, ey]. It follows from (A7) that,
for the above given €5 > 0, there exists Co > 0 such that

ci(z) — ea < ud(z) < ¢i(x) + €2

for any x € Q, dyy1,...,dn € (0,C2) and i = m+1,...,n. Denote by T;(t), e, (t),
C L diA—Ve  and d;A -V (z,ul(z)),

€2 Y €27

and T'(t) the semigroups generated by d;A — V.
respectively. Note that

T57C

(3.6) — V. < -V(z,u'(z)) < -V°

€2 — —€2

for any di,...,d,, > 0 and dp,41,...,d, € (0,C3) and that —V; is cooperative for

any x € Q. Then it follows from Lemma 2.2 that for any ¢ € X, (defined in (2.5)),
di,...,dmn >0and dyyi1,-..,d, € (0,C5),

(3.7) T, ()6 < T(t)¢ < T¢,(t)6.
Note that
s(diA=Ve)=s(-VE) <0, s (d;A - V;) =s (—V;) < 0.

This, combined with Lemma 2.3 and the spectral mapping theorem, implies that
7"(T;(t)),7"(TC (t)) € (0,1). Therefore, for any di,...,dyn > 0 and dpyy1,...,dy €

(0,Cy), s(dez— V(x,u%(z))) < 0, which implies that assumption (A6) is satisfied for
any di,...,dyn > 0 and dpy1, ..., dy € (0,C2). It follows from (3.7) that

F / CTC (Wodt < Fla, (@) / * Pyt < T, / e o

0

It follows from [45, Theorem 3.4] that

r (F; /OOO T;dt(t)) —r ((V:2)1F§2> o

Note that F¢, is positive and not zero for any = € Q. Then we see from Lemma 2.4
that, for any ds,...,d,, > 0 and dpyy1,...,d, € (0,C2),

P(72) E) < Ro<r (7 [ o) = ((2) 7 FL).

C

Let Ry = r((V.,) 'F) and Ry = r((VS,) 'F,,). This completes the proof for
Step 1.
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Step 2. For any z € ©, denote
D% = {(u1,...,un): uy=0fori=1,...,m,
u; € [ei(x) —€,¢ci(x) + e fori=m+1,...,n},
0 A
V?= (mln Vij(z, u)) = <min MWala, u)
1<i,j<m © Ou

)

ueb® 1<i,j<m

oy Vi (amien) ’

e e B <
ueD= 1<i,j<m ueD® auj o

=

F, = (max Fij(z, u)) =
€D o
“ 1<i,j<m

We show that, for sufficiently small € > 0,

Ro:=r ((d;A - Kf)_lff) — R) = rfea%{r ((K:)_lff) :

RO =T ((dIA _Vf>1Ff) — RO = ma;;r ((Vf)le> ,
xe

as dy = (dl,...,dm) — (0,...,0).

We can view matrices —V* + aF, and —V; + aF" as matrix-valued functions of
(z,€,a). Then —V®+aF, and =V, +aF? are continuous and consequently uniformly
continuous on {2 x [0, e2] x [1/Ro, 1/R,] (see Proposition A.1). This implies that

(3.9)

lim(—V® 4+ aF.) = =V (2, ¢(x)) + aF(x,c¢(z)) and
(3.10) 0
hm( VI +aF®) = —V(x,c(x)) + aF(z, c(z))
e—0
uniformly for (z,a) € Q x [1/Ro,1/R,]. Therefore there exists e3 < ey such that
for any e € (0,€3), matrices —V7 + aF and V + aF? are irreducible for any
a € [1/Ro,1/R,] and x € Q. In this step, we always assume that € € (0, €3]. Clearly,

(3.11) Vi< -VE< -Vl

Noticing that s(—=V¢),s(=V:) < 0 and =V is cooperative for any z € ), we have
s(diA —VE) <.

Clearly, Ro € [Ry, Ro] and Ry > 0. Let & = 1/Ry, and it follows from Lemma 2.3
that Ry is an eigenvalue of (d;A —V®)"'F. with a nonnegative eigenvector ¢ =
(¢1,...,¢>m) Clearly, & can be viewed as a function of d; (or, respectively,
(di,...,dm)) and

diAg —VEG+R(dy,...,dm)Fed=0.

Let 6 = 6(dy, ..., dn,a) be the principal eigenvalue of the auxiliary eigenvalue problem

(3.12)

diA¢ — V¢ +aF.¢ =3¢, x€,
al/(b = 07 x € 0f.

Note that V¥ + &(dy, . ..,dpn)F, is irreducible. Then ¢ > 0 and

€

5(dy, ... dm,#(dy, ... dp)) = 0.
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It follows from [24, Theorem 1.4] that

lim §(di,y...,dm,a) :ma}(g(—Kf—&-aF:) .
(d1seersdim )= (0,...,0) 2€Q

Here 5(62) represents the eigenvalue of matrix  with greatest real part. Define

5(dyy ... ydm,a) = r;aeagg (—Kf + af?)

for (di,...,dn) = (0,...,0). Then, for each a € [1/Ro,1/Ry], 6(d1,...,dm,a) is
a continuous function of (di,...,dy) on Int(R7) U {(0,...,0)}. It follows from
Lemma 2.5 that 6(dy,...,dn,a) is strictly increasing in a for each (di,...,d;,) >
(0,...,0). Similarly, we see from Lemma 2.5 that, for each z € Q, §(—V= + aF" ) is
also strictly increasing in a. This implies that §(dy, ..., d, a) is also strictly increasing
in a for (di,...,d,) = (0,...,0). Since for any x € €,

V,<V*<V,, F_<F.<F,,
it follows from Step 1 that
By <r () FY) <R
for any x € Q and
(3.13) Ro=r ((d;A - zg)—lfj) € [Ry, Ro).
Noticing that, for each z € Q,

A - 1 =z |
' _V€+r(<v5>lFf)F€ v

the monotonicity of 6(—V? 4+ aF ) in a implies that, for any = € Q,
NV R
5 —Zg + ~7Fe S Oa
R§

where RB is defined as in (3.9) and the equality holds if and only if x achieves the
maximum point of 7((V¥)"1F_). Therefore, the monotonicity of 6(0,...,0,a) implies
that the unique zero of

5(0,...,0,a) = maxd (—Kf +aff) =0
€N

on [1/Ro,1/R,) is a = 1/RY.
Now we claim that the first equation of (3.9) holds. If it is not true, then

k(dy, ... dm) A 1/RY as (di,...,d,) — (0,...,0).

Noticing that x(dy, ..., d,) is bounded from (3.13), we see that there exists a sequence
{(@?,...,d%)}52, and ko(# 1/RY) € [1/Ro, 1/ Ry such that

(dgj),...,d%)) —(0,...,0), kKn ::&(dgj),...,d%)) — Ko as j — oo.
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Without loss of generality, we assume that ro < 1/ Rg. Then there exist € and jy such
that ko + € < 1/RY and kj < Ko + € for any j > jo. Then, for any j > jo,

0=4 (d@,...,d;z;),ﬂj) <4 (dgﬂ,...,dg),ﬁo +g) ,
which yields

0< lim 6 (d(lj%...,dg),nﬁe) = 5(0,...,0, Ko + &) < 0.
j—o0

This is a contradiction, and therefore the first equation of (3.9) holds. Similarly, we

can prove that the second equation of (3.9) holds.

Step 3. We show that

lim Ry = max [r (=VY(z, e(z))F(x, c(z .
(d1;.,dn)—(0,...,0) 0 z€Q [ ( (&, c(@)F (@, e )))]

Clearly, (V®)~'F? can be  viewed as a matrix-valued function of (z,€), where
(z,€) € Q x [0,e3] and (VZ)~1F? is continuous on ) x [0, €3] (see Proposition A.1).
It follows from [20, section 2.5.7] that r(VHIFY) is continuous on Q x [0, e3] and
consequently that r((V®)~'F}) is uniformly continuous on Q x [0,es]. This implies
that

€

nmr((zf)*lf“') =7 (=V Y&, e(2)) F(z, c(x))) in CQ).

e—0
Then
iy 1 s (12 2)] = 6 )]

Similarly, we can prove that
lim kY = R§.
fuy 7§ = Ry
For any € € (0, e3), there exists § > 0 such that for any d41,...,d, <9,

0
Uy

(z) € [ei(x) —€,¢c;i+¢€] forany i=m+1,...,n and z € Q.

Then
Ro=r ((dIA VZ>_1FZ> <Ry<Ro=r ((dIA *Kf)_lfzj

for any dy,...,d,, >0 and dyyy1,...,d, <J. Therefore,

RY < lim inf Ry < lim sup Ry < RY.
0 (dl,...,dn)*)(o,...,o) 0 (dl,...,dn)ﬁ(o,.“,o) 0 0

Taking € — 0, we see that

li Ry = R§.
(dl,A..,dnl)rE%O’...,O) 0 0

This completes the proof. 0
Remark 3.1. In Theorem 3.1, we assume that there exists g > 0 such that, for
any x € €, *V; is cooperative and F'¢  is positive. In section 4, we will show that

in some concrete examples, any off-diagonal entry in V:, VE either equals zero or is
strictly positive and that any entry of F: or F¢ is strictly positive. In that case we
only need to assume that —V is cooperative and F§ is positive to obtain results in
Theorem 3.1.
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3.2. Large diffusion rates. In this subsection, we consider the asymptotic

profile of Ry when (dy,...,d,) — (00, ...,00). For this case, we impose an additional
assumption:
(A8) The disease-free equilibrium (0,...,0,ud(2),...,u%(x)) (defined in (2.2))
satisfies
lim u o (2),. .., ul(x
- w8 () )
:(am+17~'~7~n) in C( R™™ m)’
where 1wy, is a positive constant for k =m+1,... n.

We will also show that this assumption is not restrictive and that it is satisfied for
many kinds of epidemic models in the next section. Denote

(3.15) i =(0,...,0,dmsir, ... dn) € R,
and denote, for given sufficiently small € (0 < e < min{a; :i=m+1,...,n}),

D:{(u1,.. un)'ui:OfOri=1 .m,

OF;(x,u)

u; € [U; — euz—l—e]forz—m—&—l .yn},
V. = ( min sz(x u)) = ( min av 1‘ U >
z€QUED 1<i,j<m 2€QuED 8”3 ,g<m
— 0
o (i) (a, %)
r€QuED 1<i,5<m zEQ uGD au] 1<4 j<’ITL

=

:( min  Fy(z, u)

r€Q,uED )1§i,j§m er uED auj 1<4, j<m

— OF;(z,u
F.= ( max F;;(z, u)) ( max 3 OFi(z,u) .
r€QuED 1<ijem  \EQuED Ol Sygyjam

Similar to subsection 3.1, we could also prove that F, and V. are monotone increasing
for e > 0 and that F, and V, is monotone decreasing for e > 0. Moreover, when € = 0,

. ~ . OVi(z,u
V= (mlnv;-j(x,u)) = (mln 718( ,4) ,
z€Q 1<ij<m e OUj 1<i j<m
— . OV;(x,u
Vo= (maxVij(:U,u)) = (maxla(’) ,
zeQ 1<i,j<m ze Uj 1<i,j<m

0 i\Ly u
Fy = (min Fm(%ﬂ)) = (min W) )
z€Q 1<ij<m veq  Ou, 1<i,j<m
— a i\4Ly u
Fo- (maxhyen) = (ma2200)
z€Q 1<i,j<m wen  Ouj 1<i,j<m

Now we show the asymptotic profile of Ry as (dy,...,d,) = (00,...,00).
THEOREM 3.2. Assume that (A1)—(A5) and (A8) hold,

(3.17) s(=V0) <0, s(=Vy) <0 and r(Vy ' Ey) >0,
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and that there exists €g > 0 such that —V, is cooperative and F. e 18 positive, where

V., V. and F, are defined in (3.16). Let

Q 1<i,5<m Q a“j 1<i,j<m
F= (/ Fij(x,ﬂ)dx) = </ 07z, @) d$> )
Q 1<i,j<m o Ou 1<i,5<m

where i is defined as in (3.15). If r(V=1F) is the unique eigenvalue of V= F with
an eigenvector in R\ {0}, then

(3.18)

. o Y1
(dl,...,dnl)l—)rn(oo,...,oo) RO =7 (V F) '

Proof. As in the Step 1 of Theorem 3.1, we could prove that there exist posi-
tive constants R,, Ro, and Cs such that Ry € Ry, Ro| for any di,...,d, > 0 and

dmt1,---,dn > Co. Let £ = 1/Ry, and k can be viewed as function of (dy,...,d,).
Since x(dy, .. ., dy,) is bounded for any dy, ..., d,, > 0and d;41, - . .,d, > Co, then, for
any sequence {(dgj), ... dsf)) ° . satlsfymg (d(]) e dDY 5 (00, ..., 00) as j — oo,
there exists a subsequence {(d(lj’“) d(]k)) © , such that limy_, /@(d(lj’“), o, d9R)
exists and is positive, which is denoted by x*. For convenience, we denote dgj K) by dgk)
foreach k > 1 and ¢ = 1,...,n. Without loss of generality, we assume that dl(k) > Cy
forany k>landi=m+1,...,n

Let ¢®) = (¢§k), o s,lf))T > (0,...,0)T be the corresponding eigenvector of
operator

— (A = V (2, u0(x)) " Fa, u(x))

with respect to eigenvalue Ro(d(lk), e dslk)), where [|¢()||oo = 1 for each k > 1. That
is, fori=1,...,m,

m

A4 + d}k) =3 Vi, u (@) s (@, d) S Fy (@) | =0,

i=1 j=1

where u’(x) depends on (dfﬁll, ce d%k)). Then it follows from the LP theory that

there exists a subsequence {k;}7°, such that lim; . é)z(.’”) = ¢ in C(Q, R) for each
i=1,...,m, where ¢{° is a nonnegative constant and ¢> := (¢§°, ..., cm) satisfies

[¢®]loe =1 and V™ = g*Fc™

Then 1/k* = r(V~—1F). This completes the proof. O

Remark 3.2. We remark that there always exists a decomposition
{(Fi(z,u), Vi(z,u) 1y
of {fi(z,u)}™ , such that
filx,u) = Fi(x,u) — Vi(z,u) for i =1,...,n and rank (F) = 1.

Consequently, (V~'F) is the unique eigenvalue of V~'F with an eigenvector in
R™ \ {0}. Moreover, different decompositions of {f;(x,u)}52; will not change the
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portion of parameter space that the disease vanishes or spreads. Actually, if there
exist two decompositions

n

{(fl(j)(x7u),vi(j)($,u))}. (j=12),

=1

then there exist two basic reproduction numbers Rél) and R((JZ). It follows from [41,
Theorem 3.5] that Rél) —1 and R(()Q) — 1 have the same signs.

Remark 3.3. In Theorem 3.2, we assume that there exists ¢y > 0 such that, for
any z € ), -V, is cooperative and F| ¢, 18 positive. In section 4, we will show that
in some concrete examples, any off-diagonal entry in V., V. equals zero or is strictly
positive and that any entry of F. or F, is strictly positive. Therefore, we only need
to show that —V is cooperative and F is positive to obtain results in Theorem 3.2.

3.3. Discussion. In this subsection, we show that if assumptions (A7) and (AR)
are both satisfied, we can obtain an additional asymptotic profile for Ry other than the
ones in Theorems 3.1 and 3.2. The proof is similar to the ones given in subsections 3.1
and 3.2, and here we omit the proof.

PROPOSITION 3.3. Assume that (A1)—(A5), (A7)—(A8), and (3.17) hold and that
there exists eg > 0 such that —V ., is cooperative and F. is positive, where V., Ve,
and F_ are defined in (3.16). If the matriz —V (z,4) + oF (z,a) is irreducible for any
a>0 and x € Q, where @ is defined in (3.15), then

im Ry = RY := max [r (=V Yz, 2)F(z,2))],
(Aol 117l ) (0,000,000 00) 00 pen " (2, ) F (2, ))]
where (d1,...,dm,dm+1,---,dn) — (0,...,0,00,...,00) means maxi<;<md; — 0

and min,, 1<j<n dj — 0.

PROPOSITION 3.4. Assume that (A1)-(A5), (AT)-(A8), and (3.4) hold and that

there exists €9 > 0 such that fV:O is cooperative and F¢ is positive, where V¢, Ve
and F¢ are defined in (3.3). Let

Vc —_ (/ Vlj(x,c(x)dx) — (/ M’C(x))dx> ,
Q 1<i,j<m Q du; 1<i,j<m
Q 1<4,j<m Q Ou; 1<i,j<m

where c(x) is defined in (3.2). If r((Ve)"1F¢) is the unique eigenvalue of (V€)' F*¢
with an eigenvector in R \ {0}, then

(3.19)

lim Ry=r((V) 'F°),
(d1yeeosdimydm+1,...idy ) — (00, ...,00,0,...,0)
where (dv,...,dm,dm +1,...,d,) = (00,...,00,0,...,0) means minj<j<, d; — 00
and maxy,i<j<n d;j — 0.

Finally, we will consider the effect of diffusion rates on the basic reproduction
number Ry. It follows from [2] that Ry is monotone decreasing with respect to the
diffusion rates for an SIS epidemic model; that is, large dispersal could reduce the
spread of the disease. It is of interest that Ry is not always monotone decreasing
with respect to the diffusion rates; see [40] for an example of diffusive SEIRS model.
Motivated by [40], we show that under certain conditions, Ry is not always monotone
decreasing with respect to the diffusion rates for model (1.3).
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PROPOSITION 3.5. Assume that (dy,ds, ..., dy,) = d(e1,€a,...,€,) and that all the
assumptions in Theorems 3.1 and 3.2 are satisfied. Then the following two statements
hold: .

(i)

lim Ry(d) = Rj and dlim Ro(d) = r(V7'F),
—00

where RS and v(V~'F) are defined as in Theorems 3.1 and 3.2, respectively.
(i) 1f
(3.20) RS < r(VTLF),

thenjhere exist My > My > 0 such that for any d~2 > Ms and cil < My,
Ro(dg) > Ro(dl)

We will show that (3.20) is satisfied for a concrete epidemic model in section 4.

4. Applications. In this section, we give some examples to show that the gen-
eral results in Theorems 3.1 and 3.2 can be applied to many different reaction-diffusion
epidemic models.

4.1. Vector-host epidemic models. We consider two vector-host epidemic
models. The first is given by [15] to model the outbreak of Zika in Rio de Janeiro:
(4.1)

OH; /ot = 61 AH; — MNa)H; + o1(x)H,(2)V; e, t>0,

OV; /0t = 55AV; + oo () Vo Hy — pu(z) (Vo + Vi) Vi, €, t >0,

OV, /Ot = 834V, — ao(x) Vi H; + B(2) (Vi + Vi) — () (Vi + Vi) Vi, € Q, t > 0,
oO,H;, =0,V;=9,V, =0, x€dQ, t>0,

where H,(z), H;(z,t), Vi(x,t), and V,(z,t) are the densities of uninfected hosts,
infected hosts, infected vectors, and uninfected vectors at space x and time ¢, respec-
tively; €2 is a bounded domain with smooth boundary 0f2; v is the outward unit normal
vector on 0€2; 1, d2, d3 are positive constants; and A(z), Hy(z), oi(z) (i = 1,2), B(x),
and p(x) are strictly positive and belong to C*(Q). The asymptotic properties of Ry
for this model have been investigated in [32]; see also [31] for the global dynamics.
We revisit it to show that the main results in section 3 can be applied to this model
to determine the asymptotic behavior of basic reproduction number Rj.
Letting
n=3, m=2 and (u1,us,us) = (H;, Vi, Vi),

we could use the framework in section 3. It follows from [32] that model (4.1) has a
unique disease-free steady state u’(z) = (0,0, V (x)), where V (z) satisfies

im V(z) = Blz) an im V(z _7fﬂﬂ(x)dx in Q
(42) A V@) = L 4 m Ve =T ™ W)

This implies that assumptions (A7) and (A8) are satisfied. For model (4.1),

@3) Vi) = ( Mz) - —o1()Hu(z) ) Fla,u) = ( 02(0 ’ )

w(x)us x)ug
where u = (u1,uz,us3)T, and

(4.4) B = (61A,8,A)" —V(z,u(x)).
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Then the basic reproduction number is given by
(4.5) Ry =r(-F(z,u’(z))B™").
Moreover, for model (4.1),
d
i = (0,0, Jo x) and c(z) = <0,0, ’B(x)>,
N e

and a direct computation implies that all the assumptions of Theorems 3.1 and 3.2
and Propositions 3.3 and 3.4 are satisfied. Then we have the following results.

PROPOSITION 4.1. For model (4.1), the following statements hold:

(i)
/olHudx/Ugdx

lim ROZ & Q2 )
(61,62,63)—(00,00,00) /)\dx/ud;v
Q Q
(ii)
b o e 2@ )
(81,62,83)—(0,0,0) ec0 A@)p(z)
(iii)
/O’1Hud$/ @daz
lim Ry = Q Q M 7
(01,02,03)—(00,00,0) /)\dx/ﬂdm
Q Q
(iv)
by e 72 )
(61,62,63)—(0,0,00) ea AMz)u(x)

Next we consider another vector-host epidemic model:

I = di A + B5(x)SV — (b(z) +v(x)) I, Tz €N, t>0,
Vi = do AV + B () MT — ¢(x)V, €N, t>0,
(4.6) Sy = d3AS + i (z) — b(2)S + y(2)] — Bs(2)SV, x€Q, t>0,
My = dyAM + Ao(x) — c(x)M — B (z) M1, reQ, t>0,
0,I=0,V=0,5=9,M =0, x €09, t>0,

where I(z,t), V(x,t), S(x,t), and M (z,t) are the densities of infected hosts, infected
vectors, susceptible hosts, and susceptible vectors at space z and time ¢, respectively;
Q is a bounded domain with smooth boundary 9€; v is the outward unit normal vector
on 9Q; dy,ds,ds,dy are positive constants; and \;(z) (i = 1,2), Bs(x), Bm(z), b(x),
y(x), and c(x) are strictly positive and belong to C*(€). The model was originally an
ODE model (i.e., di = dy = d3 = dy = 0) proposed by Feng and Velasco-Herndndez
[14], and Ry of the ODE model was obtained in [14, 43].
Letting
n=4, m=2 and (u1,us,us,ug) = (I,V, S, M),

we could use the framework in section 3. The model (4.6) has a unique disease-free
steady state
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where (S(x), M(z)) satisfies

) (50, 11(2)) = ( 3w o)

i
. Mdz [, Aod
lim (S@%Aux0<15 e Jo 2z>
(ds.da)—(0,0) Jobdx " [, cdx

This implies that assumptions (A7) and (A8) are satisfied. A direct computation
implies that, for model (4.6),

ws) F<$’“>=(5m<3:m &(g)us), V(m,u):(b($)467(x) c((;))

for u = (uy,us,uz,us)’, and

(4.7) n C(Q,R?).

= (1A, doA)" = V(2,1 ().
Then the basic reproduction number is also given by (4.5). Finally, for model (4.6),
Aid Aod
u= 10,0, Jo x7 Jo dade and c(x) = (0,0, Al(z), X (2) .
fQ bdx fQ cdx b(z) ' o(z)

It is easy to check that all the assumptions of Theorems 3.1 and 3.2 and Proposi-
tions 3.3 and 3.4 are satisfied. Then we have the following results.

PROPOSITION 4.2. For model (4.6), the following statements hold:

(i)

Jo Mdz [ Xoda [, Bsda [, Bmda

lim 0 —
(d1,d2,d3,ds)—(00,00,00,00) fQ bdzx (fQ cdx)2 fﬂ(b +v)dx
(i)
1 =
(s s ) (00.00) 0 \/ ()2 (@)(b(w) + (@)’

(iii)

. _ 1 69)\1 6m>\2
lim Ry =
(dy,dz,ds3,d4)—(00,00,0,0) \/fQ cda fQ(b—i— ~)da

k&mk&m V B4() B

(d,davd da) +(0,0,0,0) " 0 Jq bdz [, cdx (b(x) + ))'

We remark that (3.20) can be satisfied for models (4.1) and (4.6). For example,
we consider model (4.1) and choose Q = (¢, 1 — €), where 0 <e€ << 1. Let A(z) = A,
wu(z) = o and oy(z) = &1, where A, fi,51 are positive constants, H,(z) = z2, and

o2(x) = 1 — x. Then, for sufficiently small ¢,

max Z1@)2 (@) Hu(x) /leHudx/Qogdx.
e Al [ [ s
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Let (61,02,03) = d(e1,€2,€3). Then we see from Proposition 3.5 that there exist
My > M; > 0 such that for any do > Ms and d; < My, Ry(dy) > Ro(d1). Therefore,
large dispersal could promote the spread of the disease.

4.2. Staged progression model. In this subsection, we consider a staged pro-
gression model proposed in [19]. This model has a single uninfected compartment, and
the infected individuals could pass through several stages of the disease with changing
infectivity. It could be applied to model the transmission of many diseases, such as
HIV/AIDS; see [19]. The original model was an ODE model, and the reproduction
number was obtained in [17, 43]. Here we consider the associated reaction-diffusion
case:

OI /0t = di AL + h(N) (301, Br(2)SIy) — (i (z) + i (z) 1, z€Q, t>0,
0I; /0t = ;AL + vi—1(x) ;-1 — (vi(x) +vi(2);, 2€Q,t>0,2<i<m,
Oly1/0t = dppyo ALv1 + vin (@) Iy — Y1 Iy, x€Q, >0,

05/0t = dpp1AS + ANx) — b(x)S — h(N) (31, Br(z)SI), z€Q, t>0,
0,S=0,1;=0, z€dQ, t>0,1<i<m,

where N = S+ 3" | I;, h(N) = N~ with a € [0,1], S(z,¢) is the density of the
susceptible individuals, I;(i = 1,...,m + 1) is the density of the infected individuals
at stage i, 2 is a bounded domain with smooth boundary 0, v is the outward unit
normal vector on 9, d; (i = 1,...,m+2) are positive constants, and A(z), b(z), B;(z)
(i=1,...,m), vi(x) (i =1,...,m), and v;(x) (i = 1,...,m + 1) are strictly positive
and belong to C*(2). Note that I,,+; decouples from the others, and consequently
we could consider the following model:
(4.9)
0I1/0t = di AL + h(N) (3231, Br(2)STk) — (i(z) + n(2)1, z€9Q, >0,
8[1/8t = dlAIl + I/i_l(SC)Ii_l — (Z/Z(l’) + ’}/1(1’))]1 €T € Q, t> O, 2<1< m,
05/0t = dpm1AS + ANx) — b(x)S — h(N) (31, Br(z)SIy), z€Q, t>0,
0,S=0,1;=0, z€9Q, t>0,1<i<m.

Letting

n=m+1, (u1,...,up) = 1,...,In), and tm41 =S,

we could use the framework in section 3. The model (4.9) has a unique disease-free
steady state

where S(z) satisfies

(4.10) lim S’(x):A(x) and  lim S(x)—fﬂAdx

= i Q,R).
d,n+14)0 b(l‘) d7”+14)00 fQ bd.’l; m C( ’ )

This implies that assumptions (A7) and (A8) are satisfied. For model (4.9),

V(z,u) = (Vi'(u))1§i’j§m and F(xau) = (Fi'(xau))lgi,jgma
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where for u = (uy, ..., un)7,

B (20 ) B (@)
Figlayu) = § 0" (S5 we) (S0 Be@)un) tmin i =1,1 <5 <m,
0 otherwise,
vi(z) +vi(x) 1<i<m,j=1i,
Vij(z,u) =< —v;_1(2) 2<i<m,j=i-—1,
0 otherwise,

and
B=(diA,....dpA)" —V(z,ul(z)).

And the basic reproduction number is given by (4.5). Also, for model (4.9),

i = (0,...,0,f9Adx) and c(z) = (oow)

I, bda b(z)

Since this model is more complex, we show that all the assumptions of Theorems 3.1
and 3.2 are satisfied.

LEMMA 4.3. The following statements hold:

(i) For anya >0 and xz € Q, =V (z,c(x)) + aF(z, o(x)) is Z'Treducible

(ii) #(V=1F) is the unique positive eigenvalue of V='F, where V=" and F are
defined as in (3.18).

Proof. Let Q;j(x) = —Vij(x,c(x)) + aF;;j(x,c(x)). Then a direct computation
implies that

<wd@§3h(§g)w() () i=1g=1,

B (o &) (M) . o
(411)  Qu() = 4@ (x)h(b(:z:)> L2sjsm,

—vi(x) — () 2<i<m,j=4i,

vi—1(x) 2<i<m,j=1i—1,

0 otherwise.

Fori=1,2<j5<m,

@y = a0y 3 (5) 20,

and for any 2 <1i¢ <m, j > 1,

Qi(i-1)*+ Q21Q1; = a”l’*l(x)"'yl(x)ﬁj(x)b h (b ) 70
Similarly, for 1 < j <m, ¢ > j,

Qi(i—1)Qi-1)(i~2) " Q+1)j = Vi-1(x) - vj(z) # 0.

Therefore, —V (z,c(x)) + aF(x,c(x)) is irreducible for any a > 0 and = € Q. This
completes the proof of part (i).
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Let V™' = (@ij)1<i j<m. From [43] and a direct computation, we see that
0 1<i<m,j>i
v
(4.12) ai; = { Jali + vi)dx
H;f;ly Jovide
HL:J' fQ(Vk + ) dz

Let FV 1 (a”)1<”<m Then a@;; =0 for any 2 <7 <mand 1 < j <m and

iy = Zf@ﬁ]dxnk 1o vnde fsz)‘dxh(fg)‘dm)'

Hk lfQ vk + Yi)dw fQ bdx fQ bdx

1<i<m, j=i,

1<i<m, j<i.

(4.13)

Therefore, T(V_lﬁ' ) = @11 is the unique positive eigenvalue of V—1F. This completes
the proof of part (ii). 0

The other assumptions of Theorems 3.1 and 3.2 and Propositions 3.3 and 3.4 are
easy to verify, and we omit the proof. Then we have the following results.

PROPOSITION 4.4. Let Ry be the basic reproduction number of model (4.9). Then

(i)

lim Ro—max | S 8;(@) oy we(@) | AMe) h(/\(x))’
(@) 000 et \ (] Tl (ve(2) + 0(2)) | B()

lim
(d1 ..... dm+1)—>(oo,...,oo

ngﬁjdx Al T A N Az (fQ Adm)

[Tt Jo (v + ve)da Jobdx \ [, bdx

lim Ro — fﬂ)‘dx (fQ )\dx) Z 53 Hk 1Vk( )
(1, sdms1)—(0,...,0,00) Jo bda Jobdx ) ze 7 k(@) + ()

(iv)

ngﬁj;)\h () dz [Tiz) fo vnda
j=1 [Tt Jo(ve + )da
Appendix A. In this part, we prove a result that verifies the continuity of

functions F¢, F., V¢, Vi, F* F., V® and V., which are defined in (3.3) and (3.8).

PROPOSITION A.1. Let f(z,u) € C(Q x R,R) and c(x) € C(,R), where Q is a
bounded domain in RN (N >1). Denote

D¢ = {(x,u) : x € Qu € [e(x) —€,c(x) +€|}, DF ={u:u€ [c(x)—¢€ c(r)+€}

1m
(d1,...,dm+1)—>(oo,...,oo,O)

and
(6) - ( TIl)aX : (l‘7u), G(x 6) — ma.X (I u)

Then H(e) € C([0,1],R) and G(x,¢€) € C(Q2 x [0,1],R).
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Proof. We first consider the continuity of H(e). Let

Cy :=minc(x) —2 and Cy =: maxc(z) + 2.
z€Q zeQ

The continuity of f(z,u) implies that f(z,u) is uniformly continuous on Q x [C1, Cs].

Then, for any given v > 0, there exists § > 0 such that, for any (z1,u1), (z2,u2) €
0 x [C, Cy] satistying |z — 2] < § and |ug — uz| < 4,

(A1) [f(@1,u1) = f(z2,u2)] <.

Assume that 0 < €1 < e3 <1 and e — €3 < §. Clearly, H(e1) < H(ez). Noticing that
D¢, is compact, we see that there exists (2o, uo) € D¢, such that H(ez) = f(x0,uo).
Then there exists (2o, u1) such that (zg,u1) € D¢, and |u; — ug| < §. It follows from
(A.1) that f(xo,u0) < f(xo,u1) + v, which implies that H(ez) < H(e1) + . Then,
exchanging the position of €; and €3, we can also obtain that, for any 0 < e <€ <1
and €1 — €5 < 6,

H(eo) < H(e1) < H(ea) + 7.

Therefore, for any given v > 0, there exists 6 > 0 such that, for any ej,es € [0,1]
satisfying |e; — ea] < 6,
|H(e1) — H(e2)| <.

This implies that H(e) € C([0, 1], R).
Then we consider the continuity of G(z,¢€). Note that ¢(x) is continuous. Then,

for the above §, there exists §; € (0,9) such that, for any z1,zo € Q) satisfying
|z — 22| < 61,
le(z1) — c(z2)] < 0/2.

Clearly, if |e; — €2] < §/2 and |z — 22| < d1, then
(A.2) le(x2) + €2 —c(x1) —€1] <9 and |c(z2) — €2 — c(x1) + €1] < 4.
Choose (z1,€1), (2, €2) € Q x [0, 1] satisfying

|z1 — z2|, |61 — €] < o,

where 02 := min{d/2,01}. Clearly, there exists uy € [c(z1) — €1,¢(x1) + €1] such that
G(z1,€1) = f(x1,u1). Then we claim that

G(l‘h 61) < G(Jfg, 62) +,
and the proof is divided into two cases.
Case 1. uy € [c(x2) — €2, c(x2) + €)].
Since |z1 — x2| < d2 < 6, it follows from (A.1) that
G(z1,61) = f(z1,u1) < f(22,u1) +7 < G(22,€2) + 7.
Case 2. uy & [c(x2) — €2, c(x2) + €)].

Then uy > c(x2) + €3 or uy < c(w2) — €2. We only consider the case of u; > c(z2) + €2,
and the other case could be proved similarly. Then c¢(z2)+es < uy < ¢(x1) + €1, This,
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combined with (A.2), implies that |c(z2) + €2 — u1| < §. Then it follows from (A.1)
that
G(z1,e1) = fz1,u1) < f (22, ¢(22) + €2) + 7 < Glaz, €2) +7.

Then, exchanging the positions of (x1,€;) and (z2,€2), we also have G(x2,€2) <
G(21,€1) +. This implies that for any given v > 0, there exists d > 0 such that, for
any (z1,€1), (z2, €2) € Q x [0, 1] satisfying |z1 — 22| < d2 and |e; — ea] < Ja,

(A.3) |G(x1,€1) — G(ao,€2)] < 7.

This completes the proofs. |
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