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In linear acoustics, the reciprocal behavior of waves traveling in periodic materials can be manipulated
by imposing external or configurational biases to the system. However, the nonreciprocity observed in
linear systems is energetically expensive. We demonstrate that strongly nonlinear, asymmetric lattices
can be designed to exhibit strong nonreciprocity that is passively adaptive and tunable. An alternative
class of waveguides consisting of two coupled nonlinear lattices, one stiffer than the other, allows wave
propagation preferentially in one direction at certain energy ranges. This “giant” nonreciprocal behavior is
obtained passively by tuning the propagation zones of these lattices in the frequency-energy domain. We
present numerical simulations corroborated by experiments to show an instance of this alternative class
of nonlinear waveguides. Specifically, at low input energy, wave packets generated by an applied impulse
at the lateral boundaries of the waveguide are blocked at the interface of the two lattices. However, at
intermediate energy ranges, wave packets initiated at the free boundary of the softer lattice propagate
through the waveguide, whereas wave packets initiated at the free boundary of the stiffer lattice are blocked
at the interface. The nonreciprocal acoustics persist until at the critical level of input energy, above which
waves propagate in both directions within the waveguide. The range of energy over which nonreciprocal
wave transmission occurs is passively tunable by appropriately manipulating the nonlinear propagation
zones of the lattices in the frequency-energy domain. The nonreciprocity concept is applicable to materials
and systems capable of exhibiting strongly nonlinear behavior and can find broad applications in cases
where passive targeted (directed) energy transfer in space and/or frequency is a desired outcome. For
example, nonlinear nonreciprocal metamaterials can be used in passive acoustic isolation designs with the
capacity for unidirectional sound transmission, thus eliminating their “acoustic signature”; in ultrasonics,
to yield better wave focusing at preferential frequencies, and thus improved signal-to-noise ratios; in shock
isolation systems, for example, by rapid nonreciprocal low-to-high nonlinear energy transfers, yielding
fast structural response attenuation; or in networks of coupled oscillators enabling passive, irreversible
energy transmission in preferential directions. Clearly, such capabilities for passive nonreciprocity are not

attainable in linear systems.
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L. INTRODUCTION

Reciprocity is a fundamental property of linear time
invariant (LTI) systems that are governed by self-adjoint
operators and is a consequence of their symmetric Green’s
functions [1]. Reciprocity is directly related to time-
reversal symmetry through the Onsager-Casimir principle
of microscopic reversibility [2—4], so reciprocity breaking
is only possible by breaking the time-reversal symmetry
on the microlevel [5]. Recently, this area has attracted
considerable interest due to its important potential appli-
cations, for example, mechanical diodes, acoustic logic,
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and targeted (irreversible) wave, sound, and energy trans-
mission. Common approaches to break reciprocity (and
time-reversal symmetry) in LTI systems include applying
odd-symmetric external biases [6—8] or by inducing time-
variant properties [7,9,10]. Indeed, Popa and Cummer
achieved wave isolation factors over 10 dB by coupling
an active metamaterial to a nonlinear electronic circuit [9].
In that system, all three cited approaches were employed
to break the Onsager-Casimir principle of microscopic
reversibility. Another example of biased wave propagation
are sytems whose physical properties are spatiotemporally
modulated, such as acoustic circulators [11], graphene-
based nanoelectromechanical systems (NEMS) [6], and
various types of electromechanical systems [12—15]. While
these approaches are attractive, the introduction of exter-
nal biases or time-varying properties requires an external
energy source (making these designs nonpassive) and are
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less effective under broadband impulse excitations. An
alternative approach recently explored is through utiliz-
ing intentional nonlinearities, yielding completely passive
nonreciprocity without the need for external energy input
or external biases. Moreover, it has been shown that non-
linearity in itself, although necessary, is not sufficient for
passive breaking of reciprocity, since several additional
factors are important, including the boundary conditions,
the asymmetries of the governing nonlinear operators, and
the choice of the spatial points where the nonreciproc-
ity criterion is tested [16]. For example, lattice materials
incorporating nonlinear stiffness elements, asymmetry, and
scale hierarchy exhibit nonreciprocity under impulse exci-
tation [17] as they support nonlinear targeted (irreversible)
energy transfers across spatial and/or temporal scales. As
shown in [17], the governing nonlinear mechanism for
nonlinear reciprocity breaking is transient resonance cap-
ture [18], a concept that can be effectively translated to
designing nonreciprocal cellular lattice materials.

In this study, we consider a nonlinear, asymmetric lat-
tice waveguide that passively breaks acoustic reciprocity
without requiring any external biases or any other source
of energy. Considering one-dimensional wave transmis-
sion, we study this waveguide using numerical simulations
and validate our theoretical predictions experimentally.
The waveguide entails a lattice material capable of trans-
mitting acoustic waves in one direction, while arresting
their propagation in the opposite direction. We accom-
plish this by coupling two dissimilar, strongly nonlinear
lattices—in which the linear elastic components in the non-
linear stiffness elements are negligible. Each lattice has
uniform dynamic properties throughout, however, com-
pared to each other, they only defer in their elastic on-site
stiffness, henceforth referred to as the “stiff” and “soft” lat-
tices. The introduction of such intentional nonlinearities
and asymmetries permits passive tunability of the system
through strong frequency-energy dependence.

II. MODEL OF THE PROBLEM AND
BACKGROUND CONCEPTS

A reduced order model (ROM) for the waveguide is
depicted in Fig. 1(a). The waveguide consists of an array
of 10 cells, with each cell consisting of a lumped mass m
that is grounded by a linear spring (kg1 or kg2)—viscous
damper (d,; or d, ) pair. All cells are coupled by means
of uniform nonlinear stiffnesses (ky)—viscous damping
(d;) pairs. If kg1 > kg, the left five cells comprise the
“stiff” lattice, and the right five cells the “soft” lattice.
Moreover, the force-displacement characteristic of each
nonlinear coupling stiffness is assumed to be in the form
F = ky8® where § is the extension of the nonlinear spring,
F is the resulting force, and the value of k& is constant
along the waveguide; it follows that the waveguide is
strongly nonlinear, since the coupling stiffnesses lack any
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FIG.1. Nonreciprocal 10-cell waveguide composed of two dis-
similar lattices: (a) Reduced order model of the waveguide with
uniform nonlinear coupling elements—the “stiff” lattice is com-
posed of cells 1 to 5 with springs and viscous dampers kg ; and
dg 1, respectively, whereas the “soft” lattice consists of cells 6
to 10 with parameters kg > and d, >. (b) Breather transmission in
the propagation zones (PZs) of the two lattices, with the breather
frequency band represented by arrows for weak (blue), critical
(green), and strong (orange) impulsive excitation applied to the
free end of the stiff (darker shade) or soft (lighter shade) lat-
tice—forks in the arrows indicate successful initiation of a wave
packet in the PZ of the downstream lattice. (c-e) Schematic repre-
sentation of breather propagation in the waveguide for weak (c),
critical (d), and strong (e) excitation, respectively—darker col-
ored arrows denote stiff-soft, and lighter colored arrows soft-stiff
direction of propagation.

linear components, although the results will not be affected
by the presence of a small linear component. The inclusion
of strong stiffness nonlinearity is an important require-
ment in our nonreciprocal approach as it is needed to
initiate the governing transient resonance captures and tar-
geted energy transfers that break reciprocity [17]. Hence,
the nonlinear waveguide is the combination of a left stiff
lattice and a right soft lattice. The left end of the stiff lat-
tice and the right end of the soft lattice are free, and the
nonlinear stiffness—viscous damper pair that couples the
fifth cell (right-most cell of the stiff lattice) and the sixth
cell (left-most of the soft lattice) is henceforth referred
to as the “interface” or “interfacial coupling” of the two
lattices. Considering one-dimensional acoustics and for
a given direction of wave propagation, the lattices pre-
ceding and following the interface are referred to as the
“upstream” and ‘downstream’ lattices, respectively. The
acoustics of uniform and boundless analogs of these lat-
tices were recently studied analytically and numerically
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in [23], and it was found that they can support travel-
ing breathers. These are traveling oscillatory wave packets
with spatially localized envelopes that possess two dis-
tinct time scales, namely, a fast time scale governing the
oscillations of the individual particles of the lattice during
breather transmission, and a slow time scale governing the
temporal evolution of the localized envelope that modu-
lates the fast oscillations [19—22]. Moreover, as shown in
[23], traveling breathers in the uniform, boundless nonlin-
ear lattice are realized close to the upper boundary of its
propagation zone (PZ) and depend on energy. Similar to
linear periodic systems, a PZ is defined as the region in the
frequency-energy plane where wave packets can propagate
unhindered in the unbounded nonlinear uniform lattice; the
complementary regions in the frequency-energy domain
then define attenuation zones (AZs) where no traveling
wave packets can be realized, and only localized near-field
waves exist. In contrast to linear PZs, however, nonlinear
PZs are energy dependent [23,24].

Considering the waveguide of Fig. 1(a), the infinite
(boundless) extensions of the stiff and soft constituent lat-
tices possess their own PZs at different frequency ranges
and are dependent on energy [cf. Fig. 1(b)]. The asym-
metry between the PZs of the stiff and soft lattices is key
to breaking acoustic reciprocity in the nonlinear waveg-
uide. The equations of motion of the 10-cell waveguide
are given by

mii; + dy 3 + kg jxi + do (i — %i1) + ki Gt — xi1)?
+ (G — Fip1) + Kt — xi41)°, M

wherej =1fori=1,....,5andj =2 fori=6,...,10.
As discussed in [25], a method to approximate the PZs of
the two lattices is to compute their nonlinear normal modes
(NNMs) [26], that is, the periodic orbits of the detached
lattices. Then the lowest (highest) in-phase mode (out-
of-phase NNM) provides an approximation to the upper
(lower) boundary of the PZ of the corresponding lattice.
This is performed numerically using the program NNM-
cont [27]. The boundaries of the PZs of the two lattices
are schematically represented in Fig. 1(b), where the offset
and overlap between the PZs of the stiff and soft lattices
can be tuned by adjusting the values of the linear ground-
ing stiffnesses k,; and kg ;. Since the in-phase mode of
each lattice does not involve deformations of the nonlinear
coupling stiffnesses, it is linear and subsequently does not
depend on energy; accordingly, the lower bound of each
PZ is a horizontal line in the frequency-energy domain.
In contrast, the out-of-phase mode is strongly nonlinear
since it involves deformations of the nonlinear coupling
stiffnesses, so the upper boundary of each PZ exhibits
strong stiffening behavior with its frequency increasing
with energy [cf. Fig. 1(b)].

III. GOVERNING MECHANISM OF THE
NONLINEAR ACOUSTIC NONRECIPROCITY

Considering each of the two lattices, a traveling wave
packet (e.g., breather) can be initiated if it contains fre-
quencies within the corresponding PZ. The unique feature,
however, of the nonlinear waveguide is that the PZs of the
two constituent lattices are tunable with energy. Accord-
ingly, while the PZs of the soft and stiff lattices are
separated at low energy levels (so they allow for prop-
agation of wave packets only in one of the two lattices,
but not through their interface), the PZs have partial over-
lap at higher energies [cf. Fig. 1(b)]. This indicates that
traveling acoustic wave packets in the common area of the
two PZs could potentially be transmitted through the inter-
face between the soft and stiff lattices. Motivated by this
observation, we design the overlap between the two PZs
to occur at practical energy levels, indicated by the verti-
cal dashed line in Fig. 1(b). The grounding linear stiffness
coefficients, kg1 and kg >, and the other system parameters
are listed in Table 1. These values correspond to the corre-
sponding averaged parameter values that are identified for
the experimental realization of the waveguide, as discussed
below.

The mechanism governing nonlinear nonreciprocity in
the waveguide is now described. We note at this point that
we will focus only on the primary wave propagation, that
is, only on the traveling breathers [23] initiated in either
lattice following the application of impulses at one of the
free boundaries of the waveguide. We will consider travel-
ing breathers initiated by impulses applied to cell 1 (the
first cell of the stiff lattice) and propagating toward the
interface with the soft lattice—henceforth referred to [23]
as the stiff-soft direction and represented schematically by
the thicker colored arrows in Fig. 1(b). In the opposite
soft-stiff direction, traveling breathers are initiated at cell
10 (the last cell of the soft lattice) and propagate toward
the interface with the stiff lattice—these are represented
by the lighter shaded arrows in Fig. 1(b). In both cases,
the frequency contents of the propagating breathers lie just
outside the upper boundaries of the corresponding PZs of
the lattices where they are initiated [23] and follow these
upper boundaries with decreasing energy due to viscous
dissipation and/or residual local “ringing” at the sites of
the individual oscillators of the waveguide after passing
of the breathers. Given, however, that the PZs of the two
lattices are highly tunable with energy, depending on the
intensity of the applied impulse, we need to distinguish

TABLE I System parameters for the waveguide.
kg,l dg, 1 kg.Z dg,z kn d.
m(kg) (N/m) (Ns/m) (N/m) (Ns/m) (N/m’) (Ns/m)

0.022 1467.27 0.085 68753 0.11 2.48E9 0.0805
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between three energy regimes, as schematically described
in Figs. 1(b)}-1(e).

For weak excitations (blue arrows in Fig. 1), travel-
ing breathers can only propagate through the lattice where
they are initiated due to the absence of overlap between
the PZs of the stiff and soft lattices at low energies [cf.
Figs. 1(b) and 1(c)]: as a result, incoming breathers are
reflected at the interface from either direction. Critical-
energy excitations (green arrows in Fig. 1) correspond to
energies close to the energy level where the PZs of the
two lattices start overlapping [cf. dashed line in Fig. 1(b)].
Hence, propagating breathers in the soft-stiff direction are
partially transmitted through the interface, since their fre-
quency content partially overlaps with the PZ of the stiff
lattice, thus they can initiate traveling wave packets in the
stiff lattice; this is schematically presented by the bifurcat-
ing “fork” of the light green arrow in Fig. 1(b). On the
contrary, propagating breathers in the stiff-soft direction
are reflected at the interface since their frequency content
does not overlap with the PZ of the soft lattice, and thus
cannot initiate traveling wave packets across the interface.
This results in strong acoustic nonreciprocity (“giant” non-
reciprocity) at that energy range [cf. Figs. 1(b) and 1(d)].
Finally, for strong excitations (orange arrows in Fig. 1),
propagating wave packets initiated in both soft-stiff and
stiff-soft directions have frequency contents that overlap
with both PZs [cf. bifurcated forks in Fig. 1(b)] thus allow-
ing for wave transmission through the interface in both
directions. We note that since the location of the two PZs
along the frequency axis depends on the grounding linear
stiffness coefficients, k, ; and k, 5, the excitation levels for
the three previous acoustic regimes of the waveguide can
be tuned by appropriate design.

IV. RESULTS AND DISCUSSION

A. Numerical study

To highlight acoustic nonreciprocity in the nonlinear
waveguide, we perform a series of numerical simula-
tions of the ROM (1) using a fourth-order Runge-Kutta
scheme. Assuming zero initial conditions, the impulsive
force recorded by the force transducer from the exper-
iments is applied to the free boundaries of the ROM
(1). Based on the derived numerical results, we com-
pute the instantaneous total energies of the unit cells,
and through interpolation in space and time, the spatio-
temporal energy evolution in the entire waveguide, as
shown in Figs. 2(a)—2(c). For clarity and to account for the
diminishing wave amplitudes due to viscous dissipation,
at each time instant, the energy of each cell is normal-
ized with respect to the maximum instantaneous value of
the total energy of the entire waveguide; hence, at each
time instant, the plotted energy is normalized from zero
to unity. Considering the results, following the applica-
tion of the impulse, a traveling breather is initiated in
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FIG. 2. Computational spatio-temporal evolution of the total
instantaneous energy in the waveguide for an impulse applied to
the stiff (left column) and soft (right column) lattice, with red
squares indicating the cell where the impulsive force, measured
from the experiments, is applied, and darker shades correspond-
ing to higher energy levels. (a) Weak impulses—16.75 N impulse
amplitude for the stiffand 15.64 N for the soft lattice. (b) Critical-
energy impulses—31.96 N for the stiff and 31.47 N for the soft
lattice. (c) Strong impulses—255.18 N for the stiffand 53.04 N for
the soft lattice (for clarity and to account for viscous dissipation,
at each time instant, the energy is normalized with respect to the
maximum instantaneous energy at that time instant).

the stiff or soft lattice and propagates toward the inter-
face. Depending on the direction of wave propagation
and the amplitude (energy) of the impulse, different wave
scattering phenomena occur at the interface, as discussed
previously.

Focusing exclusively on primary wave propagation, for
weak excitation, the breather propagates only in the lat-
tice where it is initiated and is reflected at the interface
[cf. Figs. 2(a) and 1(b)]. After reflection of the breather
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at the interface, there occur secondary reflections but,
again, these are localized in the lattice that is excited by
the impulse. A different result is obtained, however, for
critical-energy excitation, as shown in Fig. 2(b). In this
case, the breather initiated in the soft lattice is only par-
tially reflected at the interface, while a propagating wave
packet is transmitted in the stiff lattice according to the
schematic of Fig. 1(b). On the contrary, the breather ini-
tiated in the stiff lattice is completely reflected at the inter-
face, again in accordance with the schematic of Fig. 1(b).
This results in “giant” nonreciprocity in the waveguide, as
waves can propagate in the soft-stiff direction but not in the
stiff-soft direction. Finally, for strong excitation, cf. Fig.
2(c), traveling wave packets can transmit in both direc-
tions, undergoing only partial reflections at the interface, in
agreement with our predictions in Fig. 1(b). We emphasize
at this point that following the excitation of the primary
wave packet (breather) by the applied impulse, additional
interactions between the wave packet and its “tail,” occur
as well as secondary interfacial reflections, but they are
at very low energy levels and are inconsequential to the
overall acoustics. This justifies our focus on primary wave
propagation. In our numerical study, the amplitudes of the
impulse loads are chosen to be identical to the ones used
in the experimental study described below. Based on our
numerical study of the ROM (1), the regime of “giant”
nonreciprocity (only soft-stiff wave transmission) is real-
ized in the range of impulsive amplitudes 25.9 to 45 N.
Below that range, there occurs complete breather reflec-
tion at the interface (regime of weak excitation) and above
it, transmission of waves in both stiff-soft and soft-stiff
directions (regime of strong excitations).

B. Experimental validation

To corroborate the previous computational results,
we perform a series of experimental measurements.
Figures 3(a) and 3(b) depict the schematic and experimen-
tal realization of the experimental fixture corresponding
to the 10—cell ROM of Fig. 1(a). Each unit cell is com-
posed of an aluminum mass whose unidirectional motion is
tracked through an attached accelerometer. The aluminum
mass is grounded by a pair of 50 - wm-thick 1080 spring
steel flexures, which, under bending, provide the linear
grounding stiffness of the ROM. This stiffness is adjusted
by cutting out square sections of the flexure to produce dif-
ferent force-extension relationships for the stiff and soft
lattice groundings with stiffness constants kg, and ky,,
respectively [cf. Fig. 3(c)]. This method of stiffness tun-
ing is robust and can be used to reliably produce a variety
of stiffnesses to shift the PZs of the stiff and soft lattices
as desired. Hence, we can experimentally tune the energy
levels corresponding to the three previously discussed
regimes of passive nonreciprocity. Neighboring unit cells
are coupled to each other through clamped 0.006-in.-thick

Soft lattice

(a) Stiff lattice
A
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Cell 4

(b)

___— Nonlinear coupling
(clamped wire)
_— Linear grounding
- (flexure)

. Accelerometer

(c) Force 4

= 7| Extension

FIG. 3. Waveguide composed of 10 unit cells: (a) Schematic
top view of unit cells 4-7 (top) and experimental realization (bot-
tom); the waveguide is excited with a modal hammer fitted with
a force transducer, and the response of each unit cell is measured
by means of ten accelerometers attached to the cells. (b) Detailed
isometric view of the schematic design and the experimental real-
ization of the first unit cell showing the aluminum mass (yellow)
grounded to a rigid frame (gray) through linear flexure springs
(green) whose stiffhess is tuned through the geometry of the flex-
ures; adjacent unit cells are coupled through thin wires (black)
attached by clamps (red) and bolts (purple) —this provides the
essentially nonlinear stiffness. (c) Schematic representation of the
force-extension relationships of the different stiffness elements of
the waveguide—stiff linear grounding k, | (dotted line), soft lin-
ear grounding k, 5 (dashed line), and nonlinear coupling &y (solid
line), which are responsible for the frequency-energy tunability
of the two PZs of the constituent lattices of the waveguide.

1080 spring steel clamped wires, with special care being
taken to maintain each wire in a nearly untensioned and/or
unbuckled state during assembly. Ideally, each untensioned
clamped wire under transverse deformation at its center
acts as an essentially nonlinear cubic spring, that is, it
possesses a cubic nonlinear force-extension relationship
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with no linear component [cf. schematic representation in
Fig. 3(c)] [28,29]. However, in practice, due to their thick-
ness, the wires always possess a small bending stiffness, so
they behave like thin Euler-Bernoulli beams at very small
deflections. This gives rise to a small linear stiffness in
addition to the strongly nonlinear cubic stiffness, but this
does not affect the nonreciprocity results. It follows that
a small linear term in this coupling spring is unavoidable
in practice, but this can be made small by reducing the
thickness-to-length ratio of the clamped wires as much as
possible (see Supplemental Material [30]).

The waveguide is excited by a modal hammer with a
force transducer attached to its impacting head to exper-
imentally measure the applied impulsive force. Data is
collected from both this force transducer and the 10
accelerometers attached to the unit cells through an m +p
VibPilot dynamic system analyzer. Due to the inher-
ent variation in manufacturing, tolerances, and other
unmodeled effects, the masses, stiffnesses, and structural
damping coefficients of the 10 cells of the experimen-
tal waveguide cannot be identical (as in the theoreti-
cal ROM). Furthermore, since the excitation is provided
manually through the modal hammer, exact replication
of the impulsive loads in the soft-stiff and stiff-soft
directions is not possible experimentally. The mass of
each unit cell (including adjustments for the attached
accelerometer) is measured, and their linear and nonlin-
ear stiffnesses, as well as the damping coefficients in the
grounding flexures and the coupling elements are esti-
mated through nonlinear system identification [31-34]
following the restoring-force method adapted from [17,
24]. The average values of the identified parameters are
listed in Table 1 (see Supplemental Material [30]).

The experimental spatio-temporal energy plots to ver-
ify the previous three theoretical nonreciprocity regimes
(cf. Fig. 2) are then constructed as follows. Following
the application of the impulsive load, acceleration mea-
surements for the unit cells are postprocessed (filtered,
detrended, and numerically integrated) to estimate the cell
displacements. Several tests are conducted at various exci-
tation levels in both the stiff-soft and soft-stiff directions
and the processed data is used in conjunction with the
parameters from the system identification to compute the
instantaneous total energy of each unit cell as a function
of time. We then compute spatio-temporal energy plots at
weak, critical, and strong energy levels in both directions
as depicted in Figs. 4(a)4(c). These plots represent the
experimentally realized counterparts of the computational
results of Figs. 2(a)-2(c). Focusing on primary wave prop-
agation, the case of weak impulsive excitation is consid-
ered in Fig. 4(a). Similar to the theoretical prediction, the
primary breathers that are initiated by the applied impulse
only propagate in the upstream lattices and are completely
reflected at the interface. In the case of critical energy exci-
tation [cf. Fig. 4(b)] there is complete wave propagation

(a) Nomnalized instantaneous energy
[ *

0.0 05 10
0.6 0.6
’ ¥ ’ ;
0.5 . 0.5 !
204 i : 0.4 :
2038 : 03 | .
= ¥ : i
=02 3! 0.2 ;
0.1 - 0.1 :
N _att 0 e _
b) [1]2345678910 12345678 9[0
0.6 Ed , 0.6 : !
05" E 0.5 E s
0.4 : 0.4 : 3
203 ; 0.3 !
=02 5 0.2 |
0.1f E 0.1 :-
.. : 0 - : -
0@23456?3910 12345678 9[0]
©o6 , 0.6 ,
05 | 05 !
=04 T 0.4 i
bt * i i -
g 0.3 ! 0.3 ! -
=02 i 0.2 |
0.1 : 0.1 e
12345678910 12345678 9[0
Mass no. Mass no.
— — T e —
Impulse appliedto stiff Impulse applied to soft

lattice (stiff-soft wave) lattice (soft-stiff wave)

FIG. 4. Experimental spatio-temporal evolution of the total
instantaneous energy in the waveguide for an impulse applied
to the stiff (left column) and soft (right column) lattices, with
red squares indicating the cell where the impulse is applied,
and darker shades corresponding to higher energy levels. (a)
Weak impulses, (b) critical-energy impulses, and (c) strong
impulses—in all cases the impulse magnitudes are identical to
those of the numerical simulations of Fig. 2 (for clarity and
to account for viscous dissipation, at each time instant, the
energy of each cell is normalized with respect to the maximum
instantaneous energy of the waveguide at that time instant).

in the soft-stiff direction but not in the stift-soft direction,
again confirming the theoretical findings. Finally, in the
case of strong excitation [cf. Fig. 4(c)] as predicted, there is
wave transmission and partial reflection at the interface in
both directions. Hence, the three computational nonlinear
nonreciprocity regimes are reproduced in the experiments.
The experimental regime of “giant” nonreciprocity (only
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soft-stiff wave transmission) is found in the approximate
range of impulsive amplitudes 25.9 to 49 N, and below or
above that range there occurs either a complete breather
reflection at the interface or wave transmission in both
stiff-soft and soft-stiff directions, respectively. The upper
boundary of the experimental range slightly exceeds the
corresponding computational value of 45 N. Following the
primary wave, the simulation and experimental results for
the secondary waves (generated by later reflections from
the ends and/or the interface of the waveguide) agree to
a lesser extent. These discrepancies are reasonable since
the ROM (1) of the waveguide assumes uniformity in the
stiff and soft constituent lattices and does not account for
the slight parameter variations of the experimental waveg-
uide nor for additional unmodeled experimental effects, for
example, nonlinear friction, flexibility of the grounding
flexures, or nonideal connections to ground and between
cells.

To experimentally confirm the mechanism of nonlin-
ear nonreciprocity of Fig. 1(b), we study the frequency
content of the velocity responses of selected unit cells of
the waveguide. This is achieved by computing wavelet
transforms of the measured time series of the cells, depict-
ing the temporal evolutions of the dominant harmonics of
the corresponding responses. Specifically, we consider the
responses of one cell upstream and two cells downstream
of the interface. In the stiff-soft direction, we consider the
responses of unit cells 5, 6, and 7, whereas in the soft-stiff
direction, we considered the responses of cells 6, 5, and
4. The resulting wavelet transform spectra of the experi-
mental responses shown in Figs. 4(a)—4(c) are depicted in
Figs. 5(a)-5(c), respectively. The lower boundaries of the
PZs of the stiff and soft lattices are represented in these
plots as dark gray and light gray dashed horizontal lines,
respectively. Moreover, the red triangles indicate the dom-
inant frequency contents of the primary breather in the
upstream lattice (following the application of the impulsive
load) and the downstream transmitted wave packets; given
that primary breather lies just above the upper boundary of
the PZ of the upstream lattice, the red triangle in that case
is consistent with the approximate location of this upper
boundary at the corresponding energy level.

First, we consider the case of weak excitation depicted
in Fig. 5(a). In the stiff-soft direction (see left plots) the
incident breather has a frequency content just above the
PZ of the upstream stiff lattice (see cell 5), and there are
no frequency components in the PZ of the soft lattice (just
above the gray dashed line) that are sufficiently strong to
initiate a transmitted traveling wave packet in the down-
stream soft lattice (see cells 6 and 7). Likewise, in the
soft-stiff direction (see right plots) there are no frequency
components in the PZ of the downstream stiff lattice (see
cells 4 and 5) indicating the absence of wave transmis-
sion through the interface of the two lattices. Different
acoustic scattering phenomena occur in the case of the

(a) M—
Stifflattice  Soft lattice Stifflattice  Soft lattice
o B = |
60 =) © 3
) 40 f-----mmmemmeeeet
=20 20
— 60 60
> 3
S0l - 6 EYrE WL e — N
Q@
20 20
260 = 60
= 6
40 | --“Seaagz--------- O [ s
20 20
0 0.2 04 06 0 0.2 04 0.6
(b)  — . — .
Stifflatice  Soft lattice Stifflattice Soft lattice
60 =1 60 — ¥
S 4
40 ,__b.___e ----------- 40 p===---=mmmmmmeaoC
=20 20
~ 60 60 ¥
2 G g
Y e [P 1 ]
@
= 20 20
260 60 -
v 4
40 f---mmmmmmmmmmeeee ] —
20 20

0 0.2 0.4 06 0 0.2 0.4 0.6

(©) P———
Stifflattice  Softlattice

Stifflattice  Soft lattice

" -
R
g0 (M S| R 4
= 20 20
60 - 0
R —_1 e 5
§40 _____________ —— 407
20 5
6o — & .
sof - ’ o%
20 ” - IS . -

20
06 o 0.2 0.4 0.6
Time (s)

0 0.2 0.4
Time (s)

FIG. 5. Transient frequency content of the experimentally
obtained velocities, one upstream and two downstream cells rel-
ative to the interface—cells 5-6-7 in the case of stiff-soft and
cells 6-5-4 in the case of soft-stiff. Cell numbers are on the top
right corner of each plot. Horizontal lines indicate the lower
boundaries of the PZ of the stiff (black dashed) and soft (gray
dash-dotted) lattices. Darker regions on the color map indicate
a larger amplitude. Red triangles point to the frequency content
in the primary wave as it propagates through each cell. (a) weak
excitations of 16.75 N and 15.64 N applied to the stiff and soft lat-
tices, respectively. (b) Critical excitations of 31.96 N and 31.47
N applied to the stiff and soft lattices, respectively. (c) Strong
excitations of 55.18 N and 53.04 N applied to the stiff and soft
lattices, respectively.

critical excitation considered in Fig. 5(b). Indeed, in the
stiff-soft direction (see left plots) the incident primary
breather has strong frequency content in the PZ of the
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stiff lattice (see cell 5), but fails to transmit through the
interface, as evidenced by the absence of strong frequency
components in the PZ of the downstream soft lattice (see
cells 6 and 7). However, a different picture is observed in
the soft-stiff direction (see right plots) where the strong fre-
quency content of the incident primary breather in the PZ
of the soft lattice (see cell 6) “converts up” in frequency
as the breather scatters at the interface, yielding strong
frequency components in the PZ of the stiff lattice (see
cells 5 and 4), thus initiating traveling wave packets down-
stream and across the interface. This results in acoustic
nonreciprocity, confirming the theoretical scenario out-
lined in Fig. 1(b). Similar nonlinear scattering phenomena
are observed for the case of strong impulsive excitation
depicted in Fig. 5(c), where for both stiff-soft and soft-stiff
directions there are “frequency-down” and “frequency-up”
conversions, respectively, of the primary breathers in the
upstream lattices, which enables their partial transmission
through the interface to the corresponding downstream lat-
tices. Hence, the theoretical predictions are fully confirmed
by the experimental results.

V. CONCLUSIONS

In synopsis, acoustic nonreciprocity in the considered
waveguides is due to nonlinearity and asymmetry. The
essentially nonlinear coupling stiffnesses plays two critical
roles: They determine the shape of the upper bound of the
PZs of the constituent lattices, which, unlike linear lattices,
depend on energy, and they enable the initiation of travel-
ing breathers in the upstream lattices, which provide the
mechanisms for transferring energy in the spatio-temporal
domain. The asymmetry is also important as it is respon-
sible for frequency conversions during scattering of the
incident primary breathers at the interface, which may
enable partial wave transmission in the downstream lattice
at certain energy ranges. We emphasize that the achieved
break of acoustic reciprocity is completely passive, without
requiring any external bias or energy source. Moreover, the
waveguide can be tuned predictably to break reciprocity
at different energy levels through the manipulation of the
topologies of the PZs of the constituent lattices. Hence,
the considered acoustic waveguide promotes an alterna-
tive passive scheme for achieving acoustic nonreciprocity
without the need for external energy sources and time vary-
ing properties. Essentially, nonlinear lattices have already
been shown to demonstrate useful properties such as
energy-dependent acoustic filtering properties, nonrecip-
rocal breather formation, and energy localization [35,36].
The acoustic nonreciprocity demonstrated in the asymmet-
ric nonlinear lattices discussed in this work can find poten-
tial application in passive systems with inherent capacity
for nonlinear targeted (directed) energy transfer in space
and/or frequency. For example, nonreciprocal metamateri-
als supporting unidirectional sound transmission could be

realized for unprecedented acoustic isolation. A different
variant concerns protective metamaterial “shields” with
the capacity for inherent energy scattering of incom-
ing high-rate excitations (e.g., blasts) within the material
through rapid low-to-high frequency and/or wave number
nonlinear energy transfer for effective response reduction.
Or, based on passive nonreciprocity, “nonlinear energy
sinks” could be considered with enhanced capacity to
absorb and harvest or locally dissipate broadband energy.
Finally, the tunable (with energy) acoustic filtering prop-
erties of this type of nonreciprocal metamaterials could be
used in better focusing and/or reduced scattering of ultra-
sonic waves to yield enhanced signal-to-noise ratios, or in
designing networks of nonlinear oscillators with the capac-
ity for directed energy transmission in preferential spatial
directions. Clearly, no such effects can be induced in linear,
time-invariant (LTI) systems.
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