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We present the PoreFlow-Net, a 3D convolutional neural network architecture that provides fast and accurate fluid 

flow predictions for 3D digital rock images. We trained our network to extract spatial relationships between the 

porous medium morphology and the fluid velocity field. Our workflow computes simple geometrical information 

from 3D binary images to train a deep neural network (the PoreFlow-Net) optimized to generalize the problem of 

flow through porous materials. Our results show that the extracted information is sufficient to obtain accurate flow 

field predictions in less than a second, without performing expensive numerical simulations providing a speed-up 

of several orders of magnitude. We also demonstrate that our model, trained with simple synthetic geometries, 

is able to provide accurate results in real samples spanning granular rocks, carbonates, and slightly consolidated 

media from a variety of subsurface formations, which highlights the ability of the model to generalize the porous 

media flow problem. The workflow presented here shows the successful application of a disruptive technology 

(physics-based training of machine learning models) to the digital rock physics community. 
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. Introduction 

Understanding how fluids travel through porous structures of sub-

urface rock formations is crucial for designing groundwater manage-

ent, hydrocarbon extraction ( Raeini et al., 2014 ), CO 2 sequestration

 Chen et al., 2018 ), and contaminant remediation projects ( Kang et al.,

007 ). Currently, most of the energy that we use comes from hydrocar-

ons extracted from oil and gas reservoirs, most of the water for human

onsumption travels through underground aquifers, and the first pilot

rojects of CO 2 sequestration in the subsurface are yielding positive re-

ults. For these reasons, it is paramount to accurately describe the flow

hysics of these fluids to maintain energy security, water availability,

nd to potentially avoid climate change ( Blunt, 2017 ). 

One of the most impactful properties in the decision-making pro-

ess for the areas mentioned above is the permeability of the un-

erground reservoir of interest. This quantity provides a directional,

olume-averaged geometric measure of the ease for a fluid to flow

hrough a specific rock volume. The permeability is determined by the

opology of the porous structures of the formation, and it is calculated

y computing average velocity (based on the fluid velocity through pore

pace) and comparing it to Darcy’s law (see Eq. (1 )). This quantity is
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esearched primarily to assess preferential flow channels in the subsur-

ace (contaminant tracing, hydrocarbon movement in an oil reservoir),

ottlenecks for fluid flow, and to estimate well flow rates (hydrocar-

on and water extraction, and CO 2 sequestration). The permeability is

haped by the processes that formed the rock, and the subsequent al-

erations throughout geological time. Processes such as deposition of

rains in a basin, compaction of layers caused by overburden pressure,

ementation, recrystallization, and dissolution, change the microscopic

tructure of the rock, altering the shapes and sizes of the flow paths

vailable. These effects (that can span up to kilometers) modify the per-

eability of the rock formation. Since the behavior of the fluids at the

maller scales is key to make inferences of larger domains, in this paper

e are going to focus on the flow of fluids at the microscale. 

There are different methods to obtain the flow properties of a rock.

aboratory measurements are able to obtain the average permeability of

 sample through direct measurement. Nevertheless, it is not possible to

bserve the microscopic physics at the pore-scale. These measurements

lso tend to take longer times, or even fail in tight porous media (lower

orosity). On the other hand, there are existing analytical expersions

hat estimate the permeability of a rock based on fitting parameters

hat account for the rock type (lithology), grain size distribution, and
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Fig. 1. LBM running times (in seconds) for different domains of the same 

computational size (spherepacks and tight sandstones of 500 3 cells) indicat- 

ing the impact of porosity (of our particular domains) on computational time. 

In these domains, the lower porosity samples host more intricate pathways 

(pore space with higher surface area and higher tortuosity), which increase the 

number of LBM iterations needed to achieve convergence. We run the simu- 

lations in eight Xeon E5-2690 v3 (Haswell) processors totaling 96 computing 

cores ( https://portal.tacc.utexas.edu/user-guides/lonestar5 ). The dotted hori- 

zontal line represents an hour, the dashed line a day, and the solid 2 days of 

running time. The sample that took the longest had very tight pore throats and 

a low coordination number between pores (resulting in very poor connectivity), 

this yields in a large number of iterations for the momentum to equilibrate. 
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epositional processes, among others. These require a minimal amount

f information, but they are restricted to a particular rock (sometimes

ven from a specific geographical location) ( Xu and Yu, 2008 ). Finally,

here are several numerical simulation methods to reproduce the

uid flow physics ( Blunt et al., 2013 ; Mehmani et al., 2020 ). Among

hese, direct simulation methods (DSM) are very attractive because

hey resolve the flow through irregular geometries, giving the final

ser a realistic snapshot of how the fluid flows through the pores of

ubsurface formations. Since the subsurface is highly heterogeneous

ver multiple scales, direct simulation on a variety of samples at various

cales extracted from wells or outcrops of the reservoir or analogous

ock of interest provides valuable information to investigate and model

ubsurface flow for improved subsurface management. 

With the rapid development of x-ray scanners and other non-

estructive imaging technologies ( Mees et al., 2003 ), the simulation of

uid flow through 3D images of porous materials is a topic of increasing

nterest. The typical workflow for performing direct simulations starts

ith a gray-scale volume (the output of the x-ray scanner), which is

hen segmented (to eliminate artifacts and noise) in two phases (binary

mage) that are discretized into voxels (3D pixels) of solid or space for

uid to flow. These simulations provide an accurate picture (with res-

lution of micrometers, and even smaller) of how fluid flows through

omplex geometries. With the advances in computational performance,

arger domains are practically simulated. Nevertheless, computing times

even on supercomputer clusters) can be long, and the required compu-

ational resources are vast. The computational demand of these methods

rows at least at the cube of the side length of the domain for homo-

eneous cubic samples, so in most cases running direct simulations on

 representative elementary volume with typical desktops is unfeasi-

le. Additionally, real materials tend to have pore size distributions that

pan and vary over a wide range of scales, which increases the size of a

epresentative elementary volume, and thus the computational time to

erform the simulations. 

There are several numerical methods that are used to obtain flow

roperties directly from 3D images: the finite volume method ( Jenny et

l., 2003 ), smoothed particle hydrodynamics ( Tartakovsky and Meakin,

005 ), the finite element method ( White et al., 2006 ), the lattice Boltz-

ann Method (LBM), among others. A comparison of some of these

ethods, and their run times can be found in Yang et al. (2016 ). In

his work we utilize the LBM due to its simplicity for performing simu-

ations in irregular domains, and its well-tested capabilities to simulate

ow through porous materials ( Pan et al., 2004 ; Santos et al., 2018 ). Al-

hough the method is easily parallelizable, its computational time scales

ncrease with domain complexity ( Fig. 1 ), which is common to every

ethod that operates on porous materials. We stress, however, that the

orkflow presented here does not depend on the method chosen to ob-

ain the fluid velocity field. 

Recently, deep learning methods have been introduced as a frame-

ork for computers to learn from observational data of physical phe-

omena to predict variables of interest. These methods have been ap-

lied to study many problems in image segmentation, pattern recogni-

ion and image captioning, and natural language processing. Deep learn-

ng methods benefit from benchmark datasets since: (1) supervised deep

earning methods require a large amount of validated data to train mod-

ls; and (2) the capabilities of the trained classifiers must be assessed

uantitatively. These algorithms have been applied successfully to dig-

tal rock applications like image segmentation ( Andrew, 2018 ; Bihani

t al., 2019 ; Karimpouli and Tahmasebi, 2019b ), calculation of wave

ropagation through a solid matrix ( Karimpouli and Tahmasebi, 2019a ),

D rock reconstruction using generative models ( Mosser et al., 2018 ),

nd 2D calculations of permeability in small domains ( Wu et al., 2018 ).

ither segmented real images or porous media reconstructions are re-

uired for direct simulation of flow. There are several challenges en-

ountered in applying deep neural networks to predict flow through

orous media (or upscaled transport properties of a porous medium).

he biggest challenge is the large number of labeled pairs of data (that
an come in the form of interpreted seismic cross-sections, segmented

mages, simulation results, etc.) required to train a model. In addition,

erforming numerical simulations of porous volumes could require days

f computation on hundreds of cores of a supercomputer to converge

 Fig. 1 ). Moreover, acquiring the prerequisite many volumes of a sim-

lar formation is often challenging, since access to the required imag-

ng technologies (i.e., x-ray scanners) is limited, and finally, given ac-

ess to a large training set, there is still a memory limitation challenge

more on this in the sections below). To circumvent the above difficul-

ies, we create benchmark datasets reusing images from Digital Rocks

ortal ( Prodanovic et al., 2015 ) that are publicly available, and propose

 comprehensive workflow to obtain a functional relationship between

 3D binary image and the volumetric solution of the Navier–Stokes

quation. 

Specifically, in the context of deep learning and fluid flow, Carrillo

t al. (2017 ) trained an artificial neural network to predict the shape

nd coordinates of an occlusion blocking a 2D pipe, using only the ve-

ocity at points along the horizontal direction (representing sensors) as

nput data. Moreover, Guo et al. (2016 ) trained a convolutional neu-

al network (CNN) to predict velocity fields of a steady state flow with

n obstacle (represented by simple geometries) for small domains with

losed boundaries, they used the distance transform of the binary image

s the model input. For single-phase, time-dependent problems, Hennigh

2017 ) proposed the Lat-Net, a convolutional neural network architec-

ure that compressed the output of an LBM simulation (to be memory ef-

cient), and learned the relationship between subsequent (compressed)

ime steps. Specifically, for porous media applications, Wu et al. (2018 )

pplied a CNN architecture with a fully connected layer to predict the

ermeability of 2D images. Sudakov et al. (2018 ) applied simple 2D/3D

rchitectures to predict the absolute permeability a system obtained by

 pore-network model (a technique which simplifies the pore space into

 network of spheres interconnected by cylinders, losing all the complex

eatures of the image). The authors of this paper ( Santos et al., 2018 )

nitially proposed a CNN that used the Euclidean distance as an input

o predict the velocity field. Nevertheless, the network was not able to

https://portal.tacc.utexas.edu/user-guides/lonestar5
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m  
eneralize to predict for more heterogeneous pore geometries. Kamrava

t al. (2020 ) showed that by using 3D convolutions their model was able

o predict permeability for realistic pore geometries. That paper also

rovides a detail explanation of all the main components of a convolu-

ional neural network and we refer it to any reader who is not familiar

ith the basic structure of a neural network. The key difference of our

ork is that we are able to use large 3D domains with pore geometry

hat is more complex than in previously published work. Further, com-

ared to other porous media work to date, we are able to predict the

uid 3D velocity field, instead of only trying to predict the permeability

alue. 

In this work, our main contribution is a new 3D deep learning work-

ow that is able to generalize the single-phase flow of a fluid through

ranular materials. We show that by combining a feature extraction al-

orithm, a custom loss function, and a new network architecture, our

odel can be trained with very simple 3D geometries, and predict ac-

urately in examples of varying sizes and complexity. These predictions

equire less than a second of computation on a typical desktop computer

ith a graphics processing unit (GPU), and are comparable in accuracy

o the full-physics simulation that might require days of processing on

 supercomputer cluster. We will also provide a comprehensive 3D data

et that spans a wide range of rock formations all around the globe. 

. Methods 

In this section, we present the numerical method used for simulating

he flow physics, the morphological feature extraction algorithm, and

he architecture of the PoreFlow-Net. 

.1. Velocity field simulation 

To simulate the fluid flow through the domains of interest, we se-

ected the lattice Boltzmann method (LBM) ( Sukop and Thorne, 2007 ).

evertheless, the results of this work are independent of the numeri-

al method used to solve the flow physics. The LBM is one of the most

opular methods for performing direct simulation of fluid flow through

rregular geometries. This method simulates the streaming and collision

f particles on a grid, and it has been demonstrated that is able to recover

he full Navier–Stokes equation solution ( Frisch, 1991 ). The advantages

f the LBM are that the algorithm is relatively easy to implement, is

ighly parallelizable, and it can perform direct simulations on images. 

We used the same model proposed by Pan et al. (2006 ) with a re-

axation time (related to the fluid viscosity) equal to one. It is a slightly

ompressible model, where a very small pressure gradient (1e-6 lattice

nits, independent to the permeability of the domain) is applied to drive

he fluid forward. All the simulations are in the laminar flow regime

where the Reynolds number is much smaller than one). This is consis-

ent with the typical flow regime through subsurface formations away

rom fractures or boreholes. 

Upon convergence, the LBM simulation outputs the 3D velocity field

ensor of the image. To calculate the permeability of the domain, we use

arcy’s law ( Bear and Bachmat, 1991 ): 

 = 

𝑣̄ 

𝜇

𝑑𝑝 

𝑑𝑧 
, (1)

here 𝑣̄ represents the mean of the velocity field in the direction of the

ressure gradient 
𝑑𝑝 

𝑑𝑧 
, and 𝜇 refers to the dynamic viscosity of the fluid.

o calculate 𝑣̄ we calculate the average of the 3D velocity matrix in the

irection of flow. The permeability expresses the flow rate as a function

f pressure gradient, it has units of length squared, and it is typically

xpressed in m 

2 or in Darcys . 

.2. Feature extraction 

The typical bottlenecks for deep learning applications are the: (1)

ast amount of data required to train a model, and the (2) memory lim-

tations of the computational systems to perform the training of a deep
eural network. To overcome these issues, we added to our workflow a

re-training feature extraction step where we extract relevant morpho-

ogical features of the rock volume. 

Since our simulations are time consuming (spanning from hours to

ays in our cluster), it would be impractical to run domains hosting

very possible 3D structure. By adding additional input features to the

odel, our network is trained to find a more robust functional rela-

ionship of the image with the flow field. It is worth noting that these

eatures are computed in minutes (in a desktop computer) requiring a

inimal computational demand compared to the fluid flow simulation.

oreover, since it would be computationally difficult to train the model

sing the entire simulation domains ( > 500 3 voxels), we split the input

nd output images in subsamples to carry out the training process. Since

he subsampled volumes are shuffled in a training pool along with other

xamples from different domains, including information of the bound-

ries (local with Euclidean distance, and global with the time of flight)

ives the model knowledge about the original spatial location of the

ndividual subsample (this process is depicted in Fig. 5 ). 

We compute four geometrical features from the binary image

 Fig. 2 ). 1) To represent the local characteristics of the binary image, we

xtracted the Euclidean distance map (also known as the distance trans-

orm) of each sample. This is calculated with the following equation: 

 𝑑𝑖𝑠𝑡 = 

( (
x 1 − x 2 

)2 + 

(
y 1 − y 2 

)2 + 

(
z 1 − z 2 

)2 ) 1 
2 
. (2) 

Where x 1 and 2 , y 1 and 2 , z 1 and 2 are the coordinates of each point of

he solid and the fluid boundaries respectively. This map provides a

ompact representation of the distribution of space available for fluid to

ow, and the distance to the closest solid (no-flow) boundary. 2) Next,

 maximum inscribed sphere (MIS) map in the direction of flow (i.e.,

n MIS flood) is computed. This map is a simplified and lightweight

epresentation of a non-wetting fluid injection in the direction of flow.

lthough MIS floods are typically used to describe two-phase flow, here

t acts as a measure of geometry (size of pore space) and topology (con-

ectivity to neighboring pore structures to similar size). The MIS map

rovides information about the local pore space characteristics, as well

s the global simulation conditions. It acts as a bridge between the whole

omain and its subsamples. 3) and 4) Finally, to inform the network

bout the global conditions of the domain before subsampling it, we

mployed a detrended time of flight (ToF). We use the fast marching

lgorithm ( Hassouna and Farag, 2007 ) to compute the shortest distance

f all the points of the domain to a point source (in this case, either

he XY-plane located at the inlet or the outlet). This method solves the

oundary value problem of the Eikonal equation ( Hassouna and Farag,

007 ) represented by: 

∇ 𝑡 ( 𝑥 ) | = 

1 
𝑓 ( 𝑥 ) 

, (3) 

Where t represents the time of flight and f(x) stands for the speed at

very location of the image (a constant in our case). We set the speed

f the void space to one, while the solid matrix is set to zero (imperme-

ble). The result of this operation is a map where each of the voxels of

he void space are labeled with a number that depicts the shortest dis-

ance (in voxels) to the boundary (the first few layers in the z-coordinate

ill be given consecutive numbers starting from one, until they find a

olid obstacle, then the number sequence will continue around the ob-

tacle). We then subtract the time of flight of the image map without

olid obstacles (an image with a porosity of 100%), to calculate a de-

rended (normalized) map as shown in Fig. 2 . This feature provides data

n tortuosity of the global paths within the domain. In addition, it sup-

lies the model implicit information about the neighboring subsampled

locks. We compute two features using this method. One, where the

oint source is located at the inlet of the numerical simulation, and the

econd one where the source is at the outlet (both pressure gradient

oundary conditions). 

These features have been used in literature to characterize porous

aterials. Nevertheless, since the relationship of these features with the
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Fig. 2. 2D example of the four morphological features (Euclidean distance (calculated using Pore-Spy ( Gostick et al., 2019 )) maximum inscribed spheres, and time 

of flight from left and from right, respectively) that we compute from a binary image ( Liu et al., 2017 ) to train the network. The areas where the value of the matrix is 

zero (i.e., solid phase voxes) are shown in black. 

Fig. 3. Schematic of three subsequent convolution operations with a 3 × 3 × 3 filter and a stride (kernel distance of where the next convolution operation is 

performed) of two. The network is trained to create a more compact (latent) representation, while retaining relevant features of the original image. Although the 

image loses the structure to the human eye, it retains the most significant information to the network. This operation allows to capture local and global spatial 

relationships by convolving over the output of the previous convolutional block. It is also cheaper to train because it has a smaller number of parameters (smaller 

filters) compared to a fully connected network. 
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elocity field is highly non-linear, the selection of the ultimate set of

eatures shown above was a trial-and-error process. These features do

ot provide an exhaustive description of a 3D porous material. However,

hey deliver enough information to our model about the local and global

oundary conditions of the domain to be able to structure a relationship

in the form of a convolutional neural network model) between these

nputs and the Navier–Stokes solution. 

.3. Network 

.3.1. Convolutional neural networks 

Convolutional neural networks (CNNs) have excelled in the field

f computer vision outperforming classical machine learning methods

 Krizhevsky et al., 2012 ; LeCun et al., 2015 ). These models have shown a

emarkable capacity to find complex relations in big data sets. By utiliz-

ng the discrete convolution operation instead of a regular matrix multi-

lication (i.e., a fully connected feed-forward network), they generalize

ocal spatial relationships (sparse interactions) across the domain. CNNs

tilize filters that are much smaller than the input image, which extract

eneral and meaningful information about the domain in an efficient

anner. By stacking convolutional layers, the network extracts features

t different levels of abstraction with an increasingly wider receptive

eld ( Fig. 3 ). Finally, the convolution layers are equivariant to transla-

ion, which means that if the input feature is shifted, their output will be

hifted by the same amount (by creating, in this case, a 3D feature map).

his is particularly useful in pattern recognition, because they allow for

nputs of variable size. Using this structure, a network can be trained

o learn complex, non-linear relationships between inputs and outputs

sing the backpropagation algorithm. 

.3.2. PoreFlow-Net 

Recent studies suggest that the performance of a network can

enefit from increased depth (longer stack of layers, as described in
ection 2.3.1 ) ( Szegedy et al., 2015 ; Urban et al., 2016 ). Apart from

eing computationally more intensive, a deeper network presents issues

ike vanishing and exploding gradients ( Pascanu et al., 2012 ), and filter

aturation by highly correlated features, making them very hard to train.

o improve the gradient propagation and to enhance the training, He

t al. (2016 ) proposed the residual network (ResNet). The ResNet con-

atenates an identity map to the output of a convolutional layer stack

residual unit) to facilitate training. The authors show that the training is

ased by targeting this new referenced residual output, avoiding gradi-

nt vanishing or saturation. Further, Ronneberger et al. (2015 ) proposed

he UNet. This architecture concatenates feature maps from different

ayers of the encoding branch to the decoder, improving segmentation

ccuracy significantly. One of the main advantages of this is that the

tructure of the network retains high (i.e., lines and edges) and low-

evel features (i.e., entire objects) to reconstruct the output. They show

hat the networks train with ease and with fewer parameters due to the

etter flow of information (both in the forward and backward computa-

ions) that the skip connections (direct pathways between the encoding

nd decoding branch) provide. Building up from these two architectures,

hang et al. (2018 ) presented the Deep Residual U-Net (ResUnet) which

ses residual units as building blocks and skips connections between

hem. This network prove to be easy to train (compared to the U-Net

hat needed extensive data augmentation or a pre-trained model), with

n efficient number of parameters and showed accurate results using a

mall training set. 

In this paper, we propose a modification of the ResUnet, which ben-

fits from the information of all the input features by passing them

hrough individual encoding branches (dedicated to each of the ex-

racted features from Section 2.2 ) with skip connections. We use three

esidual units for each of the four branches, a bridge, and a single de-

oder to recover the velocity field. Each of these parts is built with

esidual units ( Fig. 4 ). We use the scaled exponential linear unit (SeLu)

 Klambauer et al., 2017 ) as the activation function. This is described by
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Fig. 4. PoreFlow-Net architecture consisting of four input branches and one decoder. A batch normalization layer and an activation follow every convolutional layer. 

Instead of using deconvolutional layers, the decoder resizes the image using upsampling. It has been shown ( Gauthier, 2015 ) that the pixel overlap in deconvolution 

layers causes artifacts which increase in higher dimensions. In the case of a 3D deconvolution, some voxels will get six times the number of input information 

(because the filters visit these locations several times) compared to their neighbors. Since these operations have multiple channels, the network struggles to learn 

the appropriate weights to reconstruct the output image without artifacts. To avoid these artifacts and increase the memory efficiency, our image is resized using an 

upsampling layer, which repeats the input by a factor of two in all the coordinate directions (with no trainable parameters, making it cheaper). 
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he following equation: 

𝑒𝐿𝑢 ( 𝑥 ) = λ

{ 

𝑥 𝑖𝑓 𝑥 > 0 
𝛼𝑒 𝑥 − 𝛼 𝑖𝑓 𝑥 > 0 

, (4)

here the values of 𝛼 and 𝜆 are fixed and provided in the publication.

he purpose of this function is to perform additional internal normal-

zation of the inputs, facilitating gradient propagation. According to the

erivation of the authors, problems like gradient exploding or vanishing

re mathematically infeasible. Moreover, since internal normalization is

heaper, the network converges faster. 

Since the velocity distribution spans several orders of magnitude

 Fig. 6 ), we use L1 (mean absolute error) as the cost function due to the

arge number of outliers (velocity tending to zero near the grain bound-

ries). To increase the attention in tighter geometries we compute the

oss as follows: 

 = 

∑(|||𝑦 𝑡𝑟𝑢𝑒 − 𝑦 𝑝𝑟𝑒𝑑 
||| ∗ 𝑀 

)
, (5)
Where M is a weight vector that accounts for the size of the pores

n the direction of flow and ∗ stands for an element-wise multiplication.

he algorithm to calculate M can be found in Appendix A1 . The loss

unction ( Eq. (5 )) weights the difference between the true values and

he predictions so that all the voxels in the training pool have the same

elevance (high and low porosity subsamples). 

.4. Training data 

.4.1. Dataset creation 

We used a beadpack comprised by a disordered closed pack of spher-

cal grains, originally imaged experimentally by Finney (it can be down-

oaded at Finney and Prodanovic, 2016 ) as our initial domain. A 500 3 

ubset of the original spherepack was discretized and segmented to gen-

rate training data. 

We performed four one-pixel grain dilations to the original

ample, where we obtained four images of decreasing porosity
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Fig. 5. Our workflow. Starting from a binary 3D matrix (left), we compute four geometric features ( Section 2.2 ). The two on the top describe the medium locally, 

while the two bottom ones provide information about the global domain. These features are computed on the fly for every sample. Then, these features are subsampled 

(black lines) to train the neural network model. The output is the fluid velocity field in the direction of the pressure gradient. With different colors, we highlighted 

the different orders of magnitude of the velocity field prediction. 

Fig. 6. In the left side, a heat map of the signed velocity 

logarithm (smaller absolute values represent higher veloc- 

ities, sign represents direction) versus Euclidean distance. 

The velocity has a bimodal (positive and negative direc- 

tions) distribution; hence it has a non-unique relationship 

with the Euclidean distance. Consequently, the plot shows 

a higher scatter around the small velocities and Euclidean 

distances. To the right, the scatterplots of maximum in- 

scribed sphere and Time of Flight versus velocity. Het- 

eroscedastic, multimodal behaviors and non-linear corre- 

lations are observed. 
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increasingly tighter) that mimic cementation processes in the subsur-

ace, but preserves the simple features of the original spherepack. These

amples range from 29.8% to 11% porosity. Finally, we performed a

ingle-phase LBM flow simulation in these four samples where a pres-

ure gradient parallel to the z-coordinate direction was applied with

o-flow boundary conditions in the other faces. Since the domains are

omogeneous packs of spheres, the simulation converges much faster

in the order of hours) compared with real rock x-ray scans. We used

hese four samples to train the convolutional neural network. 

.4.2. Relationships between inputs and outputs 

The lattice Boltzmann simulation outputs a pressure matrix and a

elocity tensor in each point of the grid. In this work, we focused on

he z-component of the fluid velocity (parallel to the pressure gradient)

hich determines the permeability. In Fig. 6 we show the velocity dis-

ribution and its relationship with the morphological features extracted

rom the binary image. 

From the relationships exhibited in Fig. 6 , we can confirm that tra-

itional machine learning methods would not be able to obtain an ac-
urate model due to the complex, highly non-linear relations between

he inputs and the target output. 

. Results 

.1. Impact of the proposed 3D feature extraction 

As stated above, it would not be feasible to train our network over the

ntire simulation domains. Hence, it is necessary to subsample the 3D

atrices into smaller volumes to train the model with batches of data.

he reasoning behind this is that GPUs have a limited amount of mem-

ry, and the model parameters, the inputs and outputs, the gradients,

mong others must be locally stored. In our experiments, the maximum

ubset size that conventional hardware could accommodate in memory

as no larger than 80 3 . The model, as described by Fig. 4 requires 2.7

igabytes (Gb) of memory to be trained with a batch size of one sample.

o train the CNN with entire simulation domains, one would require

pproximately 660 Gb of memory available, which greatly exceeds the

urrent capabilities of graphic processing units. 
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Fig. 7. Evaluation of representative element volume with coefficient of variation (CV) for porosity and velocity. The variability of porosity and velocity decreases 

with the increase in the window size. 

Fig. 8. 3D visualization of the moving windows sizes of the stationarity analysis. 

Gray areas indicate grains whereas white portions represent pores. The blue 

cube represents a highly non-stationary window size ( Fig. 7 ), the red cube is 

our selected subset size (80 3 ), and the green cube shows a stationary window 

size for the pictured domain. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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Spatially aware neural networks, benefit greatly from stationary

amples because it is easier to find matching patterns in data. In the-

ry, the subset size of the 3D sample should be equal or larger than

he representative element volume (REV) ( Bachmat and Bear, 1987 ) to

xhibit a stationary behavior of the property of interest (in this case,

elocity), impacting in a positive manner the training performance of

he neural network. If the subset data size is smaller than the REV, we

annot expect to have a stable measure due to the non-stationarities (in

he form of spatial heterogeneities) present in the data. 

To show the importance of our proposed feature extraction step in

he training of the network, we carried out a moving window analy-

is to assess the variability of the domains with different volume sizes

 Pyrcz and Deutsch, 2014 ). Using a window of increasing size length, we

alculate the coefficient of variation (the ratio of the mean over the stan-

ard deviation) of the porosity and fluid velocity within the subset. We

arried out this experiment in the original spherepack (36% porosity,

efore the grain dilations where performed). We executed this proce-

ure iteratively until the variation became not significant. We plotted

he results of the moving window analysis in Fig. 7 . Both of the subplots

how the decrease in variability of porosity and velocity respectively

ith the increase in the size of the window (due to the homogeneity

f the sample). The 3D subset size comparison is shown in Fig. 8 . It is

nly after 200 3 voxels per side (40% of the image side length) that the

elocity field stabilizes (coefficient of variation is less than 1%). This

ehavior is more significant in tighter and less homogenous samples. 

Training the neural network using only the binary image of solid and

ore as input will hamper the training process, resulting in overfitting
it fails to generalize, causing the training and validation curves to di-

erge), and poor predictive performance (we carried out this experiment

nd the results are plotted in Fig. 9 ). Since we are interested in creat-

ng a predictive model that is able to perform in different geometries,

e show that using the additional inputs (which add additional infor-

ation about the subvolume, as well as how it relates to parts of the

mage surrounding it, the latter in the form of time of flight) described

n Section 2.2 , the model increases its training performance, and gener-

lizes enough to predict the flow field (within acceptable error range)

n a test set that includes various geometries. In other words, the model

s able to find unique patterns to construct a robust function mapping

he image with the fluid velocity. 

.2. Model training 

We implemented the model using the Keras python library ( Chollet,

015 ) with TensorFlow ( Abadi et al., 2015 ) as the backend. The model

s optimized by minimizing the cost function ( Eq. (5 )) using Adam

 Kingma and Ba, 2014 ) with a learning rate of 1e-4. We used four sphere

acks (that present four subsequent grain dilations from the original

ample, as highlighted in Section 2.4.1 ), and subsampled them into 1080

0 3 cubes for training with a 20% random validation split (216 cubes).

he model was trained with a mini-batch size of five, on a desktop with

n NVIDIA Quadro M6000 GPU for 140 epochs. The model training pro-

ess took twelve hours. The inputs and the outputs are transformed using

he minmax constraining them from minus one to one. A comparison of

he performance of three different model setups (training with the bi-

ary image only, training with the four proposed geometrical features,

nd training utilizing the features plus the custom loss function) is plot-

ed in Fig. 9 . We observed a significant performance increase in the loss

alue when using the extracted features and the proposed loss. 

To assess the ability of the three trained models specified above to

eneralize the training data, we first tested the model using the original

phere-pack (unseen by the models, these were trained using the samples

ith the dilated grains only). The model trained with the binary input

ave a relative error in permeability of several orders of magnitude.

hereas the one using the four input features returned and error 15 %,

nd finally the model trained using the features plus the custom loss

ave a relative error of 13% when compared to the lattice-Boltzmann

imulation. We carry out an extensive testing of the latter trained model

n the sections below. 

.3. Model testing 

Using the model trained with the four dilated spherepacks

 Section 3.2 ), we tested its capabilities (vs. the Navier–Stokes equation

olution approximated by the LBM) on domains of different size and

omplexity. 
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Fig. 9. Training and validation loss values for three different cases. The left plot shows the training performed with the binary image only, the middle plot shows 

where the four features (Euclidean distance, MIS, and the two ToF) are used, and the right plot shows the application of the proposed custom loss function. By using 

the binary image as the only input, the model overfits (validation curve rising) and its minimum value remains high. By training using the custom loss function, the 

performance is improved (the slope of the loss is higher) and it reaches a smaller value that the rest (dashed line). 

Fig. 10. XY-Cross sections of the Fontainebleau sandstones of the test set. The pore space is shown in black. Some of the structures have been disconnected from the 

bulk during cementation and compaction, making this test set very different from the homogenous spherepacks pore space in our training set. 

Table 1 

Comparison of our model performance versus the LBM simulation on the Fontainebleau dataset. The average relative error refers to the error in the velocity parallel 

to the pressure gradient (z-coordinate). The average voxel-wise error shows a nonlinear relationship with the permeability relative error because the permeability is 

an average measure of the velocity considering the solid volume. Although the pixel-wise error increases with porosity, the permeability error (calculated using the 

mean velocity) shows no correlation with porosity. This is due to the fact that the highest errors are present near the grain boundaries ( Fig. 12 ), this values do not 

have a significant impact in permeability. 

Porosity Average relative error (voxel-wise) in the pore-space True permeability [m 

2 ] Predicted permeability [m 

2 ] Relative error 

8% 0.75% 8.76e-14 10.86e-14 24% 

9.8 0.80% 2.35e-13 2.44e-13 4% 

12.4% 1.04% 4.97e-13 5.34e-13 7.23% 

15.2 1.75% 1.47e-12 1.45e-12 1.44% 

17.5 2.25% 2.45e-12 2.61e-12 6.73% 

24% 4.36% 7.76e-12 8.56e-12 10.32% 
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.3.1. Fontainebleau sandstone dataset 

The first test set was obtained via a simulation of processes that oc-

ur during sedimentary rock formation (i.e., sedimentation, compaction,

iagenesis, and cementation) to obtain 3D volumes that resemble the

ontainebleau Sandstone formation in France ( Berg, 2016 ). These im-

ges are 480 3 voxels, and vary from 8 to 26% porosity. We show a cross

ection through the middle of four of the samples in Fig. 10 . 

We present the results in Table 1 . These are in very good agreement

ith the full-physics simulation (carried out to compare the perfor-

ance of our model). To analyze the error more closely, we selected

he worst performing sample (24% porosity sandstone) for further

nalysis. In Fig. 11 we show a visual comparison (cross-section of the

D volume orthogonal to the flow direction) of the lattice-Boltzmann
olution with our model. It is visible that most of the relevant flow

eatures are preserved. A comparison of the velocity histograms is

hown in Fig. 12 . It is worth noting that the flow streamlines are not

lways continuous, and the 3D solution is not trained to satisfy mass

alance (hence the relative error). Additional constraints can be added

o honor this, but are out of scope for this work. In here, we are mostly

nterested in capturing the main flow characteristics (preferred paths

nd dead-ends) that impact permeability. 

.3.2. Tests on different rock types 

To further test our model, we predicted the flow field for different

ock types available in Digital Rocks Portal ( Prodanovic et al., 2015 ).

e first created a sample similar (in shape) to the original training



J.E. Santos, D. Xu and H. Jo et al. Advances in Water Resources 138 (2020) 103539 

Fig. 11. XY Cross-section of the fluid flow simulated velocity in the z-direction (left), PoreFlow-Net prediction (middle) and the relative error between these two 

(right) for the Fontainebleau sandstone with 24% porosity. The velocity is shown in a dimensionless scale going from one to minus one (minmax transform). The 

mean average error in the pore space is 4.36% as reported in Table 1 . The highest errors (voxel-wise) are in the pore throats (which is also consistent in the velocity 

histogram in Fig. 12 ). 

Table 2 

Results of the additional test set. 

Sample Size [voxels 3 ] Resolution [m/voxel] Porosity True permeability [m 

2 ] Predicted permeability [m 

2 ] Relative error 

Eroded sphere pack 500 5.7E-6 42% 8.86e-11 6.76e-11 23.53% 

Sphere pack 500 5.7E-6 36% 5.26e-11 4.58e-11 12.96% 

Estaillades limestone 650 3.3113E-6 11.8% 6.62e-13 6.99e-13 5.45% 

Microsand (artificial multiscale sample) 500 3E-6 28.2% 5.64e-12 4.68e-12 17.01% 

Castlegate sandstone 512 5.6E-6 20.5% 2.19e-12 2.17e-12 1.06% 

Bentheimer sandstone 500 3.0035E-6 20.1% 3.77e-12 2.74e-12 27.30% 

Fig. 12. Histogram of true and predicted velocity (480 3 points in lattice units) 

in the z-direction at every point of the domain. The comparison shows excellent 

agreement at high velocity, and a slight disagreement on the lower range. We 

hypothesize that since the training was performed with spherepacks, by having 

paths that are more tortuous, hosting a higher amount of dead end pores, and 

more solid surface area, the network does not perform as accurately. Since the 

highest orders of magnitude in velocity have a greater effect in permeability, 

there is good agreement in the permeability magnitude ( Table 1 ). 
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y  

Fig. 13. Maximum inscribed sphere distribution for three of our samples. In 

orange, the training set, where the distribution is Gaussian and relatively nar- 

row. In red and blue, the MIS distribution for the Bentheimer sandstone and 

microsand respectively. These distributions have a lognormal shape, which is 

due to the more heterogeneous pore structures. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of 

this article.) 
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mage by performing numerical grain erosion. This creates a sample of

arger porosity where grain boundaries are not as restrictive to fluid flow

where the permeability is higher). This case is of interest in irrigation

 Garnier et al., 1998 ). We further tested the original sphere pack (the one

hat was numerically dilated to generate our training set). Our model

ield accurate predictions in these two samples, even when the porosi-
ies were larger (with velocities that are also orders of magnitude higher)

han the training set. We then tested the trained model on two outcrop

andstones, a limestone, and artificially created multiscale microsand

mage. In these, the relative error was not higher than 28% ( Yang et al.,

016 ) show that different fluid flow solvers will have a comparable dis-

repancy among them, even when the same geometry is provided). 

We present our results in Table 2 , we show the different 3D domains

f the test set in Fig. 14 , and a cross section of the results is shown in

ig. 15 . These geometries have different pore shapes, and in cases of
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Fig. 14. Additional test that includes: (a) a 

slightly consolidated medium, (b) Estillades lime- 

stone ( Muljadi, 2015b ), (c) Castlegate sandstone 

( Sheppard and Prodanovic, 2015 ), (d) multiscale 

microsand ( Mohammadmoradi, 2017 ) and (e) Ben- 

theimer sandstone ( Muljadi, 2015a ), all of which 

are available at the Digital Rocks Portal. 

Fig. 15. XY Cross-section of the simulated velocity (left), PoreFlow-Net prediction (middle) and the relative error between these two (right) for the Castlegate 

formation sandstone. The velocity is shown in a dimensionless scale going from one to minus one (minmax transform). The mean average relative error in the pore 

space only is 1% as reported in Table 2 . 
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imestone and microsand they have much wider pore size distribution

ompared to the training set ( Fig. 13 ). They also have different absolute

olume sizes. While two sandstones have similar absolute volume size

500 voxel on a side), the relative error for prediction is very different

1.06% and 27.30%) likely because they have different grain/pore dis-

ribution as well as different number of individual grains per side (which

etermines how well grain or pores are resolved). Note that our train-

ng set as well as the Fontainebleau sandstone test in previous section all

ave similar level of resolution and hence we saw a very good prediction

or all cases in Table 1 . Given that the training set was comparatively

imple, we find the results in great agreement with the full-physics sim-

lations. 

. Conclusion 

We train a deep neural network architecture as a fast proxy to predict

ccurately the 3D physics-based fluid flow velocity fields within digital

ock samples. The relationship between details of pore geometry and

ow field (with its integral measure of permeability) is complex and

ot easily predicted based on the geometry statistics alone. Neverthe-

ess, this fundamental relationship allows describing how fluids move

hrough subsurface formations, and is the cornerstone of many research

rojects in environmental, civil, petroleum engineering as well as in ge-

logical sciences. 
We demonstrated that our convolutional neural network generalizes

he flow problem to predict flow velocity in rocks that host much more

omplex structures than the original training set. This is attributed to

he capacity of the network to model the complicated relationships be-

ween pore shape and domain characteristics with the velocity field.

he model performs well with rocks of varying types (different lithol-

gy), and of different grain distribution and porosities, where the perme-

bility ranged several orders of magnitude ( Fig. 16 ). The PoreFlow-Net

alculates fluid flow fields in less than a second on a typical desktop,

ompared with the standard simulation procedure, which takes hours

o days in a supercomputer facility (depending on the hardware used as

ell as complexity of the digitized pore space geometry). Additionally,

he model is a lightweight representation (around 25 Mb), whereas the

ull simulation results takes 20X the hard drive space. The model can be

eused in any given geometry, while the simulation has to be run case-

y-case. Future work should be focused on finding features that work

ith fractured domains and ultra-tight rocks. 

This method provides a framework for different further applications

uch as component transport, relative permeability, rock-mechanics

pplications, formation factor, or resistivity. These models provide a

traightforward way to assess important characteristics for improved

ubsurface management without running expensive physical models and

ould possibly be a path to data-based upscaling, given the proliferation

f digital rock images as evidenced in the Digital Rocks Portal or online
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Fig. 16. Permeability predictions vs. true values. The PoreFlow-Net is able to 

predict a wide range of orders of magnitude. 

d  

2

D

 

i  

t

C

 

i  

s  

H  

i  

L  

R  

M  

F

R

 

(  

R

A

 

f  

m  

t  

R  

t  

f  

p  

k  

C  

P  

f  

t

S

 

t

Fig. 17. Cross section of the weight matrix (M). Areas with low porosity have 

a higher weight (represented by brighter colors) so that the network ‘focuses’ in 

those areas as well as in the bigger channels. 
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ata available by different research groups ( Blunt, 2015 ; Wildenschild,

006 ). 
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upplementary material 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.advwatres.2020.103539 . 
ppendix 

1. Calculating mask for custom loss function 

We calculate the weight matrix ( Fig. 17 ) using the following pseu-

ocode: 

image_size = 500 # length of the volume side 
for i in range(0, image_size): # loop along the 
z-coordinate 

porosity_z = sum(binary_im[:,:,i])/image_sizeˆ2 # 
calculate the porosity of the slice 

solid_mask[:,:,i] = (1/porosity_z) ∗ solid_mask[:,:,i] # 
multiply by a term that weights lower porosity sections 
( Fig. 17 ) 

solid_mask[:,:,i][solid_mask[:,:,i] == 0] = 1 # replace 
the solids with a 1 

solid_mask[:,:,i] = solid_mask[:,:,i]/sum(solid_mask 
[:,:,i]) ∗ image_sizeˆ2 # normalize 

Where the binary image is composed by a 3D matrix of zeros repre-

enting the solids and ones representing the space for fluid to flow. 
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