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We present the PoreFlow-Net, a 3D convolutional neural network architecture that provides fast and accurate fluid
flow predictions for 3D digital rock images. We trained our network to extract spatial relationships between the
porous medium morphology and the fluid velocity field. Our workflow computes simple geometrical information
from 3D binary images to train a deep neural network (the PoreFlow-Net) optimized to generalize the problem of
flow through porous materials. Our results show that the extracted information is sufficient to obtain accurate flow
field predictions in less than a second, without performing expensive numerical simulations providing a speed-up
of several orders of magnitude. We also demonstrate that our model, trained with simple synthetic geometries,
is able to provide accurate results in real samples spanning granular rocks, carbonates, and slightly consolidated
media from a variety of subsurface formations, which highlights the ability of the model to generalize the porous
media flow problem. The workflow presented here shows the successful application of a disruptive technology

(physics-based training of machine learning models) to the digital rock physics community.

1. Introduction

Understanding how fluids travel through porous structures of sub-
surface rock formations is crucial for designing groundwater manage-
ment, hydrocarbon extraction (Raeini et al., 2014), CO, sequestration
(Chen et al., 2018), and contaminant remediation projects (Kang et al.,
2007). Currently, most of the energy that we use comes from hydrocar-
bons extracted from oil and gas reservoirs, most of the water for human
consumption travels through underground aquifers, and the first pilot
projects of CO, sequestration in the subsurface are yielding positive re-
sults. For these reasons, it is paramount to accurately describe the flow
physics of these fluids to maintain energy security, water availability,
and to potentially avoid climate change (Blunt, 2017).

One of the most impactful properties in the decision-making pro-
cess for the areas mentioned above is the permeability of the un-
derground reservoir of interest. This quantity provides a directional,
volume-averaged geometric measure of the ease for a fluid to flow
through a specific rock volume. The permeability is determined by the
topology of the porous structures of the formation, and it is calculated
by computing average velocity (based on the fluid velocity through pore
space) and comparing it to Darcy’s law (see Eq. (1)). This quantity is
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researched primarily to assess preferential flow channels in the subsur-
face (contaminant tracing, hydrocarbon movement in an oil reservoir),
bottlenecks for fluid flow, and to estimate well flow rates (hydrocar-
bon and water extraction, and CO, sequestration). The permeability is
shaped by the processes that formed the rock, and the subsequent al-
terations throughout geological time. Processes such as deposition of
grains in a basin, compaction of layers caused by overburden pressure,
cementation, recrystallization, and dissolution, change the microscopic
structure of the rock, altering the shapes and sizes of the flow paths
available. These effects (that can span up to kilometers) modify the per-
meability of the rock formation. Since the behavior of the fluids at the
smaller scales is key to make inferences of larger domains, in this paper
we are going to focus on the flow of fluids at the microscale.

There are different methods to obtain the flow properties of a rock.
Laboratory measurements are able to obtain the average permeability of
a sample through direct measurement. Nevertheless, it is not possible to
observe the microscopic physics at the pore-scale. These measurements
also tend to take longer times, or even fail in tight porous media (lower
porosity). On the other hand, there are existing analytical expersions
that estimate the permeability of a rock based on fitting parameters
that account for the rock type (lithology), grain size distribution, and

Received 20 November 2019; Received in revised form 10 February 2020; Accepted 14 February 2020

Available online 17 February 2020
0309-1708/© 2020 Elsevier Ltd. All rights reserved.


https://doi.org/10.1016/j.advwatres.2020.103539
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2020.103539&domain=pdf
mailto:jesantos@utexas.edu
https://doi.org/10.1016/j.advwatres.2020.103539

J.E. Santos, D. Xu and H. Jo et al.

depositional processes, among others. These require a minimal amount
of information, but they are restricted to a particular rock (sometimes
even from a specific geographical location) (Xu and Yu, 2008). Finally,
there are several numerical simulation methods to reproduce the
fluid flow physics (Blunt et al., 2013; Mehmani et al., 2020). Among
these, direct simulation methods (DSM) are very attractive because
they resolve the flow through irregular geometries, giving the final
user a realistic snapshot of how the fluid flows through the pores of
subsurface formations. Since the subsurface is highly heterogeneous
over multiple scales, direct simulation on a variety of samples at various
scales extracted from wells or outcrops of the reservoir or analogous
rock of interest provides valuable information to investigate and model
subsurface flow for improved subsurface management.

With the rapid development of x-ray scanners and other non-
destructive imaging technologies (Mees et al., 2003), the simulation of
fluid flow through 3D images of porous materials is a topic of increasing
interest. The typical workflow for performing direct simulations starts
with a gray-scale volume (the output of the x-ray scanner), which is
then segmented (to eliminate artifacts and noise) in two phases (binary
image) that are discretized into voxels (3D pixels) of solid or space for
fluid to flow. These simulations provide an accurate picture (with res-
olution of micrometers, and even smaller) of how fluid flows through
complex geometries. With the advances in computational performance,
larger domains are practically simulated. Nevertheless, computing times
(even on supercomputer clusters) can be long, and the required compu-
tational resources are vast. The computational demand of these methods
grows at least at the cube of the side length of the domain for homo-
geneous cubic samples, so in most cases running direct simulations on
a representative elementary volume with typical desktops is unfeasi-
ble. Additionally, real materials tend to have pore size distributions that
span and vary over a wide range of scales, which increases the size of a
representative elementary volume, and thus the computational time to
perform the simulations.

There are several numerical methods that are used to obtain flow
properties directly from 3D images: the finite volume method (Jenny et
al., 2003), smoothed particle hydrodynamics (Tartakovsky and Meakin,
2005), the finite element method (White et al., 2006), the lattice Boltz-
mann Method (LBM), among others. A comparison of some of these
methods, and their run times can be found in Yang et al. (2016). In
this work we utilize the LBM due to its simplicity for performing simu-
lations in irregular domains, and its well-tested capabilities to simulate
flow through porous materials (Pan et al., 2004; Santos et al., 2018). Al-
though the method is easily parallelizable, its computational time scales
increase with domain complexity (Fig. 1), which is common to every
method that operates on porous materials. We stress, however, that the
workflow presented here does not depend on the method chosen to ob-
tain the fluid velocity field.

Recently, deep learning methods have been introduced as a frame-
work for computers to learn from observational data of physical phe-
nomena to predict variables of interest. These methods have been ap-
plied to study many problems in image segmentation, pattern recogni-
tion and image captioning, and natural language processing. Deep learn-
ing methods benefit from benchmark datasets since: (1) supervised deep
learning methods require a large amount of validated data to train mod-
els; and (2) the capabilities of the trained classifiers must be assessed
quantitatively. These algorithms have been applied successfully to dig-
ital rock applications like image segmentation (Andrew, 2018; Bihani
et al., 2019; Karimpouli and Tahmasebi, 2019b), calculation of wave
propagation through a solid matrix (Karimpouli and Tahmasebi, 2019a),
3D rock reconstruction using generative models (Mosser et al., 2018),
and 2D calculations of permeability in small domains (Wu et al., 2018).
Either segmented real images or porous media reconstructions are re-
quired for direct simulation of flow. There are several challenges en-
countered in applying deep neural networks to predict flow through
porous media (or upscaled transport properties of a porous medium).
The biggest challenge is the large number of labeled pairs of data (that
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Fig. 1. LBM running times (in seconds) for different domains of the same
computational size (spherepacks and tight sandstones of 500° cells) indicat-
ing the impact of porosity (of our particular domains) on computational time.
In these domains, the lower porosity samples host more intricate pathways
(pore space with higher surface area and higher tortuosity), which increase the
number of LBM iterations needed to achieve convergence. We run the simu-
lations in eight Xeon E5-2690 v3 (Haswell) processors totaling 96 computing
cores (https://portal.tacc.utexas.edu/user-guides/lonestar5). The dotted hori-
zontal line represents an hour, the dashed line a day, and the solid 2 days of
running time. The sample that took the longest had very tight pore throats and
a low coordination number between pores (resulting in very poor connectivity),
this yields in a large number of iterations for the momentum to equilibrate.

can come in the form of interpreted seismic cross-sections, segmented
images, simulation results, etc.) required to train a model. In addition,
performing numerical simulations of porous volumes could require days
of computation on hundreds of cores of a supercomputer to converge
(Fig. 1). Moreover, acquiring the prerequisite many volumes of a sim-
ilar formation is often challenging, since access to the required imag-
ing technologies (i.e., x-ray scanners) is limited, and finally, given ac-
cess to a large training set, there is still a memory limitation challenge
(more on this in the sections below). To circumvent the above difficul-
ties, we create benchmark datasets reusing images from Digital Rocks
Portal (Prodanovic et al., 2015) that are publicly available, and propose
a comprehensive workflow to obtain a functional relationship between
a 3D binary image and the volumetric solution of the Navier-Stokes
equation.

Specifically, in the context of deep learning and fluid flow, Carrillo
et al. (2017) trained an artificial neural network to predict the shape
and coordinates of an occlusion blocking a 2D pipe, using only the ve-
locity at points along the horizontal direction (representing sensors) as
input data. Moreover, Guo et al. (2016) trained a convolutional neu-
ral network (CNN) to predict velocity fields of a steady state flow with
an obstacle (represented by simple geometries) for small domains with
closed boundaries, they used the distance transform of the binary image
as the model input. For single-phase, time-dependent problems, Hennigh
(2017) proposed the Lat-Net, a convolutional neural network architec-
ture that compressed the output of an LBM simulation (to be memory ef-
ficient), and learned the relationship between subsequent (compressed)
time steps. Specifically, for porous media applications, Wu et al. (2018)
applied a CNN architecture with a fully connected layer to predict the
permeability of 2D images. Sudakov et al. (2018) applied simple 2D/3D
architectures to predict the absolute permeability a system obtained by
a pore-network model (a technique which simplifies the pore space into
a network of spheres interconnected by cylinders, losing all the complex
features of the image). The authors of this paper (Santos et al., 2018)
initially proposed a CNN that used the Euclidean distance as an input
to predict the velocity field. Nevertheless, the network was not able to
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generalize to predict for more heterogeneous pore geometries. Kamrava
et al. (2020) showed that by using 3D convolutions their model was able
to predict permeability for realistic pore geometries. That paper also
provides a detail explanation of all the main components of a convolu-
tional neural network and we refer it to any reader who is not familiar
with the basic structure of a neural network. The key difference of our
work is that we are able to use large 3D domains with pore geometry
that is more complex than in previously published work. Further, com-
pared to other porous media work to date, we are able to predict the
fluid 3D velocity field, instead of only trying to predict the permeability
value.

In this work, our main contribution is a new 3D deep learning work-
flow that is able to generalize the single-phase flow of a fluid through
granular materials. We show that by combining a feature extraction al-
gorithm, a custom loss function, and a new network architecture, our
model can be trained with very simple 3D geometries, and predict ac-
curately in examples of varying sizes and complexity. These predictions
require less than a second of computation on a typical desktop computer
with a graphics processing unit (GPU), and are comparable in accuracy
to the full-physics simulation that might require days of processing on
a supercomputer cluster. We will also provide a comprehensive 3D data
set that spans a wide range of rock formations all around the globe.

2. Methods

In this section, we present the numerical method used for simulating
the flow physics, the morphological feature extraction algorithm, and
the architecture of the PoreFlow-Net.

2.1. Velocity field simulation

To simulate the fluid flow through the domains of interest, we se-
lected the lattice Boltzmann method (LBM) (Sukop and Thorne, 2007).
Nevertheless, the results of this work are independent of the numeri-
cal method used to solve the flow physics. The LBM is one of the most
popular methods for performing direct simulation of fluid flow through
irregular geometries. This method simulates the streaming and collision
of particles on a grid, and it has been demonstrated that is able to recover
the full Navier—Stokes equation solution (Frisch, 1991). The advantages
of the LBM are that the algorithm is relatively easy to implement, is
highly parallelizable, and it can perform direct simulations on images.

We used the same model proposed by Pan et al. (2006) with a re-
laxation time (related to the fluid viscosity) equal to one. It is a slightly
compressible model, where a very small pressure gradient (1e-6 lattice
units, independent to the permeability of the domain) is applied to drive
the fluid forward. All the simulations are in the laminar flow regime
(where the Reynolds number is much smaller than one). This is consis-
tent with the typical flow regime through subsurface formations away
from fractures or boreholes.

Upon convergence, the LBM simulation outputs the 3D velocity field
tensor of the image. To calculate the permeability of the domain, we use
Darcy’s law (Bear and Bachmat, 1991):
o dp
udz’

()]

where 7 represents the mean of the velocity field in the direction of the
pressure gradient d—g, and y refers to the dynamic viscosity of the fluid.
To calculate & we calculate the average of the 3D velocity matrix in the
direction of flow. The permeability expresses the flow rate as a function
of pressure gradient, it has units of length squared, and it is typically
expressed in m? or in Darcys.

2.2. Feature extraction

The typical bottlenecks for deep learning applications are the: (1)
vast amount of data required to train a model, and the (2) memory lim-
itations of the computational systems to perform the training of a deep
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neural network. To overcome these issues, we added to our workflow a
pre-training feature extraction step where we extract relevant morpho-
logical features of the rock volume.

Since our simulations are time consuming (spanning from hours to
days in our cluster), it would be impractical to run domains hosting
every possible 3D structure. By adding additional input features to the
model, our network is trained to find a more robust functional rela-
tionship of the image with the flow field. It is worth noting that these
features are computed in minutes (in a desktop computer) requiring a
minimal computational demand compared to the fluid flow simulation.
Moreover, since it would be computationally difficult to train the model
using the entire simulation domains (> 5002 voxels), we split the input
and output images in subsamples to carry out the training process. Since
the subsampled volumes are shuffled in a training pool along with other
examples from different domains, including information of the bound-
aries (local with Euclidean distance, and global with the time of flight)
gives the model knowledge about the original spatial location of the
individual subsample (this process is depicted in Fig. 5).

We compute four geometrical features from the binary image
(Fig. 2). 1) To represent the local characteristics of the binary image, we
extracted the Euclidean distance map (also known as the distance trans-
form) of each sample. This is calculated with the following equation:

1
Egis = ( (xq —X2)2 + (v —)’2)2 + (2 —22)2 )2- )

Where X; and 2> Y1 and 2> 21 and 2 are the coordinates of each point of
the solid and the fluid boundaries respectively. This map provides a
compact representation of the distribution of space available for fluid to
flow, and the distance to the closest solid (no-flow) boundary. 2) Next,
a maximum inscribed sphere (MIS) map in the direction of flow (i.e.,
an MIS flood) is computed. This map is a simplified and lightweight
representation of a non-wetting fluid injection in the direction of flow.
Although MIS floods are typically used to describe two-phase flow, here
it acts as a measure of geometry (size of pore space) and topology (con-
nectivity to neighboring pore structures to similar size). The MIS map
provides information about the local pore space characteristics, as well
as the global simulation conditions. It acts as a bridge between the whole
domain and its subsamples. 3) and 4) Finally, to inform the network
about the global conditions of the domain before subsampling it, we
employed a detrended time of flight (ToF). We use the fast marching
algorithm (Hassouna and Farag, 2007) to compute the shortest distance
of all the points of the domain to a point source (in this case, either
the XY-plane located at the inlet or the outlet). This method solves the
boundary value problem of the Eikonal equation (Hassouna and Farag,
2007) represented by:

|Vi(x)| = 3

1

f)

Where t represents the time of flight and f(x) stands for the speed at
every location of the image (a constant in our case). We set the speed
of the void space to one, while the solid matrix is set to zero (imperme-
able). The result of this operation is a map where each of the voxels of
the void space are labeled with a number that depicts the shortest dis-
tance (in voxels) to the boundary (the first few layers in the z-coordinate
will be given consecutive numbers starting from one, until they find a
solid obstacle, then the number sequence will continue around the ob-
stacle). We then subtract the time of flight of the image map without
solid obstacles (an image with a porosity of 100%), to calculate a de-
trended (normalized) map as shown in Fig. 2. This feature provides data
on tortuosity of the global paths within the domain. In addition, it sup-
plies the model implicit information about the neighboring subsampled
blocks. We compute two features using this method. One, where the
point source is located at the inlet of the numerical simulation, and the
second one where the source is at the outlet (both pressure gradient
boundary conditions).

These features have been used in literature to characterize porous
materials. Nevertheless, since the relationship of these features with the
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Time of Flight (Left to Right)

Time of Flight (Right to Left)

Fig. 2. 2D example of the four morphological features (Euclidean distance (calculated using Pore-Spy (Gostick et al., 2019)) maximum inscribed spheres, and time
of flight from left and from right, respectively) that we compute from a binary image (Liu et al., 2017) to train the network. The areas where the value of the matrix is

zero (i.e., solid phase voxes) are shown in black.

Fig. 3. Schematic of three subsequent convolution operations with a 3 x 3 x 3 filter and a stride (kernel distance of where the next convolution operation is
performed) of two. The network is trained to create a more compact (latent) representation, while retaining relevant features of the original image. Although the
image loses the structure to the human eye, it retains the most significant information to the network. This operation allows to capture local and global spatial
relationships by convolving over the output of the previous convolutional block. It is also cheaper to train because it has a smaller number of parameters (smaller

filters) compared to a fully connected network.

velocity field is highly non-linear, the selection of the ultimate set of
features shown above was a trial-and-error process. These features do
not provide an exhaustive description of a 3D porous material. However,
they deliver enough information to our model about the local and global
boundary conditions of the domain to be able to structure a relationship
(in the form of a convolutional neural network model) between these
inputs and the Navier-Stokes solution.

2.3. Network

2.3.1. Convolutional neural networks

Convolutional neural networks (CNNs) have excelled in the field
of computer vision outperforming classical machine learning methods
(Krizhevsky et al., 2012; LeCun et al., 2015). These models have shown a
remarkable capacity to find complex relations in big data sets. By utiliz-
ing the discrete convolution operation instead of a regular matrix multi-
plication (i.e., a fully connected feed-forward network), they generalize
local spatial relationships (sparse interactions) across the domain. CNNs
utilize filters that are much smaller than the input image, which extract
general and meaningful information about the domain in an efficient
manner. By stacking convolutional layers, the network extracts features
at different levels of abstraction with an increasingly wider receptive
field (Fig. 3). Finally, the convolution layers are equivariant to transla-
tion, which means that if the input feature is shifted, their output will be
shifted by the same amount (by creating, in this case, a 3D feature map).
This is particularly useful in pattern recognition, because they allow for
inputs of variable size. Using this structure, a network can be trained
to learn complex, non-linear relationships between inputs and outputs
using the backpropagation algorithm.

2.3.2. PoreFlow-Net
Recent studies suggest that the performance of a network can
benefit from increased depth (longer stack of layers, as described in

Section 2.3.1) (Szegedy et al., 2015; Urban et al., 2016). Apart from
being computationally more intensive, a deeper network presents issues
like vanishing and exploding gradients (Pascanu et al., 2012), and filter
saturation by highly correlated features, making them very hard to train.
To improve the gradient propagation and to enhance the training, He
et al. (2016) proposed the residual network (ResNet). The ResNet con-
catenates an identity map to the output of a convolutional layer stack
(residual unit) to facilitate training. The authors show that the training is
eased by targeting this new referenced residual output, avoiding gradi-
ent vanishing or saturation. Further, Ronneberger et al. (2015) proposed
the UNet. This architecture concatenates feature maps from different
layers of the encoding branch to the decoder, improving segmentation
accuracy significantly. One of the main advantages of this is that the
structure of the network retains high (i.e., lines and edges) and low-
level features (i.e., entire objects) to reconstruct the output. They show
that the networks train with ease and with fewer parameters due to the
better flow of information (both in the forward and backward computa-
tions) that the skip connections (direct pathways between the encoding
and decoding branch) provide. Building up from these two architectures,
Zhang et al. (2018) presented the Deep Residual U-Net (ResUnet) which
uses residual units as building blocks and skips connections between
them. This network prove to be easy to train (compared to the U-Net
that needed extensive data augmentation or a pre-trained model), with
an efficient number of parameters and showed accurate results using a
small training set.

In this paper, we propose a modification of the ResUnet, which ben-
efits from the information of all the input features by passing them
through individual encoding branches (dedicated to each of the ex-
tracted features from Section 2.2) with skip connections. We use three
residual units for each of the four branches, a bridge, and a single de-
coder to recover the velocity field. Each of these parts is built with
residual units (Fig. 4). We use the scaled exponential linear unit (SeLu)
(Klambauer et al., 2017) as the activation function. This is described by
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Fig. 4. PoreFlow-Net architecture consisting of four input branches and one decoder. A batch normalization layer and an activation follow every convolutional layer.
Instead of using deconvolutional layers, the decoder resizes the image using upsampling. It has been shown (Gauthier, 2015) that the pixel overlap in deconvolution
layers causes artifacts which increase in higher dimensions. In the case of a 3D deconvolution, some voxels will get six times the number of input information
(because the filters visit these locations several times) compared to their neighbors. Since these operations have multiple channels, the network struggles to learn
the appropriate weights to reconstruct the output image without artifacts. To avoid these artifacts and increase the memory efficiency, our image is resized using an
upsampling layer, which repeats the input by a factor of two in all the coordinate directions (with no trainable parameters, making it cheaper).

the following equation:

xif x>0

ae* —aif x>0 ’

SeLu(x) = x{ )
where the values of « and 4 are fixed and provided in the publication.
The purpose of this function is to perform additional internal normal-
ization of the inputs, facilitating gradient propagation. According to the
derivation of the authors, problems like gradient exploding or vanishing
are mathematically infeasible. Moreover, since internal normalization is
cheaper, the network converges faster.

Since the velocity distribution spans several orders of magnitude
(Fig. 6), we use L1 (mean absolute error) as the cost function due to the
large number of outliers (velocity tending to zero near the grain bound-
aries). To increase the attention in tighter geometries we compute the
loss as follows:

L= Z (‘.VIrue ~ Ypred

(O]

*M),

Where M is a weight vector that accounts for the size of the pores
in the direction of flow and * stands for an element-wise multiplication.
The algorithm to calculate M can be found in Appendix Al. The loss
function (Eq. (5)) weights the difference between the true values and
the predictions so that all the voxels in the training pool have the same
relevance (high and low porosity subsamples).

2.4. Training data

2.4.1. Dataset creation

We used a beadpack comprised by a disordered closed pack of spher-
ical grains, originally imaged experimentally by Finney (it can be down-
loaded at Finney and Prodanovic, 2016) as our initial domain. A 5003
subset of the original spherepack was discretized and segmented to gen-
erate training data.

We performed four one-pixel grain dilations to the original
sample, where we obtained four images of decreasing porosity
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Maximum Inscribed Sphere .

PoreFlow-Net Velocity Field

Fig. 5. Our workflow. Starting from a binary 3D matrix (left), we compute four geometric features (Section 2.2). The two on the top describe the medium locally,
while the two bottom ones provide information about the global domain. These features are computed on the fly for every sample. Then, these features are subsampled
(black lines) to train the neural network model. The output is the fluid velocity field in the direction of the pressure gradient. With different colors, we highlighted

the different orders of magnitude of the velocity field prediction.
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Fig. 6. In the left side, a heat map of the signed velocity
logarithm (smaller absolute values represent higher veloc-
ities, sign represents direction) versus Euclidean distance.
The velocity has a bimodal (positive and negative direc-

tions) distribution; hence it has a non-unique relationship
with the Euclidean distance. Consequently, the plot shows
a higher scatter around the small velocities and Euclidean
distances. To the right, the scatterplots of maximum in-

scribed sphere and Time of Flight versus velocity. Het-
eroscedastic, multimodal behaviors and non-linear corre-
lations are observed.
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(increasingly tighter) that mimic cementation processes in the subsur-
face, but preserves the simple features of the original spherepack. These
samples range from 29.8% to 11% porosity. Finally, we performed a
single-phase LBM flow simulation in these four samples where a pres-
sure gradient parallel to the z-coordinate direction was applied with
no-flow boundary conditions in the other faces. Since the domains are
homogeneous packs of spheres, the simulation converges much faster
(in the order of hours) compared with real rock x-ray scans. We used
these four samples to train the convolutional neural network.

2.4.2. Relationships between inputs and outputs

The lattice Boltzmann simulation outputs a pressure matrix and a
velocity tensor in each point of the grid. In this work, we focused on
the z-component of the fluid velocity (parallel to the pressure gradient)
which determines the permeability. In Fig. 6 we show the velocity dis-
tribution and its relationship with the morphological features extracted
from the binary image.

From the relationships exhibited in Fig. 6, we can confirm that tra-
ditional machine learning methods would not be able to obtain an ac-

curate model due to the complex, highly non-linear relations between
the inputs and the target output.

3. Results
3.1. Impact of the proposed 3D feature extraction

As stated above, it would not be feasible to train our network over the
entire simulation domains. Hence, it is necessary to subsample the 3D
matrices into smaller volumes to train the model with batches of data.
The reasoning behind this is that GPUs have a limited amount of mem-
ory, and the model parameters, the inputs and outputs, the gradients,
among others must be locally stored. In our experiments, the maximum
subset size that conventional hardware could accommodate in memory
was no larger than 803. The model, as described by Fig. 4 requires 2.7
gigabytes (Gb) of memory to be trained with a batch size of one sample.
To train the CNN with entire simulation domains, one would require
approximately 660 Gb of memory available, which greatly exceeds the
current capabilities of graphic processing units.
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Fig. 7. Evaluation of representative element volume with coefficient of variation (CV) for porosity and velocity. The variability of porosity and velocity decreases
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Fig. 8. 3D visualization of the moving windows sizes of the stationarity analysis.
Gray areas indicate grains whereas white portions represent pores. The blue
cube represents a highly non-stationary window size (Fig. 7), the red cube is
our selected subset size (80°%), and the green cube shows a stationary window
size for the pictured domain. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Spatially aware neural networks, benefit greatly from stationary
samples because it is easier to find matching patterns in data. In the-
ory, the subset size of the 3D sample should be equal or larger than
the representative element volume (REV) (Bachmat and Bear, 1987) to
exhibit a stationary behavior of the property of interest (in this case,
velocity), impacting in a positive manner the training performance of
the neural network. If the subset data size is smaller than the REV, we
cannot expect to have a stable measure due to the non-stationarities (in
the form of spatial heterogeneities) present in the data.

To show the importance of our proposed feature extraction step in
the training of the network, we carried out a moving window analy-
sis to assess the variability of the domains with different volume sizes
(Pyrcz and Deutsch, 2014). Using a window of increasing size length, we
calculate the coefficient of variation (the ratio of the mean over the stan-
dard deviation) of the porosity and fluid velocity within the subset. We
carried out this experiment in the original spherepack (36% porosity,
before the grain dilations where performed). We executed this proce-
dure iteratively until the variation became not significant. We plotted
the results of the moving window analysis in Fig. 7. Both of the subplots
show the decrease in variability of porosity and velocity respectively
with the increase in the size of the window (due to the homogeneity
of the sample). The 3D subset size comparison is shown in Fig. 8. It is
only after 200° voxels per side (40% of the image side length) that the
velocity field stabilizes (coefficient of variation is less than 1%). This
behavior is more significant in tighter and less homogenous samples.

Training the neural network using only the binary image of solid and
pore as input will hamper the training process, resulting in overfitting

(it fails to generalize, causing the training and validation curves to di-
verge), and poor predictive performance (we carried out this experiment
and the results are plotted in Fig. 9). Since we are interested in creat-
ing a predictive model that is able to perform in different geometries,
we show that using the additional inputs (which add additional infor-
mation about the subvolume, as well as how it relates to parts of the
image surrounding it, the latter in the form of time of flight) described
in Section 2.2, the model increases its training performance, and gener-
alizes enough to predict the flow field (within acceptable error range)
in a test set that includes various geometries. In other words, the model
is able to find unique patterns to construct a robust function mapping
the image with the fluid velocity.

3.2. Model training

We implemented the model using the Keras python library (Chollet,
2015) with TensorFlow (Abadi et al., 2015) as the backend. The model
is optimized by minimizing the cost function (Eq. (5)) using Adam
(Kingma and Ba, 2014) with a learning rate of 1e-4. We used four sphere
packs (that present four subsequent grain dilations from the original
sample, as highlighted in Section 2.4.1), and subsampled them into 1080
803 cubes for training with a 20% random validation split (216 cubes).
The model was trained with a mini-batch size of five, on a desktop with
an NVIDIA Quadro M6000 GPU for 140 epochs. The model training pro-
cess took twelve hours. The inputs and the outputs are transformed using
the minmax constraining them from minus one to one. A comparison of
the performance of three different model setups (training with the bi-
nary image only, training with the four proposed geometrical features,
and training utilizing the features plus the custom loss function) is plot-
ted in Fig. 9. We observed a significant performance increase in the loss
value when using the extracted features and the proposed loss.

To assess the ability of the three trained models specified above to
generalize the training data, we first tested the model using the original
sphere-pack (unseen by the models, these were trained using the samples
with the dilated grains only). The model trained with the binary input
gave a relative error in permeability of several orders of magnitude.
Whereas the one using the four input features returned and error 15 %,
and finally the model trained using the features plus the custom loss
gave a relative error of 13% when compared to the lattice-Boltzmann
simulation. We carry out an extensive testing of the latter trained model
in the sections below.

3.3. Model testing

Using the model trained with the four dilated spherepacks
(Section 3.2), we tested its capabilities (vs. the Navier-Stokes equation
solution approximated by the LBM) on domains of different size and
complexity.
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Fig. 10. XY-Cross sections of the Fontainebleau sandstones of the test set. The pore space is shown in black. Some of the structures have been disconnected from the
bulk during cementation and compaction, making this test set very different from the homogenous spherepacks pore space in our training set.

Table 1

Comparison of our model performance versus the LBM simulation on the Fontainebleau dataset. The average relative error refers to the error in the velocity parallel
to the pressure gradient (z-coordinate). The average voxel-wise error shows a nonlinear relationship with the permeability relative error because the permeability is
an average measure of the velocity considering the solid volume. Although the pixel-wise error increases with porosity, the permeability error (calculated using the
mean velocity) shows no correlation with porosity. This is due to the fact that the highest errors are present near the grain boundaries (Fig. 12), this values do not
have a significant impact in permeability.

Porosity Average relative error (voxel-wise) in the pore-space True permeability [m?] Predicted permeability [m?] Relative error
8% 0.75% 8.76e-14 10.86e-14 24%

9.8 0.80% 2.35e-13 2.44e-13 4%

12.4% 1.04% 4.97e-13 5.34e-13 7.23%

15.2 1.75% 1.47e-12 1.45e-12 1.44%

17.5 2.25% 2.45e-12 2.61e-12 6.73%

24% 4.36% 7.76e-12 8.56e-12 10.32%

3.3.1. Fontainebleau sandstone dataset

The first test set was obtained via a simulation of processes that oc-
cur during sedimentary rock formation (i.e., sedimentation, compaction,
diagenesis, and cementation) to obtain 3D volumes that resemble the
Fontainebleau Sandstone formation in France (Berg, 2016). These im-
ages are 4803 voxels, and vary from 8 to 26% porosity. We show a cross
section through the middle of four of the samples in Fig. 10.

We present the results in Table 1. These are in very good agreement
with the full-physics simulation (carried out to compare the perfor-
mance of our model). To analyze the error more closely, we selected
the worst performing sample (24% porosity sandstone) for further
analysis. In Fig. 11 we show a visual comparison (cross-section of the
3D volume orthogonal to the flow direction) of the lattice-Boltzmann

solution with our model. It is visible that most of the relevant flow
features are preserved. A comparison of the velocity histograms is
shown in Fig. 12. It is worth noting that the flow streamlines are not
always continuous, and the 3D solution is not trained to satisfy mass
balance (hence the relative error). Additional constraints can be added
to honor this, but are out of scope for this work. In here, we are mostly
interested in capturing the main flow characteristics (preferred paths
and dead-ends) that impact permeability.

3.3.2. Tests on different rock types

To further test our model, we predicted the flow field for different
rock types available in Digital Rocks Portal (Prodanovic et al., 2015).
We first created a sample similar (in shape) to the original training
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Fig. 11. XY Cross-section of the fluid flow simulated velocity in the z-direction (left), PoreFlow-Net prediction (middle) and the relative error between these two
(right) for the Fontainebleau sandstone with 24% porosity. The velocity is shown in a dimensionless scale going from one to minus one (minmax transform). The
mean average error in the pore space is 4.36% as reported in Table 1. The highest errors (voxel-wise) are in the pore throats (which is also consistent in the velocity

histogram in Fig. 12).

Table 2
Results of the additional test set.

Sample Size [voxels3] Resolution [m/voxel] Porosity True permeability [m?] Predicted permeability [m?] Relative error
Eroded sphere pack 500 5.7E-6 42% 8.86e-11 6.76e-11 23.53%
Sphere pack 500 5.7E-6 36% 5.26e-11 4.58e-11 12.96%
Estaillades limestone 650 3.3113E-6 11.8% 6.62e-13 6.99e-13 5.45%
Microsand (artificial multiscale sample) 500 3E-6 28.2% 5.64e-12 4.68e-12 17.01%
Castlegate sandstone 512 5.6E-6 20.5% 2.19e-12 2.17e-12 1.06%
Bentheimer sandstone 500 3.0035E-6 20.1% 3.77e-12 2.74e-12 27.30%
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Fig. 12. Histogram of true and predicted velocity (480° points in lattice units)
in the z-direction at every point of the domain. The comparison shows excellent
agreement at high velocity, and a slight disagreement on the lower range. We
hypothesize that since the training was performed with spherepacks, by having
paths that are more tortuous, hosting a higher amount of dead end pores, and
more solid surface area, the network does not perform as accurately. Since the
highest orders of magnitude in velocity have a greater effect in permeability,
there is good agreement in the permeability magnitude (Table 1).

image by performing numerical grain erosion. This creates a sample of
larger porosity where grain boundaries are not as restrictive to fluid flow
(where the permeability is higher). This case is of interest in irrigation
(Garnier et al., 1998). We further tested the original sphere pack (the one
that was numerically dilated to generate our training set). Our model
yield accurate predictions in these two samples, even when the porosi-

Fig. 13. Maximum inscribed sphere distribution for three of our samples. In
orange, the training set, where the distribution is Gaussian and relatively nar-
row. In red and blue, the MIS distribution for the Bentheimer sandstone and
microsand respectively. These distributions have a lognormal shape, which is
due to the more heterogeneous pore structures. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of
this article.)

ties were larger (with velocities that are also orders of magnitude higher)
than the training set. We then tested the trained model on two outcrop
sandstones, a limestone, and artificially created multiscale microsand
image. In these, the relative error was not higher than 28% (Yang et al.,
2016) show that different fluid flow solvers will have a comparable dis-
crepancy among them, even when the same geometry is provided).

We present our results in Table 2, we show the different 3D domains
of the test set in Fig. 14, and a cross section of the results is shown in
Fig. 15. These geometries have different pore shapes, and in cases of
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Fig. 14. Additional test that includes: (a) a
slightly consolidated medium, (b) Estillades lime-
stone (Muljadi, 2015b), (c) Castlegate sandstone
(Sheppard and Prodanovic, 2015), (d) multiscale
microsand (Mohammadmoradi, 2017) and (e) Ben-
theimer sandstone (Muljadi, 2015a), all of which
are available at the Digital Rocks Portal.
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Fig. 15. XY Cross-section of the simulated velocity (left), PoreFlow-Net prediction (middle) and the relative error between these two (right) for the Castlegate
formation sandstone. The velocity is shown in a dimensionless scale going from one to minus one (minmax transform). The mean average relative error in the pore

space only is 1% as reported in Table 2.

limestone and microsand they have much wider pore size distribution
compared to the training set (Fig. 13). They also have different absolute
volume sizes. While two sandstones have similar absolute volume size
(500 voxel on a side), the relative error for prediction is very different
(1.06% and 27.30%) likely because they have different grain/pore dis-
tribution as well as different number of individual grains per side (which
determines how well grain or pores are resolved). Note that our train-
ing set as well as the Fontainebleau sandstone test in previous section all
have similar level of resolution and hence we saw a very good prediction
for all cases in Table 1. Given that the training set was comparatively
simple, we find the results in great agreement with the full-physics sim-
ulations.

4. Conclusion

We train a deep neural network architecture as a fast proxy to predict
accurately the 3D physics-based fluid flow velocity fields within digital
rock samples. The relationship between details of pore geometry and
flow field (with its integral measure of permeability) is complex and
not easily predicted based on the geometry statistics alone. Neverthe-
less, this fundamental relationship allows describing how fluids move
through subsurface formations, and is the cornerstone of many research
projects in environmental, civil, petroleum engineering as well as in ge-
ological sciences.

We demonstrated that our convolutional neural network generalizes
the flow problem to predict flow velocity in rocks that host much more
complex structures than the original training set. This is attributed to
the capacity of the network to model the complicated relationships be-
tween pore shape and domain characteristics with the velocity field.
The model performs well with rocks of varying types (different lithol-
ogy), and of different grain distribution and porosities, where the perme-
ability ranged several orders of magnitude (Fig. 16). The PoreFlow-Net
calculates fluid flow fields in less than a second on a typical desktop,
compared with the standard simulation procedure, which takes hours
to days in a supercomputer facility (depending on the hardware used as
well as complexity of the digitized pore space geometry). Additionally,
the model is a lightweight representation (around 25 Mb), whereas the
full simulation results takes 20X the hard drive space. The model can be
reused in any given geometry, while the simulation has to be run case-
by-case. Future work should be focused on finding features that work
with fractured domains and ultra-tight rocks.

This method provides a framework for different further applications
such as component transport, relative permeability, rock-mechanics
applications, formation factor, or resistivity. These models provide a
straightforward way to assess important characteristics for improved
subsurface management without running expensive physical models and
could possibly be a path to data-based upscaling, given the proliferation
of digital rock images as evidenced in the Digital Rocks Portal or online
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Fig. 16. Permeability predictions vs. true values. The PoreFlow-Net is able to
predict a wide range of orders of magnitude.

data available by different research groups (Blunt, 2015; Wildenschild,
2006).

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

CRediT authorship contribution statement

Javier E. Santos: Conceptualization, Methodology, Software, Val-
idation, Formal analysis, Investigation, Writing - original draft, Vi-
sualization. Duo Xu: Conceptualization, Methodology, Visualization.
Honggeun Jo: Validation, Formal analysis, Investigation, Writing - orig-
inal draft, Writing - review & editing, Visualization. Christopher J.
Landry: Software, Writing - review & editing. MasSa Prodanovi¢:
Resources, Data curation, Writing - review & editing, Supervision.
Michael J. Pyrcz: Resources, Writing - review & editing, Supervision,
Funding acquisition.

Reproducibility

The code will be publicly available on the author’s repository
(github.com/je-santos) and all the data used will be posted to Digital
Rock Portal upon publication.

Acknowledgments

We would like to thank Risto Miikkulainen and Santiago Gonzalez
from the UTCS Neural Networks Research Group for their valuable com-
ments. We would also like to acknowledge Ying Yin and Wenhui Song for
their feedback on the flow model. Additionally we would like to thank
Renan Rojas, Manish Bhattarai, and Nicholas Lubbers for their sugges-
tions towards the improvement of the neural network model. We grate-
fully recognize the Texas Advanced Computing Center for their high
performance computing resources. M. Pyrcz, J. Santos, and H. Jo ac-
knowledge support from DIRECT Industry Affiliates Program (IAP), and
C. Landry and M. Prodanovic acknowledge support from Digital Rock
Petrophysics IAP both of The University of Texas. Finally, we thank the
four anonymous reviewers for their comments, which greatly improved
this paper.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.advwatres.2020.103539.

07 i 2.75
2.50

100
2.25
2.00

200
175
300 150
1.25
400 1.00
0.75

500

0 100 200 300 400 500
z-coordinate

Fig. 17. Cross section of the weight matrix (M). Areas with low porosity have
a higher weight (represented by brighter colors) so that the network ‘focuses’ in
those areas as well as in the bigger channels.

Appendix
Al. Calculating mask for custom loss function

We calculate the weight matrix (Fig. 17) using the following pseu-
docode:

image_size =500 # length of the volume side
for i in range(0, image_size): # loop along the
z-coordinate
porosity_z =sum(binary_im[:,:,i])/image_size"2 #
calculate the porosity of the slice
solid_mask[:,:,i] = (1/porosity_z)*solid_maskl[:,:,i] #
multiply by a term that weights lower porosity sections
(Fig. 17)
solid_mask[:,:,i] [solid_mask[:,:,i]==0]=1 # replace
the solids with a 1
solid_mask[:,:,i] =solid_mask[:,:,i]/sum(solid_mask
[:,:,i])*image_size"2 # normalize

Where the binary image is composed by a 3D matrix of zeros repre-
senting the solids and ones representing the space for fluid to flow.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J. Tensorflow: A System For
Large-Scale Machine Learning. Retrieved from http://tensorflow.org/.

Andrew, M., 2018. A quantified study of segmentation techniques on synthetic
geological XRM and FIB-SEM images. Comput. Geosci. 22 (6), 1503-1512.
https://doi.org/10.1007/510596-018-9768-y.

Bachmat, Y., Bear, J., 1987. On the concept and size of a representative elementary volume
(REV). Advances in Transport Phenomena in Porous Media. Springer, pp. 3-20.
Bear, J., Bachmat, Y., 1991. Introduction to Modeling Phenomena of Trans-
port in Porous Media. Theory and Application on Transport Media, 4

https://www.springer.com/gp/book/9780792305576.

Berg, C.JF., 2016. Fontainebleau 3D Models. Digital Rocks Portal.
https://doi.org/10.17612/P75P4P.

Bihani, A., Daigle, H., Santos, J.E., Landry, C., Prodanovi¢, M., Milliken, K., 2019. Insight
into the sealing capacity of mudrocks determined using a digital rock physics work-
flow. In: Proceedings of the TACCSTER. Austin https://doi.org/10.26153/tsw/6874.

Blunt, M.J., 2015. Micro-CT Images of Sandstone and Carbonate Rocks. Retrieved
from  https://www.imperial.ac.uk/earth-science/research/research-groups/perm/
research/pore-scale-modelling/micro-ct-images-and-networks/.

Blunt, M.J., 2017. Multiphase Flow in Permeable Media. Cambridge University Press,
Cambridge. https://doi.org/10.1017,/9781316145098.

Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., ... Pent-
land, C., 2013. Pore-scale imaging and modelling. Adv. Water Resour. 51, 197-216.
https://doi.org/10.1016/j.advwatres.2012.03.003.


https://doi.org/10.1016/j.advwatres.2020.103539
http://tensorflow.org/
https://doi.org/10.1007/s10596-018-9768-y
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0002
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0002
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0002
https://www.springer.com/gp/book/9780792305576
https://doi.org/10.17612/P75P4P
https://doi.org/10.26153/tsw/6874
https://www.imperial.ac.uk/earth-science/research/research-groups/perm/research/pore-scale-modelling/micro-ct-images-and-networks/
https://doi.org/10.1017/9781316145098
https://doi.org/10.1016/j.advwatres.2012.03.003

J.E. Santos, D. Xu and H. Jo et al.

Carrillo, M., Que, U., Gonzélez, J.A., Lopez, C., 2017. Recognition of an obsta-
cle in a flow using artificial neural networks. Phys. Rev. E 96 (2), 1-10.
https://doi.org/10.1103/PhysRevE.96.023306.

Chen, Y., Li, Y., Valocchi, A.J., Christensen, K.T., 2018. Lattice Boltzmann simulations of
liquid CO 2 displacing water in a 2D heterogeneous micromodel at reservoir pressure
conditions. J. Contam. Hydrol. 212. https://doi.org/10.1016/j.jconhyd.2017.09.005.

Chollet, Francois & others., 2015. Keras https://keras.io.

Finney, J.L., Prodanovic, M., 2016. Finney Packing of Spheres. Digital Rocks Portal
http://www.digitalrocksportal.org/projects/4710.17612/P78G69.

Frisch, U., 1991. Relation between the lattice Boltzmann equation and the
Navier—stokes equations. Physica D Nonlinear Phenom. 47 (1-2), 231-232.
https://doi.org/10.1016/0167-2789(91)90293-1.

Garnier, P., Angulo-Jaramillo, R., DiCarlo, D.A., Bauters, T.W.J., Darnault, C.J.G., Steen-
his, T.S., ... Baveye, P., 1998. Dual-energy synchrotron X ray measurements of rapid
soil density and water content changes in swelling soils during infiltration. Water
Resour. Res. 34 (11), 2837-2842. https://doi.org/10.1029/98WR02367.

Gauthier, J., 2015. Conditional Generative Adversarial Nets for Convolutional Face
Generation.

Gostick, J., Khan, Z., Tranter, T., Kok, M., Agnaou, M., Sadeghi, M., Jervis, R., 2019.
PoreSpy: A Python Toolkit for Quantitative Analysis of Porous Media Images. Journal
of Open Source Software 4 (37), 1296.

Guo, X., Li, W., Iorio, F., 2016. Convolutional neural networks for steady
flow approximation. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 481-490.
https://doi.org/10.1145/2939672.2939738.

Hassouna, M., Farag, A., 2007. MultiStencils fast marching methods: a highly accurate so-
lution to the eikonal equation on Cartesian domains. IEEE Trans. Pattern Anal. Mach.
Intell. 29, 1563-1574. https://doi.org/10.1109/TPAMI.2007.1154.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition.
In: Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 770-778. https://doi.org/10.1109/CVPR.2016.90.

Hennigh, O., 2017. Lat-Net: Compressing Lattice Boltzmann Flow Simulations using Deep
Neural Networks. Retrieved from http://arxiv.org/abs/1705.09036.

Jenny, P., Lee, S.H., Tchelepi, H.A., 2003. Multi-scale finite-volume method for elliptic
problems in subsurface flow simulation. J. Comput. Phys. 187 (1), 47-67.

Kamrava, S., Tahmasebi, P., Sahimi, M., 2020. Linking morphology of porous media to
their macroscopic permeability by deep learning. Transport Porous Media 131 (2),
427-448. https://doi.org/10.1007/s11242-019-01352-5.

Kang, Q., Lichtner, P.C., Zhang, D., 2007. An improved lattice Boltzmann model for mul-
ticomponent reactive transport in porous media at the pore scale. Water Resour. Res.
43 (12), 1-12. https://doi.org/10.1029/2006 WR005551.

Karimpouli, S., Tahmasebi, P., 2019a. Image-based velocity estimation of
rock using convolutional neural networks. Neural Netw. 111, 89-97.
https://doi.org/10.1016/j.neunet.2018.12.006.

Karimpouli, S., Tahmasebi, P., 2019b. Segmentation of digital rock images using deep
convolutional autoencoder networks. Comput. Geosci. 126 (February), 142-150.
https://doi.org/10.1016/j.cageo.2019.02.003.

Kingma, D.P., Ba, J. 2014. Adam: A Method For Stochastic Optimization.
ArXiv:https://arxiv.org/abs/1412.6980.

Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S., 2017. Self-normalizing neural
networks. Advances in Neural Information Processing Systems, pp. 972-981.

Krizhevsky, A., Sutskever, 1., Hinton, G.E., 2012. Imagenet classification with deep con-
volutional neural networks. Advances in Neural Information Processing Systems,
pp. 1097-1105.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436—444.
https://doi.org/10.1038/nature14539.

Liu, J.,, Wang, Y., Song, R., 2017. A pore scale flow simulation of re-
constructed model based on the micro seepage experiment. Geofluids
https://doi.org/10.1155/2017/7459346.

Mees, F., Swennen, R., Geet, M.Van, Jacobs, P., 2003. Applications of X-ray Computed
Tomography in the Geosciences, 215. Geological Society, London, Special Publication,
pp. 1-6. https://doi.org/10.1144/GSL.SP.2003.215.01.01.

Mehmani, A., Verma, R., Prodanovi¢, M., 2020.
ing of carbonates. Marine Pet. Geol. 114 (July
https://doi.org/10.1016/j.marpetgeo.2019.104141.

Mohammadmoradi, P., 2017. A Multiscale Sandy Microstructure. Digital Rocks Portal.
doi:10.17612/P7PC7C.

model-
104141.

Pore-scale
2019),

Advances in Water Resources 138 (2020) 103539

Mosser, L., Dubrule, O., Blunt, M.J., 2018. Stochastic reconstruction of an oolitic lime-
stone by generative adversarial networks. Transport Porous Media 125 (1), 1-23.
https://doi.org/10.1007/511242-018-1039-9.

Muljadi, B.P., 2015a. Bentheimer Sandstone. Digital Rocks Portal. doi:10.17612/P77P49.

Muljadi, B.P., 2015b. Estaillades Carbonate. Digital Rocks Portal. doi:10.17612/P73W2C.

Pan, C., Hilpert, M., Miller, C.T., 2004. Lattice-Boltzmann simulation of
two-phase flow in porous media. Water Resour. Res. 40 (1), 1-14.
https://doi.org/10.1029/2003WR002120.

Pan, C., Luo, L.-S., Miller, C.T., 2006. An evaluation of lattice Boltzmann schemes
for porous medium flow simulation. Comput. Fluids 35 (8-9), 898-909.
https://doi.org/10.1016/j.compfluid.2005.03.008.

Pascanu, R., Mikolov, T., Bengio, Y., 2012. Understanding the exploding gradient problem.
CoRR https://arxiv.org/abs/1211.5063, 2.

Masa Prodanovic, Maria Esteva, Matthew Hanlon, Gaurav Nanda, Prateek Agar-
wal (2015) Digital Rocks Portal: a repository for porous media images
http://dx.doi.org/10.17612/P7CC7K.

Pyrcz, M.J., Deutsch, C.V., 2014. Geostatistical Reservoir Modeling. Oxford University
Press.

Raeini, A.Q., Blunt, M.J., Bijeljic, B., 2014. Direct simulations of two-phase flow on micro-
CT images of porous media and upscaling of pore-scale forces. Adv. Water Resour. 74,
116-126. https://doi.org/10.1016/j.advwatres.2014.08.012.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: convolutional networks
for biomedical image segmentation. Lect. Notes Comput. Sci. Incl. Sub-
ser. Lect. Notes Artif. Intell. Lect. Notes Bioinform. 9351, 234-241.
https://doi.org/10.1007/978-3-319-24574-4_28.

Santos, J.E., Prodanovié¢, M., Landry, C.J., Jo, H., 2018. Determining the impact of
mineralogy composition for multiphase flow through hydraulically induced frac-
tures. In: Proceedings of the 6th Unconventional Resources Technology Confer-
ence, Tulsa, OK, USA: American Association of Petroleum Geologists, pp. 1-15.
https://doi.org/10.15530/urtec-2018-2902986.

Santos, J.E., Prodanovié¢, M., Pyrcz, M., 2018. Characterizing Effective Flow Units in
a Multiscale Porous Medium. American Geophysical Union Fall Meeting Abstracts
https://doi.org/10.1002/essoar.10502162.1.

Sheppard, A., Prodanovic, M., 2015. Network generation comparison forum. Digit. Rocks
Portal https://doi.org/10.17612/P7059V.

Sudakov, O., Burnaev, E., Koroteev, D., 2018. Driving Digital Rock towards Machine
Learning: Predicting permeability With Gradient Boosting and Deep Neural Networks,
1-22. Retrieved from http://arxiv.org/abs/1803.00758.

Sukop, M.C., Thorne, D.T., 2007. Lattice Boltzmann Modeling. Springer.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... Rabinovich, A., 2015.
Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1-9.

Tartakovsky, A., Meakin, P., 2005. Modeling of surface tension and contact angles with
smoothed particle hydrodynamics. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 72
(2), 1-9. https://doi.org/10.1103/PhysRevE.72.026301.

Urban, G., Geras, K.J., Kahou, S.E., Aslan, O., Wang, S., Caruana, R., ... Richardson,
M., 2016. Do Deep Convolutional Nets Really Need to be Deep and Convolutional?
https://arxiv.org/abs/1603.05691.

Wildenschild, D., 2006. Multi-Phase Data Exchange. Retrieved from http://research.
engr.oregonstate.edu/immiscibles/multi-phase-data-exchange.

White, J.A., Borja, R.I., Fredrich, J.T., 2006. Calculating the effective permeability of sand-
stone with multiscale lattice Boltzmann/finite element simulations. Acta Geotech. 1
(4), 195-209.

Wu, J., Yin, X., Xiao, H., 2018. Seeing permeability from images: Fast pre-
diction with convolutional neural networks. Sci. Bull. 63 (18), 1215-1222.
https://doi.org/10.1016/j.scib.2018.08.006.

Xu, P., Yu, B., 2008. Developing a new form of permeability and Kozeny-Carman constant
for homogeneous porous media by means of fractal geometry. Adv. Water Resour. 31
(1), 74-81. https://doi.org/10.1016/j.advwatres.2007.06.003.

Yang, X., Mehmani, Y., Perkins, W.A., Pasquali, A., Schonherr, M., Kim, K,

Scheibe, T.D., 2016. Intercomparison of 3D pore-scale flow and so-
lute transport simulation methods. Adv. Water Resour. 95, 176-189.
https://doi.org/10.1016/j.advwatres.2015.09.015.

Zhang, Z., Liu, Q., Wang, Y., 2018. Road Extraction by deep residual U-Net. IEEE Geosci.
Remote Sens. Lett. 15 (5), 749-753. https://doi.org/10.1109/LGRS.2018.2802944.


https://doi.org/10.1103/PhysRevE.96.023306
https://doi.org/10.1016/j.jconhyd.2017.09.005
https://keras.io
http://www.digitalrocksportal.org/projects/4710.17612/P78G69
https://doi.org/10.1016/0167-2789(91)90293-I
https://doi.org/10.1029/98WR02367
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0016a
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0016a
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0016a
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0016a
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0016a
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0016a
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0016a
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0016a
https://doi.org/10.1145/2939672.2939738
https://doi.org/10.1109/TPAMI.2007.1154
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1705.09036
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0016
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0016
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0016
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0016
https://doi.org/10.1007/s11242-019-01352-5
https://doi.org/10.1029/2006WR005551
https://doi.org/10.1016/j.neunet.2018.12.006
https://doi.org/10.1016/j.cageo.2019.02.003
https://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0021
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0021
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0021
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0021
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0021
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0022
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0022
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0022
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0022
https://doi.org/10.1038/nature14539
https://doi.org/10.1155/2017/7459346
https://doi.org/10.1144/GSL.SP.2003.215.01.01
https://doi.org/10.1016/j.marpetgeo.2019.104141
https://doi.org/10.17612/P7PC7C
https://doi.org/10.1007/s11242-018-1039-9
https://doi.org/10.17612/P77P49
https://doi.org/10.17612/P73W2C
https://doi.org/10.1029/2003WR002120
https://doi.org/10.1016/j.compfluid.2005.03.008
https://arxiv.org/abs/1211.5063
http://dx.doi.org/10.17612/P7CC7K
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0031
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0031
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0031
https://doi.org/10.1016/j.advwatres.2014.08.012
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.15530/urtec-2018-2902986
https://doi.org/10.1002/essoar.10502162.1
https://doi.org/10.17612/P7059V
http://arxiv.org/abs/1803.00758
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0037
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0037
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0037
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0038
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0038
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0038
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0038
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0038
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0038
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0038
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0038
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0038
https://doi.org/10.1103/PhysRevE.72.026301
https://arxiv.org/abs/1603.05691
http://research.engr.oregonstate.edu/immiscibles/multi-phase-data-exchange
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0040
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0040
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0040
http://refhub.elsevier.com/S0309-1708(19)31114-5/sbref0040
https://doi.org/10.1016/j.scib.2018.08.006
https://doi.org/10.1016/j.advwatres.2007.06.003
https://doi.org/10.1016/j.advwatres.2015.09.015
https://doi.org/10.1109/LGRS.2018.2802944

	PoreFlow-Net: A 3D convolutional neural network to predict fluid flow through porous media
	1 Introduction
	2 Methods
	2.1 Velocity field simulation
	2.2 Feature extraction
	2.3 Network
	2.3.1 Convolutional neural networks
	2.3.2 PoreFlow-Net

	2.4 Training data
	2.4.1 Dataset creation
	2.4.2 Relationships between inputs and outputs


	3 Results
	3.1 Impact of the proposed 3D feature extraction
	3.2 Model training
	3.3 Model testing
	3.3.1 Fontainebleau sandstone dataset
	3.3.2 Tests on different rock types


	4 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Reproducibility
	Acknowledgments
	Supplementary material
	Appendix
	A1 Calculating mask for custom loss function

	References


