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Abstract

Electrochemical impedance spectroscopy (EIS) has been widely employed
to probe material properties in energy materials. One important aspect of
EIS is the diffusional impedance. To date, the diffusional impedance behav-
ior is understood based on the analytical solutions of the one-dimensional
(1D) diffusion equation. However, transport in materials is strongly influ-
enced by the materials’ three-dimensional (3D) microstructures that often
possess complex geometries that are unlike the simplified 1D domains. In
this work, we simulate the concentration response driven by oscillating loads
by solving the diffusion equation in complex, experimentally determined 3D
microstructures obtained from solid oxide fuel cell cathode and lithium-ion
battery cathode. The simulation results demonstrate that the diffusional
impedance can serve as a new technique for the evaluation of microstruc-
tural characteristics of porous media, including the tortuosity, the porosity,
and the area of the loading boundary. Our findings open a new array of
applications for diffusional impedance measurements.
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boundary method, three-dimensional simulations, tortuosity

1. Introduction

Electrochemical impedance spectroscopy (EIS) is a widely used electro-
chemical characterization technique in many fields, including materials re-
search and biochemistry. The measurement is carried out by perturbing the
system with an oscillating voltage or current and measuring the response to
the load. The resulting impedance can be decomposed into resistive, capaci-
tive, and diffusive components, which arise from the intrinsic resistivity and
charge-transfer reaction, dielectric polarization (or electric double layer), and
ionic diffusion, respectively [1]. In the standard practice, the measured EIS
data are fitted to equivalent circuit models to interpret the contributions from
each of these contributions [2, 3]. However, in many materials, such as solid
oxide fuel cell and battery electrode materials, EIS provides measurements
that reflect the averaged behavior over their porous microstructures, and thus
EIS fitted to a simple equivalent circuit model cannot directly determine the
materials’ bulk intrinsic properties. Therefore, a physics-based EIS modeling
with explicit consideration of microstructures is of great importance.

While the interplay between the three contributions (resistive, capaci-
tive, and diffusive) are important in fully understanding the electrochemical
behavior of a material, probing their individual roles can offer insights and
fundamental understanding between the effects of microstructures on the
electrochemical behavior of materials. In this work, we present a physics-
based simulation of diffusional impedance in complex microstructures. The
ionic flux is dictated only by the gradient of ionic concentration and the am-
bipolar diffusivity due to the assumption of electroneutrality (no ionic charge
separation). Additionally, the resistance for electric current is assumed to be
negligibly small. These assumptions should be valid for electroneutral mixed
ion-electron conductors; e.g., solid oxide fuel cell (SOFC) and some battery
electrodes. For materials with considerable electron resistivity and dielectric-
ity, a generalized expression of current must take those effects into account,
as in the works of Franceschetti and Macdonald [4, 5], Barbero [6, 7], and
Huang [8].

We begin with a brief introduction to the theoretical background on diffu-
sional impedance. A measure that characterizes the diffusion flux of charge-
carrier ions responding to an oscillating loading is the diffusional impedance.



In the electrochemistry community, the diffusional impedance is commonly
referred to as the Warburg impedance, named after E. Warburg [9], who de-
veloped the solution for the one-dimensional (1D) diffusion equation with a
sinusoidal concentration variation as the condition imposed at the boundary
of a semi-infinite domain. Figure 1(a)-i illustrates the domain of diffusion
for the original Warburg impedance, also called the infinite Warburg (IW)
impedance. The amplitudes of the real and imaginary components of the
IW impedance are equal at a given frequency. Therefore, its Nyquist plot (a
plot of points set by the real and imaginary components of the impedance
as the abscissa and ordinate, respectively, for a series of frequencies) forms a
straight line having a 45° angle from the the abscissa, as shown by the black
line in Fig. 1(b).

In many cases, the diffusion zone spans the entire sample depth of the
material for which the diffusional impedance is measured. Thus, a boundary
condition must be appropriately chosen for the nonloading boundary on the
opposite side of the loading boundary when solving the diffusion equation.
In a nonblocking-boundary case, ions can freely penetrate the nonloading
boundary. The value of ionic concentration is specified at the nonloading
boundary by a Dirichlet boundary condition (C' = Cp), as illustrated in Fig.
1(a)-ii. This boundary condition is referred to as a transmissive boundary
condition (TBC). An impedance curve obtained from solving the 1D diffu-
sion equation with TBC will exhibit a semicircle in the low-frequency region
and transition to a 45° line in the high-frequency region [10, 11], shown by
the blue curve in Fig. 1(b). This type of impedance is called the finite-
length Warburg (FLW) impedance. A material exhibits the FLW impedance
is called a Warburg short element in an equivalent electrochemical circuit
that models the electrochemical system being examined. The DC response
of a FLW element is characteristic of a resistor, and thus a FLW element
is described as resistive. In contrast, in a blocking-boundary case, ions can-
not penetrate the nonloading boundary. Thus, a no-flux Neumann boundary
condition (0C/dx = 0) is imposed at the opposite nonloading boundary,
which is referred to as the reflective boundary condition (RBC). See Fig.
1(a)-iii for illustration. (The term “reflective” arises from the fact that such
a boundary condition is typically implemented by reflecting the concentra-
tion value across the boundary into the “ghost zone,” a point just out side
of the physical domain.) The impedance curve in this case will consist of a
vertical straight line in the low-frequency region and again a 45° line in the
high-frequency region [12], shown by the red curve in Fig. 1(b). This type of
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impedance is called the finite-space Warburg (FSW) impedance [13, 14, 15];
materials/material elements exhibiting FSW behavior are called Warburg
open elements in an equivalent electrochemical circuit. The impedance re-
sponse of a FSW element is characteristic of a capacitor, and thus a FSW
element is described as capacitive. The boundary condition at the nonloading
boundary in a 1D case can be expressed generally as

D@C

o |,_,

— —k(C(L) — Cp), (1)

where k is a permeability coefficient, = L is the position of the nonloading
boundary, C'is the concentration, D is the diffusivity, and Cz is the charge
carrier concentration outside the boundary. TBC is equivalent to setting
k = oo, which leads to C(L) = C. On the other hand, RBC is equivalent
to setting £ = 0. Here, we set Cz = 0 for the clarity of derivation. Note
that £ will be the reaction rate constant if in the context of charge-transfer
reaction occurring at electrolyte-electrode interface.

The FLW and FSW impedances are used as the standards for fitting ex-
perimentally measured curves to evaluate the ionic diffusivities in materials,
where diffusion is assumed to occur one-dimensionally. However, ionic trans-
port in electrochemical materials usually occurs in three dimensions at the
microstructural level. For example, SOFC electrodes are highly porous, and
thus oxygen vacancies must diffuse through a three-dimensional (3D) complex
microstructure that consists of connected ceramic particles. Li-ion battery
electrodes are also comprised of irregular-sized /irregular-shaped ceramic par-
ticles that release and accommodate Li ions during the charge-discharge pro-
cess. The microstructures strongly influence the transport processes in these
materials. Thus, consideration of diffusion beyond 1D in microstructures is
important in developing a full understanding of the diffusional impedance of
energy materials.

The effects of geometries on impedance have been noted for decades,
and researcher have attempted to account for these effects in impedance
modeling. However, these efforts are primarily limited to equivalent circuit
modeling [16, 17, 18, 19, 20, 21, 22, 23, 24]. In physics-based modeling,
the microstructure effects can only be taken into account via the use of
macro-homogeneous properties, such as tortuosity and porosity, in conven-
tional porous-electrode-theory-type electrochemical simulations [25, 26, 27].
To explicitly consider diffusion through the electrode particles, the structure
must be very simple due to the computational cost [8]. Song and Bazant
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[28] calculated the diffusional impedance of planar, cylindrical, and spheri-
cal battery electrode particles using semi-analytical methods and compared
the results to highlight the impact of geometric effect. They also demon-
strated the importance of anisotropic transport in the diffusional impedance
[29]. For more complicated particle geometries, Kreller et al. [30] treated
SOFC cathodes as series of connected spheres and simulated the concentra-
tion response in the spheres under oscillating loadings. The work indicated
that the microstructures affect the impedance behavior. However, these sim-
ulations were still based on relatively simple geometries. Cho et al. [31]
considered more complex geometries of artificially generated electrode mi-
crostructures. They were able to predict the impedance behavior based on
the effective material properties that were calculated based on the microstruc-
tures, but they did not provide the direct link between the microstructure
and impedance spectrum. Recently, Cooper et al. [32] used a voxel-based
method [33] to calculate the diffusional impedance of complicated geometries
of porous electrodes. Interestingly, their work demonstrated that porous me-
dia with identical macro-homogeneous structural properties (i.e., tortuosity
and porosity) can still lead to significantly different diffusional impedance.
However, as pointed out in Ref. [34], the roughness of the interfaces in the
voxel-based method could introduce significant numerical errors in the cal-
culations. Therefore, further examination of the linkage between complex
microstructures and impedance spectra is needed.

In this work, we demonstrate a new approach based on the smoothed
boundary method (SBM) [34] to explicitly solve the diffusion equation within
an experimentally obtained complex 3D SOFC cathode microstructure and
use the simulation results to construct the diffusional impedance curves of
the microstructure for both the TBC and RBC cases. The SBM is employed
to circumvent the difficulties in solving the governing differential equations
within complex geometries encountered in the conventional methods. Our
results demonstrate that the diffusional impedance can be used to probe
microstructural characteristics. Specifically, the diffusional impedance of
microstructures with TBC can be used to determine the tortuosity of the
diffusion zone in the materials being examined. This condition can arise
in electron-blocking impedance measurements of battery electrodes [35], in
which charge-transfer reactions are prevented, or in diffusion-dominant cases
where the dynamics is governed by ionic diffusion. Furthermore, we demon-
strate that the impedance with RBC can be used to quantify the porosity
of the microstructure as well as the area of the loading boundary. In cases



where diffusion time is shorter than that of reaction (e.g., high-frequency
regimes), the presented technique can be applied to probe the area of active
particle surfaces. Finally, the diffusional impedance is calculated with RBC
using a battery cathode microstructure to demonstrate the approach. The
simulation results resemble experimentally measured impedance spectrum of
battery electrodes such as those found in Ref. [36, 23].

The insights gained from this work opens doors for new applications of
diffusional impedance measurements beyond the traditional measurements
of the ionic diffusivities. Although we exclude other effects than the bulk
diffusion, this work represents a step forward in quantitative modeling of
impedance response with explicit consideration of complex microstructures
of such electrodes.

2. Model and Formulation

As in the formulation of calculating Warburg impedance, we assume that
diffusion in solids is described by Fick’s second law:

oC
— =V -DVC €9, (2)
ot
where t is time and 2 denotes the domain of solid. This equation can also
be obtained from the Nernst-Planck equations with the assumption of elec-

troneutrality. The Nernst-Planck equations are given by [8, 37]

aC+ . chem 24Ut
5% = —-V-j.=V- (DJr VO, + T C,. Vo |, (3a)
oC_ Z_u_
—— =-V-.j=V.(D""vVC_ C_V® 3b
ot . ( : T RT ) (3b)
where the subscripts ‘£’ denote quantities associated with positive and neg-
ative charge carriers, j+ = —usCLVpuy is the ionic flux (ps is the elec-

trochemical potential of ions), D{*™ is the chemical diffusivity that in-
cludes a thermodynamic factor, z. is the charge number, uy is the mo-
bility, R is the ideal gas constant, 7" is the absolute temperature, and ® is
the electrostatic potential. In an electroneutral material, C, = C_ = C.
Following the derivation in Refs. [8, 37], Eq. (3a) reduces to Eq. (2) with
D = (24 Dy D™ — z_D_D$™) (2, Dy — z_D_), where Dy = uy/RT is
the diffusivity at the dilute limit. In materials where negative charge carriers
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diffuse much faster than cations (D_ > D, ), the ambipolar diffusivity, D,
is approximately the cation chemical diffusivity: D ~ Dfﬁ"“””.

To predict the concentration evolution in a complex microstructure based
on Eq. (2), we employ the smoothed boundary method [34], wherein a con-
tinuous domain parameter is utilized to define the solid regions. The domain
parameter, 1), is set to be one within the solid regions, and zero in the pore
regions. The value of ¢ transitions from one to zero across the solid surface.
This transition region smears the infinitely thin surface to a diffuse interface
with a finite thickness, which implicitly defines the location of the boundarys;
thus it is named the smoothed boundary method. To maintain numerical
accuracy, the interfacial thicknesses must be thin relative to the feature sizes
of the bulk [34]. Multiplying Eq. (2) with ¢ and applying the product rule
of differentiation, we obtain

1/;%—? =V - ¢DVC — V- DVC =V -yDVC + |Vl -j,  (4)

where 7 = V¢ /|V| is the inward unit normal vector of the surface and
f: —DVC is the diffusion flux. The last term is only nonzero if there is a
surface flux, such as when there is a surface reaction. Since here we focus
on investigating the effect of tortuous diffusion pathways in the solid regions
on the diffusional impedance of a porous cathode microstructure, we set the
last term in Eq. (4) to be zero as in Ref. [32]. Thus, we obtain our governing
equation as

oC
g =V - 4DVC. (5)

When Eq. (5) is solved, Eq. (2) is recovered within the solid phase where
1 = 1 with a no-flux boundary condition automatically imposed on the solid
surface where 0 < ¢ < 1 [34]. Note that 1 is used to set the boundary
condition at the solid-pore interface only; the boundary conditions at the
computational domain boundaries are set in a conventional manner (i.e.,
using ghost zones).

As in Ref. [9], we solve the concentration response within the solid region
under the boundary condition of an oscillating loading on the x = 0 face of
the computational domain. Expressing the time-dependent part by complex
exponential functions, the concentration is written as C' = (Ce™!+C*e~™t) /2
38], where C' = Cg +iCy is a function of position (the functions Cy and C;
are the real and imaginary components of C, respectively), 7 is the imaginary
unit, C* is the complex conjugate of C, and w is the angular frequency.
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Substituting this expression of concentration into Eq. (5) and collecting terms
of the real and imaginary components, we obtain two coupled equations: V -
YDVCgr = —ywCr and V -9y DV C| = ywCg, where the complex exponential
functions have been canceled. These equations are nondimensionalized with
a characteristic length, [, and the diffusivity, D, such that

V - ¢DVCr = —pCy, (6a)

V - DV = $poCh, (6b)

where the hat (A) denotes dimensionless quantities, D = D/D = 1, and
V= IV, and @ = wil?/D. In the bulk where ¢) = 1, these equations reduce to
the governing equations in Refs. [32, 8], but they differ in that the boundary
conditions are set automatically at the smooth interfaces.

Equation (6) is solved using the finite difference method on a standard
Cartesian grid. The second-order differential operator is discretized using
the scheme in Ref. [34]. The alternating-direction line-relaxation (ADLR)
method [34, 39, 40] is employed to solve each of Eqs. (6a) and (6b), which
utilizes a tridiagonal matrix solver to obtain the values of concentration along
individual columns in the z, y, and z directions. While Eqgs. (6a) and (6b)
are solved separately, an iterative scheme is employed to find the solution
that satisfies both of the equations. At a given frequency value, within each
iterative step, Cp is first solved according to C; on the right-hand side of Eq.
(6a). Next, the values of Cf is solved according to Eq. (6b), with Cr obtained
earlier. This procedure is repeated until both Cr and Cj are numerically
converged.

In the cases of calculating capacitive diffusional impedance of battery
electrodes, the oscillating ionic concentration is specified on the electrode
particle surface [28], for which the SBM equations [34] become

WV - (WDVCg) — D[V - V(YCr) — |VU|*)CE] = —poCr,  (Ta)

YV - (WDVCy) — D[V - V(@ Cy) — |VY|’CP| = v&Cr,  (Tb)

where CE and CP are the boundary values for Dirichlet boundary condi-
tions imposed on the particle surfaces. These equations can be solved using
the same iterative scheme mentioned above. Note that while the numerical
method presented here is applicable to simulations with nonconstant diffu-
sivities, we set a constant D in our simulations for the clarity of extracting
the relationship between microstructures and the resulting impedance.
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3. Results

3.1. Porous SOFC cathode microstructure

We use an experimentally reconstructed porous SOFC cathode as the
input geometry for the simulations. This microstructure is acquired via
the focus-ion-beam scanning-electron-microscopy (FIB SEM) technique. The
sample, containing gadolinium-doped ceria (GDC) electrolyte and lanthanum
strontium cobaltite (LSC) cathode, was milled using FIB layer by layer. SEM
images were taken for individual layers. The complex porous microstructure
was reconstructed by stacking all images in the depth direction, as schemati-
cally illustrated in Fig. 2(a). The reconstructed microstructure is represented
by a 3D array consisting of 261 x 321 x 297 voxels with the resolution of 25
nm per voxel edge. The experimental details of obtaining this porous mi-
crostructure can be found in Ref. [41]. Here, because we only focus on the
diffusion in the cathode microstructure in this work, the region between the
two vertical cyan planes in Fig. 2(a), which contains no electrolyte phase, is
selected for our simulation. Figure 2(b) shows the cropped microstructure
represented by a 176 x 321 x 297 voxel array, spanning 4.40 pym, 8.03 pm, and
7.43 pm in the x, y, and z directions, respectively, in which voxels having
values of one indicate LSC phase, while those with zero indicate the pore
phase.

To ensure accuracy in the simulations, we double the grid resolution from
the voxel array. The centers of original voxels are utilized as the original
grid points, and between each adjacent grid points a new point is inserted.
The value at the new point is linearly interpolated from its neighboring orig-
inal points. Thus, the computational domain contains 352 x 642 x 594 grid
points, with the grid spacing of 12.5 nm. For the SBM, a continuous domain
parameter is required. The voxel values are first smoothed using Allen-Cahn
dynamics with 20 steps at the maximum stable time step size, followed by
the level-set distancing scheme, similarly to the process described in Ref.
[42]. Taking the hyperbolic tangent of the resulting values [34], the domain
parameter, v, is obtained. Figure 2(c) shows the microstructure depicted by
the isosurfaces of ¢ = 0.5. The value of ¥ is uniformly one in the LSC phase
and uniformly zero in the pore phase. The surface of LSC is described by
0 < v < 1, which occupies approximately 3 grid spacings across.

The volume of the LSC phase is 167 um?, calculated by summing the
values of 1) multiplied by the voxel volume, and the area of LSC surfaces is
727 pum?, calculated by summing all triangular patches generated by Matlab®



of the isosurfaces at 1) = 0.5. Thus, the volume fraction and surface area per
volume are approximately 0.63 and 4.35 um™!, respectively, in this sample.
The surfaces on the six faces of the computational domain in Fig. 2(c)) are
added for visualization only and thus do not contribute to the calculated
surface area.

In the manner similar to Ref. [38], we choose the characteristic length
scale to be [ = 0.46 pum for Eq. (6), which is the radius of a cylinder with the
same surface area per volume. This equivalent radius of the microstructure
spans approximately 37 grid spacings, which is larger than ten times the
thickness of the diffuse interface, ensuring a sufficient accuracy for SBM [34].

3.2. Model Validation

In this section, we first validate the 3D SBM solver using a pseudo-1D
simulations (i.e., effectively 1D, but calculated in a 3D domain) against the
analytical solution of the Finite-Length Warburg (FLW) impedance. We
then calculate the diffusional impedance for three simple 3D geometries to
demonstrate the geometric impact on the resultant impedance.

3.2.1. Pseudo-1D Simulation

In the pseudo-1D case, the value of v is set to be uniformly one within
the entire computational domain. For the boundary conditions, C is set to
be one and zero at x = 0 and 9.67, respectively, while C} is zero on both of
the two faces [38]. Note that the coordinate variables have been normalized
to [ and are dimensionless. No-gradient boundary conditions are imposed on
the remaining four faces of the computational domain.

Figures 3(a)-i and ii show the simulated distributions of Cr and Cf,
respectively, at the scaled dimensionless frequency of w;, = 2.65 (close to
W, = 2.54, the dimensionless frequency at which the imaginary part of the
impedance is maximum for FLW diffusion), where &y = wL?/D = 0L?*/I?
and L = 9.67! is the domain size along the primary diffusion direction. The
value of C'r monotonically decreases from one to zero along the x-direction
across the domain, while C7 has a minimum at the location near x = 4. The
concentration amplitude profiles along the x axis are provided in Fig. 3(c),
obtained by averaging C'r and C7 in each y-z plane. Although a slight bend
in the Cg profile is observed due to the coupling between Cr and C7, it is
still almost linear at this frequency near the maximum imaginary component
of impedance.
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As the loading frequency increases, the gradients of C'r and C near the
loading boundary (z = 0) become steeper and both Cr and Cj exhibit a
minimum on their profiles, as shown in Figs. 3(b) and (d), not just C;. The
position of the minimum for C} is much closer to the loading boundary com-
pared to that of Cr. By solving Eq. (2) in 1D with a sinusoidal load at
x = 0, the FLW impedance can be analytically derived. With the trans-
missive boundary condition (C' = 0 at x = L) corresponding to the FLW
element, the dimensionless impedance is [10, 11, 43, 44]

Z¥W 1 /D /1 tanh /7
_ : tanh Z(JJL _ an v /ZU.)L’ (8)
2y LV iw D Viwr,

where Zy = RTL/2*F*D Acy is the resistivity of the material, z is the charge
number, F' is the Faraday constant, A is the nominal cross-sectional area
perpendicular to the principal diffusion direction, and c¢q is the equilibrium
concentration of charge carriers. As mentioned earlier, D that also appears
in 7 is set to be constant. The function of ZF™W /Z, is plotted as the black
curve in Fig. 3(e).

For the pseudo-1D simulation, the impedance is calculated according to

_ RT C’IZO - C‘:ch -7 (C‘xzo - C’x:L)/L (9)

22F2Dcy [ J,dA],— O [ JdAl—o/A
where J,|,—o = —DOC /dx|,—o is the flux in the z-direction across the load-
ing boundary. Here, because D = 1, S JydA|,—o/A is the negative of con-
centration gradient along the x-direction at x = 0 averaged over the loading
boundary. Note that we set C ls.=0 = 1 and C |o.=z = 0 as the boundary condi-
tions, as mentioned earlier. The calculated dimensionless impedances, Z/Zy,
at various frequencies (from wy, = 0 to 89.07) are marked with red circles in
Fig. 3(e). It is evident that calculated impedance using the pseudo-1D setup
closely matches the analytical FLW impedance. Here, we do not simulate the
very high frequency regime because it requires finer grid spacings to resolve
very sharp gradients.

At low frequencies, the impedance curve follows a semicircle (see the
region of 1/3 < Re(Z)/Zy < 1). This curve transitions to a line as the
frequency continuously increases, and eventually becomes a straight 45°-
angle line corresponding to the infinite Warburg impedance (see the region
of Re(Z)/Zy < 0.2 corresponding to @y, > 20). The presence of nonzero Cf
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indicates that the oscillation of concentration away from the loading bound-
ary begins to shift in phase due to the delay in the response. The transition
from a semicircle to straight line occurs when the concentration amplitudes
decay to zero over the domain (and thus the gradient of the concentration
is negligible). As the frequency further increases, the phase shift becomes
significant, and C'r and C} have both positive and negative values in their pro-
files. For example, as in Fig. 3(d), C; has negative values in the region where
0 < x < 4.52 and has positive values in the region where 4.52 < x < 9.67.

3.2.2. Simple Geometry Simulations

Figures 4(a) through (c¢) show a cylinder, cone, and sphere, respectively,
for each of which diffusional impedance was calculated, along with the imag-
inary component of the concentration amplitude C, which will be discussed
later. (A quarter of the object is made transparent to show the internal pro-
file of C7). These geometries are chosen similar to those in Ref. [32]. Here
only qualitative comparisons of the calculated impedance spectra are made
since the exact geometric dimensions in Ref. [32] are not available for a direct
comparison. The domain parameter, 1, is set to one within the geometries
and zero outside. The sizes of cylinder and cone are set so that they have
the same volume; specifically, the radius of the cylinder is 1.22 and the base
radius of the cone is 2.12, respectively, and both have an axial length of 7.06.
The sphere diameter is chosen to 7.06 such that its maximum distance from
the loading boundary is equal to those in the other two cases. The y x z
dimensions of the computational domains for the cylinder, cone, and sphere
are 2.83x2.83, 4.90x4.90, and 7.62x7.62, as shown in Fig. 4(a), (b), and (c),
respectively. Both RBC and TBC calculations are performed. In the RBC
calculations, the domain size in the x-direction is 7.62, and the cylinder has a
closed end cap at z = 7.06. Thus, none of the three geometries contacts the
nonloading boundary, and the SBM automatically imposes the RBC in the
calculations. On the other hand, in the TBC calculations, the domain sizes
are truncated to 6.98 in the x-direction to ensure the geometries contact the
nonloading boundaries. Also note that, different from the pseudo-1D calcula-
tion, we here have .J, = —)DAC/dz in the denominator of Eq. (9), where 1)
accounts for the fact that diffusion occurs only within the solid region where
1) is nonzero.

The TBC impedance curves for these three geometries are presented in
Fig. 4(d). As expected, the TBC impedance of the cylinder (marked with
green circles in the magnified view in Fig. 4(e)) behaves identically to the
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pseudo-1D case. When the impedance is calculated using only the the cylin-
der cross-sectional area (by setting A = 7r? in Eq. (9) instead of the nominal
cross-section area of the computational domain, where r = 1.22), the cal-
culated curve (marked with gray circles) overlap the analytical FLW curve
(the black curve), which again verifies the accuracy of the presented solver.
The TBC impedance of the cone geometry (the blue circles in Fig. 4(d)) at
low frequencies is much larger than that of the cylinder because the small
contact area at the nonloading boundary hinders the fluxes from passing the
nonloading boundary. In the intermediate frequency range, the gradually
decreasing cross-sectional area along the z-direction limits the flux in the

primary diffusion direction over the penetration depths [32] (Lp = /D /&y,
the diffusion distance corresponding to the time period of a given oscilla-
tion frequency). As a result, the calculated impedance values are still much
larger than those at the same frequencies in the cylinder case, resulting in
a curve showing a nearly semicircular shape, which is significantly differ-
ent from those of the cylinder case. In contrast, at high frequencies, the
difference between the TBC impedance curves of the cylinder and cone ge-
ometries becomes less pronounced (see Fig. 4(e)), both exhibiting infinite
Warburg impedance behavior. The TBC impedance of the sphere (marked
with purple circles in Fig. 4(e)) exhibits two humps, similar to that in Ref.
[32]. At low frequencies, the long penetration depth reach the region near
the nonloading boundary, where the circular contact area is small. Thus, the
impedance in this regime is large, as in the cone case. At high frequencies,
the short penetration depth probes the region near the loading boundary.
Unlike the cone case, the spherical geometry has a small contact area at the
loading boundary as well, which leads to a large impedance. On the other
hand, the penetration depth at intermediate frequencies probes the region
where the circular cross-section of the sphere is significantly larger than the
contact areas at the loading or nonloading boundaries, thus resulting in a
smaller impedance indicated by the valley on the Nyquist plot in Fig. 4(e).
These trends result in the observed two humps in the impedance curve for
the spherical-geometry case.

The calculated RBC impedance curves of the cylinder, cone, and sphere
are shown in Fig. 4(f) and (g), the latter of which is a magnified view of the
former. The dimensionless analytical FSW impedance [12]

ZFW 1 /D /i th v/1k
= —4/ — coth Wp) = v = L (10)
Zy LV iw D Viwr,

13




is also plotted with the black curve on the same figure. At low frequen-
cies, the analytical curve of Z¥SW /Z, approaches a vertical straight line at
Re(Z)/Zy = 1/3. At high frequencies, the curve becomes a straight line
along 45° in the region where Re(Z)/Zy < 0.2, as in the case of FLW be-
cause the boundary condition on the nonloading boundary becomes unim-
portant at high frequencies due to the short penetration depth. The RBC
impedance curve of the cylinder (marked with green circles in Fig. 4(f)) has
a similar shape to the analytical FSW curve. When calculated using the
cylinder cross-sectional area, the obtained impedance values (marked with
gray circles) coincide the analytical values, which again verifies the accuracy
of the 3D SBM solver. In Fig. 4(g), the RBC impedance curve of the cone
(marked with blue circles) is located on the upper left side to the cylinder
case and with a blunt, smooth transition from low to high frequency regions.
The RBC impedance of the sphere (purple circles) is larger than that of the
cylinder: the impedance curve resides on the right to that of the cylinder.
The impedance at low frequencies forms a vertical line as in the other two
RBC cases, but it transitions through a semicircle-like curve to the high fre-
quency regime. This semicircle is attributed to the same mechanism causing
the second hump in the TBC case (purple circles in Fig. 4(e)). The simu-
lated Cy at wy, = 256 (the last point in the RBC calculations) in the cylinder,
cone, and sphere are provided in Fig. 4(a) through (c), respectively. The C;
distributions in the three figures are overall similar to that in Fig. 3(b)-ii,
showing a rapid decrease near the loading boundaries and arising back away
from the loading boundaries. In summary, the simulation results of simple
geometries here generally agree with those in Ref. [32], thus validating the
presented model and numerical solvers.

3.3. Porous Cathode with Nonblocking Boundary

In order to simulate diffusion in porous cathode, we substitute the )
function obtained in Section 3.1 into Eq. (6), and solve for the concentra-
tion distribution within the complex microstructure at various frequencies.
The boundary conditions on the computational domain boundaries are the
same as in Section 3.2, and the impedance is calculated using Eq. (9) with
J, = —pDAC /dx. Figure 5(a) shows the impedance curve of the calculated
Z|Zy for 0 < @, < 109.45 (green circles), along with Z¥™W /Z; given by the
analytical expression in Eq. (8) (the black curve). The impedance curve sig-
nificantly deviates from the FLW result, as indicated by the gray arrows. We
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will utilize the generalized form of effective diffusivity of the porous solid,
defined below, to examine the underlying mechanism for this deviation.

The ultimate goal of this section is to relate the simulation results to mi-
crostructural characteristics such as porosity and tortuosity. These quantities
have previously been linked to effective diffusivity, rather than impedance.
Following the phenomenological approach used to define an effective diffu-
sivity at the steady state [45], we define a generalized complex effective dif-
fusivity as in

- Clo=p — Cla=o =
_Deff L I 0 = J|m=07 (11>

where the tilde (~) on D.s; indicates a complex quantity. The steady state
here is the state that the amplitudes of concentration and flux are constant.
On the left-hand side, (C|y—, —C|,—0)/L is the overall concentration gradient
across the sample thickness L. The right-hand side of Eq. (11) is the macro-
scopic flux at # = 0, which, as in Eq. (9), is the average concentration gradient
along the x-direction on the loading boundary. Here, J|,—g = [ J,dA|,—0/A,
where J, = —¢DC /O0x and A is the nominal cross-section area. By com-
paring Eq. (11) with Eq. (9), we obtain the relationship:
Z 1
ZO De fr ’ (12)
where the reciprocal of the complex effective diffusivity is the impedance.
Here, unlike the traditionally defined diffusivity, D, 7¢ varies with frequency.
Figure 5(b) shows the Bode plot of the amplitude (green circles), real
(blue dashed line) and imaginary (red dashed line) parts of the calculated
impedance. Note that the horizontal axis is in logarithmic scale and thus the
first data point (the left most) shown in the figure is the smallest nonzero
frequency examined (w;, = 0.034), as zero frequency corresponds to its log-
arithm being negative infinity. At @, = 0 (direct current (DC) loading),
Dess = 1/2.35 = 0.42, which lead to 7 = 1.22 for the tortuosity of this mi-
crostructure, calculated using 72 = De, /D, 7 [46]. While we have assumed
the dimensionless intrinsic bulk diffusivity, 15, to be 1, the choice of the value
does not affect the result because it cancels out. The volume fraction of the
solid phase for the structure was calculated to be ¢, = 0.63. Note that the
diffusivities at DC loading have only real components.
We now extend the expression for tortuosity to an effective tortuosity
under AC loading, in which the imaginary component of effective diffusivity
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is nonzero, as
‘ DFLW‘ e,

2
Teff i - .
[Duss

Here, D¥™W ig the complex diffusivity for 1D bulk diffusion from the analyt-
ical expression obtained from Eq. (8):

- Z
DY = i = Vi coth /ido. (14)

The effective tortuosity as a function of frequency is plotted with the black
curve in Fig. 5(c). The value of 7.¢¢ transitions from 1.22 to 1.04 as the
frequency increases. The steepest decrease of 7.rf occurs at wy ~ 1.7, the
frequency at which the imaginary part of impedance is at its maximum. See
the red dashed curve in Fig. 5(b). The frequency wy ~ 1.7 is between the
two points near the top of the impedance curve in Fig. 5(a). There is a small
hump near w; ~ 12, at which the impedance curve transitions to a straight
line along 45°. See the point corresponding to wy, = 11.5 in Fig. 5(a).

The behavior of 7.¢; are explained as follows. At low frequencies, due to
the long penetration depth, diffusers reach much of the entire microstructure.
See the illustration in Fig. 6(a), which shows Cg at @y, = 0.39 (the frequency
near the end of the plateau of 7.5 ~ 1.22, with the corresponding impedance
marked by the red square in Fig. 5(a)). The gradients of concentration
amplitude span over the entire microstructure, as evident in Fig. 6(a). The
diffusion paths are tortuous, as illustrated by the white arrows in the same
figure. Because of the additional path length that are required to diffuse
through the microstructure, 7.ss is significantly larger than one.

As the frequency increases, the penetration depth is shortened. The dif-
fusers are driven back and forth within a portion of the microstructure near
the loading boundary. Figure 6(b) shows the concentration distributions at
wr, = 89.07, which corresponds to the impedance marked by the red triangle
in Fig. 5(a). The active diffusion zone is confined below the green dashed line
in Fig. 6(b). The concentration gradients above the green dashed line are
very small. In this case, the diffusers only sample a fraction of the full mi-
crostructure, confined to the region near the loading boundary, as illustrated
by the white arrow in Fig. 6(b). As a result, the effective tortuosity decreases.
At extremely high frequencies, the penetration depth becomes smaller than
the characteristic length scale of the channels in the microstructure. Diffusers

(13)

16



are then simply driven back and forth over a thin region near the loading
boundary. Thus, 7.y must approach one, as shown by the trend following
the black curve in Fig. 5(c). Furthermore, as mentioned previously, the tran-
sition point between the semicircle and straight line on the impedance curve
indicates a full decay of the concentration amplitudes within the domain
such that the solution converges to that for the infinite-length domain. For
this microstructure, this transition occurs at wy ~ 11.5, as indicated in Fig.
5(a). The slight increase of the effective tortuosity (the small hump on 7.y
in Fig. 5(c)) is a manifestation of the nonlinear nature of the cyclically driven
diffusion in porous medium.

Using Egs. (12) through (14), we derive the relationship between the
impedance and effective tortuosity for the TBC case as

|Z3D‘ 1 )
| ZFIW] = ;Teff’ (15)

where Z3P = Zo/Deff is the impedance for a porous solid that allows
only bulk diffusion, and Z"™W = Z;,/DF™W is the analytically calculated
impedance from Eq. (14). As mentioned earlier, diffusion can only occur
in a thin layer close to the loading boundary at extremely high frequencies.
In such a case, the volume fraction of the region diffusion occurs must be
close to the area fraction, ¢,, at the loading boundary. With 7.,y =~ 1 at
extremely high frequencies, Eq. (15) predicts |Z3P|/|Z¥™W| = 1/e, = 1.47,
where ¢, = [ ¢dA|,—o/A = 0.68 for this microstructure. The blue circles in
Fig. 5(c) exhibit such trend toward high frequencies. However, to quantita-
tively capture this behavior, simulations with much higher frequencies, which
require very fine grid spacing, must be performed. We did not pursue such
simulations because it would incur a large computational cost while gaining
little additional insights. Furthermore, we have assumed that the volume
fraction is uniform throughout the microstructure in the above analysis for
simplicity, but in complex microstructures in physical samples, including the
one considered here, there are variations in the volume fraction from one
region to another. As a consequence, the diffusional impedance curve ob-
tained from the full 3D calculation does not coincide with the one calculated
by solving the 1D diffusion equation with a constant effective diffusivity ob-
tained at zero frequency for the microstructure. This is evident in Fig. 5(d),
in which the green circles are the impedance from the 3D calculation and the
magenta dots are the impedance predicted from Eq. (8) with the effective
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diffusivity determined at zero frequency. However, the difference is small for
the microstructure considered in this work.

Furthermore, the frequency at which the imaginary part of the impedance
is maximum, @,,, shifts from 2.54 for the 1D case to 1.7 for the porous mi-
crostructure. This shift can be explained using the 1D analytical expression
of diffusional impedance, Eq. (8). For a 1D diffusion case with a domain size
L and diffusivity D, while the value of w,, cannot be analytically calculated
[47], it can be numerically evaluated to be 2.54 [47]. When the domain size
increases to 1.22L, the value of w,, changes to 1.73. This value is close to w,,
of the porous microstructure with an average diffusion path length of 1.22L.
Thus, we obtain the relationship:

WEV 254 LN\, 6
o3~ 1y S\ LW ) T e (16)
where L3P and LYW can be viewed as the penetration depths at the corre-

sponding w,, for the porous diffusion and bulk diffusion cases, respectively.

The SBM simulation results also exhibit the geometric effect on the local
directions of diffusion. Figures 6(c) and (d) provide the magnified views of
the gray dashed boxes in Fig. 6(a) and (b), respectively. Through bottle-
neck regions, the gradients of concentration amplitude turn along the neck
directions, which can be clearly observed at the green arrows indicating the
direction of the gradient, which parallels nearby surfaces. Moreover, the lo-
cations where the minima of Cr and C occur are approximately marked by
the magenta lines in Figs. 6(b)-i and ii. The locations of maxima of C; are
closer to the loading boundary than that of Cg, similar to the case in the
pseudo-1D calculations.

In summary, we find that, for a porous medium where only bulk diffusion
occurs, the ratio between its diffusional impedance and that of a dense solid
material reflects the effective tortuosity of the microstructure. This tortuosity
is frequency-dependent because the loading frequency determines the depth
of sampled microstructure.

3.4. Porous Cathode With Blocking Boundary

If the diffusers cannot cross the nonloading end of the sample, as in the
case of a porous cathode with a blocking boundary, the reflective (no-flux)
boundary condition is appropriate. Thus, we perform another set of simula-
tions with the porous cathode microstructure using the reflective boundary
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condition (RBC), where 0Cg/dx = 0C;/0x = 0 is imposed at the nonloading
side of the computational domain (z = 9.67). All other conditions are iden-
tical to the simulation presented in Section 3.3. Figure 7 shows two sets of
representative concentration distributions, simulated for low-frequency and
high-frequency responses. The real and imaginary concentration amplitudes
at the low frequency (w;, = 0.72), shown in Fig. 7(a)-i and -ii, respectively,
are significantly different from those under the transmissive boundary condi-
tion (TBC). The no-flux boundary condition at = = 9.67 allows the values of
Cg and C} to be nonzero and to change in time at the nonloading boundary.
Although Cgi and C; both monotonically decrease with increasing x, Cr at
the boundary is much higher than that in Fig. 6(a), and C7 at = 9.67 is
substantially below zero. In contrast, the concentration-amplitude distribu-
tions at high frequency (w;, = 89.8), shown in Fig. 7(b), are similar to those
simulated under TBC, shown in Fig. 6(b), as expected because the bound-
ary condition on the nonloading side does not alter the solution when the
diffusion field does not reach it.

The impedance at various frequencies is calculated using the same method
described in the previous sections. The resulting Nyquist plot with RBC is
provided in Fig. 8(a), where the green circles are from the porous microstruc-
ture simulations, and the red circles are from pseudo-1D simulations. Figure
8(b) is the magnified view of the intermediate to high-frequency regions. The
black curve is the analytical function for the FSW impedance plotted using
Eq. (10). The red circles in Figs. 8(a) and (b) are the values of diffusional
impedance, at various frequencies ranging from 0.13 < @ < 1.02 x 103,
calculated using the pseudo-1D configuration as in Section 3.2, but with the
reflective boundary condition. Again, the pseudo-1D results agree well with
the analytical solution.

The calculated impedance curve (green circles) for the porous cathode
microstructure at the same frequencies as in the pseudo-1D case exhibits a
similar shape to that of the analytical solution for FSW as well as the pseudo-
1D results, showing a vertical straight line at low frequencies and a 45°-line
at high frequencies. The impedance curve in the high-frequency region is
similar to that for the case with TBC (Fig. 5(a)). This behavior can also be
supported by the similarity of the concentration distributions between the
case with TBC (Fig. 6(b)) and the case with RBC (Fig. 7(b)). However, the
calculated impedance (green circles) of the porous microstructure is generally
larger than that of the 1D FSW values, as shown in Fig. 8(b), in which the
green circles are on the right of the solid curve for low frequencies are above
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the the solid curve for high frequencies. This behavior is consistent with
physical intuition because the porous medium has less volume for diffusion
compared to the dense solid, leading to a larger impedance unless other
transport mechanisms, such as surface diffusion, take place. Consideration
of additional mechanisms are beyond the scope of this paper, and will be a
topic of future work.

As in the analysis presented in Section 3.3, the ratio between the diffu-
sional impedance of the porous microstructure and the analytical 1D case
are calculated and plotted with the blue squares on Fig. 8(c). The curve
shows that |Z3P| /|ZFSW| asymptotically approaches a certain value as the
frequency decreases in the low-frequency region. The value for the lowest fre-
quency (wy = 0.13) in the calculation is approximately 1.581, which is close
to the inverse of the volume fraction of the solid phase in the microstruc-
ture, 1.577. This value can be explained based on Eq. (10). Assuming
Ly/iw/D < 1 at low frequencies, the FSW impedance can be approximated
using the Taylor expansion of hyperbolic cotangent around zero as [43, 48]

RTL D1 1
gESW o M (222 17
22F?DcyA (L2 iw * 3) (17)

For low frequencies, the first term in the parenthesis dominates the value of
impedance. Thus, the impedance will be inversely proportional to AL, the
volume of the domain. As a result, at the same loading frequency, the diffu-
sional impedance with RBC is inversely proportional to the volume fraction
of the diffusion zone, such that

|Z3D‘ B 1
| ZFSW| ~ g

(18)

In the region of intermediate frequency, the curve of |Z3°| /| ZFSW| exhibits
a peak, which corresponds to the region where the impedance curves of the
porous microstructure and the 1D case transition to the 45°-lines (see the
markers corresponding to wy, = 4.84 in Figs. 8(b) and (c)).

For high frequencies, assuming L+/iw/D > 1, Eq. (10) can be approxi-

mated as
RTL 1 /D
VAR e 19
22F?2DcyA LV iw (19)

Thus, at the same loading frequency, the impedance is inversely proportional
to the area where diffusers are inserted to or extracted from the solid. For
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the porous microstructure examined in the work, we expect

‘Z3D} 1
~—=14 2
W]~ o= LT (20)

at very high frequencies. Note that the analysis of Eq. (19) and the prediction
of Eq. (20) also apply to the TBC case because both FLW and FSW converge
to IW at very high frequencies. As can be inferred from the trend shown in
Fig. 8(c), |Z?’D‘ / |ZFSW‘ decreases and approach the expected value as the
frequency increases in the high-frequency region. For the highest frequency
(Wr = 1.02 x 10%) in the calculation, we obtain |Z3°| /| Z"SW| = 1.52, which
is still larger than 1.47. This deviation implies that a higher loading fre-
quency is required for further convergence to the expected value. However,
simulations for extremely high frequencies will require higher resolution for
the spatial discretization than that employed in this work for sufficient nu-
merical accuracy. Since little additional insight can be gained and our results
are already within 3.5% of the expected value, we do not pursue simulations
with extremely high loading frequencies.

3.5. Impedance of Battery Cathode

In Sections 3.3 and 3.4, the primary diffusion direction is from the load-
ing to the nonloading boundaries (i.e., in the positive x-direction). However,
in battery electrodes, the diffusion direction becomes from the surfaces to
the centers of individual electrode particles, leading to a significantly differ-
ent process. Thus, we apply Eq. (7) to calculate the diffusional impedance
of an experimentally reconstructed laptop battery cathode microstructure
to demonstrate the versatility of SBM. The details of microstructure recon-
struction can be found in Ref. [49]. In this calculation, the concentration is
specified to be C8 = 1 and CP = 0 on the particle surfaces without loss of
generality. The grid spacing and computational domain boundary conditions
are kept the same as in Section 3.4. Figures 9(a) and (b) show the calcu-
lated Nyquist plot, where (b) is the magnified view in the high frequency
region of (a). The impedance computed at various frequencies is marked
with the green circles. The shape of the calculated impedance curve (green
circles) corresponds to that of a capacitive diffusional impedance and is over
all similar to that in Section 3.4 (see the impedance curve in Figs. 8(a) and
(b), calculated with RBC using the SOFC microstructure). The black circles
on the same plot are the analytical FSW impedance at the same frequen-
cies corresponding to the green ones. The FSW values are calculated based
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on a sphere having a radius of 34 um (the average particle radius of this
cathode microstructure). The impedance of the battery cathode is shifted
significantly to the right of the analytical curve. This deviation indicates
that the interconnected microstructure cannot be simply represented by a
sphere of the average radius when interpreting EIS data even when only the
diffusional contribution is considered. The complex concentration amplitude
distributions at wy = 23.84, corresponding to the blue triangle on Fig. 9(b),
are shown in Fig. 9(c) and (d). Their variation can be considered similar to
what will happen in the FSW case (e.g., Fig. 7(b)). Along the primary diffu-
sion direction, the amplitudes decrease rapidly near the loading surface but
smoothly increases back further away from the loading surface. The major
difference is now the primary diffusion direction is towards the particle cen-
ters. Nevertheless, the non-uniform sizes, irregular shapes, and connections
between particles complicate the concentration distribution. As a result, each
individual particle behaves differently. We here aim only to demonstrate the
importance of explicit consideration of the microstructural effect; detailed
analysis will be considered in the future. While the discrepancy between the
impedance of the porous cathode and that analytical calculated for a sphere
at low to intermediate frequencies is attributed to the microstructural effect,
the deviation at high frequencies may also include some numerical errors due
to the lack of grid resolution mentioned in the previous sections.

Finally, we note that while we focus only on bulk diffusion in this work,
the SBM allows incorporation of other mechanisms, such as surface diffusion
and surface reaction [34] on irregular particle surfaces. Further investigation
of those coupled mechanisms in the EIS is left for future work.

4. Conclusion

In this paper, we employed the smoothed boundary method to simu-
late diffusion through an experimentally obtained 3D microstructure from a
porous SOFC cathode sample. The real and imaginary components of the
concentration response to sinusoidal loadings are obtained for various fre-
quencies, which are used to calculate the diffusional impedance. When a
nonblocking (transmissive) boundary condition is imposed on the boundary
opposite to the loading boundary, the impedance value is a function of the
tortuosity within the diffusion zone of the sample. At low frequencies, this
diffusion zone spans nearly the entire domain. Thus, the measured diffu-
sional impedance, along with the analytically calculated finite-length War-
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burg impedance, yields the tortuosity factor of the entire porous medium.
At high frequencies, tortuosity of the diffusion zone approaches unity be-
cause diffusion only occurs within a thin layer close to the loading boundary
and this distance becomes smaller than the characteristic length scale of the
porous medium. On the other hand, when a blocking (reflective) bound-
ary condition is imposed on the boundary opposite to the loading boundary,
the diffusional impedance at low frequencies is inversely proportional to the
volume fraction of the solid phase. At high frequencies, the impedance is
inversely proportional to the ratio between contact area and the nominal
area of the loading boundary. The simulation results presented here demon-
strate that the diffusional impedance spectroscopy can be utilized to probe
microstructural characteristics such as the porosity and contact area of the
loading boundary.

Acknowledgement: Authors thank J. Scott Cronin for his assistance with
the use of the 3D microstructural data. This work is support by the United
States National Science Foundation, Division of Material Research, Ceramics
Program, under the grant numbers DMR-1506925 (SB) and DMR-1506055
(KT). Computational resources were provided by the Extreme Science and
Engineering Discovery Environment (XSEDE [50]) (allocation No. TG-DMR110007),
which is supported by the United States National Science Foundation under
grant number ACI-1053575, by the National Energy Research Scientific Com-
puting Center (NERSC), a DOE Office of Science User Facility supported
by the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231, and also by the University of Michigan Advanced
Research Computing.

References

[1] M. E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy,
John Wiley & Sons, 2008.

[2] A. A. Moya, A numerical exercise to teach electrochemical impedance

using electric circuit simulation software, Journal of Chemical Education
90 (2013) 1699-1700.

[3] F. Ciucci, Electrochemical impedance spectroscopy of porous electrodes:

the effect of pore size distribution, Current Opinion in Electrochemistry
13 (2019) 132-139.

23



[4]

[11]

[12]

[13]

D. R. Franceschetti, J. R. Macdonald, R. P. Buck, Interpretation of
finite-length-warburg-type impedances in supported and unsupported
electrochemical cells with kinetically reversible electrodes, Journal of
Electrochemical Society 138 (1991) 1368-1371.

J. R. Macdonald, D. R. Franceschetti, Precision of impedance spec-
troscopy estimates of bulk, reaction rate, and diffusion parameters, Jour-
nal of Electroanalytical Chemistry 307 (1991) 1-11.

G. Barbero, 1. Lelidis, Analysis of warburg’s impedance and its equiv-
alent electric circuits, Physical Chemistry Chemical Physics 19 (2017)
24934-24944.

G. Barbero, Theoretical interpretation of warburg’s impedance in un-
supported electrolytic cells, Physical Chemistry Chemical Physics 19
(2017) 2575-32579.

J. Huang, Diffusion impedance of electroactive materials, electrolytic
solutions and porous electrodes: Warburg impedance and beyond, Elec-
trochimica Acta 281 (2018) 170-188.

E. Warburg, Ueber das verhalten sogenannter unpolarisirbarer elektro-
den gegen wechselstrom, Annalen der Physik und Chemie 67 (1899)
493-499.

A. Honders, G. H. J. Broers, Bounded diffusion in solid solution elec-
trode powder compacts part i the interfacial impedance of a solid solu-
tion electrode (mxsse) in contact with a m+-ion conducting electrolyte,
Solid State Ionics 15 (1985) 173-183.

I. D. Raistrick, D. R. Franceschetti, J. R. Macdonald, Impedance Spec-
troscopy, John Wiley & Sons Inc., Hoboken, New Jersey, pp. 56-57.

C. Ho, I. D. Raistrick, R. A. Huggins, Application of a-c techniques to
the study of lithium diffusion in tungsten trioxide thin films, Journal of
the Electrochemcial Society 127 (1980) 343-350.

B. A. Boukamp, Electrochemical impedance spectroscopy in solid state
ionics: recent advances, Solid State Ionics 169 (2004) 65-73.

24



[14]

[15]

[16]

[17]

[18]

[24]

M. D. Levi, D. Aurbach, Frumkin intercalation isotherm - a tool for
the description of lithium insertion into host materials: a review, Elec-
trochimica Acta 45 (1999) 167-185.

M. D. Levi, D. Aurbach, Impedance of a single intercalation particle and
of non-homogeneous, multilayered porous composite electrodes for li-ion
batteries, Journal of Physical Chemistry B 108 (2004) 11693-11703.

H. Keiser, K. D. Beccu, M. A. Gutjahhr, Abschatzung der porenstruktur
poroser elektroden aus impedanzmessungen, Electrochimica Acta 21
(1976) 539-543.

I. D. Raistrick, Impedance studies of porous electrodes, Electrochimica
Acta 35 (1990) 1579-1586.

H.-K. Song, Y.-H. Jung, K.-H. Lee, L. H. Dao, Electrochemical
impedance spectroscopy of porous electrodes: the effect of pore size
distribution, Electrochimica Acta 44 (1999) 3513-3519.

R. Jurczakowski, C. Hitz, A. Lasia, Impedance of porous au based
electrodes, Journal of Electroanalytical Chemistry 572 (2004) 355-366.

H.-K. Song, J.-H. Sung, Y.-H. Jung, K.-H. Lee, L. H. Dao, M.-H. Kim,
H.-N. Kim, Electrochemical porosimetry, Journal of the Electrochemical
Society 151 (2004) E102-E109.

D. D. Macdonald, Reflections on the history of electrochemical
impedance spectroscopy, Electrochimica Acta 51 (2006) 1376-1388,.

U. Troltzsch, O. Kanoun, Generalization of transmission line models for
deriving the impedance of diffusion and porous media, Electrochimica
Acta 75 (2012) 347-356,.

J. Landesfeind, J. Hattendorff, A. Ehrl, W. A. Wall, H. A. Gasteiger,
Tortuosity determination of battery electrodes and separators by

impedance spectroscopy, Journal of the Electrochemical Society 163
(2016) A1373-A1387.

F. Hilario, V. Roche, A. M. Jorge Junior, R. P. Nogueira, Applica-
tion of the transmission line model for porous electrodes to analyse
the impedance response of tio2 nanotubes in physiological environment,

Electrochimica Acta 253 (2017) 599-608.

25



[25]

[26]

[27]

28]

[29]

[30]

[32]

[33]

M. Doyle, J. P. Meyers, J. Newman, Computer simulations of the
impedance response of lithium rechargeable batteries, Journal of the
Electrochemical Society 147 (2000) 99-110.

S. Devan, V. R. Subramanian, R. E. White, Analytical solution for the
impedance of a porous electrode, Journal of the Electrochemical Society
151 (2004) A905-A913.

J. G. Zhu, Z. C. Sun, X. Z. Wei, H. F. Dai, A new electrochemical
impedance spectroscopy model of a high-power lithium-ion battery, RSC
Advances 4 (2014) 29988-29998.

J. Song, M. Z. Bazant, Effects of nanoparticle geometry and size dis-
tribution on diffusion impedance of battery electrodes, Journal of the
Electrochemcial Society 160 (2012) A15-A24.

J. Song, M. Z. Bazant, Electrochemical impedance of a battery electrode
with anisotropic active particles, Electrochimica Acta 131 (2014) 214—
227.

C. R. Kreller, M. E. Drake, S. B. Adler, Influence of electrode morphol-
ogy on electrochemical response of sofc cathodes, ECS Transactions 28
(2010) 105-121.

S. Cho, C. F. Chen, P. P. Mukherjee, Influence of microstructure on
impedance response in intercalation electrodes, Journal of the Elec-
trochemcial Society 162 (2015) A1202-A1214.

S. J. Cooper, A. Bertei, D. P. Finegan, N. P. Brandon, Simulated
impedance of diffusion in porous media, Electrochimica Acta 251 (2017)
681-689.

S. J. Cooper, A. Bertei, P. R. Shearing, J. A. Kilner, N. P. Brandon,
Taufactor: An open-source application for calculating tortuosity factors
from tomographic data, SoftwareX 5 (2016) 203-210.

H.-C. Yu, H.-Y. Chen, K. Thornton, Extended smoothed boundary
method for solving partial differential equations with general boundary
conditions on complex boundaries, Modelling and Simulation in Mate-
rials Science and Engineering 20 (2012) 075008.

26



[35]

[36]

[37]

[42]

[43]

R. Amin, Y.-M. Chiang, Characterization of electronic and ionic trans-
port in lij_,nig33mng33c003302 (nme333) and liy_,nip50mng 20C00 3002
(nmc523) as a function of li content, Journal of the Electrochemcial
Society 163 (2016) A1512-A1517.

J. P. Schmidt, P. Berg, M. Schonleber, A. Weber, E. Ivers-Tiffée, The
distribution of relaxation times as basis for generalized time-domain
models for li-ion batteries, Journal of Power Sources 221 (2013) 70-77.

T. R. Ferguson, M. Z. Bazant, Nonequilibrium thermodynamics of
porous electrodes, Journal of Electrochemical Society 159 (2012) A1967—
A1985.

Y. Lu, C. Kreller, S. Adler, Measurement and modeling of the impedance
characteristics of porous lalxsrxcoo3d electrodes, Journal of the Elec-
trochemcial Society 156 (2009) B513-B525.

E. F. Van de Velde, Concurrent Scientific Computing, Springer-Verlag,
New York, 1st edition, p. 202.

J. Hothaus, E. F. Van de Velde, Alternating-direction line-relaxation
methods on multicomputers, STAM Journal on Scientific Computing 17
(1996) 454-478.

J. R. Wilson, W. Kobsiriphat, R. Mendoza, H.-Y. C. Chen, T. Hines,
J. M. Hiller, D. J. Miller, K. Thornton, P. W. Voorhees, S. B. Adler,
D. Mumm, S. A. Barnett, Three dimensional reconstruction of solid

oxide fuel cell electrodes using focused ion beam - scanning electron
microscopy, ECS Transactions 7 (2007) 1879-1887.

C. L. Park, P. W. Voorhees, K. Thornton, Application of the level-set
method to the analysis of an evolving microstructure, Computational
Materials Scienceputational 85 (2014) 46-58.

J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, P. R. Bueno,
Theoretical models for ac impedance of finite diffusion layers exhibiting
low frequency dispersion, Journal of Electroanalytical Chemistry 475
(1999) 152-163.

27



[44]

[45]

[46]

[47]

[48]

[49]

[50]

J. P. Diard, B. Le Gorrec, C. Montella, Theoretical models for ac
impedance of finite diffusion layers exhibiting low frequency dispersion,
Journal of Electroanalytical Chemistry 471 (1999) 126-131.

J. Crank, The Mathematics of Diffusion, Oxford University Press, 2nd
edition, 1975.

N. Epstein, On tortuosity and the tortuosity factor in flow and diffusion
through porous media, Chemical Engineering Science 44 (1989) 777-779.

J. L. Dawson, D. G. John, Diffusion impedance — an extended general
analysis, Journal of Electroanalytical Chemistry and Interfacial Elec-
trochemistry 110 (1980) 37-47.

J. Torben, K. West, Diffusion impedance in planar, cylindrical and
spherical symmetry, Electrochimica Acta 40 (1995) 255-262.

J. R. Wilson, J. S. Cronin, S. A. Barnett, S. J. Harris, Measurement of
three-dimensional microstructure in a licoo2 positive electrode, Journal
of Power Sources 196 (2011) 3443-3447.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R.
Scott, N. Wilkens-Diehr, Xsede: Accelerating scientific discovery, Com-
puting in Science and Engineering 16 (2014) 62-74.

28



(a’) Loading boundary
lx=0

X =00
i Infinite Warburg (IW)
X = L Non-blocking boundary
.. Transmissive BC: C' =Cp
n - Finite Length Warburg (FLW)
1 - Warburg-short element
Counierind Blocking boundary
iii / Reflective BC: 0C/dz = 0

- Finite Space Warburg (FSW)
- Warburg-open element

1m(2)/Z,

w w

08 1 / W
0.6 FSW

0.4

FLW
0.2 \
: w
0 02 04 06 08 1
Re(Z)/Z,

Figure 1: Tllustration of the three types of Warburg impedance. (a) The domains for
diffusion and boundary conditions for: (i) the infinite Warburg, (ii) finite-length Warburg,
and (iii) finite-space Warburg impedance. (b) Nyquist plot for the IW, FLW, and FSW
impedance. The black arrows indicate the directions along which the impedance varies as

the loading frequency increases.
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Figure 2: Acquisition of the input geometry for SBM simulation. (a) Schematic illustra-
tion of image stacking for microstructure reconstruction. The white, gray, and black pixels
indicate LSC, GDC, and pore phases, respectively. The cathode microstructure between
the two cyan planes are used for the simulations. (b) The voxelated microstructure be-
tween the two cyan planes in (a). The magnified view shows the zigzag, stepped cathode
microstructure surfaces. (c¢) The isosurfaces of ) = 0.5. The surfaces are smoother than
that in (b). The & = 0 boundary corresponds to the loading boundary. The opposite
boundary can be either blocking or nonblocking.
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Figure 3: The concentration distributions under AC loads at frequencies equal to (a)
wr, = 2.65, (b) @, = 89.07, where subfigures (i) and (ii) are for Cr and C7, respectively.
(c¢) and (d) are the profiles along the diffusion direction corresponding to (a) and (b),
respectively. (e) The Nyquist plot of simulated dimensionless impedance for the pseudo-
1D calculations with TBC and analytical solution of FLW. The blue square and green
triangle correspond to (a) and (b), respectively.
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Figure 4: Subfigures (a), (b), and (c) show the geometries of the cylinder, cone, and sphere,
respectively, used in the simulations. A quarter of the volume in each geometry is made
transparent to show the concentration distribution inside the object. The colors indicate
the Cr distribution at &, = 256 calculated with RBC. (d) Nyquist plot of the diffusional
impedance with TBC for the geometries, and (e) magnified view of (d) near the origin.
(f) Nyquist plot of the diffusional impedance with RBC, and (g) magnified view of (f)
near the origin. The green, blue, and purple circles are for the cylinder, cone, and sphere,
respectively. The gray circles are impedance of the cylinder normalized to the cylinder
cross-section area, which overlap with the analytical values of FLW and FSW impedance
shown by the black curves.
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Figure 5: (a) Dimensionless impedance curve for the porous microstructure. The black
curve is for FLW. The four magenta points are for w; = 0, 0.39, 1.92, and 2.65 from
the right to left. The gray arrows point to the data points for porous solid at the same
frequencies. (b) The Bode plot of the amplitude, real and imaginary parts of the calculated
impedance. The impedance is the reciprocal of D, t#, the complex effective diffusivity of
the microstructure. (c) The effective tortuoisty (black line) and ratio of | Z3P|/| Z¥*W| (blue
circles) as functions of frequency. (d) The comparison between the diffusional impedance
obtained from the full 3D calculation (green circles) and the FLW impedance (magenta
dots) calculated with the effective diffusivity obtained at zero frequency. The circles and
dots correspond to the same frequencies.
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Figure 6: Complex concentration amplitudes evaluated with the transmissive boundary
condition on the nonloading end for frequencies (a) wy = 0.39 and (b) &y = 89.07. Ounly
Cr is shown in (a) because the variation of C at Wy, = 0.39 is small. The subfigures (i) and
(ii) are for Cr and C7, respectively. The top row shows the top view of the computational
domain. The impedance corresponds to (a) and (b) are marked by the red square and
triangle in Fig. 5(a), respectively. The green dash line indicates the approximate extent
of diffusion, and the magenta line indicates the approximate position where the respective
component of the concentration amplitude is minimum. (c¢) and (d) the magnified views of
the gray boxes in (a) and (b), respectively. The green arrows highlight how the direction
of the concentration gradient changes with the orientation of the diffusion channels.
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Figure 7: Complex concentration amplitudes evaluated with the reflective boundary con-
dition on the nonloading end for frequencies (a) &y = 0.72 and (b) &y = 89.8. The
subfigures i and ii are the real and imaginary components, respectively.
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Figure 8: (a) The Nyquist plot for the simulated diffusion impedance at various fre-
quencies with reflective boundary condition. The green and red circles are from the
porous microstructure and pseudo-1D simulations with the reflective boundary condi-
tion, respectively. The black curve is the analytic value for FSW impedance. (b) Mag-
nified view for the intermediate to high frequency regions of (a). The blue square and
triangle are the impedance corresponding to Fig. 7(a) and (b), respectively. (¢) The val-
ues of |Z3D’ / |ZFSW} at different frequencies, where Z3P and Z¥SW are the calculated
impedance for the porous microstructure and the analytically calculated FSW impedance,
respectively.
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Figure 9: (a) Nyquist plot for the simulated diffusion impedance of a battery cathode, and
(b) the high frequency region of (a). The concentration amplitudes of (¢) Cr and (d) C;
in the cathode microstructure at frequency wy = 23.84, corresponding to the blue triangle
in (a) and (b).
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