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Abstract
We construct a novel Lagrangian representation of acoustic field theory that describes the local
vector properties of longitudinal (curl-free) acoustic fields. In particular, this approach accounts
for the recently-discovered nonzero spin angular momentum density in inhomogeneous sound
fields in fluids or gases. The traditional acoustic Lagrangian representation with a scalar potential
is unable to describe such vector properties of acoustic fields adequately, which are however
observable via local radiation forces and torques on small probe particles. By introducing a
displacement vector potential analogous to the electromagnetic vector potential, we derive the
appropriate canonical momentum and spin densities as conserved Noether currents. The results
are consistent with recent theoretical analyses and experiments. Furthermore, by an analogy with
dual-symmetric electromagnetic field theory that combines electric- and magnetic-potential
representations, we put forward an acoustic spinor representation combining the scalar and vector
representations. This approach also includes naturally coupling to sources. The strong analogies
between electromagnetism and acoustics suggest further productive inquiry, particularly regarding
the nature of the apparent spacetime symmetries inherent to acoustic fields.

1. Introduction

Linear sound waves in gases or fluids are purely longitudinal, and therefore these are usually considered
within the scalar wave theory [1–3]. This implies a Klein–Gordon-like Lagrangian field theory [4] involving
a single scalar potential and the scalar wave equation of motion, typical for spinless fields.

However, recent studies revealed the presence of nonzero local spin angular momentum density in
generic acoustic fields [5–10], and this prompted interest in vector properties of acoustic waves. The full
description of sound waves involves two fields, namely, the scalar pressure field p(t, r) and vector velocity
field v(t, r). Here, the velocity is a genuine vector (polarization) degree of freedom, which can experience
local rotations generating spin angular momentum density. This is entirely similar to the rotating electric or
magnetic field that produces the spin angular momentum in optics and electromagnetism.

In electromagnetic theory, the spin and orbital angular momenta are described by the quantities from
the canonical energy-momentum and angular-momentum tensors, which are derived in the Lagrangian
field theory via Noether’s theorem [3, 11–16]. The key independent quantities there are the canonical
momentum and spin densities, which correspond to the directly observable properties of monochromatic
optical fields, namely, the radiation force and torque on small absorbing particles [16–24]. Using complex
amplitudes Ē(r) and H̄(r) of monochromatic electric and magnetic fields in free space (the real
time-dependent fields E(r, t) and H(r, t) are obtained by applying the Re

(
. . . e−iωt

)
operator), the
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cycle-averaged canonical spin and momentum densities can be written as [11, 14, 17, 20–22]

P̄ =
1

4ω
Im

[
ε0 Ē∗ · (∇) Ē + μ0 H̄∗ · (∇) H̄

]
,

S̄ =
1

4ω
Im

(
ε0 Ē∗ × Ē + μ0 H̄∗ × H̄

)
. (1)

Here ε0 and μ0 are the permittivity and permeability of vacuum, ω is the frequency, and we use notation
[V · (∇)W]i ≡ ΣjVj∇iWj [17]. The total canonical angular momentum density is given by J̄ = r × P̄ + S̄.

According to Belinfante’s field-theory approach [3, 11, 13, 14, 25], the presence of spin determines the
difference between the canonical momentum/angular-momentum tensors and their symmetrized kinetic
versions. The symmetrized electromagnetic tensors contain the kinetic Poynting momentum and angular
momentum densities, P̄ = P̄ + 1

2∇× S̄ = ε0μ0
2 Re(Ē∗ × H̄) and J̄ = r × P̄ , familiar from textbooks in

electrodynamics [26]. The spin is not explicitly present in these quantities.
To describe the local vector properties of monochromatic acoustic fields, the canonical acoustic

momentum and spin densities, similar to electromagnetic equation (1), were recently introduced [6–8]:

P̄ =
1

4ω
Im

[
ρ v̄∗ · (∇) v̄ + β p̄∗(∇) p̄

]
,

S̄ =
1

2ω
Im (ρ v̄∗ × v̄) , (2)

where v̄(r) and p̄(r) are the complex velocity and pressure field amplitudes, while ρ and β are the mass
density and compressibility of the medium (a fluid or gas). Importantly, akin to their electromagnetic
counterparts, the canonical acoustic momentum and spin densities (2) correspond to the radiation forces
and torque on small absorbing particles [9]. Moreover, the spin density (2) has a clear physical
interpretation: microscopic particles (molecules) constituting the medium move along small elliptical
trajectories, so that S̄ originates from their mechanical angular momentum [6, 7, 27]. In turn, the
velocity-related contribution to the canonical momentum density (2) can be directly associated with the
Stokes drift of molecules in the medium [27].

Note that the momentum and spin densities (1) and (2) consist of contributions from the vector electric
and vector magnetic fields in the case of electromagnetism and from the vector velocity and scalar pressure
fields in the case of acoustics. The main difference is that spin is essentially an axial-vector degree of
freedom and it cannot have a contribution from the scalar pressure field. Thus, the dual symmetry between
electric and magnetic properties present in source-free Maxwell electrodynamics [11, 12, 14, 17, 28–32] is
absent in acoustics.

Most importantly, the scalar acoustic Lagrangian field theory does not produce canonical
energy-momentum and angular-momentum tensors containing the vector v-related parts of equations (2).
The spin is absent in this approach, S̄ = 0, and the only momentum and angular momentum densities are
P̄ = β

2ω Im (p̄∗∇p̄) = P̄ ≡ ρβ
2 Re (p̄∗v̄) and J̄ = J̄ ≡ r × P̄ , where we used the equation of motion

iωρ v̄ = ∇p̄. Therefore, to describe the physically meaningful and observable velocity-related vector degrees
of freedom in equation (2), one has to use an alternative Lagrangian field theory for acoustics. This is the
main motivation of the present study.

In this work, we show that by choosing different Lagrangians and different representations of the
acoustic fields by scalar and vector potentials (keeping the equations of motion invariant) one can derive
different canonical momentum and angular-momentum densities, containing both scalar and vector
degrees of freedom including non-zero spin (2). Throughout the paper, we highlight the mathematical
analogy between electromagnetism and acoustics [4, 7–9, 33]. In electromagnetism, choosing
representations and Lagrangians based on electric or magnetic potentials result in the canonical quantities
involving only electric or magnetic fields, respectively; equations (1) show the dual-symmetric versions
obtained from the combined representation involving both potentials [11, 12, 14, 17, 29, 30, 32, 34]. In a
similar manner, combining the scalar- and vector-potential representations into a joint spinor-potential
representation of acoustic fields one can combine contributions of the scalar (pressure-related) and vector
(velocity-related) degrees of freedom to the canonical quantities. Moreover, the coupling to sources is
natural in this approach. Our findings provide an important field-theory background for recently found
vector spin properties of acoustic fields [6–9].

2. Linear acoustic and electromagnetic theories

Microscopically, sound waves are the collective motion of oscillating molecules in some medium: a liquid or
a gas. Linearized acoustic theory uses a continuum approximation to describe this underlying molecular
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motion. In the absence of external forces and sources, the oscillating acoustic pressure perturbations p(t, r)
and the acoustic velocity field v(t, r) obey the equations of motion [1, 2]:

ρ ∂tv = −∇p , β ∂tp = −∇ · v. (3)

The longitudinal (curl-free) character of acoustic waves is expressed by the equation

∇× v = 0. (4)

Although equation (4) is usually considered as a consequence of the first equation (3), in our field-theory
approach it makes sense to consider it as an independent equation (similar to the transversality Maxwell
equations below). The speed of sound waves described by equation (3) is c = 1/

√
ρβ.

We expect the equations of motion (3) and (4) to follow from the acoustic Lagrangian density

L[v, p] ∝ 1

2

(
ρ v2 − β p2

)
, (5)

with a traditional form that subtracts a potential energy density from a kinetic energy density. However,
expressing the Lagrangian density in equation (5) in terms of just the measurable fields p and v is not
sufficient to determine the equations of motion, nor is it sufficient to derive the conserved physical
quantities of the theory. We must also represent these physical fields in terms of potentials to complete the
Lagrangian formulation of the theory.

For comparison with electromagnetic field theory, exploited throughout this work, we recall the main
equations of free-space electromagnetism. The electric and magnetic fields, E(t, r) and H(t, r), obey the
Maxwell equations of motion [26]:

ε0 ∂t E = ∇× H , μ0 ∂tH = −∇× E, (6)

∇ · E = 0, ∇ · H = 0. (7)

Here, equations (7) determine the transverse (divergence-free) character of electromagnetic waves, which
also follows from equations (6). The speed of light is c = 1/

√
ε0μ0.

The standard electromagnetic Lagrangian density is

L[E, H] ∝ 1

2

(
ε0E2 − μ0H2

)
. (8)

Formulation of the Lagrangian field theory requires expressing the Lagrangians via potentials, such as the
(electric) four-vector potential field (Φ(e), A(e)) [3, 26]. However, such representation, with fixed fields and
equations of motion (6) and (7), is not unique [11, 14, 32, 34].

Below we consider different representations and corresponding conserved Noether currents (including
canonical momentum and spin densities) for acoustic and electromagnetic theories.

3. Acoustic and electromagnetic potential representations

3.1. Electromagnetic potentials
We first recall that in electromagnetism the existence of potentials is motivated by the Poincaré lemma [35].
In three dimensions we usually express this fact by noting that when the curl of a vector field vanishes, we
may express that vector field as the gradient of a scalar potential field. Similarly, when the divergence of a
vector field vanishes, we may express that field as the curl of a vector potential field.

In four-dimensional spacetime these two statements become combined into a simpler statement
equivalent to the Poincaré lemma: if the four-curl of a field vanishes, then we may express it as the four-curl
of a potential field. Using geometric–algebra terminology [14, 36–41], the proper electromagnetic field
Faraday bivector F in four-dimensional spacetime splits into the standard three-vector pair
F ∼ (

√
ε0 E,

√
μ0 H) in a particular reference frame, and has antisymmetric rank-2 tensor components

Fμν = −Fνμ. This bivector has a vanishing four-curl ∂ ∧ F = 0, i.e., ∂αFμν + ∂μFνα + ∂νFαμ = 0 with
∂0 = c−1∂t, which is a restatement of two of the four Maxwell equations (6) and (7). As such, the Poincaré
lemma implies that the field bivector can be written as the four-curl of an electric four-vector potential A(e):

A(e) =
(
Φ(e), A(e)

)
, F = ∂ ∧ A(e), i.e., Fμν = ∂μA(e)

ν − ∂νA(e)
μ . (9)

There is a dual statement of the Poincaré lemma that holds in the source-free case, when the remaining
two Maxwell equations vanish, which can be restated as the four-divergence vanishing ∂ · F = 0 (i.e.,

3
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Table 1. The main quantities of electromagnetic Lagrangian field theory in the electric- and magnetic-potential representations.

∂μFμν = 0). In this case, the Faraday bivector has an equivalent representation in terms of the
four-divergence of a magnetic rank-3 pseudo-four-vector potential A(m) [11, 14, 29, 32, 34]:

	 A(m) =
(
Φ(m), A(m)

)
, F = ∂ · A(m), i.e., Fμν = ∂αA(m)

αμν , (10)

where 	 denotes the Hodge dual.
Electric- and magnetic-potential representations (9) and (10) in the corresponding Lagrangian

formalism result in different local Noether currents [11, 14], see table 1. In particular, the canonical
momentum and spin densities in these representations are associated with the phase gradients and
rotational behaviour of the electric and magnetic fields, respectively [11, 17, 29]. The dual-symmetric
equation (1) correspond to the symmetrized approach that treats the two potentials on equal footing [11,
14, 32], which we consider later (see table 3 below).

3.2. Acoustic potentials
We now apply similar reasoning about the Poincaré lemma to the acoustic fields to determine possible
representations in terms of potential fields. Specifically, if we reinterpret the pressure p and velocity v fields
as the timelike and spacelike parts of a four-vector field V = (

√
β p,

√
ρ v) in an effective Minkowski

spacetime with causal structure determined by acoustic signals [42, 43], then we can understand the first
equation (3) and (4) together as the statement that V has vanishing four-curl: ∂ ∧ V = 0. Similarly, the
second equation (3) is the statement that V has vanishing four-divergence: ∂ · V = 0. We therefore have two
possibilities for expressing the measurable acoustic field V in terms of potential fields.

First, we can represent it as the negative four-curl (equivalent to the four-gradient) of a scalar potential φ
[4]:

V = −∂ φ, i.e.,
√
ρ v = ∇φ,

√
β p = −∂0 φ. (11)

Second, we can represent it as the four-divergence of a bivector potential a ∼ (a, b):

V = ∂ · a, i.e.,
√
ρ v = −∂0 a +∇× b,

√
β p = ∇ · a. (12)

4
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Table 2. The main quantities of acoustic Lagrangian field theory in the scalar- and vector-potential representations.

The main properties of these representations are summarized in table 2. The most common scalar
representation (11) uses a single potential φ, known as the velocity potential (up to the scaling factor

√
ρ) [1,

2]. The vector representation (12), introduced in this work and central for our purposes, uses two
vector-potentials (a, b). Notably, when b = 0 (which can be always chosen by fixing the gauge in the
medium rest frame), the potential field a has the obvious physical meaning of the displacement field (up to
the factor −c

√
ρ = −1/

√
β), because the velocity is the time derivative of the displacement [44]. We show

below that making this choice for b yields a consistent and intuitive solution. Indeed, the definitions in
equation (12) are perfectly consistent with independent microscopic derivations of the acoustic equations
from the Lagrange picture of an acoustic medium [45]. Such a displacement field has also previously found
use in finite element analysis of acoustic fluid-structure interactions [46–49]. As such, both the scalar and
vector representations of acoustics in terms of potential fields have historical precedent, at least when b = 0.

3.3. Equations of motion and gauge fixing
Depending on the choice of potential representations – either (9) or (10) in the electromagnetic case and
(11) or (12) in the acoustic case – a subset of the corresponding equations of motion (3), (4), (6) and (7)
are satisfied identically. This subset plays the role of constraints, while the remaining part becomes the
nontrivial equations of motion for the corresponding potentials, as shown in tables 1 and 2.

Since the representation of vector fields via vector potentials has gauge freedom, fixing the gauge
allows one to reduce the equations of motion to a simpler form. In particular, choosing the
Lorenz–FitzGerald partial gauge constraint for the electric or magnetic four-potentials,
∂ · A(e,m	) = c−1∂tΦ

(e,m) +∇ · A(e,m) = 0, the equations of motion reduce to the wave equations for the
four-potentials:

∂2A(e,m	) =
(

c−2 ∂2
t −∇2

)
A(e,m	) ≡ �A(e,m	) = 0, (13)

5
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where we denoted A(m	) ≡ 	A(m) for the sake of brevity. Furthermore, choosing the Coulomb complete
gauge constraint ∇ · A(e,m) = Φ(e,m) = 0, which is crucial for the correspondence with observable local
momentum and spin densities (1) in the laboratory reference frame [11, 12, 30, 32], the scalar potentials
vanishes, while the vector-potentials satisfy the wave equations of motion:

�A(e,m) = 0. (14)

In the acoustic scalar-potential representation (11), there is no gauge freedom, and the acoustic
equations of motion manifestly reduce to a wave equation. Indeed, the first equation (3) and (4) are
satisfied by definition, while the second equation (3) becomes the only wave equation of motion:

�φ = 0. (15)

In contrast, using the bivector-potential representation (12), the second equation (3) is satisfied by the
definitions (12), while the first equation (3) and (4) become the nontrivial equations of motion:

(
c−2 ∂2

t −∇2
)

a = ∇× (∇× a) + c−1∂t ∇× b,

c−1∂t ∇× a = ∇× (∇× b). (16)

These equations look more complicated than the wave equation; nevertheless, similar to the
electromagnetic case, these can be substantially simplified by fixing the gauge for the bivector potential
a ∼ (a, b). In particular, imposing the partial gauge-fixing condition

∂ ∧ a = 0, i.e., ∇ · b = 0, c−1∂tb +∇× a = 0, (17)

which is the appropriate analogue to the Lorenz–FitzGerald gauge in electromagnetism, reduces
equations (16) to the wave equation for the bivector potential:

� a = 0. (18)

In the absence of sources, we can also consistently assume

∇× a = b = 0, (19)

which completely fixes the gauge similarly to the Coulomb gauge in electromagnetism. The equation of
motion then obviously becomes the wave equation for the vector potential a:

� a = 0. (20)

As we mentioned above, in the ‘acoustic Coulomb gauge’ (19) the vector field a can be directly
associated with the displacement field. These gauge conditions and straightforward interpretation makes
physical sense for a stationary acoustic medium. However, the role of the gauge conditions and potential
field b in a Lorentz-boosted frame [43] or in moving acoustic media [50] remains an interesting question of
future research. For the remainder of the paper, we assume the gauge condition (19) to simplify the physical
interpretation in terms of the single vector potential a.

3.4. Lagrangian densities
The choice of potential representation of physical fields affects the whole field theory formalism, including
the Lagrangian density and conserved Noether currents. In this manner, electromagnetic field theories
based on electric and magnetic four-potentials (9) and (10) involves opposite Lagrangian densities [11, 14,
32]:

L[A(e)] =
1

2

[
ε0(E[A(e)])2 − μ0(H[A(e)])2

]
,

L[A(m)] =
1

2

[
μ0(H[A(m)])2 − ε0(E[A(m)])2

]
. (21)

The signs are important here to produce, independently of the representation, the correct positive definite
energy density [26]:

W =
1

2

(
ε0E2 + μ0H2

)
. (22)

6
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In a similar manner, the acoustic Lagrangian density also depends on the representation. In the
scalar-potential representation (11), we obtain the Klein–Gordon-like Lagrangian [4]

L[φ] =
1

2

[
c−2(∂tφ)2 − (∇φ)2

]
=

1

2

[
β (p[φ])2 − ρ (v[φ])2

]
. (23)

This Lagrangian has the opposite sign as compared with the expected form (5).
In terms of the vector displacement potential a in the gauge (19), the acoustic Lagrangian density

becomes

L[a] =
1

2

[
c−2(∂ta)2 − (∇ · a)2

]
=

1

2

[
ρ (v[a])2 − β (p[a])2

]
, (24)

which has the same sign as equation (5).
Both L[φ] and L[a] yield the corresponding equations (3) and (4) as their equations of motion when φ

and a are varied, as well as the same positive definite acoustic energy density [1, 2]:

W =
1

2

(
ρ v2 + β p2

)
. (25)

4. Canonical momentum and spin densities

The choice of the representation affects canonical conserved quantities obtained via Noether’s theorem
from the corresponding Lagrangian density [11, 14]. These are canonical energy-momentum and
angular-momentum tensors, where the main representation-dependent objects are the canonical
momentum and spin angular momentum densities. The energy density, as well as the kinetic momentum
and angular momentum, are representation-independent.

Electromagnetic canonical momentum and spin densities obtained in the electric- and
magnetic-potential representations (9) and (10) are listed in table 1 [11, 14, 29]. For monochromatic fields,
the Coulomb gauge provides the transition to observable quantities [11, 12, 30] and the complex potential
and field amplitudes become simply related as c

√
ε0 Ē = iωĀ(e) and c

√
μ0 H̄ = iωĀ(m) [11]. This results in

the following expressions for the time-averaged canonical momentum and spin density in the two
representations, respectively:

P̄ =
ε0

2ω
Im

[
Ē∗ · (∇) Ē

]
, S̄ =

ε0

2ω
Im

(
Ē∗ × Ē

)
,

P̄ =
μ0

2ω
Im

[
H̄∗ · (∇) H̄

]
, S̄ =

μ0

2ω
Im

(
H̄∗ × H̄

)
. (26)

Thus, each of these representations produces canonical quantities dependent only on one of the fields:
either electric or magnetic. This breaks the dual symmetry of Maxwell’s equations without sources, so
recently a dual-symmetric formalism was introduced that combines both representations to yield
symmetrized canonical quantities (1) involving both electric and magnetic fields [11, 12, 14, 17, 20–23, 29,
30, 32]. Still, the pure-electric and pure-magnetic representations remain important in problems where only
electric or magnetic light-matter interactions are considered [11, 13, 18–21, 24, 51].

In a similar manner, the two acoustic representations (11) and (12) via the scalar and bivector potentials
result in the canonical momentum and spin being expressed via pressure- and velocity-related quantities,
respectively. In the scalar representation, canonical Noether currents yield the momentum and spin
densities:

P =

√
β

c
p (∇)φ = ρβ pv = P , S = 0. (27)

This form is typical for a scalar theory, where the canonical momentum coincides with the kinetic one P
(an acoustic analogue of the Poynting vector) and the spin is absent [1–3].

In contrast, the vector-potential representation (assuming the gauge b = 0) yields the momentum and
spin densities as follows:

P =

√
ρ

c
v · (∇) a 	= P , S =

√
ρ

c
v × a. (28)

The presence of spin in this representation and in the ‘acoustic Coulomb gauge’ (19) makes perfect physical
sense. Since −a and v can be associated with the displacement and velocity fields, respectively, their vector
product describes the mechanical angular momentum caused by the microscopic elliptical motion of the
particles (molecules) in the medium. This is exactly the acoustic spin revealed in recent works [5–9, 27].
Moreover, the canonical momentum density in equation (28) also has a clear interpretation, because its
form can be associated with the Stokes drift of the medium molecules [27].

7
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In the case of monochromatic fields, we have iω φ̄ = c
√
β p̄ and iω ā = c

√
ρ v̄, and the time-averaged

momentum and spin densities in the two representations, equations (27) and (28) become, respectively:

P̄ =
β

2ω
Im

[
p̄∗(∇) p̄

]
=

ρβ

2
Re

(
p̄∗v̄

)
= P̄ , S̄ = 0. (29)

P̄ =
ρ

2ω
Im

[
v̄∗ · (∇) v̄

]
, S̄ =

ρ

2ω
Im

[
v̄∗ × v̄

]
. (30)

Equations (29) and (30) look similar to equations (2) but the pressure- and velocity-related contribution
are separated between the two representations. The pressure-related quantities (29) correspond to
traditional spinless acoustic theory, while the velocity-related quantities (30) were recently put forward in
[6]. To combine the pressure and velocity degrees of freedom, one needs a combination of the scalar and
vector representations, which is considered in the next section.

Note that the integral of the spin density (28) S over a volume is determined by the boundary, consistent
with the expected longitudinal (spin-0) nature of acoustic waves. Using

√
ρ v = ∇φ and ∇× a = 0 we find

∫∫∫
Ω

S dΩ = c−1

∫∫∫
Ω

∇× (φ a) dΩ = c−1

∫∫
∂Ω

(φ a) × dΣ, (31)

where dΩ and dΣ are the elements of the volume and enclosing surface area, respectively. When the
displacement a vanishes on the boundary, such as for far-field waves emanating from an interior source, the
integral spin over the volume vanishes [8].

To illustrate the appearance of non-zero acoustic spin density from the vector displacement field a, we
consider the simple example of two interfering orthogonally propagating monochromatic plane waves [6,
52]. We can decompose each acoustic field of this superposition in terms of either the scalar or vector
potentials:

φ1 = a0 cos(kx − ωt), φ2 = a0 cos(ky − ωt),

a1 = a0 cos(kx − ωt) ex, a2 = a0 cos(ky − ωt) ey, (32)

where {ex, ey, ez} are the 3D unit vectors. Calculating the corresponding velocity fields v1,2 and taking the
superposition a = a1 + a2, v = v1 + v2, we find the spin density (28) to be

S = S̄ = a2
0
ω

c2
sin[k(y − x)] ez. (33)

In turn, the canonical momentum density (28) in the vector representation becomes

P = a2
0

ω2

c3

[
sin2(kx − ωt) ex + sin2(ky − ωt) ey

]
, (34)

which yields P̄ =
(
a2

0ω
2/2c3

)
(ex + ey) when time-averaged. The time-averaged canonical/kinetic

momentum density (29) in the scalar representation is P̄ =
(
a2

0ω
2/2c3

) [
1 + cos(kx − ky)

]
(ex + ey).

Figure 1 shows the distributions of the net displacement and velocity fields, as well as the appearance of
the local acoustic spin from their vector product.

5. Sources and combined spinor potentials

5.1. Coupling to sources
The choice of the potential representation in field theory is closely related to the coupling to sources of the
field. For example, in standard electromagnetism, only the electric charges and currents are present, and
therefore, the electric-potential representation (9) is more relevant. In the presence of only magnetic charges
and currents, the magnetic-potential representation (10) would be most suitable. Thus, a particular type of
sources/coupling singles out the most relevant representation and, hence, canonical densities in the problem
[14]. This also supports the combined dual-symmetric representation in the absence of sources, to not
break the dual symmetry inherent in Maxwell equations (6) and (7).

Therefore, we first consider an important problem of the coupling to sources in acoustics. Acoustic wave
equation (3) with generic sources can be written as [1, 2]

ρ ∂tv +∇p = g, β ∂tp +∇ · v = g0, (35)

8



New J. Phys. 22 (2020) 053050 L Burns et al

Figure 1. Superposition of equal-amplitude acoustic plane waves (32) with perpendicular wavevectors k1 = kex and k2 = key

and equal frequencies ω. We show the instantaneous displacement field x = −
√
β a, instantaneous velocity field v = ∂tx, as well

as the corresponding trajectories of the motion of microscopic particles (molecules) of the medium. The intrinsic spin density
(33) S arises from locally elliptical motions of the molecules, while the canonical momentum (34) P can be associated with the
Stokes drift of the molecules [27]. Placing a macroscopic probe particle in the medium (shown in black here), which is
dipole-coupled to the velocity field v, the spin and canonical-momentum densities produce, respectively, the radiation torque
T ∝ S̄ and force F ∝ P̄ on this particle [9].

where g is a vector force density, which affects the acceleration according to Newton’s law, and g0 is the
source of the number of particles, which affects the pressure derivative in the continuity equation. We
assume that the longitudinality condition (4) remains unaffected.

As with electromagnetism, the introduction of sources formally spoils the precondition for using the
Poincaré lemma; nevertheless, the sources can still be consistently introduced by making appropriate
modifications of the Lagrangian densities after the representation has been chosen. In this manner, the
scalar particle source g0 can be introduced formally via a minimal-coupling Lagrangian term with the scalar
potential:

L[φ] 
→ L[φ] + Lint[φ] =
1

2

[
c−2(∂tφ)2 − (∇φ)2

]
−√

ρ g0 φ. (36)

This Lagrangian produces the second equation (35) as the equation of motion.
Similarly, the vector force source g can be introduced formally via the minimal-coupling Lagrangian

with the vector potential. Assuming the ‘acoustic Coulomb gauge’ (19), this yields

L[a] 
→ L[a] + Lint[a] =
1

2

[
c−2(∂ta)2 − (∇ · a)2

]
−
√
β g · a, (37)

which reproduces the first equation (35) as the equation of motion.
Thus, each representation naturally couples to only one corresponding type of source. If we wish to treat

probe particles that couple to both pressure and velocity fields, which is the generic case for small acoustic
particles [9], we are motivated to consider a representation that involves both potentials φ and a.

5.2. Symmetric spinor potential representation
To construct the symmetrized scalar–vector acoustic representation, we employ again the
electromagnetic-acoustic analogy. The dual-symmetric electromagnetic theory [11, 32] combines, using
geometric algebra terminology [14, 36–41], the electric four-vector potential (9) and the magnetic
pseudo-four-vector potential (10) into a unified multi-graded (complex) four-vector potential
Z = (A(e) + A(m))/2, and its dual Z̃ = (A(e) − A(m))/2. The Faraday bivector field is then written as F = ∂Z,
and there is also dual field G = ∂Z̃ which characterizes the relative contributions of the electric and

9
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magnetic potentials. Assuming the Lorenz–FitzGerald gauge ∂ · Z = 0, the condition G = 0 identifies the
electric and magnetic contributions and yields the dual-symmetric electromagnetic theory [14], which is
summarized in table 3. The corresponding dual-symmetric Lagrangian without sources takes the form
L[Z, Z̃] = (∂Z) · (∂Z̃) = F · G = 0. This approach produces dual-symmetric canonical Noether currents
and the corresponding symmetrized canonical momentum and spin densities (1) [11, 14].

In analogous way, the acoustic scalar potential (11) φ and vector potentials (12) a ∼ (a, b) can be
combined into one multi-graded potential ψ and its dual ψ̃:

ψ =
φ− a

2
, ψ̃ =

φ+ a

2
. (38)

Unlike the complex four-vector potential Z of dual-symmetric electromagnetism, which has odd grade, the
potential ψ is an even-graded object that can be understood as a spinor. Spinors often represent group
transformations [41] and play a vital role in relativistic quantum theory [37, 40, 53]. However, here we use
the name spinor in a descriptive way to indicate that the object is of even grade and to highlight its unusual
structure. These spinor potentials generate the four-vector acoustic field V = (

√
β p,

√
ρ v) and the dual

field Q = (
√
β q,

√
ρ u) that characterizes the relative contribution of the scalar and bivector potentials:

V = −∂ψ, Q = −∂ψ̃. (39)

When Q = 0, the scalar and bivector potential representations become identified, entirely similar to the
dual-symmetric electromagnetism.

In terms of the standard scalar and three-vector fields, equations (38) and (39) yield (cf. equations (11)
and (12)) √

β p =
−∂0φ+∇ · a

2
,

√
ρ v =

∇φ− ∂0a +∇× b

2
,

√
β q =

−∂0φ−∇ · a

2
,

√
ρu =

∇φ+ ∂0a −∇× b

2
. (40)

Notably, a joint scalar and vector potential representation has precedent in acoustics in the context of
finite-element analyses of fluid-structure interactions, where it has found utility in addressing numerical
instabilities [48, 49].

The corresponding symmetrized source-free Lagrangian (with the condition Q = 0) also takes the form
similar to the electromagnetic one:

L[ψ, ψ̃] = (∂ψ) · (∂ψ̃) = V · Q = 0. (41)

Since this Lagrangian is covariantly expressed in terms of both the spinor ψ and its dual ψ̃, it implies
equations of motion obtained by varying both quantities. Expressing the Lagrangian (41) in 3D, after
adding sources and fixing the gauge ∇× a = b = 0, yields (cf. equations (36) and (37))

L[φ, a] =
L[φ] + L[a]

2
+ Lint[φ] + Lint[a]. (42)

In this approach, φ couples to g0 while a couples to g, as expected.
Importantly, the Lagrangian (42) produces the expected equations of motion (35), as well as the

longitudinality equation (4). In addition, as shown in the appendix, it generates similar equations of motion
for the dual fields (q, u):

ρ ∂tu +∇q = −g, β ∂tq +∇ · u = g0, ∇× u = 0. (43)

The boundary conditions for the spinor potential ψ fix the boundary conditions and ensures unique
solutions for both the physical fields (p, v) and the dual fields. In particular, it is natural to assume that all
fields must vanish at infinity. We can understand the dual-field equations (43) from a causally dual
perspective. That is, the dynamics of (q, u) causally determine the source fields (g0, g) [54, 55], which then
in turn causally determine the pressure and velocity fields (p, v). Thus, one can think of equation (43) as
describing what fields (q, u) would be needed to produce the effective sources (g0, g). In the source-free case
we can set q = 0 and u = 0 on the boundary (and hence throughout the entire space), which symmetrizes
the scalar and vector potential representations of the acoustic fields p and v. The presence of sources,
however, makes the role of the dual fields Q ∼ (q, u) nontrivial.

10
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Table 3. Dual-electromagnetic representation symmetrized between the electric and magnetic representations (table 1) vs acoustic
spinor representation symmetrized between the scalar (pressure-related) and vector (velocity-related) representations (table 2). Here
the source-free case is shown.

We derive Noether currents from the Lagrangian (42) (see appendix). In this approach, the canonical
momentum and spin densities involve both real physical fields (p, v) and the dual fields (q, u):

P =
1

2c

[√
β (p + q) (∇)φ+

√
ρ (v − u) · (∇) a

]
, (44)

S =
1

2c

√
ρ (v − u) × a. (45)

These equations manifest a remarkable feature of the symmetrized spinor representation with sources: the
form of canonical densities depend on the presence and nature of sources.

In the source-free case, where q = 0 and u = 0, the canonical momentum and spin densities become the
average of the scalar-representation and vector-representation expressions (27) and (28):

P =
1

2c

[√
β p (∇)φ+

√
ρ v · (∇) a

]
, S =

√
ρ

2c
v × a. (46)

Note that here the spin density acquires the factor of 1/2, as compared to the spin density (28) in the
vector-potential representation, which has a clear physical interpretation based on the microscopic motion
of the medium particles [8]. As before, the energy density, as well as kinetic momentum and angular
momentum, remain representation-independent. Table 3 summarizes all the main quantities in the
scalar–vector-symmetric (spinor) acoustic theory without sources.

For source-free monochromatic fields, the connections between the potentials and fields (taking into
account the gauge and source-free constraints, see table 3) remain iω φ̄ = c

√
β p̄ and iω ā = c

√
ρ v̄, so that

equations (46) yield

P̄ =
1

4ω
Im

[
β p∗(∇) p + ρ v∗ · (∇) v

]
, S̄ =

ρ

4ω
Im

[
v∗ × v

]
. (47)
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These expressions are similar to equation (2) postulated in [8, 9] up to the additional factor of 1/2 at the
spin density. This factor arises from the symmetrization between the scalar (spinless) and vector
representation, and it is required to maintain the equation P̄ = P̄ + 1

2∇× S̄ that underpins Belinfante’s
transition from canonical to kinetic quantities [3, 11, 14, 25]. Notably, the factor displayed in equation (47)
is supported by recent calculations of acoustic radiation force and torque on a probe particle [9]. To have
the same coefficients in the velocity-related parts of the expressions for the force/momentum and
torque/spin, one has to use equation (47) rather than (2).

Next, when only the scalar source g0 is present, g = 0, the systems of equations (35) and (43) become
equivalent with the same boundary conditions so yield the same solutions (q, u) = (p, v). In this case,
equations (44) and (45) reduce to equation (27) of the scalar representation. Similarly, in the presence of a
purely vector source g, g0 = 0, equations (35) and (43) have opposite sources so yield matched but opposite
solutions (q, u) = (−p,−v). In this case, equations (44) and (45) reduce to equation (28) of the vector
representation. This ‘source-representation locking’ makes perfect physical sense in the context of practical
problems, because canonical momentum and spin densities are always measured via local wave-matter
interactions [6, 9, 11, 18–22, 24, 51], and the character of this interaction (e.g., electric/magnetic in
electromagnetism or scalar/vector in acoustics) determines what quantity is actually measured.

In the general case, when both scalar and vector sources g0 and g are present, equations (35) and (43) do
not produce a simple relation between the (q, u) and (p, v) fields. As a result, the canonical momentum (44)
and spin density (45) do not acquire a clear universal form.

6. Concluding remarks

Using the analogy between electromagnetism and acoustics, we have constructed novel representations of
Lagrangian acoustic field theory. In contrast to the traditional spinless approach based on a single scalar
velocity potential, the new representations are based on vector potentials. In the simplest case of motionless
medium and suitable Coulomb-like gauge, the vector potential can be associated with the acoustic
displacement field, and it can be regarded as the acoustic counterpart of the vector potential in
electromagnetism. Importantly, the choice of representation determines the form of the Lagrangian density
and canonical Noether currents, including canonical momentum and spin densities crucial for applications.

Remarkably, several arguments speak in favour of the vector representation rather than the scalar one.
First, the Lagrangian takes the expected form of the difference between the kinetic and potential energies of
the medium particles (molecules). Second, the canonical momentum density (30) can be directly associated
with the Stokes drift of the molecules [27]. Finally, the vector-potential representation produces non-zero
spin angular momentum density (30) in generic sound wave fields. This quantity, surprising for purely
longitudinal (curl-less) fields associated with spin-0 phonons, was introduced only recently [5–9], but it has
already found direct experimental and numerical confirmations [6, 9, 27].

Acoustic waves are described by two fields: scalar pressure and vector velocity. Correspondingly, the
scalar and vector representations reflect properties related to these scalar and vector degrees of freedom. To
take into account both the scalar and vector sides of acoustic wave fields, we have constructed a joint
spinor-potential representation, which includes both the scalar and vector potentials. This construction is
the acoustic analogue of dual-symmetric electromagnetism, incorporating the electric and magnetic vector
potentials on equal footing [11, 12, 14, 17, 29, 30, 32]. As with dual-symmetric electromagnetism,
preserving the equal footing of the acoustic scalar and vector potentials seems most natural in the absence
of sources.

We have also included natural scalar and vector sources of acoustic fields in this general spinor-potential
representation. Strikingly, the presence and nature of sources controls the form of the canonical momentum
and spin densities. Namely, in the source-free case, these densities have both pressure-related and
velocity-related contributions (47), as suggested in [8, 9]. Coupling to purely-scalar (purely-vector) sources
then produces the momentum and spin densities of the scalar (vector) representation, equations (29) and
(30). This is makes physical sense, because one can measure the local densities only via local interactions of
the wave field with an external probe, which crucially depends on the nature of the probe. For example,
purely electric (magnetic) charges/dipoles couple to electric (magnetic) part of the electromagnetic field
and break the dual symmetry of free-space electromagnetic fields. In a similar manner, acoustic monopoles
and dipoles couple to the scalar-pressure and vector-velocity fields, respectively [9]. The symmetric
spinor-potential representation admits the possibility of any probe coupling such that the coupling itself
automatically picks out the correct measured quantities. This feature of the representation locking to the
source would be impossible if only the scalar or vector potentials were used a priori, which strongly
motivates considering the spinor-potential representation as the fundamental representation for acoustic
fields.
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Our approach thus has strong implications for both practical applications and foundational
understanding of acoustics. At the same time, it reveals and leverages a profound set of symmetries hidden
in the structure of acoustic field theory. That is, we observed that pressure and velocity fields are best
understood as parts of a relativistic four-vector in a Minkowski-like spacetime (with the speed of sound
substituting the speed of light). We found that expressing this spacetime structure in the mathematical
language of geometric (Clifford) algebra enabled a straightforward analysis of the problem. Derivations
simplified, as highlighted in the appendix, since proper spacetime invariants could be manipulated directly,
and we found that previously hidden structure became manifest. Indeed, though the symmetric spinor
potential representation is necessary to reproduce the postulated canonical momentum and spin densities
of the field as Noether currents in a source-locking manner, such a possibility is not obvious using
traditional three-vector or tensor component formulations of the Lagrangian theory. In this sense we found
a significant gain in physical intuition and insight from learning and using Clifford algebraic
methods.

Our theory also raises several interesting questions for further study. The Lorentz symmetries inherent
to acoustic spacetime need to be explored in nontrivial examples. We anticipate that such transformations
will produce apparent motion of the medium as experienced by a moving observer (that is, moving relative
to the equilibrium frame of the medium). The role of the second vector potential b in different frames and
choices of gauge is yet to be fully understood. Similarly, the spinor-potential representation makes it clear
that a vorticity-inducing source is structurally possible, which would break manifest longitudinality of the
acoustic field. We have neglected this type of source here to focus on the better-known longitudinal case,
but this type of source may have direct connections to rotating acoustic point-sources, transverse elastic
waves, and analogies to acoustic black holes.

Generalizing our formalism to waves in elastic media (which exhibit both longitudinal and transverse
modes) represents an important but nontrivial problem for future study. The main difficulty there is that,
in contrast to free-space electromagnetism and acoustics of fluids/gases, the longitudinal and transverse
elastic modes propagate with different velocities cl and ct [56, 57]. Therefore, this case cannot be described
within a single Minkowski spacetime formalism; a double-spacetime approach could be suitable.

Finally, our approach with a spinor potential may also have nontrivial implications for the canonical
quantization of phonons, particularly regarding the quantum mechanical treatment of non-scalar
interactions and non-zero spin angular momentum. This could have important applications in the
engineering of acousto-optic mesoscopic devices. We leave canonical quantization of the symmetrized
acoustic Lagrangian, as well as dual-symmetric electromagnetism, to future work.
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Appendix A. Noether current derivations

Here we provide a short derivation of Euler–Lagrange equations and the conserved Noether currents for the
acoustic Lagrangian densities. For simplicity, we use the mathematical formalism of geometric
(Clifford) algebra [37–41, 53, 58–65], since it dramatically simplifies the manipulation of invariant
spacetime quantities, including the spinor potential representation. In particular, the derivation below
assumes knowledge of spacetime algebra, the real Clifford algebra constructed over the four dimensional
Minkowski vector space with signature (+,−,−,−) [14, 37, 63, 64]. We also translate the final results into a
more common tensor component notation for clarity and present those results in table A1. For details on
the multivector Lagrangian techniques used in this section, see reference [36].

We define the spinor potential ψ and spinor source Λ:

ψ = (φ− a)/2, Λ =
√
ρ g0 +

√
β G, (A.1)
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Table A1. Acoustic Lagrangian quantities in the symmetric spinor-potential representation. We compare laconic expressions written
using geometric algebra to those written using equivalent tensor component notation.

in terms of the scalar fields φ and g0 and the bivector fields:

a = a + Ib G = g − Iρc h. (A.2)

Here the bolded three-vector pairs (a, b) and (g, h) are the timelike and spacelike parts of the bivectors a
and G, relative to the choice of a particular reference frame {γμ}μ=0,1,2,3 with timelike unit vector γ0. The
spacetime pseudoscalar I = γ0γ1γ2γ3 is the unit four-volume and plays the role of the Hodge-star duality
operation. Note that in the main text we set the source field h to zero, since it acts as a vorticity source that
breaks longitudinality of the acoustic fields—we will explore the consequences of this interesting possibility
in future work.

With these definitions, the physical fields and their duals are four-vectors:

V = −∂ψ = (
√
β p +

√
ρ v)γ0, Q = −∂ψ̃ = (

√
β q +

√
ρ u)γ0. (A.3)

For simplicity of derivations, we are assuming the partial gauge constraint ∂ ∧ a = 0 analogous to the
Lorenz–FitzGerald condition in EM. Here ψ̃ = (φ+ a)/2 is the adjoint spinor, computed as the algebraic
reversion of ψ. Using this notation, the Lagrangian density with sources in equations (41) and (42) acquires
the simple form

L = 〈∂ψ∂ψ̃ − 2ψΛ̃〉, (A.4)

where Λ̃ =
√
ρg0 −

√
βG is the adjoint source spinor and 〈·〉 is the projection onto the scalar subspace.

Varying the Lagrangian density with respect to the spinor field ψ yields the Euler–Lagrange equations of
motion ∂ψL = ∂μ(∂∂μψL). These expand to

− 2Λ̃ = ∂μ(∂∂μψ〈∂ψ∂ψ̃〉) = ∂μ(∂ψ̃γμ + γμψ̃∂) = 2∂ψ̃∂ (A.5)

using the multivector identities ∂̇AḂC = γμ A(∂μB)C, 〈ABC〉 = 〈BCA〉, 〈A〉 = 〈Ã〉, and ∂̇A

〈
ȦB

〉
= PA(B),

which is the projection of B onto the grades of A. This equation implies the two equations for the physical
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fields and their duals
∂V = Λ̃, ∂Q = Λ (A.6)

with matched boundary conditions inherited from those of ψ. Expanding these equations into a particular
reference frame reproduces equations (4), (35) and (43) of the main text.

The translational symmetry of the Lagrangian density produces the canonical energy–momentum tensor
as the conserved Noether current

T(n) = (nμ/c) ∂̇〈ψ̇ ∂∂μψL0〉 − (n/c)L0 = −∂̇〈( ˙̃ψV + ψ̇Q)(n/c)〉 − (n/c)L0, (A.7)

where n is a unit four-vector specifying the direction of the translation and L0 is the source-free Lagrangian
density. We use the overline notation for the tensor to facilitate direct comparison with the EM case in [14].
The components of this tensor are

Tμν = γμ · T(γν) = − 1

2c

[
(∂μφ)(Vν + Qν) + (∂μaνα)(Vα − Qα)

]
− ημν

c
L0, (A.8)

where ημν are the Minkowski metric tensor components. The canonical energy and momentum densities
are obtained from the energy–momentum tensor computed along a particular timelike direction T(γ0),
which separates into the canonical energy density T(γ0) · γ0 = T00 ≡ W/c and the canonical momentum
density T(γ0) ∧ γ0 = (T10, T20, T30) ≡ P. In the source-free case when Q = 0 then these expressions
reproduce equations (25) and (44).

Similarly, the Lorentz symmetry of the Lagrangian density (including spatial rotations and boosts)
produces the canonical angular momentum tensor as the conserved Noether current M(n) = L(n) + S(n),
which splits naturally into contributions from the purely orbital angular momentum tensor
L(n) = x ∧ T(n) and a canonical spin tensor S(n). The components of L are (γμ ∧ γν) · L(γα) = Lμνα =

x[μTν]α = xμTνα − xνTμα. Given a bivector B that generates a particular rotation, we compute the adjoint
spin tensor directly to be

S(B) = γμ 〈(∂∂μψL0) [B, ψ]〉/c =
1

2c
(V − Q) · [B, a], (A.9)

where [B, a] = (Ba − aB)/2 is the Lie (commutator) bracket between the bivectors B and a. Using the
adjoint relation S(n) · B = n · S(B), we then obtain the spin tensor S(n) = [(V − Q) ∧ n, a]/(2c). The
components of the spin tensor are

Sμνα = (γμ ∧ γν) · S(γα) = S(γμ ∧ γν) · γα

=
1

2c
(Vβ − Qβ)aδσ

(
γβ · [γμ ∧ γν , γδ ∧ γσ] · γα

)
=

1

2c
(Vβ − Qβ)aδσ

1

4!
ηβ[ ξηω]α

(
ημδε

ξω
νσ + ηνσε

ξω
μδ − ημσε

ξω
νδ − ηνδε

ξω
μσ

)

=
1

2c
(Vβ − Qβ)aδσ

1

4!
η[ ξ
β ηω]

α ε
[ δ
ξω[μη

σ]
ν] . (A.10)

The final simplifications follow from observing that γμ ∧ γν = Jμν are the generators of the Lorentz group
and using the Lie bracket relations [Jμν , Jδσ] = (ημδJνσ + ηνσJμδ − ημσJνδ − ηνδJμσ)I, then noting that I is an
application of the Hodge star. The essential content of the spin tensor in a particular frame is the spin
density

S = S(γ0)I−1 =

√
ρ

2c
[(v − u) × (a + bI)] . (A.11)

Interestingly, in the presence of b the spin density acquires both three-vector and pseudo-three-vector parts,
unlike the EM spin density that is a pure pseudovector. This feature will be a subject of future investigation.
With the choice of gauge ∇× a = b = 0, this spin density reproduces equation (45) in the main
text.

To obtain the kinetic energy–momentum tensor TB(n), according to the Belinfante symmetrization
procedure [3, 11, 13, 14, 25], we add a correction that depends only upon the spin tensor:

TB(n) = T(n) +
1

2

(
∂ · S(n) + S(n ∧ ∂) − n · S(∂)

)
. (A.12)
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In the absence of sources (when Q = 0) this tensor reduces to a simple quadratic form

TB(n) =
1

2c
VnV , (A.13)

with components Tμν
B = (VμVν − ημνVαVα/2)/c. This is in perfect analogy to the EM case, where the

kinetic energy-momentum tensor is a quadratic form FnF̃/2c of the Faraday bivector F =
√
ε0 E +

√
μ0 H I.

The spin part of the angular momentum tensor disappears after this symmetrization, and the kinetic
angular momentum tensor becomes MB(n) = x ∧ TB(n).

ORCID iDs

Lucas Burns https://orcid.org/0000-0003-1223-4210
Konstantin Y Bliokh https://orcid.org/0000-0003-1104-8627
Franco Nori https://orcid.org/0000-0003-3682-7432

References

[1] Landau L D and Lifshitz E M 1987 Fluid Mechanics (Oxford: Heinemann)
[2] Bruneau M 2006 Fundamentals of Acoustics (London: ISTE Ltd)
[3] Soper D E 1976 Classical Field Theory (New York: Wiley)
[4] Bliokh K Y and Nori F 2019 Klein-Gordon representation of acoustic waves and topological origin of surface acoustic modes

Phys. Rev. Lett. 123 054301
[5] Long Y, Ren J and Chen H 2018 Intrinsic spin of elastic waves Proc. Natl Acad. Sci. USA 115 9951–55
[6] Shi C, Zhao R, Long Y, Yang S, Wang Y, Chen H, Ren J and Zhang X 2019 Observation of acoustic spin Natl Sci. Rev. 6 707–12
[7] Bliokh K Y and Nori F 2019 Transverse spin and surface waves in acoustic metamaterials Phys. Rev. B 99 020301(R)
[8] Bliokh K Y and Nori F 2019 Spin and orbital angular momenta of acoustic beams Phys. Rev. B 99 174310
[9] Toftul I D, Bliokh K Y, Petrov M I and Nori F 2019 Acoustic radiation force and torque on small particles as measures of the

canonical momentum and spin densities Phys. Rev. Lett. 123 183901
[10] Rondon I and Leykam D 2020 Acoustic vortex beams in synthetic magnetic fields J. Phys.: Condens. Matter 32 104001
[11] Bliokh K Y, Bekshaev A Y and Nori F 2013 Dual electromagnetism: helicity, spin, momentum and angular momentum New J.

Phys. 15 033026
[12] Bliokh K Y, Dressel J and Nori F 2013 Conservation of the spin and orbital angular momenta Electromagnetism New J. Phys. 16

093037
[13] Leader E and Lorce C 2014 The angular momentum controversy: what’s it all about and does it matter? Phys. Rep. 541 163–248
[14] Dressel J, Bliokh K Y and Nori F 2015 Spacetime algebra as a powerful tool for electromagnetism Phys. Rep. 589 1–71
[15] Cameron R P, Speirits F C, Gilson C R, Allen L and Barnett S M 2015 The azimuthal component of Poynting’s vector and the

angular momentum of light J. Opt. 17 125610
[16] Nieto-Vesperinas M 2015 Optical torque: electromagnetic spin and orbital-angular-momentum conservation laws and their

significance Phys. Rev. A 92 043843
[17] Berry M V 2009 Optical currents J. Opt. A: Pure Appl. Opt. 11 094001
[18] Bliokh K Y, Bekshaev A Y, Kofman A G and Nori F 2013 Photon trajectories, anomalous velocities and weak measurements: a

classical interpretation New J. Phys. 15 073022
[19] Canaguier-Durand A, Cuche A, Genet C and Ebbesen T W 2013 Force and torque on an electric dipole by spinning light fields

Phys. Rev. A 88 033831
[20] Bliokh K Y, Bekshaev A Y and Nori F 2014 Extraordinary momentum and spin in evanescent waves Nat. Commun. 5 3300
[21] Bliokh K Y, Kivshar Y S and Nori F 2014 Magnetoelectric effects in local light-matter interactions Phys. Rev. Lett. 113 033601
[22] Bliokh K Y and Nori F 2015 Transverse and longitudinal angular momenta of light Phys. Rep. 592 1–38
[23] Aiello A, Banzer P, Neugebauer M and Leuchs G 2015 From transverse angular momentum to photonic wheels Nat. Photon. 9

789–95
[24] Leader E 2016 The photon angular momentum controversy: resolution of a conflict between laser optics and particle physics

Phys. Lett. B 756 303–8
[25] Belinfante F J 1940 On the current and the density of the electric charge, the energy, the linear momentum and the angular

momentum of arbitrary fields Physica 7 449–74
[26] Jackson J D 1999 Classical Electrodynamics 3rd edn (New York: Wiley)
[27] Francois N, Xia H, Punzmann H, Fontana P W and Shats M 2017 Wave-based liquid-interface metamaterials Nat. Commun. 8

14325
[28] Calkin M G 1965 An invariance property of the free electromagnetic field Am. J. Phys. 33 958–60
[29] Barnett S M 2010 Rotation of electromagnetic fields and the nature of optical angular momentum J. Mod. Opt. 57 1339–43
[30] Cameron R P, Barnett S M and Yao A M 2012 Optical helicity, optical spin and related quantities in electromagnetic theory New J.

Phys. 14 053050
[31] Fernandez-Corbaton I, Zambrana-Puyalto X, Tischler N, Vidal X, Juan M L and Molina-Terriza G 2013 Electromagnetic duality

symmetry and helicity conservation for the macroscopic Maxwell’s equations Phys. Rev. Lett. 111 060401
[32] Cameron R P and Barnett S M 2012 Electric-magnetic symmetry and Noether’s theorem New J. Phys. 14 123019
[33] Nicolas L, Furstoss M and Galland M A 1998 Analogy electromagnetism-acoustics: validation and application to local impedance

active control for sound absorption Eur. Phys. J. Appl. Phys. 4 95–100
[34] Cameron R P 2014 On the ‘second potential’ in electrodynamics J. Opt. 16 015708
[35] Burns L 2019 Maxwell’s equations are universal for locally conserved quantities Adv. Appl. Clifford Algebras 29 62
[36] Lasenby A, Doran C and Gull S 1993 A multivector derivative approach to Lagrangian field theory Found. Phys. 23 1295–327
[37] Doran C and Lasenby A 2003 Geometric Algebra for Physicists (Cambridge: Cambridge University Press)

16

https://orcid.org/0000-0003-1223-4210
https://orcid.org/0000-0003-1223-4210
https://orcid.org/0000-0003-1104-8627
https://orcid.org/0000-0003-1104-8627
https://orcid.org/0000-0003-3682-7432
https://orcid.org/0000-0003-3682-7432
https://doi.org/10.1103/physrevlett.123.054301
https://doi.org/10.1103/physrevlett.123.054301
https://doi.org/10.1073/pnas.1808534115
https://doi.org/10.1073/pnas.1808534115
https://doi.org/10.1073/pnas.1808534115
https://doi.org/10.1093/nsr/nwz059
https://doi.org/10.1093/nsr/nwz059
https://doi.org/10.1093/nsr/nwz059
https://doi.org/10.1103/physrevb.99.020301
https://doi.org/10.1103/physrevb.99.020301
https://doi.org/10.1103/physrevb.99.174310
https://doi.org/10.1103/physrevb.99.174310
https://doi.org/10.1103/physrevlett.123.183901
https://doi.org/10.1103/physrevlett.123.183901
https://doi.org/10.1088/1361-648x/ab55f4
https://doi.org/10.1088/1361-648x/ab55f4
https://doi.org/10.1088/1367-2630/15/3/033026
https://doi.org/10.1088/1367-2630/15/3/033026
https://doi.org/10.1088/1367-2630/16/9/093037
https://doi.org/10.1088/1367-2630/16/9/093037
https://doi.org/10.1016/j.physrep.2014.02.010
https://doi.org/10.1016/j.physrep.2014.02.010
https://doi.org/10.1016/j.physrep.2014.02.010
https://doi.org/10.1016/j.physrep.2015.06.001
https://doi.org/10.1016/j.physrep.2015.06.001
https://doi.org/10.1016/j.physrep.2015.06.001
https://doi.org/10.1088/2040-8978/17/12/125610
https://doi.org/10.1088/2040-8978/17/12/125610
https://doi.org/10.1103/physreva.92.043843
https://doi.org/10.1103/physreva.92.043843
https://doi.org/10.1088/1464-4258/11/9/094001
https://doi.org/10.1088/1464-4258/11/9/094001
https://doi.org/10.1088/1367-2630/15/7/073022
https://doi.org/10.1088/1367-2630/15/7/073022
https://doi.org/10.1103/physreva.88.033831
https://doi.org/10.1103/physreva.88.033831
https://doi.org/10.1038/ncomms4300
https://doi.org/10.1038/ncomms4300
https://doi.org/10.1103/physrevlett.113.033601
https://doi.org/10.1103/physrevlett.113.033601
https://doi.org/10.1016/j.physrep.2015.06.003
https://doi.org/10.1016/j.physrep.2015.06.003
https://doi.org/10.1016/j.physrep.2015.06.003
https://doi.org/10.1038/nphoton.2015.203
https://doi.org/10.1038/nphoton.2015.203
https://doi.org/10.1038/nphoton.2015.203
https://doi.org/10.1016/j.physletb.2016.03.023
https://doi.org/10.1016/j.physletb.2016.03.023
https://doi.org/10.1016/j.physletb.2016.03.023
https://doi.org/10.1016/s0031-8914(40)90091-x
https://doi.org/10.1016/s0031-8914(40)90091-x
https://doi.org/10.1016/s0031-8914(40)90091-x
https://doi.org/10.1038/ncomms14325
https://doi.org/10.1038/ncomms14325
https://doi.org/10.1119/1.1971089
https://doi.org/10.1119/1.1971089
https://doi.org/10.1119/1.1971089
https://doi.org/10.1080/09500341003654427
https://doi.org/10.1080/09500341003654427
https://doi.org/10.1080/09500341003654427
https://doi.org/10.1088/1367-2630/14/5/053050
https://doi.org/10.1088/1367-2630/14/5/053050
https://doi.org/10.1103/physrevlett.111.060401
https://doi.org/10.1103/physrevlett.111.060401
https://doi.org/10.1088/1367-2630/14/12/123019
https://doi.org/10.1088/1367-2630/14/12/123019
https://doi.org/10.1051/epjap:1998247
https://doi.org/10.1051/epjap:1998247
https://doi.org/10.1051/epjap:1998247
https://doi.org/10.1088/2040-8978/16/1/015708
https://doi.org/10.1088/2040-8978/16/1/015708
https://doi.org/10.1007/s00006-019-0979-7
https://doi.org/10.1007/s00006-019-0979-7
https://doi.org/10.1007/bf01883781
https://doi.org/10.1007/bf01883781
https://doi.org/10.1007/bf01883781


New J. Phys. 22 (2020) 053050 L Burns et al

[38] Hestenes D and Sobczyk G 1984 Clifford Algebra to Geometric Calculus (Berlin: Springer)
[39] Hestenes D and Lasenby A N 1966 Space-Time Algebra vol 1 (Berlin: Springer)
[40] Hestenes D 1967 Real spinor fields J. Math. Phys. 8 798–808
[41] Crumeyrolle A 2013 Orthogonal and Symplectic Clifford Algebras: Spinor Structures vol 57 (Berlin: Springer)
[42] Barceló C, Liberati S and Visser M 2011 Analogue gravity Living Rev. Relativ. 14 3
[43] Gregory A L, Sinayoko S, Agarwal A and Lasenby J 2015 An acoustic space-time and the Lorentz transformation in aeroacoustics

Int. J. Aeroacoustics 14 977–1003
[44] Kinsler L, Frey A R, Coppens A B and Sandes J V 2000 Fundamentals of Acoustics (New York: Wiley)
[45] Devaud M, Bringuier É and Hocquet T 2014 Acoustics in the Lagrange Picture: An Application to the Rayleigh Radiation Pressure

https://hal.archives-ouvertes.fr/hal-01063296
[46] Hamdi M A, Ousset Y and Verchery G 1978 A displacement method for the analysis of vibrations of coupled fluid-structure

systems Int. J. Numer. Methods Eng. 13 139–50
[47] Wang X and Bathe K J 1997 Displacement/pressure based mixed finite element formulations for acoustic fluid-structure

interaction problems Int. J. Numer. Methods Eng. 40 2001–17
[48] Everstine G 1981 A symmetric potential formulation for fluid-structure interaction J. Sound Vib. 79 157–60
[49] Olson L G and Bathe K J 1985 Analysis of fluid-structure interactions. A direct symmetric coupled formulation based on the fluid

velocity potential Comput. Struct. 21 21–32
[50] Visser M 1998 Acoustic black holes: horizons, ergospheres and Hawking radiation Class. Quantum Grav. 15 1767–91
[51] Antognozzi M et al 2016 Direct measurements of the extraordinary optical momentum and transverse spin-dependent force

using a nano-cantilever Nat. Phys. 12 731–5
[52] Bekshaev A Y, Bliokh K Y and Nori F 2015 Transverse spin and momentum in two-wave interference Phys. Rev. X 5 011039
[53] Hiley B J and Callaghan R E 2010 The Clifford algebra approach to quantum mechanics B: the dirac particle and its relation to the

Bohm approach (arXiv:1011.4033)
[54] Butler P H, Gresnigt N G, van der Mark M B and Renaud P F 2012 A fields only version of the Lorentz force law: particles

replaced by their fields (arXiv:1211.6072)
[55] Butler P H and Gresnigt N G 2016 Symmetric but non-local pure-field expression of EM interactions J. Electromagn. Waves Appl.

30 1681–8
[56] Landau L D and Lifshitz E M 1986 Theory of Elasticity (Oxford: Pergamon)
[57] Auld B A 1973 Acoustic Fields and Waves in Solids (New York: Wiley)
[58] Macdonald A 2010 Linear and Geometric Algebra (Scotts Valley, CA: CreateSpace Independent Publishing Platform)
[59] Macdonald A 2012 Vector and Geometric Calculus vol 1 (Scotts Valley, CA: CreateSpace Independent Publishing Platform)
[60] Lounesto P 2001 Clifford Algebras and Spinors vol 286 (Cambridge: Cambridge University Press)
[61] Dorst L, Fontijne D and Mann S 2010 Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry

(Amsterdam: Elsevier)
[62] Felsberg M and Sommer G 2001 The monogenic signal IEEE Trans. Signal Process. 49 3136–44
[63] Hestenes D 2003 Spacetime physics with geometric algebra Am. J. Phys. 71 691–714
[64] Thompson J M T, Lasenby J, Lasenby A N and Doran C J L 2000 A unified mathematical language for physics and engineering in

the 21st century Philos. Trans. R. Soc., A 358 21–39
[65] Simons J P, Lasenby A, Doran C and Gull S 1998 Gravity, gauge theories and geometric algebra Philos. Trans. R. Soc., A 356

487–582

17

https://doi.org/10.1063/1.1705279
https://doi.org/10.1063/1.1705279
https://doi.org/10.1063/1.1705279
https://doi.org/10.12942/lrr-2011-3
https://doi.org/10.12942/lrr-2011-3
https://doi.org/10.1260/1475-472x.14.7.977
https://doi.org/10.1260/1475-472x.14.7.977
https://doi.org/10.1260/1475-472x.14.7.977
https://hal.archives-ouvertes.fr/hal-01063296
https://doi.org/10.1002/nme.1620130110
https://doi.org/10.1002/nme.1620130110
https://doi.org/10.1002/nme.1620130110
https://doi.org/10.1002/(sici)1097-0207(19970615)40:11&tnqx3c;2001::aid-nme152&tnqx3e;3.0.co;2-w
https://doi.org/10.1002/(sici)1097-0207(19970615)40:11&tnqx3c;2001::aid-nme152&tnqx3e;3.0.co;2-w
https://doi.org/10.1002/(sici)1097-0207(19970615)40:11&tnqx3c;2001::aid-nme152&tnqx3e;3.0.co;2-w
https://doi.org/10.1016/0022-460x(81)90335-7
https://doi.org/10.1016/0022-460x(81)90335-7
https://doi.org/10.1016/0022-460x(81)90335-7
https://doi.org/10.1016/0045-7949(85)90226-3
https://doi.org/10.1016/0045-7949(85)90226-3
https://doi.org/10.1016/0045-7949(85)90226-3
https://doi.org/10.1088/0264-9381/15/6/024
https://doi.org/10.1088/0264-9381/15/6/024
https://doi.org/10.1088/0264-9381/15/6/024
https://doi.org/10.1038/nphys3732
https://doi.org/10.1038/nphys3732
https://doi.org/10.1038/nphys3732
https://doi.org/10.1103/physrevx.5.011039
https://doi.org/10.1103/physrevx.5.011039
https://arxiv.org/abs/1011.4033
https://arxiv.org/abs/1211.6072
https://doi.org/10.1080/09205071.2016.1210543
https://doi.org/10.1080/09205071.2016.1210543
https://doi.org/10.1080/09205071.2016.1210543
https://doi.org/10.1109/78.969520
https://doi.org/10.1109/78.969520
https://doi.org/10.1109/78.969520
https://doi.org/10.1119/1.1571836
https://doi.org/10.1119/1.1571836
https://doi.org/10.1119/1.1571836
https://doi.org/10.1098/rsta.2000.0517
https://doi.org/10.1098/rsta.2000.0517
https://doi.org/10.1098/rsta.2000.0517
https://doi.org/10.1098/rsta.1998.0178
https://doi.org/10.1098/rsta.1998.0178
https://doi.org/10.1098/rsta.1998.0178

	Acoustic versus electromagnetic field theory: scalar, vector, spinor representations and the emergence of acoustic spin
	1.  Introduction
	2.  Linear acoustic and electromagnetic theories
	3.  Acoustic and electromagnetic potential representations
	3.1.  Electromagnetic potentials
	3.2.  Acoustic potentials
	3.3.  Equations of motion and gauge fixing
	3.4.  Lagrangian densities

	4.  Canonical momentum and spin densities
	5.  Sources and combined spinor potentials
	5.1.  Coupling to sources
	5.2.  Symmetric spinor potential representation

	6.  Concluding remarks
	Acknowledgments
	Appendix A.  Noether current derivations
	ORCID iDs
	References


