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Abstract
A diffusive chemostat model with two competing species and one nutrient is revisited in this
paper. It is shown that at large diffusion rate, both species are washed out, while competition
exclusion occurs at small diffusion rate. This implies that a stable coexistence only occurs
at intermediate diffusion rate, and an explicit way of determining parameter ranges which
support a stable coexistence steady state is given.

Keywords Chemostat · Reaction–diffusion · Competitive exclusion · Coexistence ·
Diffusion rate · Stability
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1 Introduction

Theoretical biologists conjecture/believe that coexistence of competing species are most
likelywhen their dispersals are at intermediate levels (see, e.g., [27,30,31,45]). This is because
when the dispersal rate is small, competitive exclusion happens in each local community
that can be regarded as a closed system; and when the dispersal rate is large, the whole
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community is a closed system and the competitive exclusion also governs the interaction
between competing species. In this paper, we will confirm such a conjecture/belief in a
diffusive chemostat model with two competing species, and show that coexistence of the
competing species is only possible for intermediate diffusion rates.

Ever since the design of chemostat by Novick and Szilard [35,36] to grow microbial
species in laboratory, it has attracted numerous studies in biology and mathematics (e.g.
[4–7,12,32–34,41,46–48]). A chemostat is an apparatus with a continuous constant inflow
of nutrients for the growth of microorganisms and an outflow of mixed culture at the same
rate to keep the volume unchanged. Besides its role in serving as an apparatus for laboratory
bacterium cultivation, it can also be treated as an approximation of complicated microbial
habitats such as ponds and lakes.As pointed out byHsu andWaltman in [25],many theoretical
studies are in agreement with the experiments in some simple situations, and this makes the
mathematical researches on chemostats more intriguing.

Because chemostats are usually well-stirred for the purpose of uniform distribution of
nutrients, most of the earlier chemostat models assume well-stirring of the culture, leading
to spatially homogeneous densities of nutrients and microorganisms described by ordinary
differential equation models. As a consequence, competitive exclusion for microorganisms is
typically predicted in most of those models. For example, in the ODE Monod model [17,19,
20,43] and ODE Droop model [9,10,40], the coexistence of different microbial species is not
possible. However, coexistence of different species has been observed both in laboratories
and in nature. This suggests that the well-stirring assumption is not reasonable and motivates
incorporation of passive diffusion and/or spatially heterogeneous parameters into models.
There have been some efforts along this line, see, e.g., [6,7,12,21,23,25,32–34,47,48].

Among the aforementioned diffusive chemostat models is the most classic one introduced
by Hsu and Waltman [25]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

St = dSxx − m1 f1 (S) u − m2 f2 (S) v, x ∈ (0, 1),

ut = duxx + m1 f1 (S) u, x ∈ (0, 1),

vt = dvxx + m2 f2 (S) v, x ∈ (0, 1),

Sx (0, t) = −S0, Sx (1, t) + γ S(1, t) = 0,

ux (0, t) = 0, ux (1, t) + γ u(1, t) = 0,

vx (0, t) = 0, vx (1, t) + γ v(1, t) = 0,

w(x, 0) = w0(x), w = S, u, v,

(1.1)

where the nutrient uptake rate is Monod type

fi (S) = S

ai + S
, i = 1, 2. (1.2)

Here S(x, t) is the concentration of the nutrients, andu(x, t) and v(x, t) are the concentrations
of the two competing microorganisms at position x and time t , respectively. The diffusion
terms Sxx , uxx and vxx represent the randommotion of the nutrients andmicroorganismswith
an identical diffusion rate d . The positive constantmi is the growth rate of themicroorganisms
and ai is the Michaelis–Menten half-saturation constant. The nutrients are pumped in at the
rate of S0, and the microorganisms cannot cross the boundary at position x = 0. The mixed
culture containing nutrients andmicroorganisms are pumped out at the rate of γ at the position
x = 1, which results in the Robin boundary conditions [25]. Indeed the loss of nutrients
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or microorganisms at x = 1 can be written as dwx (1, t) = −dγw(1, t) for w = S, u, v,
which is equivalent to wx (1, t) + γw(1, t) = 0. Other boundary conditions have also been
considered especially when there is also a unidirectional flow in the chemostat [2]. The initial
data S0, u0, and v0 are nonnegative nontrivial continuous functions.

As shown in [25], the total concentration S+ u + v in the chemostat approaches a steady
state

φ(x) = S0

(
1 + γ

γ
− x

)

, (1.3)

and this fact allows (1.1) to have the following limiting system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = duxx + m1 f1 (φ − u − v) u, x ∈ (0, 1), t > 0,

vt = dvxx + m2 f2 (φ − u − v) v, x ∈ (0, 1), t > 0,

wx (0, t) = 0, wx (1, t) + γw(1, t) = 0, w = u, v,

u(x, 0) = u0(x), v(x, 0) = v0(x), u0 + v0 ≤ φ.

(1.4)

It is not hard to check that the region {(u, v) ∈ C+[0, 1]×C+[0, 1] : u + v ≤ φ} is invariant
for (1.4). The steady states of (1.4) are the nonnegative solutions of the following elliptic
system:

⎧
⎪⎪⎨

⎪⎪⎩

duxx + m1 f1 (φ − u − v) u = 0, x ∈ (0, 1),

dvxx + m2 f2 (φ − u − v) v = 0, x ∈ (0, 1),

u′(0) = u′(1) + γ u(1) = 0, v′(0) = v′(1) + γ v(1) = 0,

(1.5)

satisfying u + v ≤ φ. The existence of positive solutions of (1.5) is investigated in [42] by a
bifurcation method, and the dynamics of (1.4) are studied in [23–25]. We admit, and it is also
pointed out in [25], that the assumption of the nutrients and microorganisms having the same
diffusion rate d is not that biologically realistic, but this assumption is crucial in reducing
(1.1) to the limiting system (1.4). For different diffusion rates, there were only very limited
results known compared to the equal diffusion rate case (see, e.g., [2,13,14]). However, we
would like to point out that (1.4) itself is also of great interest since it may be viewed as a
variation of the Lotka–Volterra competition model.

Since (1.4) generates a strictly monotone dynamical system, by the theory of mono-
tone dynamical systems (see, e.g., [18,24,39]), the dynamics of (1.4) is determined by the
nonnegative steady states. As far as a chemostat model is concerned, positive co-existence
steady states are particularly important and interesting, but are also most mathematically
challenging. In [25], the authors conjectured that when the two semi-trivial steady states
are unstable, there exists a unique coexistence steady state which is globally asymptotically
stable. This conjecture still remains unsolved. To the authors’ best knowledge, for similar
diffusive chemostat models, the existence of stable coexistence steady state has only been
proved when the two species are similar (for the current model, this means m1 ≈ m2 and
a1 ≈ a2) by the perturbation technique and Lyapunov–Schmidt reduction [32–34]. In this
paper, we prove the existence of a stable coexistence steady state for Problem (1.4) for a
different range of parameters, and our main results provide partial support for the conjecture
by Hsu and Waltman but the uniqueness of coexistence is still not known. The parameter
range which supports a stable coexistence state is robust and explicit. An implicit condition
on (ai ,mi ) and d for the existence of a stable coexistence state was first given in [25], but
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it was not clear whether such conditions can be achieved or not. We expect that our method
can be applied to other diffusive chemostat models.

The following result has been proved in [25]:

1. When the diffusion coefficient d is large, then both species are washed out, meaning that
the extinction steady state is globally asymptotically stable for (1.4) (see Theorem 2.1).

Our main results in this paper can be summarized as follows:

2. For fixed mi , ai satisfying m1/a1 �= m2/a2, when the diffusion coefficient d is suf-
ficiently small, then there is no coexistence steady state for (1.4), and the competition
exclusion is the consequencemeaning that one of the semi-trivial steady states is globally
asymptotically stable (see Theorem 5.4);

3. When the diffusion coefficient d is fixed in an intermediate range which depends on a1
and m1, for small a2 there is an interval of m2 within which, both semi-trivial steady
states are unstable and there is a stable coexistence steady state (see Theorem 4.6).

Our results indicate that coexistence in (1.4) occurs only when the diffusion rate is at
intermediate level. Indeed fixing ai and mi , the coexistence steady state cannot occur if d is
small (Theorem 5.4) or large (Theorem 2.1). This provides rigorous theoretical support to
the theory that claims coexistence for intermediate diffusion rates in ecology [27,30,31,45].

Note that when the diffusion rate d is small, our results also suggest that the ratio mi/ai
completely determines the competing ability of the species i . This is in consistence with the
ODE result proved in [19,20], in which it was shown that the outcome of the competition is
determined by dai/(mi − d) ≈ dai/mi when d is small. If the microorganisms live in an
interval (0, L) instead of (0, 1), after a rescaling, we can find that the resulting diffusion rate
d is proportional to L−2 in the sense that small diffusion rate corresponds to large interval
size (see [22]).

We remark that besides chemostat models, coexistence phenomenon has been investigated
in other reaction–diffusion competition systems such as Lotka–Volterra systems [15,16,26,
28], two-strain epidemic SIS model [1,44] and phytoplankton models [11,29]. Our methods
may be adapted to these models to show the existence of coexistence steady states. The
uniqueness of stable coexistence steady state for the Lotka–Volterra system has been shown
in [15,26], and a complete classification of dynamics for the Lotka–Volterra system with
weak competition has been achieved in [15,16]. The uniqueness of stable coexistence state
and complete dynamics for all parameter ranges have not been obtained for other diffusive
competition systems including (1.4).

The rest of the paper is organized as follows. In Sect. 2, we present some preliminary
results. In Sect. 3, we study the single species model and consider the behaviour of the
positive steady state as the parameters vary. Coexistence of the two species is studied in
Sect. 4, and we prove the existence of a stable coexistence steady state for some parameter
ranges. In Sect. 5, we determine the dynamics of the model for small diffusion rate d with
other parameters fixed and prove that there is no coexistence if m1/d1 �= m2/d2. Finally we
present some numerical studies in Sect. 6.

2 Preliminaries

Consider the eigenvalue problem
{

ψ ′′(x) + λq(x)ψ(x) = 0, x ∈ (0, 1),

ψ ′(0) = ψ ′(1) + γψ(1) = 0.
(2.1)
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Suppose that q(x) ∈ C[0, 1], q(x) ≥ (�≡)0 for x ∈ (0, 1), then (2.1) has a sequence
of eigenvalues 0 < λ1(q) < λ2(q) < · · · λk(q) < · · · with limk→∞ λk(q) = ∞, and the
eigenfunctionψ1 associated with the principal eigenvalue λ1(q) can be chosen to be positive.
From the variational characterization of λ1(q):

λ1(q) = inf
ψ∈C1[0,1],∫ 1

0 q(x)ψ2(x)dx �=0

∫ 1
0 [ψ ′(x)]2dx + γψ2(1)

∫ 1
0 q(x)ψ2(x)dx

, (2.2)

we know the monotonicity of λ1(q) in the following sense: if q1(x) ≥ (�≡)q2(x) for x ∈
(0, 1), then λ1(q1) < λ1(q2).

A related eigenvalue problem is
{

θ ′′(x) + q(x)θ(x) = μθ(x), x ∈ (0, 1),

θ ′(0) = θ ′(1) + γ θ(1) = 0.
(2.3)

For any q(x) ∈ C[0, 1], (2.3) has a sequence of eigenvalues μ1(q) > μ2(q) > · · · μk(q) >

· · · with limk→∞ μk(q) = −∞, and the eigenfunction θ1 associated with the principal
eigenvalue μ1(q) can be chosen to be positive. From the variational characterization of
μ1(q):

μ1(q) = − inf
θ∈C1[0,1],θ �=0

∫ 1
0 [θ ′(x)]2dx − ∫ 1

0 q(x)θ2(x)dx + γ θ2(1)
∫ 1
0 θ2(x)dx

, (2.4)

we know the monotonicity of μ1(q) in the following sense: if q1(x) ≥ (�≡)q2(x) for x ∈
(0, 1), then μ1(q1) > μ1(q2).

Consider the scalar steady state equation
⎧
⎪⎨

⎪⎩

dw′′ + m(φ − w)w

a + φ − w
= 0, x ∈ (0, 1),

w′(0) = w′(1) + γw(1) = 0,

(2.5)

where m, a > 0 are constant and φ(x) is give by (1.3). Denote fa(φ) = φ/(a + φ). Then
for any a > 0, by [25, Theorem 3.2], (2.5) has a unique positive solution w∗(x;m, a) with
0 < w∗(·;m, a) < φ, if and only if m > dλ1( fa(φ)). Based on this, we immediately see
that Eq. (1.5) has the following trivial and semi-trivial solutions:

• trivial solution: E0 = (0, 0);
• semi-trivial solution: E1 = (w∗(·;m1, a1), 0), if and only if m1 > dλ1( f1(φ));
• semi-trivial solution: E2 = (0, w∗(·;m2, a2)), if and only if m2 > dλ1( f2(φ)).

Moreover, the following theorem summarizes the results on the stability of these steady
states of (1.4), which is a combination of Theorems 3.6 and 3.7 in [25].

Theorem 2.1 Let (u(x, t), v(x, t)) be the solution of (1.4) with any non-negative non-trivial
initial condition.

(i) If m1 ≤ dλ1( f1(φ)) and m2 ≤ dλ1( f2(φ)), then

lim
t→∞ u(x, t) = 0, lim

t→∞ v(x, t) = 0 uniformly on [0, 1]. (2.6)

(ii) If m1 ≤ dλ1( f1(φ)) and m2 > dλ1( f2(φ)), then

lim
t→∞ u(x, t) = 0, lim

t→∞ v(x, t) = w∗(x;m2, a2) uniformly on [0, 1]. (2.7)
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(iii) If m1 > dλ1( f1(φ)) and m2 ≤ dλ1( f2(φ)), then

lim
t→∞ u(x, t) = w∗(x;m1, a1), lim

t→∞ v(x, t) = 0 uniformly on [0, 1]. (2.8)

(iv) If m1 > dλ1( f1(φ)) and m2 > dλ1( f2(φ)), then (2.7) holds provided

m2

m1
> max

{
a2
a1

, 1

}

. (2.9)

(v) If m1 > dλ1( f1(φ)) and m2 > dλ1( f2(φ)), then (2.8) holds provided

m2

m1
< min

{
a2
a1

, 1

}

. (2.10)

A nonnegative solution (u, v) of (1.5) is called a coexistence steady state of (1.4) if both
u and v are non-trivial. Actually, it follows from the maximum principle that u and v are
both strictly positive on [0, 1], if (u, v) is a coexistence steady state.

The coexistence steady state problem was firstly addressed by So and Waltman [42]
through a local bifurcation analysis. Their numerical simulation showed that the parameter
range for the coexistence was very narrow. In Theorem 4.1 of [25], Hsu andWaltman proved
a coexistence result under the conditions m1 > m∗

1 and m2 > m∗
2, where m

∗
1 is a constant

depending on m2 and m∗
2 is a constant depending on m1. Obviously these two conditions are

not easy to verify. Moreover as pointed out in the discussion section of [25], more detailed
information, especially the stability of the equilibria, is needed for a complete classification
of the global dynamics of (1.4). Hence, it is worthwhile to revisit this model for a better (if
not full) understanding of the global dynamics.

We know that (1.4) is strictly monotone and hence the following well-celebrated results
on monotone dynamical system (e.g. see [18,24,39]) apply here.

Lemma 2.2 Suppose that both of the two semi-trivial steady state solutions of (1.4) exist.

(i) If E1 is stable, E2 is unstable, and there is no coexistence steady state, then E1 is
globally stable; similarly if E2 is stable, E1 is unstable, and there is no coexistence
steady state, then E2 is globally stable.

(ii) If E1 and E2 are both unstable, then (1.4) has at least one stable coexistence steady
state. If in addition, the coexistence steady state is unique, it is then globally stable.

(iii) If E1 and E2 are both stable, then (1.4) has at least one unstable coexistence steady
state.

3 Semi-trivial Steady State

In this section, we present some results about the unique positive solution w∗(x;m, a) of
(2.5), which provide additional information on the semi-trivial steady states of (1.4) and are
helpful for studying the coexistence steady states of (1.4).

Proposition 3.1 The following statements about the positive solution w∗(x;m, a) of (2.5)
hold.

(i) Suppose m > dλ1( fa(φ)) so that w∗(x;m, a) exists. Then it is linearly stable in the
sense that all eigenvalues of the linearized eigenvalue equation
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⎧
⎪⎨

⎪⎩

dϕ′′ + m

[
φ − w∗

a + φ − w∗
− aw∗

(a + φ − w∗)2

]

ϕ = μϕ, x ∈ (0, 1),

ϕ′(0) = ϕ′(1) + γ ϕ(1) = 0,

(3.1)

are negative.
(ii) For fixed a, d > 0, the positive solution w∗(x;m, a) exists if m ∈ (dλ1( fa(φ)),∞),

and it is strictly increasing in m, and

lim
m→dλ1( fa(φ))+

w∗(x;m, a) = 0, lim
m→∞ w∗(x;m, a) = φ(x) uniformly on [0, 1].

(3.2)

(iii) For fixed m, d > 0 with m > dλ1(1), the positive solution w∗(x;m, a) exists if
a ∈ (0, am), and it is strictly decreasing in a, and

lim
a→0+ w∗(x;m, a) = h(x), lim

a→a−
m

w∗(x;m, a) = 0 uniformly on [0, 1], (3.3)

where am is determined by m = dλ1( fam (φ)) and h is given by

h(x) =

⎧
⎪⎨

⎪⎩

φ(x0)

cos(
√
m/d x0)

cos(
√
m/d x) 0 ≤ x ≤ x0,

φ(x) x0 < x ≤ 1,

(3.4)

with x0 ∈ (0, 1) satisfying

√
m/d tan(

√
m/d x0)

(
γ + 1

γ
− x0

)

= 1. (3.5)

(iv) For fixed a,m > 0, the positive solution w∗(x;m, a, d) exists if d ∈ (0,m/λ1( fa(φ))),
and it is strictly decreasing in d for all x ∈ [0, 1]. Moreover,

lim
d→0+ w∗(x;m, a, d)

= φ(x) and lim
d→m/λ1( fa(φ))−

w∗(x;m, a, d) = 0 uniformly on [0, 1].

Proof For (i), let

q1(x) = m

[
φ − w∗

a + φ − w∗
− aw∗

(a + φ − w∗)2

]

and q2(x) = m(φ − w∗)
a + φ − w∗

. (3.6)

Since the principal eigenvalue μ1(q) is increasing in q , we have μ1(q1) < μ1(q2). This
together with μ1(q2) = 0 (with eigenfunction θ1(q2) = w∗) leads to μ1(q1) < 0, implying
that all eigenvalues of (3.1) are negative.

To prove (ii), let L1[ψ] = dψ ′′ +q1(x)ψ where q1 is defined as in (3.6), andψ ∈ Xγ :=
{ψ ∈ C2[0, 1] : ψ ′(0) = 0, ψ ′(1) + γψ(1) = 0}. By μ1(q1) < 0 and the maximum
principle, for any f ∈ Xγ , L1[ f ] < 0 implies that f > 0 on [0, 1]. From (2.5), w∗ is
continuously differentiable with respect to the parameters m and a. Let

ϕm(x) = ∂w∗(x;m, a)

∂m
, and ϕa(x) = ∂w∗(x;m, a)

∂a
.

Then ϕm satisfies
⎧
⎪⎨

⎪⎩

dϕ′′
m + m

[
φ − w∗

a + φ − w∗
− aw∗

(a + φ − w∗)2

]

ϕm = − (φ − w∗)w∗
a + φ − w∗

, x ∈ (0, 1),

ϕ′
m(0) = ϕ′

m(1) + γ ϕm(1) = 0.

(3.7)
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Sinceϕm ∈ Xγ and L1[ϕm] = −(φ−w∗)w∗/(a+φ−w∗) < 0,we conclude thatϕm(x) > 0,
implying that w∗(x;m, a) is strictly increasing in m for x ∈ [0, 1].

Noticing 0 < w∗ < φ,w′′∗(x) = −m(φ−w∗)w∗
a+φ−w∗ ≤ 0,which implies thatw′∗(x) is decreasing

on [0, 1]. Sincew′∗(0) = 0 andw′∗(1) = −γw∗(1),w′∗(x) is uniformly bounded for x ∈ [0, 1]
and m > 0. Therefore, by Arzela–Ascoli Theorem, there exists wi ∈ C[0, 1], i = 1, 2,
with 0 ≤ w1 < φ and 0 < w2 ≤ φ such that limm→dλ1( fa(φ))+ w∗(·;m, a) = w1 and
limm→∞ w∗(·;m, a) = w2 in C[0, 1].

To show thatw1 = 0, we assume on the contrary thatw1 is nontrivial. Since (φ−w)/(a+
φ − w) is uniformly bounded by 1, it follows from the L p-estimates for p ∈ (1,∞) that
w∗(x;m, a) is uniformly bounded in W 2,p(0, 1) for m ∈ (dλ1( fa(φ)), M], where M is a
fixed number larger than dλ1( fa(φ)). Hence, we have limm→dλ1( fa(φ))+ w∗(·;m, a) = w1

weakly in W 2,p(0, 1), where w1 satisfies
⎧
⎪⎨

⎪⎩

dw′′
1 + dλ1( fa(φ))

(φ − w1)w1

a + φ − w1
= 0, x ∈ (0, 1),

w′
1(0) = w′

1(1) + γw1(1) = 0.

(3.8)

Rewriting the first equation in (3.8) asw′′
1 +λ1( fa(φ)) fa(φ−w1)w1 = 0, one then infers that

λ1( fa(φ)) = λ1( fa(φ − w1)), which is a contradiction to the monotonicity of λ1. Therefore
w1 = 0.

To prove that w2 = φ, we divide the first equation of (2.5) by mw∗ and integrate the
resulting equation over (0, 1) to obtain

d

m

∫ 1

0

|w′∗|2
w2∗

dx − dγ

m
+

∫ 1

0

φ − w∗
a + φ − w∗

dx = 0.

It then follows from 0 ≤ w∗, w2 ≤ φ that

0 ≤
∫ 1

0

φ − w∗
a + φ − w∗

dx ≤ dγ

m
,

and

lim
m→∞

∫ 1

0

φ − w∗
a + φ − w∗

dx =
∫ 1

0

φ − w2

a + φ − w2
dx = 0.

Therefore we must have w2 = φ.
(iii) Since λ1( fa(φ)) is strictly increasing in a with

lim
a→0

dλ1( fa(φ)) = dλ1(1) < m and lim
a→∞ λ1( fa(φ)) = ∞,

there exists a unique am > 0 such that m = dλ1( fam (φ)). Moreover, m > dλ1( fa(φ)) if
and only if a ∈ (0, am). Therefore, positive solution w∗(x;m, a) exists if a ∈ (0, am).

Similar to the proof of (ii), we observe that ϕa satisfies
⎧
⎪⎨

⎪⎩

dϕ′′
a + m

[
φ − w∗

a + φ − w∗
− aw∗

(a + φ − w∗)2

]

ϕa = m(φ − w∗)w∗
(a + φ − w∗)2

, x ∈ (0, 1),

ϕ′
a(0) = ϕ′

a(1) + γ ϕa(1) = 0.

(3.9)

Noting ϕa ∈ Xγ and L1[ϕa] = m(φ − w∗)w∗/(a + φ − w∗)2 > 0, we conclude that
ϕa(x) < 0, implying that w∗(x;m, a) is decreasing in a.

Since (φ − w)/(a + φ − w) is uniformly bounded by 1, it follows from the L p-estimates
for p ∈ (1,∞) that w(x;m, a) is uniformly bounded in W 2,p(0, 1) for a ∈ (0, am). So
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lima→a−
m

w∗(x;m, a) = g and lima→0+ w∗(x;m, a) = h weakly in W 2,p(0, 1) for some

g, h with 0 ≤ g, h ≤ φ (the convergence also holds in C1[0, 1] by the Sobolev embedding
theorem). Moreover, g satisfies

⎧
⎪⎨

⎪⎩

dg′′ + m(φ − g)g

am + φ − g
= 0, x ∈ (0, 1).

g′(0) = g′(1) + γ g(1) = 0,

We show that g ≡ 0. Assume, for the sake of contradiction, that that g �≡ 0. Rewriting the
first equation above as g′′ + (m/d) fam (φ − g) g = 0, one sees that m/d = λ1( fam (φ − g)).
Then, the monotonicity of λ1(q) in q would yield m/d = λ1( fam (φ − g)) > λ1( fam (φ)),
which contradicts the definition of am . Hence we have g ≡ 0.

To determine the function h, we first show that φ(x) − w∗(x;m, a) is decreasing in x on
[0, 1] for any m, a > 0. To see this, let v = φ − w∗. Then, 0 < v < φ and v satisfies

⎧
⎪⎨

⎪⎩

dv′′ − m(φ − v)v

a + v
= 0, x ∈ (0, 1),

v′(0) = −S0, v′(1) + γ v(1) = 0.

Thus v′′ > 0, and v′ is increasing on [0, 1]. By the boundary condition, v′(1) = −γ v(1) < 0
and hence v′(x) < 0 for x ∈ [0, 1]. Hence v is strictly decreasing in x on [0, 1]. It follows
that φ − h is also non-increasing in x .

Next we show that φ − h ≥ 0 is non-trivial. Assume on the contrary that φ − h ≡ 0, i.e.
h ≡ φ. Then h′(0) = φ′(0) = −S0 < 0. But 0 = w′∗(0;m, a) → h′(0) by w∗(·;m, a) → h
as a → 0+ in C1[0, 1]. Hence h′(0) = 0, which is a contradiction. So φ − h is nontrivial.

We now show that φ − h is not positive for all x ∈ [0, 1). Assume on the contrary that
φ−h > 0 on [0, 1). Rewriting the first equation of (2.5) as d(a+φ−w)w′′+m(φ−w)w = 0
and taking the limit a → 0+, we have

{
dh′′ + mh = 0, x ∈ (0, 1),

h′(0) = 0, h′(1) + γ h(1) = 0.

Since h ≥ w∗(x,m, a) > 0, h is indeed an eigenfunction of (2.1) corresponding to the
principal eigenvalue m/d . This implies m/d = λ1(1), which is a contradiction. Therefore,
φ − h cannot be strictly positive in [0, 1).

From the above, we see that φ − h ≥ 0 is non-increasing, non-trivial, and not strictly
positive on [0, 1). Thus, there exists x0 ∈ (0, 1) such that φ −h > 0 on [0, x0) and φ −h = 0
on [x0, 1]. Again rewriting (2.5) as d(a + φ − w)w′′ +m(φ − w)w = 0 and taking the limit
as a → 0+, we have

{
dh′′ + mh = 0, x ∈ (0, x0),

h′(0) = 0.
(3.10)

Since φ − h = 0 on [x0, 1], we have
h(x0) = φ(x0) and h′(x0) = φ′(x0) = −S0. (3.11)

Solving (3.10), we have h = k cos(
√
m/d x) for some k > 0. By h(x0) = φ(x0), we have

k = φ(x0)/ cos(
√
m/d x0). By h′(x0) = −S0, x0 satisfies (3.5).

The proof of (iv) is similar to that of (ii), and we omit it here. 
�
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4 Coexistence

This section is devoted to the existence of coexistence steady states of (1.4).Wefirst introduce
two threshold values to determines existence/non-existence of a coexistence steady state. It
has been conjectured by Hsu and Waltman [25] that a coexistence steady state of (1.4),
if any, is always stable. In Sect. 4.2, we show that there are ranges of parameters within
which there is a stable coexistence steady state. Lastly in Sect. 4.3, we perform a global
bifurcation analysis to show the existence of a branch of coexistence steady states using m2

as the bifurcation parameter.

4.1 Classification of Coexistence Steady States

We have seen that for i = 1, 2, if mi > dλ1( fi (φ)) then (1.4) has the semi-trivial steady
states Ei , where E1 = (û, 0) and E2 = (0, v̂) with û = w∗(m1, a1) and v̂ = w∗(m2, a2).
We fix a1 > 0, a2 > 0, m1 > dλ1( f1(φ)), and view m2 as a parameter variable. We define
two critical values m̂2 and m̃2 as follows. Let

m̂2 = dλ1

(
φ − û

a2 + φ − û

)

= dλ1

(
φ − w∗(m1, a1)

a2 + φ − w∗(m1, a1)

)

. (4.1)

Let m2 = m̃2 be the unique solution of

m1 = dλ1

(
φ − v̂

a1 + φ − v̂

)

= dλ1

(
φ − w∗(m2, a2)

a1 + φ − w∗(m2, a2)

)

. (4.2)

To see that (4.2) has a unique solution, we note that [by Proposition 3.1(ii)]

lim
m2→dλ1( f2(φ))+

w∗(x;m2, a2) = 0, lim
m2→∞ w∗(x;m2, a2) = φ(x), uniformly on [0, 1].

(4.3)

Therefore,

lim
m2→dλ1( f2(φ))+

d λ1

(
φ − w∗(m2, a2)

a1 + φ − w∗(m2, a2)

)

= d λ1( f1(φ)) < m1,

lim
m2→∞ λ1

(
φ − w∗(m2, a2)

a1 + φ − w∗(m2, a2)

)

= ∞.

(4.4)

Thus, the monotonicity of λ1(·) together with (4.3) and (4.4) and Proposition 3.1(ii) implies
that there is a unique value for m2 = m̃2 ∈ (dλ1( f2(φ)),∞) such that (4.2) holds with
m2 = m̃2. Moreover, we can easily see that m̂2, m̃2 > dλ1( f2(φ)).

The definitions of m̂2 and m̃2 arise naturally from studying the stability of E1 and E2,
which will be apparent in the proof of the following result.

Proposition 4.1 For given a1, a2 > 0 and m1 > dλ1( f1(φ)), let m̂2 and m̃2 be defined as
above.

(i) If m2 < m̂2, the semi-trivial steady state E1 is locally asymptotically stable; if m2 > m̂2,
E1 is unstable. Also, there holds

m̂2 ≥ m1 min

{
a2
a1

, 1

}

. (4.5)
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(ii) Suppose m2 > dλ1( f2(φ)). If m2 < m̃2, the semi-trivial steady state E2 is unstable; if
m2 > m̃2, E2 is locally asymptotically stable. Also, there holds

m̃2 ≤ m1 max

{
a2
a1

, 1

}

. (4.6)

Proof We will only prove the stability results for E1 and E2, as (4.5) and (4.6) follow from
these and Theorem 2.1.

(i) The stability of E1 for (1.4) is determined by the following elliptic eigenvalue problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dξ ′′ + m1

[
φ − û

a1 + φ − û
− a1û

(a1 + φ − û)2

]

ξ − m1a1û

(a1 + φ − û)2
η=μξ, x ∈(0, 1),

dη′′ + m2
φ − û

a2 + φ − û
η = μη, x ∈(0, 1),

ξ ′(0) = ξ ′(1) + γ ξ(1)=0, η′(0)=η′(1)+γ η(1)=0.

(4.7)

Suppose m2 < m̂2 and let μ be an eigenvalue of (4.7) with corresponding eigenvector
(ξ, η). If η = 0, then μ is an eigenvalue of (3.1). By Proposition 3.1(i), we have μ < 0.
If η �= 0, then μ is an eigenvalue of

⎧
⎪⎨

⎪⎩

dη′′ + m2
φ − û

a2 + φ − û
η = μη, x ∈ (0, 1),

η′(0) = η′(1) + γ η(1) = 0.

(4.8)

The principal eigenvalue of (4.8) is 0 if and only if m2 = m̂2. Sine m2 < m̂2, the
principal eigenvalue of (4.8) is less than 0, and thus, μ < 0. Therefore, E1 is stable.

Suppose m2 > m̂2. Then, (4.8) has a principal eigenvalue μ > 0 with corresponding
eigenvector η > 0. Since μ is not an eigenvalue of (3.1), by Fredholm theorem, there
exists a unique ξ solving the following problem

⎧
⎪⎨

⎪⎩

dξ ′′ + m1

[
φ − û

a1 + φ − û
− a1û

(a1 + φ − û)2

]

ξ − m1a1û

(a1 + φ − û)2
η = μξ, x ∈ (0, 1),

ξ ′(0) = ξ ′(1) + γ ξ(1) = 0.

Therefore,μ > 0 is an eigenvalue of (4.7)with corresponding eigenvector (ξ, η). Hence,
E1 is unstable.

(ii) The stability of E2 for (1.4) is determined by the following elliptic eigenvalue problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dξ ′′ + m1
φ − v̂

a1+φ − v̂
ξ =μξ, x ∈(0, 1),

dη′′ − m2a2v̂

(a2+φ − v̂)2
ξ + m2

[
φ − v̂

a2 + φ − v̂
− a2v̂

(a2 + φ − v̂)2

]

η=μη, x ∈ (0, 1),

ξ ′(0)=ξ ′(1)+γ ξ(1)=0, η′(0)=η′(1)+γ η(1)=0.

(4.9)
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By the definition of m̃2, the eigenvalue problem
⎧
⎪⎨

⎪⎩

dξ ′′ + m1
φ − v̂

a1 + φ − v̂
ξ = μξ, x ∈ (0, 1),

ξ ′(0) = ξ ′(1) + γ ξ(1) = 0,

(4.10)

has principal eigenvalue 0 if and only if m2 = m̃2. Since v̂ is strictly increasing in m2,
the principal eigenvalue of (4.10) is positive if m2 < m̃2 and negative if m2 > m̃2. By
a similar argument in (i), E2 is unstable if m2 < m̃2 and stable if m2 > m̃2. 
�

We can explore a little bit more about the two thresholds m̂2 = m̂2(a1, a2) and m̃2 =
m̃2(a1, a2), with given m1 > dλ1( f1(φ)). Firstly, by the monotonicity of w∗(m, a) in m and
a established in Proposition 3.1, and the monotonicity of λ1(·), we can easily see that both
m̂2(a1, a2) and m̃2(a1, a2) are decreasing in a1 and increasing in a2. When a1 = a2, it is
obvious that m̂2 = m̃2 = m1. Therefore, if a1 > a2, then m̂2(a1, a2) < m̂2(a2, a2) = m1.
Moreover, if a1 > a2, then

m1 =dλ1

(
φ − w∗(m̃2(a1, a2), a2)

a1 + φ − w∗(m̃2(a1, a2), a2)

)

=dλ1

(
φ − w∗(m̃2(a2, a2), a1)

a1 + φ − w∗(m̃2(a2, a2), a1)

)

= dλ1

(
φ − w∗(m1, a1)

a1 + φ − w∗(m1, a1)

)

= m1,

which implies that m̃2(a1, a2) < m̃2(a2, a2) = m1.
By Lemma 2.2 and Proposition 4.1, we have the following classification of steady states

in terms of m̂2 and m̃2.

Theorem 4.2 Fix a1, a2,m1 and d such that a1 ≥ a2 and m1 > dλ1( f1(φ)). Let m̂2 and m̃2

be defined as above.

(i) Suppose m̂2 < m̃2. If m2 < m̂2, then the semi-trivial steady state E1 is locally
asymptotically stable, and E2 is unstable if it exists. If m2 > m̃2, then E1 is unstable,
and E2 is locally asymptotically stable. If m2 ∈ (m̂2, m̃2), then E1 and E2 are both
unstable, and (1.4) has at least one stable coexistence steady state.

(ii) Suppose m̂2 > m̃2. If m2 < m̃2, then the semi-trivial steady state E1 is locally asymp-
totically stable, and E2 is unstable if it exists. If m2 > m̂2, then E1 is unstable, and E2

is locally asymptotically stable. If m2 ∈ (m̃2, m̂2), then E1 and E2 are both stable, and
(1.4) has at least one unstable coexistence steady state.

(iii) Suppose m̂2 = m̃2. If m2 < m̃2, then the semi-trivial steady state E1 is locally asymp-
totically stable, and E2 is unstable if it exists. If m2 > m̃2, then E1 is unstable, and E2

is locally asymptotically stable.

4.2 Existence of Stable Coexistence Steady States

In this subsection, we will confirm that there are parameter ranges within which there exists
a stable coexistence steady state. By Theorem 4.2, we just need to seek ranges for the
parameters for which, m̂2 < m̃2 holds.

Let α ∈ (0, π/2) be the unique root of the transcendental equation

α tan(α) = γ. (4.11)
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Recall that γ is the pump-out rate for the mixed culture. Our results are stated under the
condition

m1 > dλ1

(

f1(φ − φ(1)

cosα
cos(αx))

)

= dλ1

(
φ − S0

γ cosα
cos(αx)

a1 + φ − S0
γ cosα

cos(αx)

)

. (4.12)

Since the eigenvalue λ1 in (4.12) is independent of m1 and d , for fixed a1, if m1 is large or
d is small, then (4.12) holds.

The following result is about the limit of m̃2 as a2 → 0.

Lemma 4.3 Suppose that d,m1, a1 > 0. If (4.12) holds, then

lim
a2→0+ m̃2 > dα2 = dλ1(1).

To prove Lemma 4.3, we need the following lemma.

Lemma 4.4 For any x0 ∈ (0, 1), the equation

x tan(x0x)

(
1 + γ

γ
− x0

)

= 1 (4.13)

has a unique solution x in (0, π
2x0

), which is greater than α.

Proof Let g(x) = x tan(x0x)
(
1+γ
γ

− x0
)

− 1. Since g(0) = −1, g( π
2x0

) = ∞, and g is

strictly increasing in (0, π
2x0

), g has a unique root in (0, π
2x0

). It then suffices to show that
g(α) < 0, i.e.

g(α) = α tan(x0α)

(
1 + α tan(α)

α tan(α)
− x0

)

− 1 < 0.

This is equivalent to

tan(x0α) − tan(α) + α(1 − x0) tan(x0α) tan(α) < 0.

Noticing tan(x0α)− tan(α) = − tan((1− x0)α)[1+ tan(α) tan(x0α)], we only need to show
− tan((1 − x0)α) + [(1 − x0)α − tan((1 − x0)α)] tan(α) tan(x0α) < 0,

which is obvious since (1 − x0)α − tan((1 − x0)α) < 0. 
�
Proof of Lemma 4.3 By the definition of m̃2, there exists a positive eigenvector ψ associated
with λ1( f1(φ − w∗(m̃2, a2))) = m1/d . Moreover ψ is unique if we normalize it such that
ψ(0) = 1. Hence w := w∗(m̃2, a2) satisfies

⎧
⎪⎨

⎪⎩

dw′′ + m̃2(φ − w)w

a2 + φ − w
= 0, x ∈ (0, 1),

w′(0) = w′(1) + γw(1) = 0,

(4.14)

and ψ satisfies
⎧
⎪⎨

⎪⎩

dψ ′′ + m1(φ − w)

a1 + φ − w
ψ = 0, x ∈ (0, 1),

ψ ′(0) = ψ ′(1) + γψ(1) = 0, ψ(0) = 1.

(4.15)

By 0 < w < φ and (4.15), ψ ′′ < 0 which implies ψ ′ ≤ ψ ′(0) = 0. Hence ψ is decreasing
and thus ψ ≤ 1 on [0, 1]. Fix p > 1. Noticing 0 < m̃2 ≤ m1 and by the L p estimates, w
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and ψ are uniformly bounded in W 2,p(0, 1) for all a2 > 0. Then there exists a decreasing
sequence {a2,n}with limn→∞ a2,n = 0 such that the corresponding m̃2,n ,wn , andψn satisfy
that

lim
n→∞ m̃2,n = dc2,

and

lim
n→∞ wn = ρ, lim

n→∞ ψn = �, weakly in W 2,p(0, 1),

for some c ≥ 0 and ρ,� ∈ W 2,p(0, 1) (The convergence ofwn andψn is also inC1[0, 1] by
the Sobolev embedding theorem). By the proof of Proposition 3.1, φ −wn is decreasing in x
with 0 < φ−wn < φ, and hence,φ−ρ is also decreasing in x with 0 ≤ φ−ρ ≤ φ. Ifφ−ρ =
φ, i.e. ρ = 0, then by (4.15), � is an eigenvector corresponding to the principal eigenvalue
m1/d = λ1( f1(φ)), which contradicts the assumption m1 > dλ1( f1(φ)). If φ − ρ = 0, i.e.
ρ = φ, then ρ′(0) = φ′(0) = −S0. However, this contradicts limn→0 w′

n(0) = ρ′(0) = 0.
Hence, we have two cases by the monotonicity of φ − ρ:
Case 1 φ − ρ > 0 on [0, 1).
By (4.14), we have d(a2,n + φ − wn)w

′′
n + m̃2,n(φ − wn)wn = 0. Taking n → ∞, we have

{
ρ′′ + c2ρ = 0, x ∈ (0, 1),

ρ′(0) = ρ′(1) + γρ(1) = 0,

Since ρ is nonnegative and nontrivial, we must have c2 = λ1(1). It is easy to check that
cos(αx) is an eigenvector corresponding to λ1(1) = α2. Hence c = α. Moreover ρ =
A cos(αx) for some A > 0. It then follows from φ − ρ ≥ 0 that A ≤ φ(1)/ cos(α). Hence,

ρ ≤ φ(1)

cos(α)
cos(αx).

By (4.15), we have
⎧
⎪⎨

⎪⎩

d� ′′ + m1(φ − ρ)

a1 + φ − ρ
� = 0, x ∈ (0, 1),

� ′(0) = � ′(1) + γ�(1) = 0, �(0) = 1.

This implies

m1

d
= λ1( f1(φ − ρ)) ≤ λ1

(

f1

(

φ − φ(1)

cos(α)
cos(αx)

))

. (4.16)

Case 2 There exists x0 ∈ (0, 1) such that φ − ρ > 0 on [0, x0) and φ − ρ = 0 on [x0, 1].
Since ρ ∈ C1[0, 1], we have ρ(x0) = φ(x0) and ρ′(x0) = φ′(x0) = −S0. Similar to Case 1,
it follows from (4.14) that

{
ρ′′ + c2ρ = 0, x ∈ (0, x0),

ρ′(0) = 0, ρ(x0) = φ(x0), ρ′(x0) = φ′(x0) = −S0.

Hence we must have

ρ = φ(x0)

cos(x0c)
cos(cx),
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with c ∈ (0, π
2x0

) satisfying

c tan(x0c)

(
1 + γ

γ
− x0

)

= 1.

Moreover by Lemma 4.4, we have c > α.
In view of the two cases, our assumption (4.12) implies that Case 1 is impossible due to

(4.16). Hence we must have lima2→0+ m̃2 > dα2 (The monotonicity of m̃2 implies that the
limit exists). 
�

Our next result is about the limit of m̂2 as a2 approaches zero. Since its proof is similar to
but simper than that of Lemma 4.3, we sketch it here.

Lemma 4.5 Suppose that d,m1, a1 > 0 are fixed with m1 > dλ1( f1(φ)). Then

lim
a2→0+ m̂2 = dα2 = dλ1(1).

Proof By the definition of m̂2, there exists a positive eigenvectorψ associatedwithλ1( f2(φ−
û)) = m̂2/d . Moreover, ψ is unique if we normalize it such that ψ(0) = 1. So, ψ satisfies

⎧
⎪⎨

⎪⎩

dψ ′′ + m̂2(φ − û)

a2 + φ − û
ψ = 0, x ∈ (0, 1),

ψ ′(0) = ψ ′(1) + γψ(1) = 0, ψ(0) = 1.

(4.17)

Similar to the proof of Lemma 4.3, there exists a decreasing sequence {a2,n} with
limn→∞ a2,n = 0 such that the corresponding m̂2,n and ψn satisfy that

lim
n→∞ m̂2,n = dc2,

and

lim
n→∞ ψn = � weakly in W 2,p(0, 1),

for some c ≥ 0 and � ∈ W 2,p(0, 1) (The convergence of ψn is also in C1[0, 1] by the
Sobolev embedding theorem). Since φ > û, we have

{
� ′′ + c2� = 0, x ∈ (0, 1),

� ′(0) = � ′(1) + γ�(1) = 0, �(0) = 1.

Since � is nonnegative and nontrivial, we must have c2 = λ1(1). It has been shown in the
proof of Lemma 4.3 that λ1(1) = α2. Therefore, c = α and lima2→0+ m̂2 = dα2 (The limit
exists by the monotonicity of m̂2). 
�

Combining the previous two lemmas, we can verify that m̃2 > m̂2 under the condition
(4.12) and small a2, which implies the existence of a stable coexistence steady state of (1.4)
for some parameter ranges.

Theorem 4.6 Suppose that d,m1, a1 are fixed. If (4.12) holds, then there exists a∗
2 < a1

such that m̃2 > m̂2 for all a2 ∈ (0, a∗
2 ). For such a2, (1.4) possesses a stable coexistence

steady state for m2 ∈ (m̂2, m̃2).

Proof The existence of a∗
2 follows from Lemmas 4.3 and 4.5, and the existence of a stable

coexistence steady state for m2 ∈ (m̂2, m̃2) follows from Theorem 4.2. 
�
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4.3 Bifurcation of Coexistence Solutions

In this subsection, we perform a bifurcation analysis to show the existence of coexistence
steady states. We note that a local bifurcation analysis was conducted in [42] by casting (1.5)
into a system of integral equations.

We fix a1, a2,m1 and d such that a1 ≥ a2 and m1 > dλ1( f1(φ)), and use m2 as a
bifurcation parameter. Recall Xγ = {ψ ∈ C2[0, 1] : ψ ′(0) = 0, ψ ′(1) + γψ(1) = 0}.
Then, in the space R × X2

γ , (1.5) has three branches of trivial or semi-trivial solutions:

�0 = {(m2, 0, 0) : m2 > 0},
�u = {(m2, w∗(m1, a1), 0) : m2 > 0},
�v = {(m2, 0, w∗(m2, a2)) : m2 > dλ1( f2(φ))}.

(4.18)

For convenience, we still let û = w∗(m1, a1) and v̂ = w∗(m2, a2).
We prove that there is a branch of positive solutions of (1.5) bifurcating from �u as stated

in the following:

Theorem 4.7 There is a smooth curve � = {(m2(s), u(s), v(s)) : s ∈ (−ε, ε)}, such that
(m2(s), u(s), v(s)) is a solution of (1.5) for s ∈ (−ε, ε) which is positive for s ∈ (0, ε),
where m2(0) = m̂2, u(s) = û + sϕ0 + o(s), and v(s) = sψ0 + o(s) with ψ0 > 0 being a
principal eigenfunction of the problem

{
ψ ′′(x) + λ f2(φ − û)ψ(x) = 0, x ∈ (0, 1),

ψ ′(0) = ψ ′(1) + γψ(1) = 0,
(4.19)

corresponding to the eigenvalue λ = m̂2/d and ϕ0 < 0 satisfying
⎧
⎪⎨

⎪⎩

dϕ′′
0 + m1

[

f1(φ − û) − a1û

(a1 + φ − û)2

]

ϕ0 = m1a1û

(a1 + φ − û)2
ψ0, x ∈ (0, 1),

ϕ′
0(0) = ϕ′

0(1) + γ ϕ0(1) = 0.

(4.20)

Moreover,

m′
2(0) = m̂2

∫ 1

0

a2(ϕ0 + ψ0)ψ
2
0

(a2 + φ − û)2
dx

∫ 1

0
f2(φ − û)ψ2

0dx

. (4.21)

Proof We apply the local bifurcation theorem in [8]. Define F : R × X2
γ → Y 2 (where

Y = C[0, 1]) by

F(m2, u, v) =
(
du′′ + m1 f1(φ − u − v)u
dv′′ + m2 f2(φ − u − v)v

)

. (4.22)

Then, we can compute

F(u,v)(m2, u, v)[ϕ,ψ]

=
(
dϕ′′
dψ ′′

)

+
(
m1 f1(φ − u − v) − m1a1u

(a1+φ−u−v)2
− m1a1u

(a1+φ−u−v)2

− m2a2v
(a2+φ−u−v)2

m2 f2(φ − u − v) − m2a2v
(a2+φ−u−v)2

) (
ϕ

ψ

)

.
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Evaluating it at (m̂2, û, 0), we have

F(u,v)(m̂2, û, 0)[ϕ,ψ] =
(

dϕ′′ + pϕ − qψ

dψ ′′ + m̂2 f2(φ − û)ψ

)

,

with

p = m1 f1(φ − û) − m1a1û

(a1 + φ − û)2
, q = m1a1û

(a1 + φ − û)2
.

It then follows that the kernel of F(u,v)(m̂2, û, 0) is

N (F(u,v)(m̂2, û, 0)) = span{(ϕ0, ψ0)}.
To see this, let F(u,v)(m̂2, û, 0)[ϕ,ψ] = 0. Noticing m̂2 = dλ( f2(φ − û)), we have ψ =
kψ0 for some k ∈ R, where ψ0 is a positive principal eigenvector of problem (4.19). By
Proposition 3.1(i) and Fredholm theory, there is a unique ϕ0 solving (4.20). Moreover, by the
maximum principle, ϕ0 < 0.

We claim that the range of F(u,v)(m̂2, û, 0) is

R(F(u,v)(m̂2, û, 0)) =
{

(h1, h2) ∈ Y 2 :
∫ 1

0
h2ψ0dx = 0

}

. (4.23)

To see this, we note that (h1, h2) ∈ Y 2 is in the range if and only if there exists (ϕ, ψ) ∈ X2
γ

such that

dϕ′′ + pϕ − qψ = h1, (4.24)

dψ ′′ + m̂2 f2(φ − û)ψ = h2. (4.25)

The Eq. (4.24) always has a unique solution in Xγ for any ψ, h1 ∈ L p(0, 1) by Proposi-
tion 3.1(i) and Fredholm theory. Hence the claim is equivalent to that (h1, h2) ∈ Y 2 is in
the range if and only if

∫ 1
0 h2ψ0dx = 0. And this can be derived by the Fredholm theory,

because the solutionz of the equation dψ ′′ + m̂2 f2(φ − û)ψ = 0 in Xγ consist of span{ψ0}.
To apply the bifurcation theorem from a simple eigenvalue by Crandall and Rabinowitz

[8], we then only need to check the transversality condition Fm2,(u,v)(m̂2, û, 0)[ϕ0, ψ0] /∈
R(F(u,v)(m̂2, û, 0)). To see this, we compute

Fm2(m2, u, v) =
(

0
f2(φ − u − v)v

)

and

Fm2,(u,v)(m2, u, v)[ϕ,ψ] =
[

0
− a2vϕ

(a2+φ−u−v)2
+ ( f2(φ − u − v) − a2v

(a2+φ−u−v)2
)ψ

]

.

This implies

Fm2,(u,v)(m̂2, û, 0)[ϕ0, ψ0] =
[

0
f2(φ − û)ψ0

]

, (4.26)

and so the transversality condition holds by (4.23) and
∫ 1
0 f2(φ − û)ψ2

0dx > 0.
Finally, we compute m′

2(0) by the formula (see [37])

m′
2(0) = −〈l, F(u,v),(u,v)(m̂2, û, 0)[ϕ0, ψ0]2〉

2〈l, Fm2,(u,v)(m̂2, û, 0)[ϕ0, ψ0]〉 , (4.27)
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where l is a linear functional on Y 2 given by 〈l, [h1, h2]〉 = ∫ 1
0 h2(x)ψ0(x)dx for any

(h1, h2) ∈ Y 2. To this end, we compute

F(u,v),(u,v)(m2, u, v)[ϕ, ψ]2

=
⎛

⎝
∗

−m2

(
2a2vϕ2

(a2+φ−u−v)3
+2ϕψ(

2a2v
(a2+φ−u−v)3

+ a2
(a2+φ−u−v)2

)+ψ2(
2a2

(a2+φ−u−v)2
+ 2a2v

(a2+φ−u−v)3
)

)

⎞

⎠

and

F(u,v),(u,v)(m̂2, û, 0)[ϕ0, ψ0]2 =
( ∗

−2m̂2a2(ϕ0+ψ0)ψ0
(a2+φ−û)2

.

)

(4.28)

Hence, the formula (4.21) follows from (4.26) to (4.28). 
�

We then prove that there is a branch of positive solutions of (1.5) bifurcating from �v .
The proof of this result is similar to (1.5), so we only sketch it here.

Theorem 4.8 There is a smooth curve �′ = {(m2(s), u(s), v(s)) : s ∈ (−ε, ε)}, such that
(m2(s), u(s), v(s)) is a solution of (1.5) for s ∈ (−ε, ε) which is positive for s ∈ (0, ε),
where m2(0) = m̃2, u(s) = sϕ̃0 + o(s), and v(s) = v̂0 + sψ̃0 + o(s) with v̂0 = w∗(m̃2, a2),
and ϕ̃0 > 0 being a principal eigenfunction of the problem

{
ϕ′′(x) + λ f1(φ − v̂0)ϕ(x) = 0, x ∈ (0, 1),

ϕ′(0) = ϕ′(1) + γ ϕ(1) = 0,
(4.29)

corresponding to the eigenvalue λ = m1/d, and ψ̃0 < 0 satisfying
⎧
⎪⎨

⎪⎩

dψ̃ ′′
0 + m̃2

[

f2(φ − v̂0) − a2v̂0
(a2 + φ − v̂0)2

]

ψ̃0 = m̃2a2v̂0
(a2 + φ − v̂0)2

ϕ̃0, x ∈ (0, 1),

ψ̃ ′
0(0) = ψ̃ ′

0(1) + γ ψ̃0(1) = 0.

(4.30)

Moreover,

m′
2(0) = −

∫ 1

0

(ϕ̃0 + ψ̃0)ϕ̃
2
0

(a1 + φ − v̂0)2
dx

∫ 1

0

v̂m̃2 ψ̃
2
0

(a1 + φ − v̂0)2
dx

, (4.31)

where v̂m̃2 is the unique positive solution of
⎧
⎪⎨

⎪⎩

d v̂′′̃
m2

+ m̃2

[

f2(φ − v̂0) − a2v̂0
(a2 + φ − v̂0)2

]

v̂m̃2 = − φ − v̂0

a2 + φ − v̂0
v̂0, x ∈ (0, 1),

v̂ ′̃
m2

(0) = v̂ ′̃
m2

(1) + γ v̂m̃2(1) = 0.

Proof Define F̃ : R × X2
γ → Y 2 by

F̃(m2, u, w) =
(

du′′ + m1 f1(φ − u − v̂ − w)u
dw′′ + d v̂′′ + m2 f2(φ − u − v̂ − w)(v̂ + w)

)

,
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where v̂ = w∗(m2, a2). Then we have F̃(m2, 0, 0) = 0 and

F̃(u,w)(m̃2, 0, 0)[ϕ,ψ] =
(

dϕ′′ + m1 f1(φ − v̂0)ϕ

dψ ′′ + m̃2

(
f2(φ − v̂0) − a2v̂0

(a2+φ−v̂0)2

)
ψ − m̃2a2 v̂0ϕ

(a2+φ−v̂0)2

)

,

where v̂0 = w∗(m̃2, a2). It then follows that the kernel of F̃(u,w)(m̃2, 0, 0) is

N (F̃(u,w)(m̃2, 0, 0)) = span{(ϕ̃0, ψ̃0)},
and the range of F̃(u,w)(m̃2, 0, 0) is

R(F̃(u,w)(m̃2, 0, 0)) =
{

(h1, h2) ∈ Y 2 :
∫ 1

0
h1ϕ̃0dx = 0

}

. (4.32)

By

F̃m2,(u,w)(m̃2, 0, 0)[ϕ̃0, ψ̃0] =
[

− m1a1v̂m̃2 ϕ̃0

(a1+φ−v̂0)2∗

]

, (4.33)

v̂m̃2 > 0, and (4.32), the transversality condition holds. Finally, m′
2(0) can be computed by

m′
2(0) = −〈l, F̃(u,w),(u,w)(m̃2, 0, 0)[ϕ̃0, ψ̃0]2〉

2〈l, F̃m2,(u,w)(m̃2, 0, 0)[ϕ̃0, ψ̃0]〉
, (4.34)

where l is a linear functional on Y 2 given by 〈l, [h1, h2]〉 = ∫ 1
0 h1(x)ϕ̃0(x)dx for any

(h1, h2) ∈ Y 2. Then the formula (4.31) follows from (4.33), (4.34) and

F̃(u,w),(u,w)(m̃2, 0, 0)[ϕ̃0, ψ̃0]2 = −
(

2m1a1ϕ̃0(ϕ̃0+ψ̃0)

(a1+φ−v̂0)2∗

)

. (4.35)


�

We remark that although (4.21) and (4.31) provide formulas for the direction of bifurcation
at m2 = m̃2 and m2 = m̂2, the actual direction is not clear as the sign of ϕ0 + ψ0 or ϕ̃0 + ψ̃0

is not known. So, we can not rule out possible multiple coexistence steady state solutions for
some values of m2.

Next, we perform a global bifurcation analysis and prove that the two bifurcation continua
in Theorems 4.7 and 4.8 are connected. We need the following result.

Lemma 4.9 Suppose that m1 > dλ1( f1(φ)). If (u, v) is a nonnegative solution of (1.5), then
we have u ≤ û.

Proof Since u satisfies 0 = du′′ + m1 f1(φ − u − v) ≤ du′′ + m1 f1(φ − u), u is a lower
solution of

⎧
⎪⎨

⎪⎩

dw′′ + m1(φ − w)w

a1 + φ − w
= 0, x ∈ (0, 1),

w′(0) = w′(1) + γw(1) = 0.

(4.36)

It is easy to check that φ is an upper solution. Hence by the method of upper/lower solutions
and the uniqueness of the solution of (4.36), we have u ≤ w∗(m1, a1) = û. 
�
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Define

S = {(m2, u, v) ∈ R+ × X2
γ : u > 0, v > 0, (m2, u, v) satisfies (1.5)}. (4.37)

Theorem 4.10 Suppose that m1 > dλ1( f1(φ)). Then there exists a connected component C∗
of S such that the closure of C∗ contains two bifurcation points (m̂2, û, 0) and (m̃2, 0, v̂0)
with v̂0 = w∗(m̃2, a2). In other words, the two bifurcation continua � and �′ in Theorem 4.7
and 4.8 are connected to each other.

Proof We apply the global bifurcation theorem [38, Theorem 4.4] and follow the process
in [38, Theorem 4.7]. Let F : R+ × P2

ε → Y 2 be defined as in (4.22), where Pε = {u ∈
Xγ : u > −ε} for some ε > 0. Let P = {u ∈ Xγ : u > 0}. By Theorem 4.7, there is
a smooth curve � = {(m2(s), u(s), v(s)) : s ∈ (−ε, ε)} of solutions of (1.5) emanating
from the bifurcation point (m̂2, û, 0) from �u . Let �+ = {(m2(s), u(s), v(s)) : s ∈ (0, ε)}
and �− = {(m2(s), u(s), v(s)) : s ∈ (−ε, 0)} be the positive and negative components
of �, respectively. Let C be the connected component of solutions in R+ × P2

ε bifurcating
from (m̂2, û, 0). Let C+ be the connected component of C\�− which contains �+. Let
C∗ = C+ ∩ (R+ × P2). Then C∗ ⊂ C+ and contains �+.

By [38, Theorem 4.4], C+ satisfies one of the following alternatives: (I) it is not compact
inR+×P2

ε ; (II) it contains a point (m∗, û, 0)withm∗ �= m̂2; (III) it contains a point (m2, û+
u1, u2), where (u1, u2) is nontrivial and belongs to the complement of span{(ϕ0, ψ0)}, i.e.

∫ 1

0
(u1ϕ0 + u2ψ0)dx = 0, (4.38)

where (ϕ0, ψ0) is specified in Theorem 4.7 with ϕ0 < 0 and ψ0 > 0. Here, (I) is equivalent
to either C+ intersects R+ × ∂P2

ε (∂P2
ε is the boundary of P2

ε ) or C+ is unbounded by the
elliptic regularity theory.

We claim that either (I)–(III) implies that C̄∗ ∩ (R+ × ∂P2) contains a point (m∗, u∗, v∗),
distinct from (m̂2, û, 0), where ∂P2 is the boundary of P2. We prove the claim now. Suppose
that (I) holds. If C+ intersects R+ × ∂P2

ε , it insects R+ × ∂P2. So, we may assume that C+
is unbounded. If C∗ does not intersect R+ × ∂P2, by the boundedness of positive solutions,
there exists an unbounded interval I ⊂ R+ with m̂2 ∈ I such that, for eachm2 ∈ I , (1.5) has
a positive solution. However, if 0 < m2 < m1a2/a1 or m2 > m1, by Theorem 2.1, (1.5) has
no positive solution. This contradicts the unboundedness of I . (II) is obvious. Suppose that
(III) holds. If (û + u1, u2) is not nonnegative, then the claim holds. So, suppose û + u1 ≥ 0
and u2 ≥ 0. By Lemma 4.9, we have u1 ≤ 0. By (4.38), we must have (u1, u2) = (0, 0),
which contradicts that (u1, u2) is nontrivial. This proves the claim.

Since (m∗, u∗, v∗) ∈ R+ × ∂P2, by the maximum principle, either u∗ = 0 or u∗ > 0
on [0, 1], and either v∗ = 0 or v∗ > 0 on [0, 1]. Thus, there are three possible cases: (1)
(m∗, u∗, v∗) = (m∗, 0, 0); (2) (m∗, u∗, v∗) = (m∗, û, 0) with m∗ �= m̂2; (3) (m∗, u∗, v∗) =
(m∗, 0, v∗)with v∗ = w∗(m∗, a2). Whichever the case, (m∗, u∗, v∗) is a bifurcation point for
positive solutions of (1.5). (2) can be easily ruled out since (m̂2, û, 0) is the only bifurcation
point of positive solutions from �u . To rule out (1), we compute

F(u,v)(m∗, 0, 0)[ϕ,ψ] =
(
dϕ′′ + m1 f1(φ)ϕ

dψ ′′ + m∗ f2(φ)ψ

)

.

Since m1 > dλ( f1(φ)), the only bifurcation point of nonnegative solutions from �0

is m∗ = λ( f2(φ))/d . It is not hard to see that the corresponding bifurcation curve is
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(m2, 0, w∗(m2, a2)). Therefore, (m∗, 0, 0) can not be a bifurcation point for positive solu-
tions. Therefore, (3) holds. From the proof of Theorem 4.8, the only possible bifurcation
point of positive solutions from �v is (m∗, 0, v∗) = (m̃2, 0, v̂0) with v̂0 = w∗(m̃2, a2). This
proves the result. 
�

We remark that the bifurcation results proved in this subsection hold without extra condi-
tions on parameters (d, a1, a2,m1) (except for m1 > dλ1( f1(φ))), and bifurcation analysis
can be performed using parameters a1, a2 or m1. However, with the result m̃2 > m̂2 proved
in Sect. 4.2, we have more information on the bifurcation branch C∗:

Corollary 4.11 Suppose that d,m1, a1 are fixed such that (4.12) holds. Let a∗
2 > 0 be defined

in Theorem 4.6 such that m̃2 > m̂2 when 0 < a2 < a∗
2 . Then the projection of the continuum

C∗ of positive solutions onto m2-axis contains the interval (m̂2, m̃2).

5 Non-coexistence for Small d

In this section, we consider the dynamics of (1.4) when the diffusion rate d is small. We fix
a1, a2,m1,m2 and make d small enough such that m1 > dλ( f1(φ)) and m2 > dλ( f2(φ)).
Then the two semi-trivial steady states both exist, and we denote them by (û, 0) and (0, v̂),
respectively.

As pointed out in the previous section, the stability of (û, 0) is determined by the sign of
μ∗
1, which is the principal eigenvalue of the problem

⎧
⎪⎨

⎪⎩

dη′′ + m2
φ − û

a2 + φ − û
η = μη, x ∈ (0, 1),

η′(0) = η′(1) + γ η(1) = 0.

(5.1)

Similarly, the stability of (0, v̂) is determined by the sign of μ∗
2, which is the principal

eigenvalue of the problem
⎧
⎪⎨

⎪⎩

dη′′ + m1
φ − v̂

a1 + φ − v̂
η = μη, x ∈ (0, 1),

η′(0) = η′(1) + γ η(1) = 0.

(5.2)

We first prove the following instability result regarding the semi-trivial steady states.

Lemma 5.1 If m1/a1 < m2/a2, then there exists d1 > 0 such that (û, 0) is unstable for all
d < d1; if m1/a1 > m2/a2, then there exists d2 > 0 such that (0, v̂) is unstable for all
d < d2.

Proof Suppose that m1/a1 < m2/a2. Notice that û satisfies
⎧
⎪⎨

⎪⎩

dû′′ + m1(φ − û)û

a1 + φ − û
= 0, x ∈ (0, 1),

û′(0) = û′(1) + γ û(1) = 0.

(5.3)

Multiplying both sides of the first equation of (5.3) by û and integrating it over (0, 1), we
have

d
∫ 1

0
|û′|2dx + drû2(1) =

∫ 1

0

m1(φ − û)

a1 + φ − û
û2dx .
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The variational formula gives

μ∗
1 = − inf

ϕ∈C1([0,1]),ϕ �=0

d
∫ 1
0 |ϕ′|2dx + drϕ2(1) − ∫ 1

0
m2(φ−û)

a2+φ−û ϕ2dx
∫ 1
0 ϕ2dx

≥ −
d

∫ 1
0 |û′|2dx + drû2(1) − ∫ 1

0
m2(φ−û)

a2+φ−û û
2dx

∫ 1
0 û2dx

= − 1
∫ 1
0 û2dx

∫ 1

0

[
m1

a1 + φ − û
− m2

a2 + φ − û

]

(φ − û)û2dx .

Since û → φ in C[0, 1] as d → 0 by Proposition 3.1 and m1/a1 < m2/a2, there exists
d1 > 0 such that μ∗

1 > 0 for all d < d1. Thus (û, 0) is unstable for all d < d1. The proof for
the case m1/a1 > m2/a2 is similar. 
�

We next prove a local stability result for the semi-trivial steady states. The main technique
is a min–max representation formula of the principal eigenvalue μ1(d, q) (see [3]) of the
following problem

{
dθ ′′(x) + q(x)θ(x) = μθ(x), x ∈ (0, 1),

θ ′(0) = θ ′(1) + γ θ(1) = 0.
(5.4)

The principal eigenvalue μ1(d, q) of (5.4) is given by

μ1(d, q) = inf
θ∈X+

γ

sup
x∈(0,1)

dθ ′′(x) + q(x)θ(x)

θ(x)
, (5.5)

where

X+
γ = {θ ∈ C2[0, 1] : θ > 0 in (0, 1) and θ ′(0) = θ ′(1) + γ θ(1) = 0}.

Lemma 5.2 If m1/a1 < m2/a2, then there exists d3 > 0 such that (0, v̂) is locally asymptot-
ically stable for all d < d3; if m1/a1 > m2/a2, then there exists d4 > 0 such that (û, 0) is
locally asymptotically stable for all d < d4.

Proof Suppose that m1/a1 < m2/a2. By the variational formula, we have

μ∗
2 = inf

θ∈X+
γ

sup
x∈(0,1)

{
dθ ′′(x)
θ(x)

+ m1(φ(x) − v̂(x))

a1 + φ(x) − v̂(x)

}

≤ sup
x∈(0,1)

{
d v̂′′(x)
v̂(x)

+ m1(φ(x) − v̂(x))

a1 + φ(x) − v̂(x)

}

= sup
x∈(0,1)

{

− m2(φ(x) − v̂(x))

a2 + φ(x) − v̂(x)
+ m1(φ(x) − v̂(x))

a1 + φ(x) − v̂(x)

}

= sup
x∈(0,1)

{

(φ(x) − v̂(x))

(

− m2

a2 + φ(x) − v̂(x)
+ m1

a1 + φ(x) − v̂(x)

)}

.

Since v̂ → φ uniformly as d → 0 by Proposition 3.1 and m1/a1 < m2/a2, there exists
d3 > 0 such that μ∗

2 < 0 for all d > d3. Hence (0, v̂) is stable for all d < d3. The case of
m1/a1 > m2/a2 can be proved analogously. 
�

To completely determine the global dynamics of (1.4) for small diffusion rate d , we only
need to prove the nonexistence of positive solutions of (1.5).
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Lemma 5.3 Suppose that m1/a1 �= m2/a2. Then there exists d5 > 0 such that (1.4) has no
positive steady state for all d < d5.

Proof Without loss of generality, suppose m1/a1 < m2/a2. Assume on the contrary that
such a d5 does not exist. Then there exists a sequence {dn} such that dn → 0 as n → ∞, and
problem (1.5) with d = dn has a positive solution (un, vn). By the first equation of (1.5), we
have

dn

∫ 1

0

u′′
n

un
dx +

∫ 1

0

m1(φ − un − vn)

a1 + φ − un − vn
dx = 0.

Noticing the boundary conditions u′(0) = u′(1) + γ u(1), the above equation leads to

dn

∫ 1

0

|u′
n |2
u2n

dx +
∫ 1

0

m1(φ − un − vn)

a1 + φ − un − vn
dx = dnγ.

Since φ − u − v ≥ 0 for all d > 0, by the Ries-z-Fisher theorem, there exists a subsequence
(still denote by {dn}) with dn → 0 as n → ∞ such that the corresponding positive solutions
(un, vn) satisfy that un + vn → φ pointwisely a.e. in [0, 1] as n → ∞.

By (1.5) and φ − un − vn ≥ 0, u′′
n and v′′

n are both negative. Hence u′
n and v′

n are strictly
decreasing in [0, 1]. Since u′

n(0) = v′
n(0) = u′

n(1)+γ un(1) = v′
n(1)+γ vn(1) = 0, {u′

n+v′
n}

are uniformly bounded in [0, 1]. Noticing that {un} and {vn} are uniformly bounded, it follows
from the Arzela–Ascoli Theorem that there exists a subsequence of {dn} (still denoted by
{dn}) such that the corresponding positive solutions (un, vn) of (1.5) satisfy that un+vn → φ

inC[0, 1] as n → ∞. For d = dn , multiplying the first equation of (1.5) by vn and the second
the equation by un , and integrating the difference over [0, 1], we get

∫ 1

0
unvn(φ − un − vn)

[
m1

a1 + φ − un − vn
− m2

a2 + φ − un − vn

]

= 0. (5.6)

Since m1/a1 < m2/a2 and un + vn → φ in C[0, 1] as n → ∞, there exists N > 0 such
that the left hand side of (5.6) is negative for all n > N . This is a contradiction. Therefore,
there exists d5 > 0 such that (1.4) has no positive steady state for all d < d5. The case
m1/a1 > m2/a2 can be proved analogously. 
�

Combining Lemma 2.2 and Lemmas 5.1–5.3, we have obtained a complete description of
the dynamic behavior of (1.4) when m1/a1 �= m2/a2 for small diffusion rate d .

Theorem 5.4 Suppose that m1/a1 �= m2/a2. If m1/a1 < m2/a2, then there exists da > 0
such that problem (1.4) has no positive steady state and the semi-trivial steady state (0, v̂)

is globally asymptotically stable for all d < da; if m1/a1 > m2/a2, then there exists db > 0
such that problem (1.4) has no positive steady state and the semi-trivial steady state (û, 0)
is globally asymptotically stable for all d < db.

By Theorems 2.1(i), 4.6 and 5.4, for fixed m1,m2, a1 and a2, we have proved that coex-
istence steady states can only exist for intermediate d .

Remark 5.5 A corresponding result of Theorem 5.4 holds for large m1 and m2 with fixed d ,
a1 and a2: There exists m > 0 such that if m1,m2 > m problem (1.4) has no positive steady
state. Moreover, (0, v̂) is globally asymptotically stable if m1/a1 < m2/a2, and (û, 0) is
globally asymptotically stable if m1/a1 > m2/a2.
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6 Numerical Studies

Wefirst summarize our theoretical results inFig. 1,which showsparameter ranges of (m1,m2)

with different dynamic behavior for (1.4). For convenience, we suppose a1 > a2. In region
A, E0 = (0, 0) is globally asymptotically stable by Theorem 2.1(i); In region B ∪ C (or
D ∪ E), E2 = (0, v̂) (or E1 = (û, 0)) is globally asymptotically stable by part (ii) and (iv)
[or (iii) and (v)] of Theorem 2.1, respectively. If the conditions in Theorem 4.6 hold, then
m̂2 < m̃2 and there exists a stable coexistence steady state in region F . In region G (or H ),
E2 (or E1) is locally asymptotically stable while E1 (or E2) is unstable by Theorem 4.2.
Note that Fig. 1 is for illustration only, so it is not up to scale, and the curves ofm2 = m̃2 and
m2 = m̂2 are not necessarily straight lines. Also we are not able to estimate the magnitude of
m̃2 and m̂2 if (4.12) is not satisfied, and this leaves a blank region betweenm1 = dλ1( f1(φ))

and m1 = dλ1

(
f1(φ − φ(1)

cosα
cos(αx))

)
. It is worth noting that the curves of m̂2 and m̃2 are

bounded by Remark 5.5.
Next, we present some numerical simulations. We first provide some numerical evidence

that the inequality m̂2 < m̃2 can hold. To this end, we fix S0 = 1 and γ = 0.5, and
choose different values for d,m1, a1, a2, and then compute m̂2 and m̃2. For all the cases in
Table 1, we obtain m̂2 < m̃2, which means that (1.4) has a stable coexistence steady state if
m2 ∈ (m̂2, m̃2) by Theorem 4.2.

Then,we fix S0 = 1, γ = 0.5, a1 = 1.5, a2 = 0.2,m1 = 1 (first set of parameter values in
Table 1), and explore different values for m2. We compute λ1( f1(φ)) = λ1(φ/(a1 + φ)) =
0.9342930, and λ1( f2(φ)) = λ1(φ/(a2 + φ)) = 0.4948056. Choose d = 0.5 such that
dλ1( f1(φ)) < m1, which means that E1 exists. By Table 1, we have m̂2 = 0.323612 and
m̃2 = 0.324587. Choose initial data u0 = v0 = 0.5 cos(αx), where α is the solution of
(4.11). We choose three different values for m2 to perform numerical simulations.

m2

dλ1(f2(φ))

B

dλ1(f1(φ))

A

L1 : m1 = m2

C

L2 : m2 = a2
a1

m1

E

m1

D

G

H

m̃2

m̂2

F

Fig. 1 Regions in (m1,m2) plane with different asymptotical dynamics
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Table 1 m̂2 and m̃2 for different
parameter values

d m1 a1 a2 m̂2 m̃2

0.5 1 1.5 0.2 0.323612 0.324587

0.5 0.5 1.5 0.2 0.252095 0.252117

0.5 2 1.5 0.2 0.479253 0.486946

0.25 1 1.5 0.2 0.239627 0.243473

1 1 1.5 0.2 0.504191 0.504233

0.5 1 1 0.2 0.381601 0.383848

0.5 1 2 0.2 0.295132 0.295596

0.5 1 1.5 0.1 0.269303 0.270197

0.5 1 1.5 1.2 0.845441 0.845478
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(c) m2 = 0.33 > m2

x x

Fig. 2 The densities of the two species at t = 2000. The parameters for the three sub-figures are the same
except for m2: S0 = 1, γ = 0.5, a1 = 1.5, a2 = 0.2,m1 = 1 and d = 0.5

(I) Choose m2 = 0.32. Then, dλ1( f2(φ)) < m2 and E2 exists. As m2 < m̂2, by Theo-
rem4.2, E1 is locally asymptotically stable and E2 is unstable. The numerical simulation
shows that species 1 excludes species 2 (see Fig. 2a).

(II) Choose m2 = 0.33. Then, m2 > m̃2 and E2 exists. By Theorem 4.2, E2 is locally
asymptotically stable and E1 is unstable. The numerical simulation shows that species
2 excludes species 1 (see Fig. 2c).

(III) Choose m2 = 0.3245. Then, m2 ∈ (m̂2, m̃2). By Theorem 4.2, there exists a stable
coexistence steady state. The numerical simulation shows that two species may coexist
(see Fig. 2b).

Finally, to explore the impact of the diffusion rate d , we keep the values of all parameters
the same as in Fig. 2b except for replacing d = 0.5 by d = 0.1, 1, 2, respectively (S0 =
1, γ = 0.5, a1 = 1.5, a2 = 0.2,m1 = 1,m2 = 0.3245). The results corresponding to
different values of d are summarized below:

(i) Choose d = 0.1 (small diffusion rate). We can compute m̂2 = 0.193758 and m̃2 =
0.198186. So,m2 > m̃2. By Theorem 4.2, E2 is locally asymptotically stable and E1 is
unstable. In Theorem 5.4, we prove that one species will drive the other one to extinction
when d is small. Note that m1/a1 = 0.67 and m2/a2 = 1.62, which means that species
2 has competitive advantage over species 1 by Theorem 5.4. The numerical simulation
confirms this (see Fig. 3a).

(ii) Choose d = 0.5 (see Fig. 2b). Two species may coexist in this case.
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Fig. 3 The densities of the two species at t = 2000 with the same parameter values as for simulations in
Fig. 2b except for d: S0 = 1, γ = 0.5, a1 = 1.5, a2 = 0.2,m1 = 1,m2 = 0.3245

(iii) Choose d = 1. Numerical simulation shows that species 1 has competitive advantage
over species 2 and drives it to extinction (see Fig. 3b).

(iv) Choose d = 2 (large diffusion rate). Numerical simulation shows that both species
become extinct (see Fig. 3c).

Our numerical simulations confirm that coexistence of the two species is only possible
for intermediate ranges of d .
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