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Abstract

A diffusive chemostat model with two competing species and one nutrient is revisited in this
paper. It is shown that at large diffusion rate, both species are washed out, while competition
exclusion occurs at small diffusion rate. This implies that a stable coexistence only occurs
at intermediate diffusion rate, and an explicit way of determining parameter ranges which
support a stable coexistence steady state is given.
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1 Introduction

Theoretical biologists conjecture/believe that coexistence of competing species are most
likely when their dispersals are at intermediate levels (see, e.g., [27,30,31,45]). This is because
when the dispersal rate is small, competitive exclusion happens in each local community
that can be regarded as a closed system; and when the dispersal rate is large, the whole
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community is a closed system and the competitive exclusion also governs the interaction
between competing species. In this paper, we will confirm such a conjecture/belief in a
diffusive chemostat model with two competing species, and show that coexistence of the
competing species is only possible for intermediate diffusion rates.

Ever since the design of chemostat by Novick and Szilard [35,36] to grow microbial
species in laboratory, it has attracted numerous studies in biology and mathematics (e.g.
[4-7,12,32-34,41,46-48]). A chemostat is an apparatus with a continuous constant inflow
of nutrients for the growth of microorganisms and an outflow of mixed culture at the same
rate to keep the volume unchanged. Besides its role in serving as an apparatus for laboratory
bacterium cultivation, it can also be treated as an approximation of complicated microbial
habitats such as ponds and lakes. As pointed out by Hsu and Waltman in [25], many theoretical
studies are in agreement with the experiments in some simple situations, and this makes the
mathematical researches on chemostats more intriguing.

Because chemostats are usually well-stirred for the purpose of uniform distribution of
nutrients, most of the earlier chemostat models assume well-stirring of the culture, leading
to spatially homogeneous densities of nutrients and microorganisms described by ordinary
differential equation models. As a consequence, competitive exclusion for microorganisms is
typically predicted in most of those models. For example, in the ODE Monod model [17,19,
20,43] and ODE Droop model [9,10,40], the coexistence of different microbial species is not
possible. However, coexistence of different species has been observed both in laboratories
and in nature. This suggests that the well-stirring assumption is not reasonable and motivates
incorporation of passive diffusion and/or spatially heterogeneous parameters into models.
There have been some efforts along this line, see, e.g., [6,7,12,21,23,25,32-34,47,48].

Among the aforementioned diffusive chemostat models is the most classic one introduced
by Hsu and Waltman [25]:

Sp =dSxx —mi f1 (S)u —m3 f(S)v, x € (0, 1),

up = dixx +my f1(S)u, x € (0, 1),
v = dvxy +ma f2(S) v, x € (0, D),
$x(0,1) = =S80, Sx(1,0) +yS(,1) =0, (LD

ux(0,1) =0, ux(1,¢) + yu(l,t) =0,
v (0,1) =0, ve(1,2) +yv(l, 1) =0,

w(x,0) = wd(x), w=2S,u,v,

where the nutrient uptake rate is Monod type

S

ﬁ(S)_ai—i—S’ i=1,2. (1.2)
Here S(x, 1) is the concentration of the nutrients, and u (x, 7) and v(x, t) are the concentrations
of the two competing microorganisms at position x and time ¢, respectively. The diffusion
terms Sy, Uy, and vy, represent the random motion of the nutrients and microorganisms with
anidentical diffusion rate d. The positive constant m; is the growth rate of the microorganisms
and q; is the Michaelis—Menten half-saturation constant. The nutrients are pumped in at the
rate of Sp, and the microorganisms cannot cross the boundary at position x = 0. The mixed
culture containing nutrients and microorganisms are pumped out at the rate of y at the position
x = 1, which results in the Robin boundary conditions [25]. Indeed the loss of nutrients
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or microorganisms at x = 1 can be written as dw,(1,t) = —dyw(1,t) forw = S, u, v,
which is equivalent to wy (1, 7) + yw(1, ¢t) = 0. Other boundary conditions have also been
considered especially when there is also a unidirectional flow in the chemostat [2]. The initial
data 8%, 49, and 10 are nonnegative nontrivial continuous functions.

As shown in [25], the total concentration S + u + v in the chemostat approaches a steady
state

¢(x) = So (H—y - x) , (1.3)
14
and this fact allows (1.1) to have the following limiting system:
ur =duyy +myf1 (¢ —u —v)u, xe 0,1, t >0,
vy =dvxy +mafr(p—u—v)v, xe,1), t>0, (14)
wy(0,1) =0, we(l,8) +yw(l,t) =0, w=u,uv,

u(x,0) = uo(x), v(x,0) = vo(x), w0 +0 < .

It is not hard to check that the region {(u, v) € C1[0, 1] x C4[0, 1] : u +v < ¢} is invariant
for (1.4). The steady states of (1.4) are the nonnegative solutions of the following elliptic
system:

duxx+m1fl(¢_u_v)u207 xe(051)5
dvyy +mafo (@ —u—v)v=0, x €(0,1), (1.5)
u'(0) = u'(1) + yu(l) =0, v'(0) =2'(1) +yv() =0,

satisfying u + v < ¢. The existence of positive solutions of (1.5) is investigated in [42] by a
bifurcation method, and the dynamics of (1.4) are studied in [23-25]. We admit, and it is also
pointed out in [25], that the assumption of the nutrients and microorganisms having the same
diffusion rate d is not that biologically realistic, but this assumption is crucial in reducing
(1.1) to the limiting system (1.4). For different diffusion rates, there were only very limited
results known compared to the equal diffusion rate case (see, e.g., [2,13,14]). However, we
would like to point out that (1.4) itself is also of great interest since it may be viewed as a
variation of the Lotka—Volterra competition model.

Since (1.4) generates a strictly monotone dynamical system, by the theory of mono-
tone dynamical systems (see, e.g., [18,24,39]), the dynamics of (1.4) is determined by the
nonnegative steady states. As far as a chemostat model is concerned, positive co-existence
steady states are particularly important and interesting, but are also most mathematically
challenging. In [25], the authors conjectured that when the two semi-trivial steady states
are unstable, there exists a unique coexistence steady state which is globally asymptotically
stable. This conjecture still remains unsolved. To the authors’ best knowledge, for similar
diffusive chemostat models, the existence of stable coexistence steady state has only been
proved when the two species are similar (for the current model, this means m| ~ m; and
a; & ap) by the perturbation technique and Lyapunov—Schmidt reduction [32-34]. In this
paper, we prove the existence of a stable coexistence steady state for Problem (1.4) for a
different range of parameters, and our main results provide partial support for the conjecture
by Hsu and Waltman but the uniqueness of coexistence is still not known. The parameter
range which supports a stable coexistence state is robust and explicit. An implicit condition
on (a;, m;) and d for the existence of a stable coexistence state was first given in [25], but
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it was not clear whether such conditions can be achieved or not. We expect that our method
can be applied to other diffusive chemostat models.
The following result has been proved in [25]:

1. When the diffusion coefficient d is large, then both species are washed out, meaning that
the extinction steady state is globally asymptotically stable for (1.4) (see Theorem 2.1).

Our main results in this paper can be summarized as follows:

2. For fixed m;, a; satistying m/a; # mjy/a>, when the diffusion coefficient d is suf-
ficiently small, then there is no coexistence steady state for (1.4), and the competition
exclusion is the consequence meaning that one of the semi-trivial steady states is globally
asymptotically stable (see Theorem 5.4);

3. When the diffusion coefficient d is fixed in an intermediate range which depends on a;
and m, for small a; there is an interval of m, within which, both semi-trivial steady
states are unstable and there is a stable coexistence steady state (see Theorem 4.6).

Our results indicate that coexistence in (1.4) occurs only when the diffusion rate is at
intermediate level. Indeed fixing a; and m;, the coexistence steady state cannot occur if d is
small (Theorem 5.4) or large (Theorem 2.1). This provides rigorous theoretical support to
the theory that claims coexistence for intermediate diffusion rates in ecology [27,30,31,45].

Note that when the diffusion rate d is small, our results also suggest that the ratio m; /a;
completely determines the competing ability of the species i. This is in consistence with the
ODE result proved in [19,20], in which it was shown that the outcome of the competition is
determined by da; /(m; — d) ~ da; /m; when d is small. If the microorganisms live in an
interval (0, L) instead of (0, 1), after a rescaling, we can find that the resulting diffusion rate
d is proportional to L~2 in the sense that small diffusion rate corresponds to large interval
size (see [22]).

We remark that besides chemostat models, coexistence phenomenon has been investigated
in other reaction—diffusion competition systems such as Lotka—Volterra systems [15,16,26,
28], two-strain epidemic SIS model [1,44] and phytoplankton models [11,29]. Our methods
may be adapted to these models to show the existence of coexistence steady states. The
uniqueness of stable coexistence steady state for the Lotka—Volterra system has been shown
in [15,26], and a complete classification of dynamics for the Lotka—Volterra system with
weak competition has been achieved in [15,16]. The uniqueness of stable coexistence state
and complete dynamics for all parameter ranges have not been obtained for other diffusive
competition systems including (1.4).

The rest of the paper is organized as follows. In Sect. 2, we present some preliminary
results. In Sect. 3, we study the single species model and consider the behaviour of the
positive steady state as the parameters vary. Coexistence of the two species is studied in
Sect. 4, and we prove the existence of a stable coexistence steady state for some parameter
ranges. In Sect. 5, we determine the dynamics of the model for small diffusion rate d with
other parameters fixed and prove that there is no coexistence if m1/d; # my/d>. Finally we
present some numerical studies in Sect. 6.

2 Preliminaries

Consider the eigenvalue problem
{W’(X) +Aq(x)¥(x) =0, x € (0, D),
Y'(0) =¥ (1) +yy(l) =0.

@2.1)
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Suppose that g(x) € C[0, 1], g(x) > ()0 for x € (0, 1), then (2.1) has a sequence
of eigenvalues 0 < X1(g) < Xa(q) < -+ Ak(g) < --- with limg_, o0 Ax(g) = 00, and the
eigenfunction | associated with the principal eigenvalue A1 (g) can be chosen to be positive.
From the variational characterization of A1 (g):

ey 2 2
) . Sl oRdx + yy2(1) o

YeCH[0,11, fy g()P2(x)dx7£0 folq(x)tﬂz(x)dx

we know the monotonicity of A(g) in the following sense: if g1 (x) > (%)g2(x) for x €

(0, 1), then A1(q1) < A1(q2).
A related eigenvalue problem is

{9”()6) +q(x)0(x) = pnb(x), x € (0,1),
0'(0) = 6'(1) + y6(1) = 0.

2.3)

For any ¢ (x) € CJ[0, 1], (2.3) has a sequence of eigenvalues jt1(q) > ua(q) > - - ux(q) >
- with limg_, oo (tk(g) = —oo, and the eigenfunction 6, associated with the principal
eigenvalue 11(g) can be chosen to be positive. From the variational characterization of

n1(g):

Jo 16" ) Pdx — [ g()0>(x)dx + y6%(1)
0eC1[0,1],6:£0 fol 02 (x)dx

ui(g) = — , 24
we know the monotonicity of 1(g) in the following sense: if gj(x) > (#)g2(x) for x €
(0, 1), then p1(q1) > 1(q2).

Consider the scalar steady state equation

dw”+wzo, x e (0,1),
a+¢—w (2.5)
w'(0) = w'(1) + yw(l) =0,
where m, a > 0 are constant and ¢ (x) is give by (1.3). Denote f,(¢) = ¢/(a + ¢). Then
for any a > 0, by [25, Theorem 3.2], (2.5) has a unique positive solution wy(x; m, a) with
0 < wy(;m,a) < ¢, if and only it m > dAr;(f,(¢)). Based on this, we immediately see
that Eq. (1.5) has the following trivial and semi-trivial solutions:

e trivial solution: Ey = (0, 0);
e semi-trivial solution: £y = (wx(-; m1, a), 0), if and only if m1 > di1(fi($));
e semi-trivial solution: E> = (0, w(-; m2, a2)), if and only if mo > dr1(f2(¢)).

Moreover, the following theorem summarizes the results on the stability of these steady
states of (1.4), which is a combination of Theorems 3.6 and 3.7 in [25].

Theorem 2.1 Let (u(x, t), v(x, t)) be the solution of (1.4) with any non-negative non-trivial
initial condition.

(@) Ifmy < dri1(f1(@)) and my < dri(f2(9)), then

lim u(x,t) =0, lim v(x,t) =0 uniformlyon [0, 1]. (2.6)
—00 1—00

() Ifmy < dr(fi1($)) and ma > dri(f2(9)), then

lim u(x,1) =0, lim v(x,t) = w(x;ma,az) uniformly on [0, 1]. 2.7
—>00 1—00
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(i) Ifmy > dii1(f1(9)) and ma < dri(f2(¢)), then

lim u(x,t) = wy(x;my,ay), lim v(x,t) =0 uniformly on [0, 1]. (2.8)
t—00 1—00

v) If my > d i (f1(9)) and my > d i (f2(¢)), then (2.7) holds provided

2 >max=‘2,1}. (2.9

mj ai

W) If my > dx1(f1(9)) and my > dri1(f2(p)), then (2.8) holds provided

2 <min{a—2, 1}. (2.10)

ai

A nonnegative solution (u, v) of (1.5) is called a coexistence steady state of (1.4) if both
u and v are non-trivial. Actually, it follows from the maximum principle that # and v are
both strictly positive on [0, 1], if (#, v) is a coexistence steady state.

The coexistence steady state problem was firstly addressed by So and Waltman [42]
through a local bifurcation analysis. Their numerical simulation showed that the parameter
range for the coexistence was very narrow. In Theorem 4.1 of [25], Hsu and Waltman proved
a coexistence result under the conditions m > m7} and my > m3, where m7 is a constant
depending on m> and m3 is a constant depending on m1. Obviously these two conditions are
not easy to verify. Moreover as pointed out in the discussion section of [25], more detailed
information, especially the stability of the equilibria, is needed for a complete classification
of the global dynamics of (1.4). Hence, it is worthwhile to revisit this model for a better (if
not full) understanding of the global dynamics.

We know that (1.4) is strictly monotone and hence the following well-celebrated results
on monotone dynamical system (e.g. see [18,24,39]) apply here.

Lemma 2.2 Suppose that both of the two semi-trivial steady state solutions of (1.4) exist.

(1) If Ey is stable, E; is unstable, and there is no coexistence steady state, then Ej is
globally stable; similarly if E, is stable, E1 is unstable, and there is no coexistence
steady state, then E; is globally stable.

(ii) If E1 and E; are both unstable, then (1.4) has at least one stable coexistence steady
state. If in addition, the coexistence steady state is unique, it is then globally stable.

(iii) If E1 and E, are both stable, then (1.4) has at least one unstable coexistence steady
state.

3 Semi-trivial Steady State

In this section, we present some results about the unique positive solution w, (x; m, a) of
(2.5), which provide additional information on the semi-trivial steady states of (1.4) and are
helpful for studying the coexistence steady states of (1.4).

Proposition 3.1 The following statements about the positive solution w,(x; m, a) of (2.5)
hold.

(1) Suppose m > di1(fa(9)) so that w,(x; m, a) exists. Then it is linearly stable in the
sense that all eigenvalues of the linearized eigenvalue equation
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O — wy AWy
ato—wy (a+¢—w)?
¢'(0) =¢'(1) +ye(1) =0,
are negative.

(ii) For fixed a,d > 0, the positive solution w,(x; m, a) exists if m € (d*1(fz(¢)), 00),
and it is strictly increasing in m, and

d(p”—}—m|: i|<p:,u<p, x € (0,1,

(3.1)

lim wye(x;m,a) =0, lim wy(x;m,a) = ¢(x) uniformly on [0, 1].
m—>diy (fa(@)* m—>00

(3.2)

(iii) For fixed m,d > 0 with m > di(1), the positive solution wy(x; m, a) exists if
a € (0, ay), and it is strictly decreasing in a, and

lirn+ wy(x;m,a) =h(x), lim wy(x;m,a)=0 uniformlyon|0,1], (3.3)
a—0 a—ay,

where ay, is determined by m = d 1 (f,,, (¢)) and h is given by

¢ (x0)
h(x) = cos(y/m/d xo) cos(y/m/dx) 0= x < x, o
¢x) Xo<x <1,

with xg € (0, 1) satisfying

Jmyd tan(\/m/d xq) <VT+1 - x0> — 1. (3.5)

(iv) For fixed a, m > 0, the positive solution wy(x; m, a, d) exists ifd € (0, m/ 1 (fa(9))),
and it is strictly decreasing in d for all x € [0, 1]. Moreover,
Iim wy(x;m,a,d)
d—0t
=¢(x) and lim wy(x;m,a,d) =0 uniformly on [0, 1].
d—m/i(fa(9))~

Proof For (i), let

Powe __ aux ] and () = WD 56
a+¢—wy, (a+¢—wy)? a+¢— ws

Since the principal eigenvalue 111(q) is increasing in ¢, we have ©i(q;) < pi(g2). This
together with 111(gq2) = 0 (with eigenfunction 01 (g2) = w,) leads to ©1(gq1) < 0, implying
that all eigenvalues of (3.1) are negative.

To prove (ii), let L1[y] = dy¥” +q1(x)y where gy is defined as in (3.6), and ¢ € X, :=
{(y e C?[0,1] : ¥/(0) = 0, ¥'(1) + y¥ (1) = 0}. By u1(g1) < 0 and the maximum
principle, for any f € X, Li[f] < O implies that f > 0 on [0, 1]. From (2.5), wy is
continuously differentiable with respect to the parameters m and a. Let

ql(x):m[

dws(x; m,a) owy(x;m,a)
(/)m(x):*aiv and @, (x) = —————.
m da
Then ¢, satisfies
dw,/,Hm[ P 2] S Gl L LY
at+¢—we (@+¢—ws) a+¢ — wy (3.7

@, (0) = ¢, (1) + Yo, (1) = 0.
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Since ¢, € X, and Li[¢y] = —(¢—ws)ws/(a+¢—wy) < 0, we conclude that g, (x) > 0,
implying that w,.(x; m, a) is strictly increasing in m for x € [0, 1].

Noticing 0 < wy < ¢, wl/(x) = —%"_’t}}f* < 0, which implies that w/, (x) is decreasing
on [0, 1]. Since w/,(0) = Oand w (1) = —y w, (1), w, (x) isuniformly bounded for x € [0, 1]
and m > 0. Therefore, by Arzela—Ascoli Theorem, there exists w; € C[0,1],i = 1,2,
with 0 < w; < ¢ and 0 < wy < ¢ such that limm—>d)»1(fu(¢))+ wy(-;m,a) = w; and
lim,, 00 Wi (+; m, @) = wy in C[0, 1].

To show that w; = 0, we assume on the contrary that w is nontrivial. Since (¢ —w)/(a+
¢ — w) is uniformly bounded by 1, it follows from the L”-estimates for p € (1, co) that
wy(x; m, a) is uniformly bounded in W2P(0, 1) form € (dx (fa(9)), M], where M is a
fixed number larger than dA1(f,(¢)). Hence, we have lim,,_, g3, (1, (¢))+ W«(; m, a) = wy
weakly in WZP(0, 1), where w; satisfies

dw| + da (e LU o v e, 1),
a+¢—w (3.8)

w} (0) = wi (1) +ywi (1) = 0.
Rewriting the first equation in (3.8) as w{ +A1(fa(¢)) fa(¢ —w1)w; = 0, one then infers that
M (fa(@)) = A1(fa(¢p — w1)), which is a contradiction to the monotonicity of A;. Therefore
w; = 0.
To prove that wy, = ¢, we divide the first equation of (2.5) by mw, and integrate the
resulting equation over (0, 1) to obtain

1 2 —
f/ el dy+/ P o
0 a+¢— wy

It then follows from 0 < w,, wy < ¢ that

1 —
OS/ &dx<dl
0 a+¢— wy m

and
1 _ 1 _
lim &dx = / &dx =0.
m—00 Jo a4 ¢ — wy 0 at+¢—w
Therefore we must have wy, = ¢.
(iii) Since A1(f,(¢)) is strictly increasing in a with
lim dA1(fa(¢)) =dri(1) <m and  lim A;(fa(¢p)) = 00
a—0 a—oo

there exists a unique a,, > 0 such that m = dA1(f,, (¢)). Moreover, m > di1(fu(¢)) if
and only if a € (0, a;,). Therefore, positive solution w, (x; m, a) exists if a € (0, a,,).
Similar to the proof of (ii), we observe that ¢, satisfies

p—ws aw, :|  om(P — wwy xe 1)
ato—w. @+o—w)?]" (a+¢—w)? "7 (3.9)

@, (0) = ¢, (1) + ye.(1) = 0.

Noting ¢, € X, and Li[gs] = m(¢ — wws/(a + ¢ — wy)? > 0, we conclude that
¢@q(x) < 0, implying that w (x; m, a) is decreasing in a.

Since (¢ — w)/(a + ¢ — w) is uniformly bounded by 1, it follows from the L?-estimates
for p € (1, c0) that w(x; m, a) is uniformly bounded in WP, 1) for a € (0, an). So

d(pZ+m[
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lima_)ar; wy(x;m,a) = g and lim,_, o+ wy(x; m,a) = h weakly in W2P(0, 1) for some
g, h with 0 < g, h < ¢ (the convergence also holds in c! [0, 1] by the Sobolev embedding
theorem). Moreover, g satisfies

dg”—l— m(p — g)g

ay + ¢ — 8
g'0)=g'(1)+yg) =0,

We show that g = 0. Assume, for the sake of contradiction, that that g % 0. Rewriting the
first equation above as g” + (m/d) f,,, (¢ — g) g = 0, one sees that m/d = 11 (fq,, (¢ — g)).
Then, the monotonicity of A(g) in ¢ would yield m/d = A (fy, (¢ — &) > A1 (fa,, (@),
which contradicts the definition of a,,. Hence we have g = 0.
To determine the function &, we first show that ¢ (x) — w,(x; m, a) is decreasing in x on
[0, 1] for any m, a > 0. To see this, let v = ¢ — w,. Then, 0 < v < ¢ and v satisfies
" _ m(¢ - U)U

dv — =0, x € (0, 1),
a—+v

v'(0) = —So, V(1) +yv(l) =0.

=0, x € (0,1).

Thus v” > 0, and v’ is increasing on [0, 1]. By the boundary condition, v'(1) = —yv(1) < 0
and hence v/(x) < 0 for x € [0, 1]. Hence v is strictly decreasing in x on [0, 1]. It follows
that ¢ — h is also non-increasing in x.

Next we show that ¢ — # > 0 is non-trivial. Assume on the contrary that ¢ — h =0, i.e.
h = ¢. Then h'(0) = ¢'(0) = —Sp < 0. But 0 = w,,(0; m, a) — h'(0) by wy(-;m,a) — h
asa — 01 in C'[0, 1]. Hence h’(0) = 0, which is a contradiction. So ¢ — & is nontrivial.

We now show that ¢ — & is not positive for all x € [0, 1). Assume on the contrary that
¢—h > 0on|[0, 1). Rewriting the first equation of (2.5) as d(a+¢ —w)w” +m(¢p—w)w = 0
and taking the limit @ — 0™, we have

dh” +mh =0, x € (0, 1),
n@©O)=0, K1)+ yh()=0.

Since h > wy(x,m,a) > 0, h is indeed an eigenfunction of (2.1) corresponding to the
principal eigenvalue m /d. This implies m/d = A1(1), which is a contradiction. Therefore,
¢ — h cannot be strictly positive in [0, 1).

From the above, we see that ¢ — h > 0 is non-increasing, non-trivial, and not strictly
positive on [0, 1). Thus, there exists xog € (0, 1) such that¢p —h > Oon [0, x9) and¢p —h =0
on [xp, 1]. Again rewriting (2.5) as d(a + ¢ — w)w” + m(¢ — w)w = 0 and taking the limit
asa — 0T, we have

(3.10)
h'(0)=0.

{dh” +mh =0, xe€/(0,xp),
Since ¢ — h = 0 on [xg, 1], we have
h(xo) = ¢(xo) and h'(x0) = ¢ (x0) = —So. (3.11)

Solving (3.10), we have h = k cos(y/m/d x) for some k > 0. By h(xg) = ¢(xp), we have

k = ¢(xg)/ cos(v/m/d xp). By h'(xg) = —So, xo satisfies (3.5).
The proof of (iv) is similar to that of (ii), and we omit it here. ]
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4 Coexistence

This section is devoted to the existence of coexistence steady states of (1.4). We first introduce
two threshold values to determines existence/non-existence of a coexistence steady state. It
has been conjectured by Hsu and Waltman [25] that a coexistence steady state of (1.4),
if any, is always stable. In Sect. 4.2, we show that there are ranges of parameters within
which there is a stable coexistence steady state. Lastly in Sect. 4.3, we perform a global
bifurcation analysis to show the existence of a branch of coexistence steady states using m;
as the bifurcation parameter.

4.1 Classification of Coexistence Steady States

We have seen that for i = 1,2, if m; > dA1(fi(¢)) then (1.4) has the semi-trivial steady
states E;, where E1 = (i,0) and E; = (0, 0) with i = wy(m1,a;) and 0 = w,(my, az).
We fix a; > 0,a; > 0, m; > dr1(f1(¢)), and view m, as a parameter variable. We define
two critical values 711, and 1, as follows. Let

n’?z:d)q(LﬁA):dM( ¢ — wilmi, ar) ) 4.1y
a+¢—u ay + ¢ — wy(my, ar)

Let mp = mi; be the unique solution of

my = dig <g> — i ( ¢ — wi(ma, az) ) . (4.2)
a+¢—v ay + ¢ — wi(my, a2)

To see that (4.2) has a unique solution, we note that [by Proposition 3.1(ii)]

lim wy(x;mo,az) =0, lim wy(x; my,a2) = ¢(x), uniformly on [0, 1].
my—>dr1(f2($)* ni3—00
4.3)
Therefore,
lim A < ¢ — wy(mz, a7) )=d)»1(f1(¢)) <my,
ma—dri (f2($))+ ai + ¢ — wx(ma, a) @.4)

fim M( ¢ — wi(ma, az) ):oo

ma—00 ar + ¢ — wy(my, az)

Thus, the monotonicity of A1 (-) together with (4.3) and (4.4) and Proposition 3.1(ii) implies
that there is a unique value for my = niy € (dA;(f2(¢h)), 00) such that (4.2) holds with
my = m,. Moreover, we can easily see that iy, my > di1(f2()).

The definitions of 7, and 71y arise naturally from studying the stability of E} and Ej,
which will be apparent in the proof of the following result.

Proposition 4.1 For given ay,a; > 0 and my > dii(f1(9)), let iy and my be defined as
above.

(1) Ifmy < my, the semi-trivial steady state E| is locally asymptotically stable; ifmy > nia,
Eq is unstable. Also, there holds

—~ . aj
mo zmlmm{—, 1}. 4.5)
ai
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(ii) Suppose my > dr1(f2($)). If ma < my, the semi-trivial steady state E» is unstable; if
my > niy, Ey is locally asymptotically stable. Also, there holds

~ a
mzfmlmax{—,l}. 4.6)
aj

Proof We will only prove the stability results for E1 and E», as (4.5) and (4.6) follow from
these and Theorem 2.1.

(i) The stability of E for (1.4) is determined by the following elliptic eigenvalue problem:

A~

—u ait ] myai
a+o—i (a1 +¢—i)? (@ +¢ —

ds“+m1[ ﬁ)2n=u$, xe€(0, 1),

dn” +m» ~n = un, x€(0,1),

_¢—u
a+¢—u
E'(0)=&"(1)+yE)=0, n'(0)=n(1)+yn(1)=0.

“4.7)

Suppose m, < iy and let u be an eigenvalue of (4.7) with corresponding eigenvector
(&, n).If n = 0, then u is an eigenvalue of (3.1). By Proposition 3.1(i), we have u < 0.
If n # 0O, then w is an eigenvalue of

~

dn" +my —n=nun xec(,1),

_p—u
a+o¢—u (4.8)
7' (0) = n'(1) + yn(l) = 0.

The principal eigenvalue of (4.8) is 0 if and only if my = . Sine my < niy, the
principal eigenvalue of (4.8) is less than 0, and thus, i < 0. Therefore, E is stable.

Suppose my > . Then, (4.8) has a principal eigenvalue & > 0 with corresponding
eigenvector 1 > 0. Since p is not an eigenvalue of (3.1), by Fredholm theorem, there
exists a unique & solving the following problem

—u . apit ] _ miau
art¢—i (a1 +¢—i)3 (@ +¢—0)
£'(0) =&'(1) + y&(1) =0.

d%‘"+m1[ sn=upE,  x€(0,1),

Therefore, © > 0is an eigenvalue of (4.7) with corresponding eigenvector (£, 7). Hence,
E1 is unstable.
(i) The stability of E; for (1.4) is determined by the following elliptic eigenvalue problem:

ds”+m1¢7_ﬁs=us xe(0,1)
R : ),

/ maas 0 ¢o—0 an?d
- _Eim _ — | p=un. xe(0,1),
@+é— 02" 2[a2+¢>—v (az+¢—v)2]" i ©-b

E'(0)=¢D+yEM=0, n'O)=n"(1)+yn1)=0.
(4.9)
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By the definition of 715, the eigenvalue problem

-0
——§& = ué, 0, D),
a1+¢>—ﬁ§ ug,  x€(0,1) 4.10)

E'0)=¢M+ysd) =0,

ds// +m1

has principal eigenvalue 0 if and only if m, = m5. Since 0 is strictly increasing in my,
the principal eigenvalue of (4.10) is positive if m> < niy and negative if my > ;. By
a similar argument in (i), E; is unstable if m, < nip and stable if mp > ni5. O

We can explore a little bit more about the two thresholds m, = m(aj, az) and iy =
ma(ay, az), with given my > di(f1(¢)). Firstly, by the monotonicity of wy(m, a) in m and
a established in Proposition 3.1, and the monotonicity of A1(-), we can easily see that both
ma(ay, ap) and my(ay, az) are decreasing in a; and increasing in a;. When a; = ap, it is
obvious that 71y = iy = my. Therefore, if a; > ap, then ma(ay, ar) < ms(az, az) = mj.
Moreover, if a; > a», then

mlzd)q( ¢ — wi(mz(ar, a2), az) )

ar + ¢ — wy(ma(ar, az), az)

:dM( ¢ — wi(Ma(az, az), ar) ):dM( ¢ — wi(my,ar) ):ml,

air + ¢ — wy(ma(az, az), ar) ay + ¢ — wy(my, ay)

which implies that m; (a1, az) < ma(az, az) = my.
By Lemma 2.2 and Proposition 4.1, we have the following classification of steady states
in terms of 711, and m5.

Theorem 4.2 Fix ay, ay, m and d such that ay > ap and my > d’(f1(¢)). Let m» and m,
be defined as above.

(i) Suppose my < miy. If my < iy, then the semi-trivial steady state E is locally
asymptotically stable, and E» is unstable if it exists. If my > my, then E| is unstable,
and Ej is locally asymptotically stable. If m, € (i, m»), then E| and E, are both
unstable, and (1.4) has at least one stable coexistence steady state.

(ii) Suppose my > my. If my < My, then the semi-trivial steady state E is locally asymp-
totically stable, and E; is unstable if it exists. If my > niy, then E| is unstable, and E,
is locally asymptotically stable. If my € (i, m»), then E| and E, are both stable, and
(1.4) has at least one unstable coexistence steady state.

(iii) Suppose my = my. If my < iy, then the semi-trivial steady state E is locally asymp-
totically stable, and E; is unstable if it exists. If my > niy, then E| is unstable, and E,
is locally asymptotically stable.

4.2 Existence of Stable Coexistence Steady States

In this subsection, we will confirm that there are parameter ranges within which there exists
a stable coexistence steady state. By Theorem 4.2, we just need to seek ranges for the
parameters for which, 71, < 71, holds.

Leta € (0, w/2) be the unique root of the transcendental equation

atan(o) = y. 4.11)
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Recall that y is the pump-out rate for the mixed culture. Our results are stated under the
condition

(1) ¢~ Jeosy cos(ax)
mi > di (f1 % — cos(ax))) = dn e . (4.12)
cos o ai + ¢ — g cos(ax)

Since the eigenvalue X1 in (4.12) is independent of m and d, for fixed ay, if m is large or
d is small, then (4.12) holds.
The following result is about the limit of 71, as ap — 0.

Lemma 4.3 Suppose that d, m1,a; > 0. If (4.12) holds, then

lim 7y > da® = dii(1).

a2~>0+
To prove Lemma 4.3, we need the following lemma.

Lemma 4.4 Forany xg € (0, 1), the equation

1
x tan(xx) (ﬂ - x0> =1 4.13)
4
has a unique solution x in (0, ZLXO), which is greater than .

Proof Let g(x) = x tan(xox) (HTV —xo) — 1. Since g(0) = —1, g(2”70) = 00, and g is

strictly increasing in (0O, 2”70), g has a unique root in (0, %0). It then suffices to show that
g(a) <0,ie.

1 + o tan(a)
g(a) = atan(xpw) (W — x0> —1<0.
This is equivalent to
tan(xoa) — tan(a) + o (1 — xp) tan(xge) tan(a) < 0.
Noticing tan(xpar) —tan(a) = — tan((1 —xo)a)[1 +tan(«) tan(xpr)], we only need to show
—tan((1 — xp)a) + [(1 — xp)a — tan((1 — xp)a)] tan() tan(xgex) < O,

which is obvious since (1 — xg)a — tan((1 — xg)a) < 0. ]
Proof of Lemma 4.3 By the definition of 7725, there exists a positive eigenvector ¥ associated

with A1 (f1(¢ — wy (M2, a2))) = m/d. Moreover ¥ is unique if we normalize it such that
¥ (0) = 1. Hence w := w4 (M7, ap) satisfies

dw”+w:0, x e (0, 1),
a+o-—w (4.14)

w'(0) = w'(1) + yw(l) =0,
and  satisfies
o mi(@ —w)
d — " =0, 0,1),
v +a1+¢—ww *e@.1) (4.15)
Y(0) =¢' (1) +yy() =0, ¥(O) =1

By 0 < w < ¢ and (4.15), ¥” < 0 which implies ¥/" < v//(0) = 0. Hence  is decreasing
and thus ¥ < 1 on [0, 1]. Fix p > 1. Noticing 0 < my < m and by the L? estimates, w
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and ¥ are uniformly bounded in W2P(0, 1) for all a» > 0. Then there exists a decreasing
sequence {az ,} with lim,,_, o a2, = 0 such that the corresponding 7717 ,,, wy,, and ¥, satisfy
that

lim my, = dc?,
n—0o0

and

lim w, = p, lim ¥, =¥, weakly in W7 (0, 1),
n—o00 n—o0

forsomec > Oand p, ¥ € WZ’P(O, 1) (The convergence of w, and ¥, is also in c'o, 1] by
the Sobolev embedding theorem). By the proof of Proposition 3.1, ¢ — w,, is decreasing in x
with0 < ¢ —w, < ¢,and hence, ¢ — p is alsodecreasinginx with) < ¢p—p < ¢.lfp—p =
¢, i.e. p = 0, then by (4.15), W is an eigenvector corresponding to the principal eigenvalue
my/d = A (f1(¢)), which contradicts the assumption m| > dA1(f1(¢)).If p — p =0, i.e.
p = ¢, then p’'(0) = ¢'(0) = —Sp. However, this contradicts lim,_.o w),(0) = p’(0) = 0.
Hence, we have two cases by the monotonicity of ¢ — p:

Case 1 ¢ — p > 0on [0, 1).

By (4.14), we have d(az,, + ¢ — wy)w), + fip (¢ — wy)w, = 0. Taking n — oo, we have

{p”—i—czp:O, x €(0,1),
p'(0)=p'(1)+yp(1) =0,

Since p is nonnegative and nontrivial, we must have 2 = (). Itis easy to check that
cos(ax) is an eigenvector corresponding to A1(1) = o?. Hence ¢ = «. Moreover p =
A cos(ax) for some A > 0. It then follows from ¢ — p > 0 that A < ¢(1)/ cos(«). Hence,

¢(1)
< cos(ax).
cos(a)
By (4.15), we have
1 mi (¢ - )O)
dv — V= 1
+a1+¢—p 0, x € (0, 1),

W(0) =W (1) +y¥1) =0, WO =1.

This implies

1
i@~ o) < (fl <¢— W) cos(ax))). 4.16)
cos(a)

Case 2 There exists xg € (0, 1) such that ¢ — p > 0 on [0, xg) and ¢ — p = 0 on [xg, 1].
Since p € C'[0, 1], we have p(xg) = ¢ (xo) and p’ (xg) = ¢’ (xg) = —So. Similar to Case 1,
it follows from (4.14) that

{,0”+c2,0 =0, x € (0, xp),
PO =0, plxo) = pxo). p'(x0) = ¢ (x0) = —So.

Hence we must have

¢ (xo0)
= ———cos(cx),
cos(xpc)
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with ¢ € (0, 51-) satisfying

1
ctan(xgc) (ﬂ — xo) =1.
14

Moreover by Lemma 4.4, we have ¢ > «.

In view of the two cases, our assumption (4.12) implies that Case 1 is impossible due to
(4.16). Hence we must have lim,, _, o+ o > do? (The monotonicity of 7, implies that the
limit exists). ]

Our next result is about the limit of 7, as a approaches zero. Since its proof is similar to
but simper than that of Lemma 4.3, we sketch it here.

Lemma 4.5 Suppose thatd, my,a; > 0 are fixed with my > dAi1(f1(¢)). Then

lim 7y = da® = dri(1).
a,—0F

Proof By the definition of 15, there exists a positive eigenvector ¥ associated with A1 ( f> (¢ —
it)) = my/d. Moreover, v is unique if we normalize it such that 1 (0) = 1. So, ¥ satisfies

ay'+ 2Oy xe @),
a+¢—u 4.17)
Y'0) =y’ () +yy() =0, ¥(O) =1
Similar to the proof of Lemma 4.3, there exists a decreasing sequence {az,} with
lim,— o0 a2, = 0 such that the corresponding 7 , and ¥, satisfy that

lim 7y, = dc?,
n—oo
and
lim ¥, =¥ weakly in W27 (0, 1),
n—oo

for some ¢ > 0 and ¥ € W%P(0, 1) (The convergence of i, is also in clo, 1] by the
Sobolev embedding theorem). Since ¢ > i1, we have

v 4+ 2y =0, x € (0, 1),
W(0) =W () +y¥1)=0, WO) =I.

Since W is nonnegative and nontrivial, we must have ¢ = 11(1). It has been shown in the
proof of Lemma 4.3 that A1 (1) = &2. Therefore, ¢ = & and lim,, , o+ 7> = da* (The limit
exists by the monotonicity of 7717). O

Combining the previous two lemmas, we can verify that 71, > 7 under the condition
(4.12) and small a,, which implies the existence of a stable coexistence steady state of (1.4)
for some parameter ranges.

Theorem 4.6 Suppose that d, m1, a\ are fixed. If (4.12) holds, then there exists a5 < ai
such that my > my for all ay € (0, ay). For such as, (1.4) possesses a stable coexistence
steady state for my € (i, ).

Proof The existence of a%‘ follows from Lemmas 4.3 and 4.5, and the existence of a stable
coexistence steady state for my € (iny, my) follows from Theorem 4.2. O
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4.3 Bifurcation of Coexistence Solutions

In this subsection, we perform a bifurcation analysis to show the existence of coexistence
steady states. We note that a local bifurcation analysis was conducted in [42] by casting (1.5)
into a system of integral equations.

We fix ay, az, mp and d such that a; > ap and m; > dA1(f1(¢)), and use m, as a
bifurcation parameter. Recall X, = {{ € c?[0,1] : ¥'(0) =0, v'(1) + yy¥() = 0}
Then, in the space R x X2, (1.5) has three branches of trivial or semi-trivial solutions:

'y = {(m2,0,0) : my > 0},
[y = {(m2, wi(m1, a1),0) : my > 0}, (4.18)
[y = {(m2, 0, we(mz, az)) : my > dr(f2(9))}.

For convenience, we still let i1 = w4 (m1, a;) and v = wy(m2, az).
We prove that there is a branch of positive solutions of (1.5) bifurcating from I';, as stated
in the following:

Theorem 4.7 There is a smooth curve I' = {(my(s), u(s), v(s)) : s € (—¢, €)}, such that
(ma(s), u(s), v(s)) is a solution of (1.5) for s € (—e, €) which is positive for s € (0, €),
where my(0) = my, u(s) = it + s@p + o(s), and v(s) = sy + o(s) with Yy > 0 being a
principal eigenfunction of the problem

!I/f"(X) +1f2(¢ -y (x) =0, xe (1),
(4.19)

Y'(0) =y'() + yy (1) =0,

corresponding to the eigenvalue ). = iy /d and ¢y < 0 satisfying

a1+ ¢ —)?
26(0) = (1) + ypo(1) = 0.

dey +my [f1(¢ — i)

aji :| mia i " c 0. 1)
w = 7/\ 9 ‘x 9 9
T @ +p—ap’ (4.20)

Moreover,

‘f@m+ww@x
o (a2 +¢ —i)?
1

Oﬁw—m%w

m}(0) = s (4.21)

Proof We apply the local bifurcation theorem in [8]. Define F : R x X Jz, — Y2 (where
Y = C[0, 1]) by

(4.22)

F(ma, u, v) = (du// +my fi(¢p —u— U)u) .

AV +myfo(p —u— v)v

Then, we can compute

Fu,vy(ma, u,v)[e, ¥l

miaju miau
_ de” + mifi(¢ —u—v) - (a|+¢l—i4—v)2 a (a1+¢1—:4—v)2 %
ay" e mafa@ —u—v) - ey )

- (artp-u—vy? @to—u—v7?
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Evaluating it at (in>, i1, 0), we have

PO _( d¢"+pe—qy

F(u,v)(mZy i, O)[e, ] = (dlﬁ” + fﬁzfz((b . 12),(// ,
with
mlalft _ mlalft

@+g—w2 1T @ro-a?
It then follows that the kernel of F (712, i1, 0) is

N (Fu,v) (12, i, 0)) = span{(go, ¥o)}.

To see this, let Fy, ) (M2, i, 0)[¢, ¥]1 = 0. Noticing my = dr(f2(¢p — it)), we have =
kg for some k € R, where v is a positive principal eigenvector of problem (4.19). By
Proposition 3.1(i) and Fredholm theory, there is a unique ¢q solving (4.20). Moreover, by the
maximum principle, g < 0.

We claim that the range of F(, (2, i, 0) is

p=mfi(¢p —i) —

1
R(Fy,v)(my, i,0)) = {(hl, hy) e Y?: f hayodx = 0}. (4.23)
0

To see this, we note that (i1, ) € Y2 is in the range if and only if there exists (¢, ¥) € X}z,
such that

de" + pp —qy = hy, (4.24)

dy" + iy fo( — )Y = ho. (4.25)

The Eq. (4.24) always has a unique solution in X,, for any ¥, h; € L?(0,1) by Proposi-
tion 3.1(i) and Fredholm theory. Hence the claim is equivalent to that (hy, hp) € ¥ 2isin
the range if and only if fol havodx = 0. And this can be derived by the Fredholm theory,
because the solutionz of the equation dv/” 471> f2(¢ —#)y = 0in X, consist of span{yo}.
To apply the bifurcation theorem from a simple eigenvalue by Crandall and Rabinowitz

[8], we then only need to check the transversality condition Fj,, v (72, &, 0)[@o, Yol ¢
R(Fu,v) (M2, i, 0)). To see this, we compute

0
Fony (m2, w1, v) = <f2(¢ —u-— v)v)

and
Fony vy (M2, u, 0)[@, Y] = [_ © L6 _Ou ) v )lﬁ] :
(ar+¢p—u—v)? (ay+¢p—u—v)?
This implies

Fm27(u,v)(ﬁ27 129 O)[(p()! 1)ZIO] = |:f2(¢ 3 ﬁ)wo] ’ (426)

and so the transversality condition holds by (4.23) and fol (o — ﬁ)t//gdx > 0.
Finally, we compute m’2(0) by the formula (see [37])

(1, Fuy.u.v) (2, i, 0)[go, Yol
241, Fmg,(u,v)(”/’;% i, 0) [0, ¥ol) ’

m}(0) = — 4.27)
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where [ is a linear functional on Y2 given by (I, [h1, ha]) = fol ha(x)Yo(x)dx for any
(hy, hy) € Y2. To this end, we compute

Fu,v),@,v)(m2, u, v)g, v1?

*
= 2a2u<p2 2apv a 2 2ay 2apv
(‘mz ((azwfufvﬁ T2V Crou? T aro-uo?) TV C—u? T it )))

and

*
F(u,v).(u,v)(mZ» i, 0)[¢o, 1#0]2 = (—2%2(12((/)0—0—1//0)!/!0 ) (4.28)
(ar+o—i)>  ~

Hence, the formula (4.21) follows from (4.26) to (4.28). ]

We then prove that there is a branch of positive solutions of (1.5) bifurcating from I',.
The proof of this result is similar to (1.5), so we only sketch it here.

Theorem 4.8 There is a smooth curve I'' = {(ma(s), u(s), v(s)) : s € (—e, €)}, such that
(ma(s), u(s), v(s)) is a solution of (1.5) for s € (—e, €) which is positive for s € (0, €),
where m»(0) = iy, u(s) = s@o + o(s), and v(s) = Vo + so + o(s) with Oy = wx (M2, a2),
and ¢o > 0 being a principal eigenfunction of the problem

:w”(x) +Afi(@ —0)ex) =0, xe(0,1),
(4.29)
9'(0)=¢'() +ye) =0,
corresponding to the eigenvalue A = m/d, and Yo <0 satisfying
T~ ~ azty = 7%2327’}0 ~
d — - =— 0,1
Vo + ma [f2(¢ Uo) @t d— 170)2] Yo @t d— o * € (0, 1),
V(0) = P(1) + y o (1) = 0.
(4.30)
Moreover,
/*<@+¢w% .
m/z(o) — _ 0 (al + ¢ — UO)Z (431)

/1 13;%21/73A zdx
o (a1 + ¢ — Vo)

where Uj, is the unique positive solution of
az iy ] N

(@ +¢ =092 ] "

ﬁ/ﬁz 0) = ﬁ;ﬁz(l) + y0m,(1) =0.

—tg, x€(0,1),

dﬁ%z + iy |:f2(¢—ﬁ0)— ——m

Proof Define F : R x X2 — Y2 by

F(mz,u,w):( du” +m fi(¢ —u—0—wu )

dw” +dd" +myfor(p—u—0—w)D+ w)
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where ¥ = w, (m2, a»). Then we have F(m2, 0,0) = 0 and

Fro o i 0. O, ] d¢” +my fi(¢ — Do)g
w0y 2, 5 L9y ~\dy" + i (f2(¢ — o) — (azfélﬁ)ﬁo)z) V- (a?ﬁﬁ%z)z 7

where ¥y = wy (M2, az). It then follows that the kernel of I:"(,,,w)(ﬁ'zz, 0,0) is

N (Fu,uw) (2,0, 0)) = span{(@o, o)},

and the range of F(u,w) (2,0, 0) is

1
R(F(u,w)(%z,O, 0) = {(hl, hy) € Y?: / h1godx = 0} . (4.32)
0
By
. _ _ miai b, o
Fons u,w) (M2, 0,0)[@0, Yol = | (@t+¢—i0)* |, (4.33)
*

D7, > 0, and (4.32), the transversality condition holds. Finally, m/ (0) can be computed by

{1, Fauw).@.w) (2, 0, 0)[@o, Y01%)
2, Foy. () (12, 0, 0)[ G0, Yol)

m}y(0) = — (4.34)

where [ is a linear functional on Y2 given by (I, [h1, h2]) = fol h1(x)@o(x)dx for any
(hy, hp) € Y2, Then the formula (4.31) follows from (4.33), (4.34) and

~ N s 2mya1Go(Go+ o)
Fluw),w.w) (M2, 0,0)[@o, Yol = — |  (@+é—0* . (4.35)
*

[m}

We remark that although (4.21) and (4.31) provide formulas for the direction of bifurcation
at mp = my and mp = My, the actual direction is not clear as the sign of gg + ¥ or go + 1/}0
is not known. So, we can not rule out possible multiple coexistence steady state solutions for
some values of m».

Next, we perform a global bifurcation analysis and prove that the two bifurcation continua
in Theorems 4.7 and 4.8 are connected. We need the following result.

Lemma 4.9 Suppose thatmy > di1(f1(¢)). If (u, v) is a nonnegative solution of (1.5), then
we have u < u.

Proof Since u satisfies 0 = du” + m fi(¢p —u — v) < du” + m| fi(¢ — u), u is a lower
solution of

dw' + M@ WY _ x e, 1),

a+¢—w (4.36)
w'(0) = w'(1) + yw(1) = 0.

It is easy to check that ¢ is an upper solution. Hence by the method of upper/lower solutions
and the uniqueness of the solution of (4.36), we have u < wy(m, a;) = i. O
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Define

S ={(ma,u,v) e Ry x XJZ/ cu > 0,v >0, (my,u,v) satisfies (1.5)}. 4.37)

Theorem 4.10 Suppose that my > d’(f1(p)). Then there exists a connected component C*
of S such that the closure of C* contains two bifurcation points (m», i, 0) and (ni3, 0, Do)
with 0y = w4 (M7, az). In other words, the two bifurcation continua T’ and T in Theorem 4.7
and 4.8 are connected to each other.

Proof We apply the global bifurcation theorem [38, Theorem 4.4] and follow the process
in [38, Theorem 4.7]. Let F : R x P? — Y? be defined as in (4.22), where P, = {u €
X, :u > —¢} forsome e > 0. Let P = {u € X, : u > 0}. By Theorem 4.7, there is
a smooth curve I' = {(ma(s), u(s), v(s)) : s € (—¢, €)} of solutions of (1.5) emanating
from the bifurcation point (1112, i, 0) from I'. Let I'" = {(m2(s), u(s), v(s)) : s € (0, €)}
and '™ = {(ma2(s), u(s), v(s)) : s € (—e,0)} be the positive and negative components
of I', respectively. Let C be the connected component of solutions in R4 x PE2 bifurcating
from (iriy, i1, 0). Let CT be the connected component of C\I'™ which contains I'*. Let
C* =C*t N (Ry x P?). Then C* C C* and contains 't

By [38, Theorem 4.4], CT satisfies one of the following alternatives: (I) it is not compact
inRy x Pz; (ID) it contains a point (my, i, 0) with m, # my; (I11) it contains a point (my, i+
uy, us), where (u1, up) is nontrivial and belongs to the complement of span{(pg, ¥o)}, i.e.

1
/0 (U190 + uzyg)dx = 0, (4.38)

where (¢, o) is specified in Theorem 4.7 with g9 < 0 and ¥9 > 0. Here, (I) is equivalent
to either C* intersects Ry x 8P€2 (0 sz is the boundary of sz) or CT is unbounded by the
elliptic regularity theory.

We claim that either (I)—(III) implies that ¢ N R4 x 9 P2) contains a point (M., Uy, Vy),
distinct from (72, &, 0), where 8 P2 is the boundary of P2. We prove the claim now. Suppose
that (I) holds. If C* intersects R x 8P82, it insects Ry x aP2. So, we may assume that ct
is unbounded. If C* does not intersect R4 x 8 P2, by the boundedness of positive solutions,
there exists an unbounded interval I C R with i, € I such that, foreachm; € I, (1.5) has
a positive solution. However, if 0 < m> < myaz/a; or my > mq, by Theorem 2.1, (1.5) has
no positive solution. This contradicts the unboundedness of /. (II) is obvious. Suppose that
(IIN) holds. If (&t + uy, us) is not nonnegative, then the claim holds. So, suppose &t + u; > 0
and up > 0. By Lemma 4.9, we have u; < 0. By (4.38), we must have (u1, uz) = (0, 0),
which contradicts that (1, u2) is nontrivial. This proves the claim.

Since (my, uy, vy) € Ry x P2, by the maximum principle, either u, = 0 or u, > 0
on [0, 1], and either v, = 0 or v, > 0 on [0, 1]. Thus, there are three possible cases: (1)
(Mg, U, V) = (M4, 0, 0); (2) (M, U, V) = (M, i1, 0) With my 7 o5 (3) (M, Us, Vi) =
(my, 0, vy) with v, = wy(my, a2). Whichever the case, (m, u4, vy) is a bifurcation point for
positive solutions of (1.5). (2) can be easily ruled out since (15, iz, 0) is the only bifurcation
point of positive solutions from I';,. To rule out (1), we compute

_(d¢" +m1 fi(@)e
Fu,vy(my, 0,0)[p, ¥]= (dw// T r@) )
Since m; > dAi(fi1(¢)), the only bifurcation point of nonnegative solutions from I'g
is my, = A(f2(¢))/d. It is not hard to see that the corresponding bifurcation curve is
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(m3, 0, wy(ma, a2)). Therefore, (m., 0, 0) can not be a bifurcation point for positive solu-
tions. Therefore, (3) holds. From the proof of Theorem 4.8, the only possible bifurcation
point of positive solutions from 'y is (my, 0, vy) = (M2, 0, ¥g) with 99 = w4 (M2, az). This
proves the result. O

We remark that the bifurcation results proved in this subsection hold without extra condi-
tions on parameters (d, ay, az, mp) (except for m; > di1(f1(¢))), and bifurcation analysis
can be performed using parameters ay, ap or m1. However, with the result 71, > 1, proved
in Sect. 4.2, we have more information on the bifurcation branch C*:

Corollary 4.11 Suppose that d, my, ay are fixed such that (4.12) holds. Let a5 > 0 be defined
in Theorem 4.6 such that my > iy when 0 < ap < aj. Then the projection of the continuum
C* of positive solutions onto my-axis contains the interval (im, my).

5 Non-coexistence for Small d

In this section, we consider the dynamics of (1.4) when the diffusion rate d is small. We fix
ay, ay, mi, mo and make d small enough such that m; > dA(f1(¢)) and my > dA(f2()).
Then the two semi-trivial steady states both exist, and we denote them by (i, 0) and (0, v),
respectively.

As pointed out in the previous section, the stability of (iz, 0) is determined by the sign of
w7}, which is the principal eigenvalue of the problem

dn" +my —n=un, xe€O,1D,

—u

a+¢—u 5.1
n'(0) =n'(1) +yn(1) =0.

Similarly, the stability of (0, D) is determined by the sign of u3, which is the principal

eigenvalue of the problem

A

dn” +my —n=un, x¢€(0,1),

-0

ar+¢—v (5.2)
n'(0) =n'(1) + yn(1) = 0.

We first prove the following instability result regarding the semi-trivial steady states.

Lemma5.1 Ifmy/a; < my/az, then there exists dy > 0 such that (i, 0) is unstable for all

d < dy; if miJay > my/ay, then there exists dy > 0 such that (0, V) is unstable for all
d < dz.

Proof Suppose that m/a; < my/ay. Notice that i satisfies

M =0, x € (0, 1),
ar+¢—u (5.3)

4'(0) = 4'(1) 4 yi(1) = 0.

di" +

Multiplying both sides of the first equation of (5.3) by # and integrating it over (0, 1), we
have

1 1 A
d/ |ﬁ’|2dx+dr122(1):f Mm@ =) a2y,
0 0o a1 t¢—u
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The variational formula gives

d [y 1¢'1Pdx + dre*(1) — [, M0 52,

% . 0 ar+¢—n
ny = - in 1
9eC(10,11),¢70 Jo 92dx
1,4 ~ 1 —0) ~
_dfo i Pdx +dri*(1) — %u%

fol 2dx

1 1 mq my A\ A2
=—— / — - — (¢ —u)u-dx.
Jo #%dx Jo Lai +to—u at+o¢—u

Since it — ¢ in C[0, 1] as d — 0 by Proposition 3.1 and m/a; < my/as, there exists
di > O such that u} > O foralld < d;. Thus (i1, 0) is unstable for all d < d;. The proof for
the case m1/a; > my/ay is similar. ]

‘We next prove a local stability result for the semi-trivial steady states. The main technique
is a min—max representation formula of the principal eigenvalue p1(d, g) (see [3]) of the
following problem

do"(x) +q(x)0(x) = ub(x), x €0, 1),

54
0'(0) =0'(1)+yo(1) =0.
The principal eigenvalue i1 (d, q) of (5.4) is given by
do” 0
wi(d.q) = inf sup LW TIWOC) (5.5)

0eX; xe(0,1) 0(x)
where
XhF={e C?[0,11:6 > 0in (0,1) and 6'(0) = 6'(1) + y6(1) = 0}.

Lemma5.2 Ifm/a; < my/ay, then there exists d3 > 0 such that (0, v) is locally asymptot-
ically stable for all d < d3; if mi/ay > my/ay, then there exists dy > 0 such that (i, 0) is
locally asymptotically stable for all d < dy.

Proof Suppose that m/a; < my/ay. By the variational formula, we have
do"(x)  mi(¢(x) —1(x)) }
pexixeo,n | 0(X) a1 +¢x) —0(x)
- dv"(x)  mi(p(x) — 0(x)) }
sup = ~

xe©,1) | V() a; +¢(x) —o(x)
— s |- ma(p(x) —0(x)) = mi(@x) —0(x)) }

e | @2+¢(x) —0(x) a1 +¢(x) —(x)

= sup (¢(x)—ﬁ(x>)<— S mo )}
xe(0,1) a+¢x)—vx)  ar+¢x)—v(x)

*

uy = inf  sup {

Since ¥ — ¢ uniformly as d — 0 by Proposition 3.1 and m/a; < my/as, there exists
d3 > 0 such that 43 < 0 for all d > d3. Hence (0, 0) is stable for all d < d3. The case of
mi/a; > my/as can be proved analogously. O

To completely determine the global dynamics of (1.4) for small diffusion rate d, we only
need to prove the nonexistence of positive solutions of (1.5).
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Lemma 5.3 Suppose that m|/a; # ma/as. Then there exists ds > O such that (1.4) has no
positive steady state for all d < ds.

Proof Without loss of generality, suppose m1/a; < my/ap. Assume on the contrary that
such a ds does not exist. Then there exists a sequence {d, } such thatd, — 0 asn — oo, and
problem (1.5) with d = d,, has a positive solution (u,, v,). By the first equation of (1.5), we
have

| — 1 _ _
d, ”de+/ mp—un = V)
0 Un 0 ar+é —uy, — vy

Noticing the boundary conditions u’(0) = /(1) + yu(1), the above equation leads to

1,712 1
|un| m](d)_u —U)
d,,/o 2dx+/0 ARC =8 = %) dx = dyy.

us a+¢ —u, — v,

Since ¢ —u —v > 0 for all d > 0, by the Ries-z-Fisher theorem, there exists a subsequence
(still denote by {d,}) with d,, — 0 as n — oo such that the corresponding positive solutions
(un, v,) satisfy that u,, + v, — ¢ pointwisely a.e. in [0, 1] as n — oo.

By (1.5) and ¢ — u, — v, > 0, u), and v} are both negative. Hence u), and v}, are strictly
decreasingin [0, 1]. Since u), (0) = v}, (0) = u),(D)+yu, (1) = v, (1)+yv,(1) =0, {u),+v,}
are uniformly bounded in [0, 1]. Noticing that {u, } and {v, } are uniformly bounded, it follows
from the Arzela—Ascoli Theorem that there exists a subsequence of {d,} (still denoted by
{d,}) such that the corresponding positive solutions (u,,, v,) of (1.5) satisfy thatu, +v, — ¢
in C[0, 1Jasn — oo.Ford = d,, multiplying the first equation of (1.5) by v, and the second
the equation by u,,, and integrating the difference over [0, 1], we get

A Er= =ik
UpVp (P — up — vy) =0. (5.6)
0

ar+ ¢ —uy — vy a+ ¢ —uy, — vy

Since m1/a; < my/az and u, + v, — ¢ in C[0, 1] as n — oo, there exists N > 0 such
that the left hand side of (5.6) is negative for all n» > N. This is a contradiction. Therefore,
there exists ds > 0 such that (1.4) has no positive steady state for all d < ds. The case
mi/a; > my/ay can be proved analogously. O

Combining Lemma 2.2 and Lemmas 5.1-5.3, we have obtained a complete description of
the dynamic behavior of (1.4) when m/a; # m3/a; for small diffusion rate d.

Theorem 5.4 Suppose that mi/a; # my/ay. If my/a; < ma/as, then there exists d, > 0
such that problem (1.4) has no positive steady state and the semi-trivial steady state (0, D)
is globally asymptotically stable for all d < d,; if m1/a1 > ma/ay, then there exists dp > 0
such that problem (1.4) has no positive steady state and the semi-trivial steady state (it, 0)
is globally asymptotically stable for all d < dp.

By Theorems 2.1(i), 4.6 and 5.4, for fixed m1, m2, a; and ay, we have proved that coex-
istence steady states can only exist for intermediate d.

Remark 5.5 A corresponding result of Theorem 5.4 holds for large m and m, with fixed d,
aj and aj: There exists m > 0 such that if m, my > m problem (1.4) has no positive steady
state. Moreover, (0, 0) is globally asymptotically stable if m|/a; < my/a;, and (i, 0) is
globally asymptotically stable if m/a; > my/as.
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6 Numerical Studies

We first summarize our theoretical results in Fig. 1, which shows parameter ranges of (1, m>)
with different dynamic behavior for (1.4). For convenience, we suppose a; > a». In region
A, Eyp = (0,0) is globally asymptotically stable by Theorem 2.1(i); In region B U C (or
DUE), E; = (0,0) (or Ey = (i1, 0)) is globally asymptotically stable by part (ii) and (iv)
[or (iii) and (v)] of Theorem 2.1, respectively. If the conditions in Theorem 4.6 hold, then
my < my and there exists a stable coexistence steady state in region F. In region G (or H),
E; (or Ey) is locally asymptotically stable while E; (or E3) is unstable by Theorem 4.2.
Note that Fig. 1 is for illustration only, so it is not up to scale, and the curves of my = i, and
my = my are not necessarily straight lines. Also we are not able to estimate the magnitude of
my and iy if (4.12) is not satisfied, and this leaves a blank region between m| = dA1(f1(¢))

and m; = dA (fl (¢ — fo(;; cos(ax))). It is worth noting that the curves of m, and i, are

bounded by Remark 5.5.

Next, we present some numerical simulations. We first provide some numerical evidence
that the inequality 7, < m; can hold. To this end, we fix Sy = 1 and y = 0.5, and
choose different values for d, m1, ay, az, and then compute /715 and 77i5. For all the cases in
Table 1, we obtain 711, < 11, which means that (1.4) has a stable coexistence steady state if
my € (my, ny) by Theorem 4.2.

Then,wefixSo =1,y =0.5,a; = 1.5, a» = 0.2, m; = 1 (first set of parameter values in
Table 1), and explore different values for m,. We compute 11 (f1(¢)) = A (d/(a1 + ¢)) =
0.9342930, and A1 (f2(¢)) = ri(¢p/(az + ¢)) = 0.4948056. Choose d = 0.5 such that
dAr1(f1(¢)) < my, which means that E; exists. By Table 1, we have m, = 0.323612 and
my = 0.324587. Choose initial data ug = vy = 0.5 cos(ax), where « is the solution of
(4.11). We choose three different values for m, to perform numerical simulations.

my Ly: m=my

G

B c
/’/, F///’/
-~ s H

/,/’/’,/’/ Lz' mZZZ?ml
E
dri(f2())
A D
dr1(f1(#)) mi

Fig.1 Regions in (m1, mp) plane with different asymptotical dynamics
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Table 1 715 and niy for different d Py —
mi aj an my my
parameter values
0.5 1 1.5 0.2 0.323612 0.324587
0.5 0.5 1.5 0.2 0.252095 0.252117
0.5 2 1.5 0.2 0.479253 0.486946
0.25 1 1.5 0.2 0.239627 0.243473
1 1 1.5 0.2 0.504191 0.504233
0.5 1 1 0.2 0.381601 0.383848
0.5 1 2 0.2 0.295132 0.295596
0.5 1 1.5 0.1 0.269303 0.270197
0.5 1 1.5 1.2 0.845441 0.845478
as > a5 2 s
> 2, 2,
2. s s..
8 — |8 s |
c - s | &
E 15 §_ 15 §_ 15
32 o o oo
& o os os
X X X
(a) my =032 < iy (b) my = 0.3245 € (72, 7i12) (€) my =033 >y

Fig. 2 The densities of the two species at t = 2000. The parameters for the three sub-figures are the same
except formo: So =1,y =0.5,a1 =1.5,ap =0.2,m; =1andd =0.5

(I) Choose my = 0.32. Then, d1(f2(¢)) < my and E exists. As mp < nip, by Theo-
rem4.2, E1 islocally asymptotically stable and E; is unstable. The numerical simulation
shows that species 1 excludes species 2 (see Fig. 2a).

(Il) Choose my = 0.33. Then, mp > iy and E; exists. By Theorem 4.2, E» is locally
asymptotically stable and E is unstable. The numerical simulation shows that species
2 excludes species 1 (see Fig. 2c).

(IIT) Choose my = 0.3245. Then, my € (i3, ny). By Theorem 4.2, there exists a stable
coexistence steady state. The numerical simulation shows that two species may coexist
(see Fig. 2b).

Finally, to explore the impact of the diffusion rate d, we keep the values of all parameters
the same as in Fig. 2b except for replacing d = 0.5 by d = 0.1, 1, 2, respectively (So =
1,y = 0.5,a1 = 1.5,a; = 0.2,m; = 1,my = 0.3245). The results corresponding to
different values of d are summarized below:

(i) Choose d = 0.1 (small diffusion rate). We can compute #7, = 0.193758 and mp =
0.198186. So, my > my. By Theorem 4.2, E; is locally asymptotically stable and E| is
unstable. In Theorem 5.4, we prove that one species will drive the other one to extinction
when d is small. Note that m /a; = 0.67 and m/a> = 1.62, which means that species
2 has competitive advantage over species 1 by Theorem 5.4. The numerical simulation
confirms this (see Fig. 3a).

(i) Choose d = 0.5 (see Fig. 2b). Two species may coexist in this case.
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Population density

Population density
Population density

Fig

== == =

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

X X

(a) d=0.1 (b) ;:1 (c)d=2

. 3 The densities of the two species at 1 = 2000 with the same parameter values as for simulations in

Fig. 2bexceptford: So =1,y =0.5,a; = 1.5,a2 =0.2,m = 1,mp = 0.3245

(iii) Choose d = 1. Numerical simulation shows that species 1 has competitive advantage

over species 2 and drives it to extinction (see Fig. 3b).

(iv) Choose d = 2 (large diffusion rate). Numerical simulation shows that both species

become extinct (see Fig. 3c).

Our numerical simulations confirm that coexistence of the two species is only possible

for intermediate ranges of d.
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