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< ABSTRACT

This paper describes the design and implementation of st ingray, a library in Python built to perform
time series analysis and related tasks on astronomical light curves. Its core functionality comprises a range
of Fourier analysis techniques commonly used in spectral-timing analysis, as well as extensions for analyzing
pulsar data, simulating data sets, and statistical modeling. Its modular build allows for easy extensions and
incorporation of its methods into data analysis workflows and pipelines. We aim for the library to be a platform
for the implementation of future spectral-timing techniques. Here, we describe the overall vision and framework,
core functionality, extensions, and connections to high-level command-line and graphical interfaces. The code is
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well-tested, with a test coverage of currently 95%, and is accompanied by extensive API documentation and a set

of step-by-step tutorials.

Keywords: methods:statistics — methods:data analysis

1. INTRODUCTION

Variability is one of the key diagnostics in understanding
the dynamics, emission processes and underlying physical
mechanisms of astronomical objects. The flux of the majority
of sources in the sky, from small asteroids to supermassive
black holes, varies on time scales that can range from mil-
liseconds to centuries, depending on the type of source. The
detection of periodic variations in the radio flux of certain
celestial objects has led to the ground-breaking discovery of
pulsars (Hewish et al. 1968). Since this initial detection, the
precise measurements of periods, spin-down effects and of
intra-pulse variations in pulsars across the electro-magnetic
spectrum from radio to gamma-rays has led to new insights
on the structure of neutron stars and their magnetic fields (e.g.
Lorimer 2008; Abdo et al. 2013; Papitto et al. 2019). Simi-
larly, accurate models of dips in stellar light curves have led
to the discovery of thousands of exoplanets (e.g., Charbon-
neau et al. 2000; Henry et al. 2000; Coughlin et al. 2016).
In asteroseismology, the detection of oscillatory modes in
the power spectra generated from the light curves of stars,
including our sun, has allowed researchers a rare glimpse into
the internal structure of these stars (see e.g. Di Mauro 2016
for a recent review), and Young Stellar Objects (YSOs) have
been shown to be extremely variable (including rapid flaring)
across the electromagnetic spectrum from radio to X-rays
(see e.g. Forbrich et al. 2017, for a comprehensive analysis of
YSOs in the Orion Nebula Cluster), providing clues about the
interaction of the forming stellar object and the circumstellar
disk. Methods very similar to those employed in asteroseis-
mology are also used to study the interior of neutron stars
and the dense matter equation of state through oscillations
in magnetar bursts (e.g. Huppenkothen et al. 2013) and giant
flares (Israel et al. 2005; Strohmayer & Watts 2005; Watts
& Strohmayer 2006). Analogous to studies of oscillations in
magnetar giant flares and bursts, Beloborodov et al. (2000)
and Guidorzi et al. (2016), among others, have probed the
variability of the prompt emission of Gamma-Ray Bursts in
the quest to uncover the central engine of these sources, while
in solar flares oscillations may give clues about the nature
of the magnetic reconnection that powers these flares (Inglis
et al. 2016).

In a range of different astrophysical sources, including stars
and compact objects, accretion plays a major role in their
evolution and emission properties, giving rise to distinct pat-
terns of brightness variations that allow us to study accretion
physics in detail. For example, in white dwarfs, quasi-periodic
variations attributed to magnetic gating of the accretion onto

the star make it possible to measure the magnetic fields of
these stars, even when they are too weak to be measured
through other methods (Scaringi et al. 2017). More generally,
connections can be found between accretion onto young stel-
lar objects and onto compact objects including supermassive
black holes, linking physics across many different scales in
mass and time (Scaringi et al. 2015). Particularly in the study
of black holes and neutron stars, the scientific developments
of recent decades have brought a growing understanding that
time and wavelength are intricately linked. Different spectral
components react differently to changes in accretion rate and
dynamics, leading to energy-dependent time lags, correlated
variability, and higher-order effects (for a review, see Uttley
et al. 2014).

This has led to the study of accretion disks, in particular
those of active galactic nuclei, via reverberation mapping
(e.g., Blandford & McKee 1982; Bentz 2016), and probes of
the accretion disk geometry using the energy-dependence of
quasi-periodic oscillations in stellar-mass black holes (e.g.,
Ingram & van der Klis 2015; Stevens & Uttley 2016). Under-
standing how the emission at various wavelengths changes
with time is crucial for testing and expanding our understand-
ing of general relativity in the strong-gravity limit, the dense
matter equation of state and other fundamental questions in
astrophysics. In X-ray astronomy, there is now a wealth of
public data sets of variable objects from missions such as
the Rossi X-ray Timing Explorer (RXTE; Bradt et al. 1993),
the X-ray Multi-Mirror Mission (XMM-Newton; Jansen et al.
2001), the Nuclear Spectroscopic Telescope Array (NuSTAR
; Harrison et al. 2013), Astrosat (Singh et al. 2014), and the
Neutron Star Interior Composition Explorer (NICER; Gen-
dreau et al. 2016). In addition, planned missions such as the
Advanced Telescope for High-Energy Astrophysics (Athena,
Barret et al. 2018) and proposed missions like the Enhanced
X-ray Timing Polarimeter (eXTP; Zhang et al. 2016) and the
Spectroscopic Time-Resolving Observatory for Broadband
Energy X-rays (STROBE-X; Ray et al. 2018) will produce
data sets of unprecedented size and complexity.

Motivated by the ubiquity of (spectral) timing in astronomy,
and the advent of these new data sets, we present st ingray,
a well-tested, open-source Python implementation of a range
of core algorithms and methods used in time series analy-
sis and spectral timing across the electromagnetic spectrum.
The package has now been employed in a range of studies
including radio observations of the galactic black hole X-ray
binary Cygnus X-1 (Tetarenko et al. 2019), optical and X-ray
observations of accreting pulsars (Kennedy et al. 2018; Jai-
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sawal et al. 2018; Brumback et al. 2018), X-ray observations
of accreting low-mass (Beri et al. 2019) and high-mass (Pike
et al. 2019) X-ray binaries, Ultra-luminous X-ray Sources
(Walton et al. 2018), and statistical investigations of cospectra
(Bachetti & Huppenkothen 2017; Huppenkothen & Bachetti
2017).

The paper layout is as follows: In Section 2, we very briefly
describe the data sets being used in this paper to showcase
the implemented methods. In Section 3, we lay out the over-
all vision, followed by a description of the general package
structure and the general development framework in Section
4. The package’s core functionality is shown in more detail
in Section 5, where we introduce basic classes for generating
light curves and Fourier spectra of various types. In Sections
6, 7 and 8, we present the submodules enabling the statis-
tical modeling of Fourier products, simulating light curves
from stochastic processes, and pulsar analysis, respectively.
Sections 9 and 10 point to connections with a command-line
interface and a graphical user interface which are being de-
veloped concurrently with st ingray. Finally, in Section
11 we lay out our future development plans. Note that we
intentionally omit code examples and specific implementation
details in this manuscript in order to preserve longer-term
accuracy. All code to reproduce the figures in this paper is
available online,’ as is a full suite of up-to-date tutorials.”

2. DATA

Throughout the paper, we use real observations of compact
objects to demonstrate the functionality of the software in this
package. In the following sections, we give brief introductions
into the observations used and the data reduction processes
applied before using the resulting event files and light curves
with stingray.

2.1. GX 3394

GX 339-4 is a stellar-mass black hole in a low-mass X-
ray binary (Hynes et al. 2003). The black hole has a lower
mass limit of ~ 7Mg (Mufioz-Darias et al. 2008) and possi-
bly a near-maximal spin (Ludlam et al. 2015). The system
also likely has a low binary orbit inclination; it has been
constrained to 37° < ¢ < 60° from optical and X-ray obser-
vations (Heida et al. 2017; Zdziarski et al. 1998), and spectral
modeling by Wang-Ji et al. (2018) estimates ¢ ~ 40°. We use
an observation from the RXTE Proportional Counter Array
(PCA; Jahoda et al. 1996) in NASA’s High Energy Astro-
physics Science Archive Research Center (HEASARC) from
the 2010 outburst of GX 3394 (Yamaoka et al. 2010), with
the observation taken from UT 2010-04-22 23:36:52 to UT
2010-04-23 00:01:10 (observation ID 95409-01-15-06). This

! https://github.com/StingraySoftware/stingraypaper
2 https://github.com/StingraySoftware/notebooks

observation was taken in 64-channel event mode with 122 s
time resolution (E_-125us_64M_0_1s). The following filter-
ing criteria were used to obtain Good Time Intervals (GTIs):
Proportional Counter Unit (PCU) 2 is on, two or more PCUs
are on, elevation angle > 10°, and target offset < 0.02°.
Time since the South Atlantic Anomaly passage was not fil-
tered on. Applying these filters, we have ~ 1ks of good data.
Since the observation is short, the data were not barycentered?
before analysis.

2.2. KICI12158940

KIC12158940 is one of 21 Active Galactic Nuclei studied
in Smith et al. (2018) and was observed for 12 epochs with
the Kepler Space Telescope (Borucki et al. 2010). Smith
et al. (2018) report an average Kepler magnitude of 14.85
(originally calculated in Brown et al. 2011) and a black hole
mass of log My = 8.04. The power spectrum shows a break
at a characteristic time scale of 7.h,, = 31.6 and a steep
power spectral slope of I' = —3.3.

We downloaded the pre-produced light curves for all twelve
epochs from the Barbara A. Mikulski Archive for Space Tele-
scopes (MAST). We note that Smith et al. (2018) caution
that because Kepler was designed for observing stars, these
pre-produced AGN light curves contain instrumental artifacts
(e.g. too small extraction apertures and rolling band noise)
that render these light curves too imprecise to derive scientific
conclusions from them. Because the purpose of this work is to
showcase st ingray’s capabilities on different types of data
rather than deriving physical properties, we continue with the
pre-produced MAST light curves.

We did spot checks using a larger aperture to extract pho-
tometric fluxes from the full-frame images using the Python
package Lightkurve (Barentsen et al. 2019) and find no dis-
cernible differences due to the smaller apertures used by
the Kepler team. For astrophysical investigations, however,
we urge the reader interested analysing AGN light curves
observed with Kepler to follow the methods laid out in
Smith et al. (2018) to produce de-biased light curves be-
fore using st ingray. We split the Kepler light curves for
KIC12158940 along data gaps to produce contiguous seg-
ments, and rebinned all segments to a resolution of 0.075 days
in order to generate evenly sampled light curves.

2.3. Hercules X-1

Hercules X-1 (Her X-1) is a well-known persistent X- ray
binary pulsar with a period of P = 1.23 s (Tananbaum et al.
1972) in a binary system with a ~2.2 M, stellar compan-
ion HZ Herculis (Davidsen et al. 1972; Forman et al. 1972;

3 “Barycentering” the data applies a spacecraft clock correction to correct
the photon arrival times to the solar system barycenter. This is commonly
done with the FTOOL barycorr from HEASoft.
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Bahcall & Bahcall 1972; Reynolds et al. 1997; Leahy & Ab-
dallah 2014) with an orbital period of P, = 1.7 days and
super-orbital variations on a ~ 35-day timescale (Giacconi
et al. 1973; Scott & Leahy 1999; Igna & Leahy 2011). The
companion’s type varies between late-type A and early-type B
with orbital phase (Anderson et al. 1994; Cheng et al. 1995).
For this work, we considered two of the several observations
of Her X-1 with NuSTAR . The first observation was taken
from UT 2012-09-19 to UT 2012-09-20 and was one among
several used by Fiirst et al. (2013) to characterize the cyclotron
resonance scattering features (CRSFs) in the spectrum of the
source. The second was taken from UT 2016-08-20 to UT
2016-08-21 and was used by Staubert et al. (2017) to detect
an inversion of the decay of the CRSF. We used observation
IDs 30002006002 and 10202002002 from HEASARC and
barycentered® the data with the latest (as of Nov. 27, 2018)
NuSTAR clock correction file. For our analysis, we consid-
ered photons from 3 to 79 keV at most 50" from the nominal
position of the source, extracted from the two identical Focal
Plane Modules A and B (FPMA and FPMB, respectively)
onboard the spacecraft. We used a total of 32.67 ks of good
data in the first observation and 36.56 ks in the second, only
selecting intervals longer than 10s.

3. VISION AND GENERAL PACKAGE FRAMEWORK

Despite decades of research, the field of spectral timing in
high-energy astrophysics is fragmented in terms of software;
there is no commonly accepted, up-to-date framework for the
core data analysis tasks involved in (spectral) timing. Code is
often siloed within groups, making it difficult to reproduce sci-
entific results. Additionally, the scarcity of fully open-source
tools constitutes a significant barrier to entry for researchers
new to the field, since it effectively requires anyone not part of
collaborations with an existing private code base to write their
own software from scratch. The NASA library xronos is, to
our knowledge, the only widely used open-source library in
this field, and has several shortcomings. In particular, it per-
forms only a few of the most basic tasks, and it has not been
maintained since 2004. Other open-source projects use lan-
guages that either require an expensive license (e.g., IDL) or
have a limited scope (e.g., S-Lang). This dearth of software for
spectral timing motivated the development of st ingray,*
a library built entirely in the widely-used Python language
and based on astropy functionality. stingray aims to
make many of the core Fourier analysis tools used in tim-
ing and spectral-timing analysis available to a large range
of researchers while providing a common platform for new
methods and tools as they enter the field.

4 stingray was named partly in homage to the popular 1960s childrens’
TV series, from which st ingray’s motto derives: Anything can happen in
the next half hour (including spectral timing made easy)!

It includes the most relevant functionality in its core pack-
age, while extending that functionality in its subpackages in
several ways, allowing for easy modeling of light curves and
power spectra, simulation of synthetic data sets and pulsar
timing.

Its core idea is to provide time series analysis methods
in an accessible, unit-tested way, built as a series of object-
oriented modules. In practice, data analysis requirements are
varied and depend on the type of data, the wavelength the
observation was taken at, and the object being observed. With
this in mind, st ingray does not aim to provide full-stack
data analysis workflows; rather, it provides the core building
blocks for users to build such workflows themselves, based
on the specific data analysis requirements of their source and
observation. The modularity of its classes allows for easy
incorporation of existing st ingray functionality into larger
data analysis workflows and pipelines, while being easily
extensible for cases that the library currently does not cover.

stingray separates out core functionality from several
more specialized tasks based on those core classes and func-
tions. Constructs related to data products as well as Fourier
transforms of the data (e.g., power spectra, cross spectra, time
lags, and other spectral timing products) are considered core
functionality, as are some utility functions and classes, for
example related to GTI calculations.

This core functionality is extended in various ways in
currently three subpackages. The modeling subpackage
(see also Section 6) provides a framework for modeling
light curves and Fourier spectra with parametric functions.
Based on this framework, it allows users to search for (quasi-
)periodic oscillations in light curves with stochastic variability,
and provides convenience functions to aid standard tasks like
fitting Lorentzian functions to power spectra.

The subpackage simulator (Section 7) provides impor-
tant functionality to allow efficient simulation of time series
from a range of stochastic processes. This includes simulation
of light curves from power spectral models as well as the use
of transfer functions to introduce time lags and higher-order
effects.

Finally, the subpackage pulsar implements a range of
methods particularly useful for period searches in pulsars.

stingray is designed to be used both as a standalone
package, and is also at the core of two other software pack-
ages currently under development: HENDRICS and DAVE.
HENDRICS (Bachetti 2015a; see also Section 9) provides pre-
built data analysis workflows using stingray core func-
tionality. These workflows are accessible from the command
line and are provided for some common data types and data
analysis tasks. DAVE (see also Section 10) provides a Graph-
ical User Interface on top of stingray to allow for easy
interactive exploratory data analysis.



STINGRAY: A MODERN PyTHON LIBRARY FOR SPECTRAL TIMING 5

As of v0.1, the core functionality of st ingray depends
exclusively on numpy (van der Walt et al. 2011), scipy
(Jones et al. 2001-) and astropy (The Astropy Collabo-
ration et al. 2018), with optional plotting functionality sup-
plied by matplotlib (Hunter 2007) . The modeling
subpackage optionally uses sampling methods supplied by
emcee (Foreman-Mackey et al. 2013), some functionality
implemented in st at smodels, and plotting using corner
(Foreman-Mackey 2016). The pulse subpackage optionally
allows for just-in-time compilation using numba (Lam et al.
2015) for computational efficiency, and for advanced pulsar
timing models using PINT .

This paper describes st ingray v0.1, released on 2018-02-
12. As with most open-source packages, st ingray is under
continuous development and welcomes contributions from
the community, including suggestions for new subpackages
to be implemented.

4. DEVELOPMENT AND INTEGRATION
ENVIRONMENT

stingray is developed entirely in Python 3, with back-
wards compatibility to Python 2.7 where possible through the
integration package six. Development is version-controlled
through git, and officially hosted on GitHub through the
organization StingraySoftware,® where several interconnected
repositories related to stingray live, including the core
library, extension packages HENDRICS and DAVE, the suite
of tutorials, the website, and this manuscript. All patches
and code are submitted via pull requests to the st ingray
repository, and checked by a maintainer for correctness of
algorithms, adherence to standards of code, documentation,
and tests. As an Astropy Affiliated Package,” we follow the
coding standards as well as community guidelines (including
the Code of Conduct) set out by the Astropy community. All
code within the st ingray core library is subject to exten-
sive unit testing, with compatibility across platforms as well as
different versions of Python and required packages controlled
through Continuous Integration services Travis (Unix plat-
forms) and AppVeyor (Windows). Test coverage is checked
using Coveralls. All user-facing functions and classes within
stingray must have documentation in the form of doc-
strings, compiled and built along with the main documentation
pages using sphinx and hosted on readthedocs.® Tutorials
are provided in the form of executable Jupyter notebooks in
a separate repository,? which can either be run interactively
using Binder (Project Jupyter et al. 2018) or viewed as part of
the documentation.

3 https://github.com/nanograv/PINT

6 https://github.com/StingraySoftware/

7 http://www.astropy.org/affiliated/

8 https://stingray.readthedocs.io/en/latest/

5. CORE FUNCTIONALITY

stingray imports its core functions and classes from
the top level package. These classes define the basic data
structures such as light curves and cross- as well as power
spectra that are used in much of the higher-level functionality
provided in the sub-packages. Additionally, it incorporates a
number of utilities for dealing with GTIs as well as input and
output of data sets.

5.1. The Lightcurve class

We expect st ingray to be used largely on data sets of
two forms: (1) event data (i.e., recordings of arrival times of
individual photons) or (2) binned light curves (i.e. measure-
ments of brightness in units of flux, magnitude or counts as a
function of time).

The majority of methods in stingray use binned light
curves, which we thus currently consider the default format.
The Lightcurve class defines a basic data structure to store
binned light curves. Its attributes include arrays describing
time bins and associated (flux or counts) measurements, the
number of data points in the light curve, the time resolution
and the total duration of the light curve. For unevenly sam-
pled light curves, the time resolution dt will be defined as
the median difference between time bin midpoints. Users
can pass uncertainties for measurements directly, or pass a
string defining the statistical distribution of the data points for
automatic calculation. By default, a Poisson distribution is
assumed, appropriate for binned event data.

There are two ways to generate a Lightcurve object:
in the standard case, the instrument has recorded a binned
time series of N pairs of time stamps and count (rate) or flux
values, {t, ck},];’:l. In this case, one can simply instantiate a
Lightcurve object with the keywords t ime and counts
(and optionally set use_count s=False when the input is
in units of counts per second). In cases where the native data
format is events (e.g., photon arrival times) it is possible to
use the static method Lightcurve.make_lightcurve,
passing the array of events as well as a time resolution dt to
create a new light curve from the events.

Various operations are implemented for class Lightcurve.
Custom behaviour of the + and — operators allows straight-
forward addition and subtraction of light curves from one
another. Assuming the light curves have the same time bins,
the 4+ and — operators will add or subtract the flux or counts
measurements, respectively, and return a new Lightcurve
object with the results. Other common operations imple-
mented include time-shifting the light curve by a constant
factor, joining two light curves into a single object, truncating
a light curve at a certain time bin, and input/output operations
to read or write objects from/to disk in various formats (HDF5,
FITS and ASCII are currently supported). For light curves
that do not have consecutive time bins, there is a sorting
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Figure 1. Left panel: A ~ 1ks RXTE observation of the black hole X-ray binary GX 339—-4. Details of the observation can be found in Section
2.1. In gray, we show the light curve produced by binning the events into 0.02 s bins. The blue line corresponds to the rebinned light curve at
dt = 1.0s. Right panel: we show the power spectrum calculated from the light curve in the left panel (gray), as well as a version of the same
power spectrum that has been linearly rebinned (blue) and logarithmically rebinned (orange) in frequency.
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Figure 2. Left panel: Light curve of all twelve epochs of the Kepler observation of the AGN KIC12158940, rebinned to 0.075 days. Details of
the observation can be found in Section 2.2. While there are error bars on the Kepler data points, they are so small on this scale as to be virtually
invisible. The right panel shows the corresponding averaged power spectrum, using a total of 50 segments, each with a length of 10 days.
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operation, as well as the option to sort the light curve by the
ascending or descending flux or counts.

We provide support for GTIs in many methods and imple-
ment rebinning the light curve to a new time resolution larger
than the native resolution of the data (interpolation to a finer
resolution is currently not supported). In Figure 1 (left panel),
we show an example observation of GX 3394 as taken with
with RXTE , and in Figure 2 (left panel) a Kepler observation
of KIC12158940. st ingray implements basic methods for
plotting (useful for a quick look at the data).

5.2. The Events class

At short wavelengths, data is largely recorded as photon
events, where arrival times at the detector are recorded for
each photon independently, along with a number of other prop-
erties of the event (for example an energy channel in which
the photon was recorded in, which can be transformed to a
rough estimate of the energy of the original photon arriving at
the detector).

Even for a single instrument, there are often multiple types
of data that can be recorded, resulting in a plethora of data
formats and internal schemas for how data is stored within
the binary files distributed to the community. stingray
implements a basic EventList class that acts as a con-
tainer for event data, but does not aim to encompass all data
types of all current (and future) instruments. Instead, it aims
to abstract away from instrument-specific idosyncrasies as
much as possible and remain mission-agnostic. In its basic
form, it takes arrays with time stamps and optionally cor-
responding photon energies as input, and implements a set
of basic methods. Similarly to Lightcurve, it provides
basic input/output (I/O) functionality in the form of read
and write methods as well as a method to join event lists,
which can be particularly useful when data is recorded in
several independent detector, as is common for several cur-
rent and future X-ray missions. The t o_1c method provides
straightforward connection to create a Lightcurve directly
out of an EventList object. In return, it is possible to
create an EventList out of a Lightcurve object using
the from_1c. The latter will create IN; events, each with
a time stamp equation to the time bin ¢;, where N; is the
number of counts in bin ¢ (event lists are, by their very def-
inition only a useful data product if the light curve used to
simulate comes from photon counting data in the first place).
It is possible to simulate more physically meaningful photon
events from a given light curve and energy spectrum using the
simulate_times and simulate_energies methods
(from the simulator package, Section 7), which employ a
combination of interpolation and rejection sampling to accu-
rately draw events from the given light curve and spectrum.

5.3. Cross Spectra and Power Spectra

The cross spectrum and the power spectrum’ are closely
related (for a pedagogical introduction into Fourier analy-
sis, see van der Klis 1989; see also Uttley et al. 2014 for
a recent review of spectral timing techniques). Computing
the cross spectrum requires two evenly sampled time series
yv1 = {yi}Y, and yo = {y2,}¥, taken simultaneously at
exactly the same time intervals {¢;}7¥ ;. Under this assump-
tion, one may then compute the discrete Fourier transform of
each time series, F; and 3 independently, and multiply F;
with F3, i.e. the Fourier transform of y; with the complex
conjugate of the Fourier transform of ys.

Because the power spectrum is defined as the square of the
real part of the Fourier amplitudes of a single, evenly sampled
time series, it can be formulated as the special case of the cross
spectrum where y; = yo. In stingray, we implement a
class Crossspectrum, which takes two Light curve ob-
jects as input and internally calculates the complex cross spec-
trum in one of a number of common normalizations (see be-
low). Because many of the internal calculations are the same,
the class Powerspectrum is implemented as a subclass of
Crossspectrum, but takes only a single Lightcurve
object instead of two.

There are several popular normalizations for the real part
of the cross spectrum as well as the power spectrum imple-
mented in stingray: the Leahy normalization (Leahy et al.
1983a) is defined such that for simple white noise, the power
spectrum will follow a x? distribution with 2 degrees of free-
dom around a mean value of 2, and the cospectrum—the real
part of the cross spectrum—will follow a Laplace distribution
centred on 0 with a scale parameter of 1 (Huppenkothen &
Bachetti 2017). It is particularly useful for period searches,
because the white noise level is well understood and always
the same (but be aware that detector effects like dead time can
distort the power spectrum in practice; Bachetti et al. 2015).
For light curves with complex variability patterns, and espe-
cially for understanding how these patterns contribute to the
overall variance observed, the fractional rms-squared normal-
ization (Belloni & Hasinger 1990; Miyamoto et al. 1992) or
the absolute rms-squared normalization (Uttley & McHardy
2001) may be more appropriate choices.

The classes Crossspectrum and Powerspectrum
share most of the implemented methods, except where other-
wise noted. Both classes include methods to rebin cross- and
power spectra. Linear rebinning is implemented analogously

9 In the signal processing literature, generally a distinction is made between
the power spectrum, which describes the process at the source generating
variable time series, and the periodogram, which denotes a realization of
said power spectrum, i.e., the time series we actually observe, which is
an estimator of the underlying process. While the products generated by
stingray are generally derived from data, and therefore periodograms, the
astronomy literature usually denotes them by the term power spectrum. We
follow this convention here as we do within the software package itself.
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to the method in class Light curve. Additionally, logarith-
mic binning is implemented in the method rebin_log in
such a way that the bin width at a given frequency increases
by a fraction of the previous bin width:

dVi+1 = dVi(l + f) R

where f is some constant factor by which the frequency reso-
lution increases, often f = 0.01.

Classical period searches are often formulated as outlier
detection problems from an expected statistical distribution.
Assuming the signal is sufficiently coherent such that all of the
signal power is concentrated in one bin, one may calculate the
chance probability that an observed power in the spectrum was
generated by statistical fluctuations alone. For the white noise
case, the equations to accurately calculate a p-value of reject-
ing the hypothesis that a given outlier in the power spectrum
was generated by noise are defined in Groth (1975), and can be
calculated for one or multiple powers in a Powerspectrum
object using the classical_significances method,
which enables computation of a (trial-corrected) p-value for
a given power in the presence of white noise. Note that the
cross spectrum does not follow the same distribution (Hup-
penkothen & Bachetti 2017), and the recently derived statisti-
cal distributions for this case will be implemented in a future
version of stingray.

In many practical applications, users may wish to average
power- or cross spectra from multiple light curve segments
in order to suppress statistical noise. This can be done with
the appropriate classes AveragedPowerspectrum and
AveragedCrossspectrum, which take a Lightcurve
object or list of Light curve objects as an input and will
compute averaged Fourier products by dividing the light curve
into N segments of a given size 7y.;. The Fourier spectra
(either cross spectra or power spectra) are averaged together.
Both are subclasses of Crossspect rum, and either inherit
or override many of the methods relevant for those classes
as well. Examples of the kinds of products produced by the
classes and methods introduced above are given in Figures |
and 2 (right panels).

For averaged cross spectra, it is possible to calculate the
time lag between variability in two simultaneous light curves,
for example, if the two light curves cover different energy
bands (Vaughan et al. 1994). The time lag 7; is defined as

_ 9

T =
2my;

for a phase angle ¢; derived from the imaginary component

of the complex cross spectrum, and a mid-bin frequency v;.

Similarly, it is possible to calculate the coherence from the

cross spectrum (Vaughan & Nowak 1997; Nowak et al. 1999),
defined as

ny,j

— e (1)
Cz,iCy,;

¢
Here, C,, ; corresponds to the real part of the unnormalized
cross spectrum, and C, ; and C, ; correspond to the anal-
ogous squared amplitudes of the power spectrum for each
individual light curve. The error on 7; and ¢; are also com-
puted in stingray.

For long observations with quasi-periodic oscillations
(QPOs) spectrograms, more commonly known in the astron-
omy literature as Dynamic Power Spectra, can be a useful
way to track changes in the QPO centroid frequency over time.
We have implemented DynamicalPowerspectrum as
a subclass to AveragedPowerspectrum to provide this
functionality. Like AveragedPowerspect rum, this class
takes a Lightcurve object and a segment size as input,
but instead of averaging the power spectra of each individual
segment, it will create a matrix of time bins (one bin for
each segment) as columns and Fourier frequencies as rows.
Rebinning both along the time and frequency axis is possible.
Moreover, the method t race_maximum automatically finds
the frequency with the highest power in each segment in a
given range of frequencies, and traces this maximum over
time. An example using data from the source GX 339—4 is
shown in Figure 3.

Closely related to the cross spectrum and power spectrum
are the crosscorrelation and the autocorrelation, implemented
inclasses CrossCorrelationand AutoCorrelation.
As their respective Fourier spectra equivalents they take
either one (autocorrelation) or two (cross correlation)
Lightcurve objects as input and computes the correla-
tion between the two light curves or of the single light curve
with itself, along with the time lags for which the correla-
tion was produced and the time lag at which the maximum
correlation is measured.

It is useful to note that all classes in this section are
compatible with GTIs. The classes Powerspectrum and
Crossspectrum will generate warnings if the observations
contain gaps; their averaged versions will take GTIs correctly
into account by producing power spectra only from light curve
segments for which data is available.

6. THE MODELING SUBPACKAGE

Modeling data sets with parametric (often physically mo-
tivated) models that map an independent variable (e.g., time
or frequency) to one or more dependent variables (e.g., flux,
counts or Fourier powers) is a common task in astronomy.
Constructing a universal modeling framework is a highly
non-trivial task, and excellent packages exist for general-
purpose model building (e.g., STAN, Carpenter et al. 2017).
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Figure 3. An example of a dynamic power spectrum generated from
the GX-339 light curve shown in Figure 1. We generated 63 light
curve segments of 16 seconds length with a 0.02 s time resolution
and Fourier-transformed each to generate a power spectrum. The
dynamic power spectrum here plots each power spectrum as a vertical
slice as a function of time, with the color indicating the fractional
rms-squared-normalized power in each bin (yellow are large powers;
purple, small) . The dynamic power spectrum was clipped to around
the range of the QPO, and smoothed using bicubic interpolation to
improve clarity. The QPO is clearly visible as a yellow streak, and
seems not to be present during the entire observation (consistent with
Belloni et al. 2005). In red, we show the frequency with the highest
power found in each segment (excluding frequencies below 3 Hz to
exclude the low-frequency red noise), using the t race_maximum
method.

Thus, st ingray’s modeling interface restricts itself to mod-
els of commonly used spectral-timing products, in particu-
lar (averaged) power spectra. While it makes heavy use of
the astropy.modeling.FittableModel definitions,
it uses custom definitions for fitting algorithms motivated by
the statistical properties of spectral timing products, which
deviate significantly from other data types commonly found in
astronomy and thus cannot easily be modelled with standard
approaches defined in astropy.

The modeling subpackage logically separates out statistical
models — likelihoods and posteriors — from the fitting func-
tionality, such that different likelihoods and posteriors can
be straightforwardly dropped in and out depending on the
data set and problem at hand. In line with the overall philos-
ophy of stingray, the modeling subpackage is designed
to be modular and easily extensible to specific problems a
user might try to solve, while many typical tasks one might
do with Fourier products are already built-in. It makes use of
the scipy.optimize interface for optimization as well as
the package emcee for Markov Chain Monte Carlo (MCMC)
sampling.

6.1. Statistical Models

All statistical models are implemented as a subclass
of an Abstract Base Class Likelihood in module
stingray.posterior. In its most basic form, each
subclass of Likelihood takes data in some form (most
commonly two arrays, one with the independent and one
with the dependent variable) as well as an object of type
astropy.modeling.FittableModel. The likelihood
computes model values for each data point in the array of
independent variables and statistically compares these model
values with the data points stored in the dependent variable,
assuming the particular statistical distribution of the likeli-
hood definition. The result is a single scalar, which can then
be, for example, used in an optimization algorithm in order to
find a Maximum Likelihood (ML) solution.

For all likelihoods in st ingray, an equivalent subclass of
stingray.modeling.Posterior is available, which
uses the Likelihood definitions to compute posterior prob-
ability densities for the parameters of a model given data.
All subclasses of Posterior also require definition of a
logprior method, which calculates the value of the prior
probability density of the parameters. Because priors are
strongly problem-dependent, they cannot be hard-coded into
stingray. Even for relatively straightforward problems
such as modeling quasi-periodic oscillations of X-ray bi-
naries, the physical properties and their effect on the data
can differ strongly from source to source, indicating that
a prior set for XTE J1550-564 may not be appropriate for
e.g. GRS 1915+105. Separating out the likelihood and poste-
rior in distinct classes makes it possible to allow the use of the
likelihood for maximum likelihood estimation, while requir-
ing priors for estimating the Bayesian posterior probability
through, e.g., MCMC simulations.

Loglikelihood and Posterior subclass defini-
tions currently exist within stingray for different sta-
tistical models useful in the context of astronomical data.
GaussianLogLikelihoodand GaussianPosterior
implement statistical models for data with normally dis-
tributed uncertainties. GaussianLogLikelihood will
compute what astronomers generally call x2, because the like-
lihood calculated by this statistical model generally follows
a x? distribution with N — P degrees of freedom (where
N is the number of data points and P the number of free
parameters). Note, however, that this is not the same as the
x? likelihood defined below!

PoissonLogLikelihoodandPoissonPosterior
calculate the likelihood and posterior for Poisson-distributed
data, respectively. This likelihood is equivalent to what in
astronomy is often called the Cash statistic (Cash 1979) and
is the appropriate likelihood to use for count- or event-type
data often found in X-ray astronomy time series and spectra.

PSDLogLikelihood and PSDPosterior implement
the statistical model appropriate for modeling (averaged)
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power spectra, a x? distribution. We broke with the rule
of naming likelihoods and posteriors after the statistical dis-
tribution they implement in this case, because as mentioned
above, astronomers tend to call the likelihood for normally
distributed data x2, and this naming helps avoid any con-
fusion. These two classes implement a x2 distribution for
Fourier spectra generated with the Powerspectrum class,
and a x2,,x distribution for power spectra generated with the
AveragedPowerspectrum class, where M is the num-
ber of averaged segments and K is the number of averaged
neighbouring frequency bins. Please note that as laid out in
Huppenkothen & Bachetti (2017), these distribution are not
appropriate for use on (averaged) cross spectra. The appropri-
ate distributions for these products are under development for
the next version of stingray.

Other statistical models can be easily implemented by sub-
classing the LogLikelihood and Posterior Abstract
Base Classes and using the existing classes as template.

6.2. General Parameter Estimation and Model Comparison
Functionality

stingray implements utility functions in order to re-
duce some of the overhead required for standard parameter
estimation and model comparison tasks. In particular, the
parameterestimation module implements classes and
functions to aid users in fitting models to data and estimating
the probability distributions of parameters.

The class ParameterEstimation provides the basis
for more sophisticated, specialized implementations for par-
ticular data types. Its core methods are fit and sample.
The former takes an instance of a LogLikelihood or
Posterior subclass and uses minimization algorithms im-
plemented in scipy.optimize to find the Maximum Like-
lihood (ML) or Maximum-A-Posteriori (MAP) solution. The
sample method uses the Affine-Invariant MCMC sampler
implemented in emcee (Foreman-Mackey et al. 2013) to
generate samples from a posterior distribution passed as an
instance of a subclass of Posterior. Note that you should
never pass a LogLikelihood instance into the sample
method, because sampling from a likelihood is statistically
invalid. In addition to these core methods, higher-level func-
tionality implemented in this class includes calculating the
Likelihood Ratio Test (LRT) for two different models M; and
M, via the compute_1rt method (note the statistical as-
sumptions of the LRT, and where they fail, e.g., Protassov et al.
2002). In addition, the calibrate_1rt method allows cal-
ibrating the p-value for rejecting the model M via simulations
of M, using either an MCMC sample (for Bayesian inference
and posterior predictive p-values) or the covariance matrix
derived from the optimization (both Bayesian and Maximum
Likelihood approaches).

stingray also implements two classes that summarize
results of the optimization and sampling procedures in con-
cise, useful ways. The £it method returns an instance of
class OptimizationResults. This contains the most im-
portant outputs from the optimizer, but will also behind the
scenes calculate a number of useful quantities, including the
covariance between parameters (or a numerical approximation
for some minimization algorithms), the Akaike and Bayesian
Information Criteria (AIC: Akaike 1974; BIC: Schwarz 1978)
as well as various summary statistics.

Similarly, an instance of class SamplingResults is re-
turned by the sample method, which returns the posterior
samples calculated by the MCMC sampler, as well as com-
putes a number of helpful quantities using the MCMC chains.
It calculates useful diagnostics including the acceptance frac-
tion, the autocorrelation length and the Rubin-Gelman statistic
(Gelman & Rubin 1992) to indicate convergence, and infers
means, standard deviations and user-defined credible intervals
for each parameter.

6.3. Special Functionality for Fourier Products

The subclass PSDParEst implements a number of addi-
tional methods particularly useful for modeling power spec-
tra. One particularly common task is to search for periodic
signals (e.g., from pulsars) in a power spectrum, which re-
duces to finding outliers around an assumed power spectral
shape (assuming the signal is strictly periodic, and thus all
power approximately concentrated in one bin). In the pres-
ence of other variability, the probability of observing a cer-
tain power P; at a frequency v; under the assumption that
no periodic signal is present depends on the shape and pa-
rameters of the underlying power spectral model assumed
to have generated the data. As Vaughan (2010) show, there
is an inherent uncertainty in our inference of the parameters
of this power spectral model, which must be taken into ac-
count via simulations. PSDParEst implements a method
calibrate_highest_outlier, which finds the k high-
est outliers (where k is a user-defined number) and calcu-
lates the posterior predictive p-value that said outliers can-
not be explained by noise alone. It makes heavy use of the
method simulate_highest_outlier, which uses the
samp le method to derive an MCMC sample and then simu-
late fake power spectra from that model for a range of plausi-
ble parameter values in order to include our model uncertainty
in the posterior predictive p-value. For details of the overall
procedure, see Vaughan (2010).

As of this version, the stingray.modeling subpack-
age has no functionality to model higher-order Fourier prod-
ucts. For spectral timing in particular, this would involve
being able to read and apply instrument responses to models,
as well as being able to interface with the library of spectral
models associated with the X-ray spectral fitting tool XSPEC
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Figure 4. Left panel: In black, a power spectrum averaged out of 15 light curve segments of 64s each of the GX 339—4 observation, along with
draws from the posterior distribution of the power law model plus the Lorentzian QPO model and constant used to represent the data (red).
Right panel: corner plot showing the marginal posterior distributions (diagonal) of the six parameters of the model: the amplitude of the power
law Apr, the power law index «, the amplitude of the Lorentzian Aqro, the QPO centroid frequency v, the width of the QPO A, and the
amplitude of the white noise, Awn. The right-hand figure was produced using the package corner (Foreman-Mackey 2016).

(Arnaud 1996). Providing this functionality is planned for a
future release of stingray.

7. THE SIMULATOR SUBPACKAGE

The simulator subpackage contains a number of meth-
ods to generate simulated light curves out of known power
spectral shapes, and event lists from light curves.

7.1. Simulating light curves from input power spectra

The basic Simulator object uses the algorithm from
Timmer & Koenig (1995) to generate light curves out of a
spectral shape. The spectral shape can be input as a spectral
power-law index, astropy .modeling.models objects,
as well as a user-given array of powers. In Figure 5, we
present a light curve as generated by a given power spectral
shape. The output is a Light curve object that can be used
like real data sets, including all functionality related to GTIs,
spectral-timing products and modeling.

7.2. Use transfer functions on light curves

Most astrophysical signals we receive in our instruments
are the mixture of different input signals. Often, a signal
emitted in one region can be reflected and re-emitted from
another region, or filtered in different ways. Spectral timing
studies can decompose the signals and try to understand how
the signal is transformed by these phenomena between the
emission region and the observer (see Uttley et al. 2014, for
a review). This transformation can be encoded in an impulse
response function, that describes the response of the system
to a delta-function impulse. This is the Fourier transform of

another well-known quantity in signal processing, the transfer
function (see Girod et al. 2001). The Simulator objectis
capable of generating multiple light curves starting from an
initial light curve and multiple input responses, mimicking
observations in different energy bands.

7.3. Simulating event lists from light curves

The simulator.base.simulate_times method is
able to simulate event lists from input light curves. It imple-
ments the acceptance-rejection method:

1. Generate a light curve (and smooth out any Poisson
noise if generated through the Timmer & Koenig 1995
method) over the whole observation; normalize it so
that the maximum is 1;

2. Generate an event, with uniform probability over the
observing time;

3. Associate to this event a uniform random number P
between O and 1;

4. If P is lower than the normalized light curve at the
event time, accept the event, otherwise reject it.

In stingray, we use arrays of events for better performance,
using the functionality contained in the numpy library.

8. THE PULSE SUBPACKAGE

The subpackage pulse contains the basic operations to
perform the search and characterization of pulsed signals for
use e.g. in searches of X-ray pulsars.
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Figure 5. Left: A power spectral shape generated using a compound astropy.modeling.models object of a power law and a Lorentzian.
Right: A corresponding light curve generated by the simulator subpackage with a time resolution of 0.05 s, a total duration of 15 ks, a mean
count rate of 40 counts/s and a fractional rms amplitude of 0.2. In blue we show a binned version of the same light curve.

8.1. Epoch Folding

Among the basic algorithms used in pulsar astronomy, one
cannot overstate the importance of Epoch Folding (EF). The
algorithm consists of cutting the signal at every pulse period
and summing all sub-intervals in phase. An alternative way
of seeing it, more useful for photon data, is as a histogram of
pulse phases.

If the period is exactly correct and assuming a stable pul-
sation, the signal-to-noise ratio will get better approximately
with the square root of the number of summed sub-intervals.
This is the method used to obtain practically all pulse profiles
shown in the literature, as most pulsar signals are orders of
magnitude below the noise level.

The pulse.pulsar submodule contains the function-
ality to calculate the phase given a simple pulse ephemeris
consisting of any number of pulse frequency derivatives, or
using a number of methods for the orbit of the pulsar (us-
ing the optional dependency PINT). Moreover, the module
also includes a mechanism to calculate the exposure of single
bins in the pulse profile. This is particularly useful for very
long-period pulsars where the pulsed period is comparable
to the length of the GTIs. The different exposure of pulse
bins caused by the absence of signals during GTIs is taken
into account in the calculation of the final pulse profile by the
folding algorithm, if the user asks for it.

8.2. Epoch Folding Searches and Z?2 Searches

During a search for pulsations, the first step is usually cal-
culating a power spectrum through a Fast Fourier Transform.
However, often pulsations do not leave a clear signature above
the noise level in the power spectrum, because they are weak

or they fall close to bin edges, where the sensitivity is re-
duced.'” Even when the signature is clear, the frequency
resolution of the power spectrum is often inadequate to mea-
sure precisely the pulse frequency. Therefore, an additional
statistical analysis is needed.

stingray implements two statistical methods for pulsar
searches, that can be applied to event lists or light curves (that
are treated as event lists with “weights”).

The Epoch Folding Search (EFS) method consists of execut-
ing the folding at many trial frequencies around the candidate
frequency. Once the folding is performed, the following statis-
tics is calculated on the profile:

P, — P)?
s-yp

where P; are the bins of the profile, P is the mean level of
the profile, and o is the standard deviation. S is the summed
squared error of the actual pulsed profile with respect to a flat
model, and follows a x? distribution.

If there is no pulsation, S will assume a random value
distributed around the number of degrees of freedom n — 1
(where n is the number of bins in the profile) with a well
defined statistical distribution (x2 _,) that allows an easy cal-
culation of detection limits. When observing a peak of given
height is very unlikely under the null hypothesis (meaning
that the probability to obtained this peak by noise is below

10 This is due to the convolution of the signal with the observing window,
that produces a sinc-like response inside the bins of the FFT; periodic signals
with the same amplitude are detected with a lower Fourier amplitude if they
fall far from the center of the spectral bin (van der Klis 1989).
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a certain €), this peak is considered a pulse candidate. If the
frequency resolution is sufficiently high, close to the correct
frequency, as described by Leahy et al. (1983b) and Leahy
(1987), the peak in the epoch folding periodogram has the
shape of a sinc?® function whose width is driven by the length
T of the observation (FWHM Av ~ 0.9/T).

The epoch folding statistic, however, can give the same
value for a pulse profile at the correct frequency and, for
example, a harmonic that produces a deviation from a Poisson
distribution. A more effective method is the Z2 statistics
(Buccheri et al. 1983), which is conceptually similar to EF but
has high values when the signal is well described by a small
number of sinusoidal harmonics:

2 2
N

+ Z sinko; ,
=1

3)
where NV is the number of photons, n is the number of har-
monics, ¢; are the phases corresponding to the event arrival
times t; (¢; = vt;, where v is the pulse frequency).

The Z?2 statistics defined in this way, far from the pulsed
profile, follows a X% distribution, where n is the number of
harmonics this time. This allows, again, to easily calculate
thresholds based on the probability of obtaining a given Z?2
by pure noise.

The standard Z2 search calculates the phase of each photon
and calculates the sinusoidal functions above for each pho-
ton. This is very computationally expensive if the number
of photons is high. Therefore, in stingray, the search is
performed by binning the pulse profile first and using the
phases of the folded profile in the formula above, multiplying
the squared sinusoids of the phases of the pulse profile by a
weight corresponding to the number of photons at each phase.
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Since the sinusoids are only executed on a small number
of bins, while the epoch folding procedure just consists of a
very fast histogram-like operation, the speedup of this new
formula is obvious. Care must be put into the choice of the
number of bins, in order to maintain a good approximation
even when the number of harmonics is high. We recommend
in the documentation to use a number of bins at least 10 times
larger than the number of harmonics.
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8.3. Characterization of pulsar behavior

As seen in Section 8.2, the Z2 or the EF periodograms of a
perfectly stable pulsation have the shape of a sinc? function.
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Figure 6. Phaseogram showing the variation of the pulse phase corre-
sponding to an imperfect orbital solution (in this case the time at the
ascending node 7p) in a NuSTAR observation of Her X-1, executed
with st ingray and plotted in a convenient, interactive interface
with HENDRICS. The TOA button allows the user to calculate the
TOA for use with Tempo2, PINT or similar programs.

stingray has functionality to fit these periodograms with a
sinc? function or alternatively a Gaussian model, and find the
mean frequency with high precision'’.

A significant deviation from the expected shape from these
models can happen if the pulsation is not stable. Calculating
the phaseogram (Figure 6) is an option to investigate how the
pulse phase varies in time. The phaseogram in this context
consists of a 2D histogram of the phase and arrival times of
the pulses. If the pulsation is stable and the pulse frequency
was determined with precision, the phaseogram shows verti-
cal stripes corresponding to perfectly aligned pulses. If the
frequency is not as precise, the stripes become more and more
diagonal. If the pulse has a detectable frequency derivative,
these stripes bend with a parabolic shape. If the orbital solu-
tion is imperfect, the stripes show specific periodic features'”.

A very precise way to determine the exact pulse ephemeris
is out of the scope of st ingray. Nonetheless, stingray
has a mechanism to calculate the pulse arrival times (or times
of arrival, TOAs) to be analyzed with more specialized soft-
ware like Tempo, Tempo2 or PINT. We use the same fft fit
algorithm used for radio pulsars (Taylor 1992), that calculates
the cross-correlation between a template profile and the folded
profile in the Fourier domain. This is implemented in the
get_TOA function in stingray.pulse.pulsar.

11 When using the Gaussian model, the width of the impulse is similar to
the FWHM Av ~ 0.9/T of the sinc? function (Section 8.2). It does not
represent an errorbar to the frequency measurement.

12 See for example https://github.com/matteobachetti/timing-lectures/blob/
master/no-binder/Timing_residuals.ipynb
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The functionality to plot the phaseogram, interactively
change the timing parameters (either pulse parameters or or-
bital parameters) and adjusting the solution, and calculating
the TOAs for use with external programs, is conveniently ac-
cessible in HENDRICS (See Section 9) and Figure 6 and in
DAVE (Section 10).

9. HENDRICS: A COMMAND-LINE INTERFACE FOR
stingray

The HENDRICS package'>—formerly called MaLTPyNT
(Bachetti 2015b)—builds upon stingray by providing a
suite of easy-to-execute command-line scripts whose primary
use is providing an accurate quick-look (spectral-)timing anal-
ysis of X-ray observations, useful for a range of use cases,
including exploratory data analysis and quality assessment of
larger data analysis pipelines. While its initial development
proceeded independently from st ingray, much of its core
functionality since version 3.0 is based on the classes and
methods stingray provides, and some key functionality
has been shifted to st ingray where appropriate.

Its key distinguishing feature from established command-
line interfaces such as FTOOLS is the accurate treatment of
gaps in the data (for example due to the Earth’s occultation or
the South Atlantic Anomaly), as well as its treatment of dead
time for certain detectors like NuSTAR . Where stingray
aims to provide flexible building blocks for designing so-
phisticated spectral-timing analysis workflows, HENDRICS
provides end-to-end solution for common tasks such as power-
and cross spectra, time lags, pulsar searches, color-color
as well as color-intensity diagrams, at the cost of loosing
some flexibility during the creation of those products. Like
stingray, HENDRICS is an astropy affiliated package
and aims to build upon and be compatible with functionality
provided as part of the astropy ecosystem. HENDRICS
supports a range of output data formats including netCDF4
and ASCII formats, which can then be read into other astro-
nomical data analysis systems such as XSPEC (Arnaud 1996)
or ISIS (Houck & Denicola 2000).

HENDRICS is in release version 4 as of 2018-02-12, and
under active development, utilizing the same continuous inte-
gration, testing and code review standards as stingray.

10. DAVE: EXPLORATORY DATA ANALYSIS IN A
GRAPHICAL USER INTERFACE

DAVE'*—the Data Analysis for Variable Events package—
is a Graphical User Interface built on top of stingray in
order to provide users with interactive capabilities for ex-
ploratory data analysis of variable time series. Much of the
core functionality within stingray is available in DAVE

13 https://github.com/stingraySoftware/hendrics
14 hitps://github.com/stingraySoftware/dave

as well: creation of power spectra, cross spectra, dynamical
power spectra and spectral-timing products such as time lags
and coherence measurements. In addition, it implements inter-
active filtering of light curves with respect to energy channels
or energies (if a response matrix file is loaded), time ranges,
and count rates. Users may compare light curves and power
spectra from different energy ranges, and may create auxil-
iary products such as color-color and color-intensity diagrams
that further aid the exploration of the data. An example of
the interface is shown in Figure 7. The full interface and its
capabilities will be described in a future publication.

11. FUTURE DEVELOPMENT PLANS

Near- and medium-term plans for st ingray development
are largely aimed at extending current functionality related
to Fourier spectra, and continuing work towards comprehen-
sive spectral-timing capabilities. While open-source reference
implementations of higher-order Fourier products such as bis-
pectra, biphase and bicoherence exist (Maccarone & Coppi
2002; Maccarone & Schnittman 2005; Maccarone 2013), they
require additional extensions to be useful for X-ray spectral
timing. New key features in the next version of stingray,
based on an existing reference implementation of covariance
spectra (Wilkinson & Uttley 2009), will include lag-energy
spectra (Vaughan et al. 1994), rms-energy spectra (Revnivt-
sev et al. 1999), and excess variance spectra (Vaughan et al.
2003). In addition, while at the moment there is rudimentary
functionality to build spectra-timing products, it is currently
not possible to seamlessly work with these products using
stingray, because st ingray currently has no native ca-
pability for energy-spectral modeling. Instead, they would
have to be exported (e.g., saved to disk) and then loaded
into another software, significantly disrupting workflows and
pipeline development. In order to streamline this process,
we aim to connect stingray with existing packages for
modeling X-ray spectra. Here, it will be necessary to con-
nect st ingray with the extensive suite of physical models
implemented in XSPEC, as well as existing spectral fitting
codes implemented in Python, most notably the open-source
package Sherpa (Burke et al. 2018).

Data rates from current and future X-ray instruments are in-
creasing at a precipitous rate, pushing memory and processing
requirements for even simple tasks like Fast Fourier Trans-
forms of data observed e.g. with NICER and Astrosat into a
regime that is difficult with standard desktop computing archi-
tectures. Therefore, the other strong emphasis for the second
version of stingray will be code and algorithm optimiza-
tion. Where possible, we will replace existing implementa-
tions by high-performance equivalents that take advantage
of recent developments in computing (such as GPU-enabled
computations and multi-core batch processing), optimize and
streamline existing code to minimize computational overhead
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DAVE

nu30002006002A01_fitevt

Her X-1: Light Curve
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Her X-1: Power Density Spectrum
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nu30002006002A01 _filt.evt:
DATE-END  2012-09-207T01:04:29

DATE-0BS  2012-09-19T08:42:53
INSTRUME  FPMA

MJDREFF 0.00076601852
MJDREFI 55197

OBJECT Her X1

08BS_ID 30002006002
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Figure 7. An example of the DAVE graphical user interface for the Her X-1 pulsar data observed with NuSTAR : In the top left, we show the last
30ks of the pulsar light curve with the GTIs clearly marked. In the top right, we plot the averaged power spectrum generated from 109 segments
of 256 s duration with a binned time resolution of 1.5 s. In the middle, we present the dynamic power spectrum generated from the same 256 s
segments that generated the top right averaged power spectrum. Below, header meta-data is shown for reference. On the left, the menu presents a
range of options of figures to plot and compare, including spectral-timing capabilities. All figures are interactive, including panning and zooming,

as well as interactive choices of data selection.

and memory usage of the classes and functions implemented
within stingray.

Typical X-ray timing observations—long, deep stares at sin-
gle objects with high time resolution—are particularly well
suited for Fourier-based methods, owing to their relatively
regular time sampling and observation duration much longer
than the physical time scales of interest encoded in the light
curves. While some optical telescopes, most notably Kepler
and the Transiting Exoplanet Survey Satellite (TESS; Ricker
et al. 2015), employ similar modes of observation that make
the current suite of methods in stingray transferable to
data from these instruments, many current and future sur-
vey instruments such as the Zwicky Transient Facility (ZTF;
Bellm et al. 2019; Graham et al. 2019) or the Large Synoptic
Survey Telescope (LSST; Ivezic et al. 2019) will provide the
community with long-baseline light curves that are irregularly
sampled. A range of methods has been developed for time
series analysis of these light curves in the time domain, e.g.
CARMA (see for example Kelly et al. 2014; Foreman-Mackey
etal. 2017), and ARIMA (e.g. Feigelson et al. 2018) processes.
Developing spectral timing methods for irregularly sampled

light curves is a major future challenge for the field, and a
high-priority long-term goal for st ingray.
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