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1. Introduction and main result

In this paper, we show the local asymptotic stability of synchronized solution of the following reaction—
diffusion Lotka—Volterra predator—prey model

Au+ula—u—bv] =0, =xz€,
Av+ovfja—v+cu] =0, x€, (1.1)
u=uv=0, x € 01.

Here the functions w(z) and v(x) represent the population densities of prey and predator for z € 2
respectively; {2 is a bounded connect open subset of R™ (n > 1) with a smooth enough boundary 9£2. The
diffusion coefficients and self-regulation of each species all equal to 1, the growth rates of the two species are
the same constant a > 0, and the predation rates b > 0, ¢ > 0.
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Our main result is stated as

Theorem 1. Assume 0 < b < 1 and ¢ > 0. Let Ay be the principal eigenvalue of —A in H}(£2). When

a > A1, (1.1) has a positive solution

1-5 1+69) (1.2)

(uavva) = (m as m a

where 8, is the unique positive solution of

Af+0(a—0)=0, ze€2,
=0, x € 042,

and (uq, vg) s locally asymptotically stable.

Here the local asymptotic stability of (uq,v,) is with respect to the reaction—diffusion Lotka—Volterra

predator—prey model:

ur = Au+ ula — u — b, x€ N, t>0,
vy = Av 4+ v[a — v + cul, x€ 2, t>0, (1.4)
u(z,t) =v(z,t) =0, x€02,t>0 .

u(@,0) = uo(x) 2 0, v(@,0) = vo() 20, @€

The steady state solution (u4,v,) is referred as a synchronized solution as u, /v, is a constant.

The existence of a positive steady state solution of (1.4) when the growth rates are different for the
two species is well known, see for example [1-3]. For the one-dimensional spatial domain {2 = (0, L), the
uniqueness of positive solution was proved in [4]. Here we show that the synchronized positive steady state
of (1.1) is locally asymptotically stable, but it is unclear whether the synchronized solution is the only
positive solution of (1.1). We are indebted to one of the referees to tell us that, with an extra condition
¢ € (0,(1 — b)/b), the synchronized solution (u,,v,) is shown to be unique and globally asymptotically
stable [5, Lemma 3.6], and that result is based on upper—lower solution method which is different from the
one here. So here we prove the local stability of (ug,v,) without the extra condition, but the global stability
is not known. When the growth rates of predator and prey are different, the uniqueness and global stability
of positive steady state remains an interesting open question. We remark that our result still holds when the
constant a is replaced by a function a € C%(f2) for a € (0,1) and a(x) > 0 for x € 2.

The dynamic behavior of reaction—diffusion Lotka—Volterra competition model with same growth (re-
source) function has been studied more extensively. In [6], it is shown that the positive synchronized steady
state solution for Dirichlet boundary value problem is unique and globally asymptotically stable. The effect
of spatial heterogeneity and global stability of steady state for Neumann boundary value problem with non-
constant growth function are studied in [7,8]. The long time behavior of competition model when a = 1 is
discussed in [9].

2. Proof

In order to prove the main result, first we recall the following well-known result:

Lemma 2.1. Ifa > A\, then (1.3) has a unique positive solution 0,(x).
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This result was known in [10], see also [11, Theorem 25.4] or [12, Proposition 3.3]. To state the stability
of 0, with respect to the reaction—diffusion equation:

u=Au+ula—u), =z t>0,
u(z,0) =0, x €08, t>0, (2.1)
u(z,0) =up(z) >0, x€ 1,

we recall some definitions and preliminary results.
Let m(z) € L°°(£2). We define a linear operator

L(m)p = Ap + m(z)p, » € WP(Q2)NWyP(92),
where p > n. Then the eigenvalue problem

{L(m)g@ =—-Ap z€,

=0, x € 012,
has a sequence of eigenvalues \;(m) satisfying Aj(m) < A2(m) < -+ < AN(m) < Aigp1(m) — oo,
and the corresponding eigenfunction is denoted by ¢;(m) for i = 1,2,. The set of all eigenfunctions
{pi(m) : i € N} is an orthonormal basis of L?({2). In particular, A;(m) is a blmple eigenvalue of —L(m) with

a positive eigenfunction ¢1(m), and all other eigenfunctions are sign-changing. For convenience, the eigen-
pair (A;(0),¢;(0)) will be simply denoted by (A;, ;) when m = 0. From the variational characterization
of A\;j(m), if my(x) < mo(z) for € 2, then \;(m1) > Ai(me) and \;(mq) > A;(me) when my # mqy for
1=1,2,...

From the monotonicity of eigenvalues with respect to the weight function, we have the following result
implying the stability of 4,:

Lemma 2.2. Let 0, be the unique positive solution of (1.3), and s > 1. Consider the following eigenvalue
problem

{A@ +(a—sb)p=—-Np, z€, (2.2)

Then the eigenvalues of (2.2) are a sequence satisfying A; s satisfying0 < A s < Ags <+ < Ajs < Ajg1s —
o0, and the set of eigenfunctions {p; s : i € N} is an orthonormal basis of L*(£2). In particular 0, is a locally
asymptotically stable steady state solution of (2.1).

Proof. The first part follows directly from discussion above and from the monotonicity of eigenvalues with
respect to the weight function, we have

)\1,5 = )\1((1 - 56(1) > )\1(a — aa) =0,

since 6, is the positive eigenfunction corresponding to Ai(a — 6,). The positive solution 6, is locally
asymptotically stable with respect to (2.1) if all the eigenvalues of

{Aap—&—(a—%a)@:—)up7 x € £, (2.3)

SD:O7 1‘6897

are positive. So §, is locally asymptotically stable as A; o > 0. O

Now we prove our main result.
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Proof of Theorem 1. It is easy to verify that the solution (uq,v,) given in (1.2) is a positive solution of
(1.1) if b € (0,1) and ¢ > 0. We shall prove that (ug,v,) is linearly stable (and also locally asymptotically
stable). That is, all eigenvalues p of

Ap+ (a — 2uq — bug)d — bugy) = —pg, = € 0,

A+ (@ — 20g + cug)Y + cvgp = —pp,  x € 12, (2.4)
(b = w = 07 T e 3(2,
have positive real parts. After substituting using (1.2), (2.4) can be rewritten as
1-0 1-0
A —(———+1)0a)p — b———0,¢ = —pug, 2,
(0= e+ DO et = a €
c c
A - 1 S = — 0 (2.5)
Y+ (a (1+bc+ )ea)¢+cl+bcaa¢ W,  x e,
p=1v=0, x € 012.

We claim that there exist A;, B; € R and s > 1 such that

() = (&)ee= a9

is an eigenfunction of (2.5) for ¢ = 1,2,..., where ¢;(a — s6,) is the ith eigenfunction of (2.2). First we
assume that b # ¢/(2¢c+1). In this case, substituting (2.6) into (2.5) and using (2.2), we find that z = A;/B;
must satisfy a quadratic equation

c(14¢)z? — (b+c)z+b(1 —b) = 0. (2.7)

It is easy to verify that (2.7) has two distinctive positive real roots z; = b/c and z2 = (1 —b)/(1 + ¢), and

; b ; 1-b
D1 = (i:) = (c) vila—sb,), Pi2= (Z;Z) = (1 N C) wila—s6,) (2.8)

2 —b
are two linearly independent eigenfunctions of (2.5) with s = % > 1lasbe (0,1) and ¢ > 0. The
c

corresponding eigenvalue p = p; = A;(a — $10,) > 0 from Lemma 2.2. Moreover since {y; s : ¢ € N} is an

orthonormal basis of L?(f2), the set
i 1) (@' 2) , }
B “):ieN
{ (%‘,1 Vi2

is an orthogonal basis of L?(£2) x L?(§2). This in turn implies that the set of eigenvalues of (2.5) is
exactly{\;(a — s16,) : ¢ € N}. Secondly if b = ¢/(2¢ + 1), the above argument still shows that &;; and
®; o defined in (2.8) are eigenfunctions of (2.5) with s =2 > 1 but &; 1 = kP, » for some constant k # 0. In
this case, if (¢, 1) is an eigenfunction of (2.5) with eigenvalue pu, then it is easy to verify that £ = (2¢+1)p—1
satisfies

{Ag +(a—20,) = —pé, w€R, (2.9)

&E=0, x € 012.
That is, p must be equal to some \;(a — 26,), and that in turn implies that (¢, ) is a multiple of &; ;. So
we can also conclude that the set of eigenvalues of (2.5) is exactly{\;(a — s16,) : i € N}.

Therefore (uq,v,) is linearly stable and also locally asymptotically stable since \;(a — $16,) > 0 for each
teN. O
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