
2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.2979523, IEEE Internet of
Things Journal

1

Energy-Efficient Processing and Robust Wireless
Cooperative Transmission for Edge Inference

Kai Yang, Student Member, IEEE, Yuanming Shi, Member, IEEE, Wei Yu, Fellow, IEEE
and Zhi Ding, Fellow, IEEE

Abstract—Edge machine learning can deliver low-latency and
private artificial intelligent (AI) services for mobile devices by
leveraging computation and storage resources at the network
edge. This paper presents an energy-efficient edge processing
framework to execute deep learning inference tasks at the edge
computing nodes whose wireless connections to mobile devices
are prone to channel uncertainties. Aimed at minimizing the
sum of computation and transmission power consumption with
probabilistic quality-of-service (QoS) constraints, we formulate a
joint inference tasking and downlink beamforming problem that
is characterized by a group sparse objective function. We provide
a statistical learning based robust optimization approach to ap-
proximate the highly intractable probabilistic-QoS constraints by
nonconvex quadratic constraints, which are further reformulated
as matrix inequalities with a rank-one constraint via matrix
lifting. We design a reweighted power minimization approach by
iteratively reweighted `1 minimization with difference-of-convex-
functions (DC) regularization and updating weights, where the
reweighted approach is adopted for enhancing group sparsity
whereas the DC regularization is designed for inducing rank-
one solutions. Numerical results demonstrate that the proposed
approach outperforms other state-of-the-art approaches.

Index Terms—Edge intelligence, energy efficiency, robust com-
munication, group sparse beamforming, robust optimization,
difference-of-convex-functions

I. INTRODUCTION

Machine learning has transformed many aspects of our daily
lives by taking advantage of abundant data and computing
power in the cloud center. In particular, the strong capability
of capturing the representations of data for detection or clas-
sification using deep neural networks [1] has made impressive
gains in face recognition, natural language processing tasks,
etc. With the explosion of mobile data and the increasing
edge computing capability, there is an emerging trend of edge
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intelligence [2]–[4], followed by the evolution of future mobile
networks from “connected things” to “connected intelligence”
[5]. Instead of uploading all data collected by mobile devices
to the remote cloud data center, edge intelligence emphasizes
the use of the computation and storage resources at network
edges to provide low-latency and reliable artificial intelligent
(AI) service [6], [7] for privacy/security sensitive devices, such
as wearable devices, augmented reality, smart vehicles, and
drones. However, since mobile devices are usually equipped
with limited computation power, storage and energy [2], it
is usually infeasible to deploy deep learning models, i.e.,
deep neural networks (DNNs), at resource-constrained mobile
devices, and execute inference tasks locally. A promising
solution is to enable processing at the mobile network access
points to facilitate deep learning inference, which is termed as
edge inference [8], [9].

In this paper, we shall present the edge processing frame-
work for edge inference (as illustrated in Fig. 1) that the
input (e.g., a piece of rough doodle) of each mobile user
is uploaded to wireless access points (e.g., base stations)
served as edge computing nodes, each task is performed with
pre-trained deep learning model (e.g., Nvidia’s AI system
GauGAN [10] for turning rough doodles into photorealistic
landscapes) at multiple edge computing nodes, and the output
results (e.g., landscape images) are transmitted to mobile users
via coordinated beamforming among multiple access points.
In such a system, the provisioning of wireless transmissions
in both the uplink and the downlink are important design
considerations. In addition to the low-latency requirement,
improving the energy efficiency [11] is also critical due to
the high computational complexity of processing DNNs, for
which a number of works focusing on model compression
methods [12], [13].

There is a communication and computation tradeoff for the
edge inference system in downlink. In particular, performing
an inference task at more edge computing nodes can achieve
higher quality-of-service (QoS) through cooperative downlink
transmission for delivering the output results to mobile users.
This however results in more computation power consumption
for executing the deep learning models. We thus propose to
jointly decide on the task allocation strategy at edge nodes
and design downlink beamforming vectors by minimizing
the sum of transmission power consumption and computation
power consumption. In particular, the power consumption of
deep learning inference tasks can be determined through the
estimated energy [14] and computation time. We observe that
there is an intrinsic connection between the group sparse
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structure [15], [16] of the downlink aggregative beamforming
vector and the combinatorial variable, i.e., the set of tasks
performed at edge nodes. The cooperative transmission strate-
gies require global channel state information (CSI), while
uncertainty in CSI acquisition is inevitable in practice due
to training based channel estimation [17], limited feedback
[18], partial CSI acquisition [19] and CSI acquisition delays
[20]. We thus formulate the joint task selection and downlink
beamforming problem for energy-efficient processing and ro-
bust transmission against CSI errors in edge inference system
as a group sparse beamforming problem with probabilistic-
QoS constraints [19].

Edge processing Wireless transmission

Robust downlink transmission 

against CSI errors

Energy efficiency: minimizing sum of computation and 

communication power consumption in equation (10)

Edge inference = +

Robust optimization 

approximation in Section III

Reweighted 

minimization
DC regularization approach+

Proposed 

approach =

Group sparse objective

(Section IV)

Probabilistic QoS constraints+Problem =
(Section II-D)

Fig. 1. Illustration of our energy-efficient processing and robust wireless
cooperative transmission framework for edge inference.

The joint chance constraints make the formulated proba-
bilistic group sparse beamforming problem highly intractable
since it has no closed-form expression generally. To address
the chance-constrained programs, a number of works focus
on finding computationally tractable approximations based on
the collected samples of the random variables. A recognized
scenario generation (SG) approach [21] is proposed that uses a
collection of sampled constraints to approximate the original
chance constraints. However, SG is over-conservative since
the volume of feasible region decreases by increasing the
sample size, which leads to the deterioration of its perfor-
mance. In addition, given the pre-specified probability 1 − ε
and the confidence level 1 − δ for the probabilistic-QoS
constraints, the required samples size of SG should satisfy∑NKL−1
i=1

(
T
i

)
εi(1 − ε)T−i ≤ δ, which increases roughly

linearly with 1/ε. In [19], a stochastic optimization approach is
provided to address the over-conservativeness of SG. However,
its computational cost grows linearly with the sample size,
which is not scalable for obtaining high-robustness solutions.
Moreover, its statistical guarantee under finite sample size
is still not available. To overcome limitations of existing
methods, we present a robust optimization approximation
approach for the joint chance constraints by enforcing the QoS
constraints for any element within a high probability region.
The high probability region is further determined by adopting
a statistical learning [22] approach. This approach enjoys
the benefits that the minimum required sample size is only
log δ/ log(1 − ε), and the computational cost is independent
of the sample size.

With the statistical learning based robust optimization ap-

proximation approach, the resulting robust group sparse beam-
forming problem has nonconvex quadratic constraints and a
nonconvex group sparse objective function. We find that the
nonconvex quadratic constraints can be convexified by matrix
lifting and semidefinite relaxation (SDR) [23]. Specifically, the
nonconvex quadratic robust QoS constraints can be lifted as
convex constraints in terms of a rank-one positive semidefinite
matrix variable, which is then convexified by simply dropping
the rank-one constraint. However, the SDR approach cannot
guarantee that the obtained solution is feasible with respect to
the original nonconvex quadratic constraints. The mixed `1/`2-
norm [24] is a well-known convex group sparsity inducing
norm, which has been successfully applied in green cloud
radio access networks [15] and cooperative wireless cellular
network [25]. However, the SDR approach requires a quadratic
form of the objective function, which makes the mixed `1/`2-
norm minimization approach inapplicable. To overcome this
problem, a quadratic variational form of weighted mixed
`1/`2-norm is proposed in [26] to induce group sparsity.
Note that [26] also considers a group sparse beamforming
problem with nonconvex quadratic constraints. However, the
performance of a quadratic variational form of weighted mixed
`1/`2-norm minimization with SDR is still not satisfactory.

To address the limitations of existing approaches, we pro-
pose a reweighted power minimization approach to enhance
the group sparsity as well as improve the feasibility of non-
convex quadratic constraints. Specifically, we first adopt the
iteratively reweighted `1 minimization approach for enhancing
group sparsity [27], [28]. To further guarantee the feasibility
of the original nonconvex quadratic constraints, we exploit
the matrix lifting technique to recast the nonconvex quadratic
constraints as the convex constraints with respect to a rank-one
positive semidefinite matrix, and propose a novel difference-
of-convex-functions (DC) regularzation approach to induce
rank-one solutions. Numerical results demonstrate that the
proposed approach improves the probability of feasibility by
avoiding the over-conservativeness of SG. Benefiting from
both the reweighted `1 minimization and the DC regulariza-
tion, the proposed approach achieves a much lower total power
consumption than the algorithm proposed in [26] and has a
better capability of inducing group sparsity with nonconvex
quadratic constraints.

A. Contributions

In this work, we consider an edge computing system to
execute deep learning inference tasks for resource-constrained
mobile devices. In order to provide energy-efficient processing
and robust wireless cooperative transmission service for edge
inference, we propose to jointly design the downlink beam-
forming vector and the set of inference tasks performed at each
edge computing nodes under probabilistic-QoS constraints. We
provide a statistical learning based robust optimization ap-
proximation for the highly intractable joint chance constraints,
which guarantees that the probabilistic-QoS constraints are
feasible with certain confidence level. The resulting problem
turns out to be a group sparse beamforming problem with non-
convex quadratic constraints. We propose a reweighted power
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minimization approach based on the principles of iteratively
reweighted `1 minimization for group sparsity inducing, matrix
lifting technique, and a novel DC representation for rank-
one positive semidefinite matrices. The proposed approach can
enhance group sparsity and induce rank-one solutions.

We summarize the major contributions of this paper as
follows:

1) We propose an energy-efficient processing and robust
transmission approach for executing deep learning infer-
ence tasks at possibly multiple edge computing enabled
wireless access points. The selection of optimal set of ac-
cess points for each task is formulated as a group sparse
beamforming problem with joint chance constraints.

2) We provide a robust optimization counterpart to approxi-
mate the joint chance constraints followed by a statistical
learning approach to learn the parameters from data
samples of the random channel coefficients. It turns out
a nonconvex group sparse beamforming problem with
nonconvex quadratic constraints.

3) We show that the nonconvex quadratic constraints can
be reformulated as convex constraints with a rank-one
constraint, where the rank-one constraint can be refor-
mulated with a novel DC representation. To enhance
the group sparsity and inducing rank-one solutions, we
propose a reweighted power minimization approach by
iteratively reweighted `1 minimization with DC regular-
ization and updating weights.

4) We conduct extensive numerical experiments to demon-
strate the advantages of the proposed approach in pro-
viding energy-efficient and robust transmission service
for edge inference.

B. Organization and Notations

The rest of this work is organized as follows. In Section II,
we introduce the system model and the power consumption
model of edge inference, and formulate the energy-efficient
processing and robust cooperative transmission problem as a
group sparse beamforming problem with joint chance con-
straints. Section II provides a statistical learning based ro-
bust optimization approach to approximate the joint chance
constraints. In Section IV, we design a reweighted power
minimization approach for solving the robust group sparse
beamforming problem. The simulation results are illustrated
in Section V to demonstrate the superiority of the proposed
approach over other state-of-the-art approaches. Finally, we
conclude this work in Section VI.

Throughout this paper, we use lower-case bold letters (e.g.,
v) to denote column vectors and letters with one subscript
to denote their subvectors (e.g., vk). We further use lower-
case bold letters with two subscripts to denote the subvectors
of subvectors (e.g., vnk is a subvector of vk). We denote
scalars with lower-case letters, matrices with capital letters
(e.g., V ) and sets with calligraphic letters (e.g., A). The
conjugate transpose of a vector or matrix, `2-norm of a vector
and spectral norm of a matrix are denoted as (·)H, ‖ · ‖2 and
‖ · ‖, respectively. Table I summarizes the notations used in
this paper.

Notation Explanation
N,K,L the number of APs, MUs, and AP’s antennas,

respectively
[K] the set of {1, · · · ,K}
A task allocation of APs
P cnk power consumption of performing the k-th user’s

task at the n-th AP
P Tx
n maximum transmit power of the n-th AP
ηn power amplifier efficiency
P c total computation power consumption at APs
P total power consumption

vnk,vk,v beamforming vectors at the APs
Vij [s, t],Vij ,V lifted matrices of beamforming vectors

hkn,hk,h downlink channel coefficient vectors between APs
and MUs

ĥkn, ĥk, ĥ estimated channel coefficient vectors
ekn, e random errors of CSI
γk, ζ the target QoS and its target tolerance level
ε, δ the tolerance level and its confidence level
Uk high probability region of hk
D the data set consisting of D i.i.d. samples of h

D1,D2 the partitioned two parts of the data set D with
size D1 and D2 = D −D1, respectively

h̃(j) the j-th data sample
q1−ε (1− ε)-quantile

TABLE I
NOTATIONS USED IN THE PAPER

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section provides the system model and power con-
sumption model of edge inference for deep neural networks,
followed by the proposal of the energy-efficient edge process-
ing under probabilistic-QoS constraints.

A. System Model

Consider the edge processing network consisting of N L-
antenna edge computing enabled wireless access points (APs)
and K single-antenna mobile users (MUs), as shown in Fig.
2. Each MU k has a deep learning inference task φk(dk)
with input dk. Instead of relying on a cloud data center, we
execute deep learning tasks at the APs to address latency and
privacy concerns for high-stake applications such as drones
and smart vehicles [2]. In this paper, we propose to store the
trained deep neural network (DNN) models φk’s to APs in
advance. Each AP collects all inputs {dk}Kk=1 from each MU
in the first phase. In the second phase, each AP will selectively
execute some inference tasks and transmit the output results to
the MUs through cooperative downlink transmission, thereby
providing low-latency intelligent services for MUs. The point
is that the same inference task can be executed at multiple
APs, so that the multiple APs can jointly transmit the result to
the MUs through beamforming, thus improving the downlink
transmission efficiency (at the expenses of the larger energy
consumption due to executing the same task at multiple APs.)
This paper focuses on the joint task selection and downlink
transmit beamforming problem in the second phase.

Let φk(dk) be the requested output for MU k, sk ∈ C
be the encoded scalar to be transmitted, and vnk ∈ CL be
the beamforming vector for message φk(dk) at the n-th AP.
We consider the downlink communication scenario, where all
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Fig. 2. System model of edge inference for deep neural networks. This papper
focuses on the computing and downlink transmission phase.

inputs dk’s have already been collected at APs. Then the
received signal at MU l is given by

yk =

N∑
n=1

K∑
l=1

hH
knvnlsl + zk, (1)

where hkn ∈ CL is the channel coefficient vector between the
n-th AP and the k-th MU, zk ∼ CN (0, σ2

k) is the additive
isotropic white Gaussian noise. Suppose all data symbols sk’s
are mutually independent with unit power, i.e., E[|sk|2] = 1,
and also independent with the noise. Denote [K] as the set
{1, · · · ,K}. Let A ⊆ {(n, k) : n ∈ [N ], k ∈ [K]} denote
a feasible allocation for the inference tasks on APs, i.e.,
computational task φk shall be performed at the n-th AP for
(n, k) ∈ A. In term of the group sparsity structure of the
aggregative beamforming vector

v = [vH11, · · · ,vHN1, · · · ,vHNK ]H ∈ CNKL, (2)

we have that if the inference task k will not be performed at
AP n, i.e., (n, k) /∈ A, the beamforming vector vnk will be
set as zero. Let T (v) be the group sparsity pattern of v given
as

T (v) = {(n, k)|vnk 6= 0}. (3)

The signal-to-interference-plus-noise-ratio (SINR) for mobile
device k is given by

SINRk(v;hk) =
|hH
kvk|2∑

l 6=k |hH
kvl|2 + σ2

k

, (4)

where hk and vk are given by

hk = [hH
k1, · · · ,hH

kN ]H ∈ CNL, (5)

vk =
[
vH1k · · · vHNk

]H ∈ CNL, (6)

and the aggregative channel coefficient vector is denoted as

h = [hH
1 , · · · ,hH

K ]H ∈ CNKL. (7)

The transmit power constraint at the n-th AP is given by

E

[
K∑
l=1

‖vnlsl‖22

]
=

K∑
l=1

‖vnl‖22 ≤ P Tx
n , n ∈ [N ], (8)

where P Tx
n is the maximum transmit power.

B. Power Consumption Model

Although widespread applications of deep learning present
numerous opportunities for intelligent systems, energy con-
sumption becomes one of the main concerns [8]. Indeed,
the energy consumption of performing DNN inference is
dominated by the memory access. As pointed out in [12],
a memory access of 32 bit dynamic random access memory
(DRAM) consumes 640pJ, while a cache access of 32 bit
static random access memory (SRAM) consumes 5pJ and a 32
bit floating point add operation consumes 0.9pJ. Large DNN
models probably cannot fit in the storage of mobile device,
which requires more costly DRAM memory accesses. There-
fore, small models can be directly deployed on mobile devices
but large models are preferably executed at the powerful edge
nodes. Let the power consumption of computing task φk at
the n-th edge computing node be P c

nk. The total computation
power consumption for all edge computing nodes is thus given
by

P c =
∑
n,k

P c
nkI(n,k)∈T (v), (9)

where the indicator function I is 1 if (n, k) ∈ T (v) and 0
otherwise. Therefore, the total power consumption consists of
transmission power consumption for output results delivery
and computation power consumption for deep learning tasks
execution, which is given by

P =
∑
n,k

1

ηn
‖vnk‖22 +

∑
n,k

P c
nkI(n,k)∈T (v), (10)

where ηn is the power amplifier efficiency.
Deep neural networks especially deep convolutional neural

networks (CNNs) becomes an indispensable and the state-of-
the-art paradigm for real-world intelligent services. Its high
energy cost has attracted much interest in designing energy-
efficient structures of neural networks [12]. Estimating the
energy consumption of a neural network is thus critical for
inference at the edge, for which an estimation tool is de-
veloped in [29]. The energy consumption of performing an
inference task consists of the computation part and the data
movement part [14]. The computation energy consumption
can be calculated by counting the number of multiply-and-
accumulate (MACs) in the layer and weighing it with the en-
ergy consumption of each MAC operation in the computation
core. The energy consumption of data movement is calculated
by counting the number of accessing memory at each level
of the memory hierarchy in the corresponding hardware and
weighing it with the energy consumption of accessing the
memory in the corresponding level.

Here we illustrate how to estimate the computation power
consumption of performing image classification tasks using
the classic CNN (i.e., AlexNet consisting of 5 convolutional
layers and 3 fully-connected layers) on the Eyeriss chip. The
energy estimation tool takes network configuration as input
and outputs the estimated energy breakdown of each layer
in terms of computation part and the data movement part
of three data types(weight, input feature map, output feature
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Fig. 3. Energy consumption breakdown of the AlexNet [30]. The unit of
energy is normalized by the energy for one MAC operation (i.e., 102 = energy
of 100 MACs).

map). Figure 3 demonstrates the estimated energy of each layer
running on Eyeriss chip, and the overall energy consumption is
the sum of four parts. The unit of energy is normalized by the
energy for one MAC. Based on the total energy consumption,
the computation power consumption can be further determined
via dividing the energy consumption by the computation time.

C. Channel Uncertainty Model

For high-stake intelligent applications such as autonomous
driving and automation, robustness is a critical requirement. In
practice, inevitably there is uncertainty in the available channel
state information (CSI) h, which is taken into consideration
to provide robust transmission in this paper. It may originate
from training based channel estimation [17], limited precision
of feedback [18], partial CSI acquisition [19] and delays in
CSI acquicition [20]. In this work, we adopt the additive error
model [31], [32] of the channel imperfection, i.e.,

h = ĥ+ e, (11)

where ĥ ∈ CNKL is the estimated aggregative channel vector
and e ∈ CNKL is the random errors of the CSI with unknown
distribution and expectation as 0. We apply the probabilistic
quality-of-service (QoS) constraints [19] to characterize the
robustness of delivering the inference results to MUs

Pr (SINRk(v;hk) ≥ γk) ≥ 1− ζ,∀k ∈ [K]. (12)

Here ζ is the tolerance level and “SINRk ≥ γk” is called safe
condition.

D. Problem Formulation

In the proposed edge processing framework for deep learn-
ing inference tasks, there is a fundamental tradeoff between
computation and communication. Specifically, executing the
same inference task at multiple edge nodes will require

higher computation power consumption, while the downlink
transmission power consumption shall be reduced due to the
cooperative transmission gains. In this paper, we propose an
energy-efficient processing and robust transmission approach
to minimize the total network power consumption, while
satisfying the probabilistic QoS constraints and transmit power
constraints. It is formulated as the following probabilistic
group sparse beamforming problem:

PCCP : min
v∈CNKL

∑
n,k

1

ηn
‖vnk‖22 +

∑
n,k

P c
nkI(n,k)∈T (v)

s.t. Pr (SINRk(v;hk) ≥ γk) ≥ 1− ζ, k ∈ [K](13)
K∑
k=1

‖vnk‖22 ≤ P Tx
n , n ∈ [N ]. (14)

Remark 1. In edge inference, data privacy is another main
concern for high-stake applications such as smart vehicles and
drones. Mobile users in these applications may be reluctant
to send their raw data to APs. To avoid the exposure of
raw data, hierarchical distributed structure has been studied
in the literature, such as [33], by determining a partition
point of a DNN model and deploying the partitioned model
across the mobile device and the edge computing enabled
AP. The data privacy is protected since only the output of
the layers before the partition point is uploaded to APs. Note
that our proposed framework is also applicable to the privacy-
preserving hierarchical distributed structure. In this case, the
input dk becomes the locally computed output of the layers
before the partition point. The computation task φk becomes
the task of computing the inference result with the layers after
the partition point.

To achieve the robustness of QoS against CSI errors, we
shall collect D i.i.d. (independent and identically distributed)
samples of the imperfect channel state information as the data
set D = {h̃(1), · · · , h̃(D)} to learn the uncertainty model of
CSI before providing edge inference service. Based on the
data set D, we aim to design a beamforming vector v such
that the safe condition is satisfied with probability at least
1−ζ. However, since we do not know the prior distribution of
random errors, the statistical guarantee of a given approach is
usually expressed as certain confidence level 1− δ for certain
tolerance level 1 − ε, e.g., the scenario generation approach
[21]. That is, the confidence level of

Pr (SINRk(v;hk) ≥ γk) ≥ 1− ε (15)

is no less than 1−δ for some v, D, 0 < ε < 1 and 0 < δ < 1.
Thus the violation probability of the safe condition is upper
bounded by

Pr(SINRk(v;hk) < γk) < δ + ε(1− δ). (16)

By setting ε and δ such that ζ > δ+ε(1−δ), the safe condition
(12) is guaranteed to be met.

We consider the block fading channel where the channel
distribution is assumed invariant [34] within Ts blocks and
the channel coefficient vector remains unchanged within each
block. Note that the training by collecting D channel samples
within each block will result in high signaling overhead.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on May 12,2020 at 05:06:58 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.2979523, IEEE Internet of
Things Journal

6

We will show that our proposed approach for addressing the
probabilistic-QoS constraints can be intergrated with a cost-
effective channel sampling strategy in Section III-D.

E. Problem Analysis
Directly solving the joint chance constraints (13) is usually

a highly-intractable task [21], especially when there is no
exact knowledge about the uncertainty. In this work, we
shall propose a general framework for edge inference without
assuming the prior distribution of random errors. A natural
idea is to find a computationally tractable approximation for
the probabilistic QoS constraints (13).

1) Scenario Generation: Scenario generation [21] is a well-
known approach by obtaining D independent samples of the
random channel coefficient vector h and imposing the target
QoS constraints SINRk ≥ γk, k ∈ [K] for each sample.
However, because it ensures robustness in the minimax sense,
it is too conservative when a large number of samples are
drawn, since the volumn of feasible region will decrease,
which may result in the infeasibility of problem PCCP. In
addition, the sample size D should be chosen such that∑NKL−1
i=1

(
D
i

)
εi(1 − ε)D−i ≤ δ, where 1 − δ gives the

confidence level for the probabilistic-QoS constraints defined
in equation (12). Therefore, the scenario generation approach
has scalability issue since the required minimum sample size
D increases roughly linearly with 1/ε for small ε and also
with NKL.

2) Stochastic Programming: To address this over-
conservativeness issue of the scenario generation approach,
a stochastic programming approach is further provided
in [19] by finding a difference-of-convex-functions (DC)
approximation for the chance constraints. The resulting DC
constrained stochastic program can be solved by successive
convex approximation with the Monte Carlo approach at each
iteration. However, its computation cost grows linearly with
the number of samples D which is not scalable for obtaining
high-robustness solutions, and the statistical guarantee is not
available for the joint chance constraints under finite sample
size.

To address the limitations of the existing works, we shall
present a robust optimization approach in Section III to
approximate the chance constraint via a statistical learning
approach [22]. This approach enjoys the main advantages
that the minimum required number of observations is only
log δ/ log(1− ε) and the computational cost is independent of
the sample size.

III. LEARNING-BASED ROBUST OPTIMIZATION
APPROXIMATION FOR JOINT CHANCE CONSTRAINTS

In this section, we provide a robust optimization approx-
imation for the joint chance constraints in problem PCCP,
followed by a statistical learning approach to learn the shape
and size of the high probability region.

A. Approximating Joint Chance Constraints via Robust Opti-
mization

Robust optimization [22] uses safe approximation and im-
poses that the safe conditions are always satisfied when the

random variables lie in some geometric set. Specifically,
the robust optimization approximation of the joint chance
constraints (13) is given by

SINRk(v;hk) ≥ γk,hk ∈ Uk,∀k ∈ [K] (17)

where Uk is the high probability region that hk lies in.
The robust optimization approximation for the joint chance
constraints should yield a solution such that the probabilistic
QoS constraint is satisfied with high confidence. The robust
optimization approximation approach is realized by construct-
ing a high probability region Uk from the data set D such that
Uk covers a 1− ε content of hk, i.e.,

Pr(hk ∈ Uk) ≥ 1− ε, (18)

with confidence level at least 1− δ. More precisely, since Uk
is generated from data and therefore is random, we require
that the proportion of time (18) is satisfied to be at least 1− δ
in the repeated application of the data generation and high
probability region construction procedure. By imposing the
QoS constraints for element in the high probability region
as presented in equation (17), the confidence level for the
probabilistic-QoS constraints (15) will be at least 1 − δ. We
thus obtain the robust optimization approximation for problem
PCCP as

PRO : minimize
v,h

∑
n,k

1

ηn
‖vnk‖22 +

∑
n,l

P c
nkI(n,k)∈T (v)

subject to SINRk(v;hk) ≥ γk,hk ∈ Uk, k ∈ [K]
K∑
k=1

‖vnk‖22 ≤ P Tx
n , n ∈ [N ]. (19)

The choice of the geometric shape of the uncertainty set Uk
is critical to the performance and the tracatability of the robust
optimization approximation. Motivated by the tractability of
robust optimization, ellipsoids and polytopes are commonly
chosen as the basic uncertainty sets. The uncertainty set can
be further augmented as the unions or intersection of these
basic sets. In this paper, we choose ellipsoidal uncertainty set
to model the uncertainty of each group of channel coefficient
vector hk for its wide use in modeling CSI uncertainties [26],
[35], as well as its tractability as shown in Section III-C. The
high probability region Uk is parameterized as

Uk = {hk : hk = ĥk +Bkuk,u
H
kuk ≤ 1}. (20)

Here the parameters Bk ∈ CNL×NL and ĥk ∈ CNL shall be
learned from the data set D, which will be presented in Section
III-B. We will then present the tractable reformulation of the
robust optimization counterpart problem PRO in Section III-C.

B. Learning the High Probability Region from Data Samples

Note that (17) only gives a feasibility guarantee for the joint
chance constraints with statistical confidence at least 1−δ, but
its conservativeness is still a challenging problem. Generally
speaking, problem PRO is a less conservative approximation
for problem PCCP if it has a larger feasible region. Therefore,
we prefer a smaller volume of the high probability region
U which provides a larger feasible region. In our problem
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formulation, we set the volume of the high probability region
such that the statistical confidence for the probabilistic-QoS
constraints is close to 1− δ.

In this paper, we propose to use a statistical learning
approach [22] for the parameters of the high probability
region U , which consists of a shape learning procedure and
a size calibration procedure via quantile estimation. First of
all, we split the samples in data set D into two parts, i.e.,
D1 = {h̃(1), · · · , h̃(D1)} and D2 = {h̃(D1+1), · · · , h̃(D)},
each for one procedure.

1) Shape Learning: Each ellipsoid set Uk can be re-
parameterized as

Uk = {hk : (hk − ĥk)TΣ−1k (hk − ĥk) ≤ sk}, (21)

where ĥk and Σk are shape parameters of the ellipsoid Uk,
sk > 0 determines its size, and Σk/sk = BkB

H
k . Suppose the

observations of hk is given by Dk = D1
k ∪ D2

k = {h̃(j)
k }Dj=1.

The shape parameter ĥk can be chosen as the sample mean,
i.e.,

ĥk =
1

D1

D1∑
j=1

h̃
(j)
k , (22)

To reduce the complexity of the ellipsoid, we omit the correla-
tion between each {hkn} and choose Σk as the block diagonal
matrix where each diagonal element is the sample covariance
of the first part of the data set for hkn, i.e.,

Σk =

Σk1

. . .
ΣkN

 , where

Σkn =
1

D1 − 1

D1∑
j=1

(h̃
(j)
kn − ĥkn)(h̃

(j)
kn − ĥnk)

H. (23)

2) Size Calibration via Quantile Estimation: We then use
the second part of data set D2

k for calibrating the ellipsoid size
sk. The key idea is to estimate a 1 − ε quantile with 1 − δ
confidence of a transformation of the data samples in D2

k. Let

G(ξ) = (ξ − ĥk)TΣ−1k (ξ − ĥk) (24)

be the map from the random space that hk lies in to R. The
size parameter sk will be chosen as an estimated (1 − ε)-
quantile of the underlying distribution of G(ξ) based on the
data samples in D2

nk, where the (1−ε)-quantile q1−ε is defined
from

Pr(G(ξ) ≤ q1−ε) = 1− ε. (25)

Specifically, by computing the function values of G on each
sample of D2

k, we can obtain the observations G1, · · · , GD−D1

where Gj = G(h(D1+j)
k ). Then the t?-th value of the ranked

observations G(1) ≤ · · · ≤ G(D−D1) in ascending order,
denoted as G(j?), can be an upper bound of the (1−ε)-quantile
of the underlying distribution of G(ξ) based on the following
proposition:

Proposition 1. sk is an upper bound of the (1 − ε)-quantile
of the underlying distribution with 1− δ confidence, i.e.,

Pr(sk ≥ q1−ε) ≥ 1− δ, (26)

if sk is set as

sk = G(j?), where j? is given by

min
1≤j≤D−D1

{
j :

j−1∑
k=0

(
D −D1

k

)
(1− ε)kεD−D1−k ≥ 1− δ

}
.

(27)

Proof. According to the definition of the quantile q1−ε, we
have

Pr(G(j) ≥ q1−ε)
=Pr(G(k) < q1−ε, k = 0, · · · , j − 1)

=

j−1∑
k=0

(
D −D1

k

)
(1− ε)kεD−D1−k. (28)

Therefore G(j?) is the smallest one among all upper bounds
of the (1−ε)-quantile of the underlying distribution with 1−δ
confidence.

Using the presented two procedures, we learn a high proba-
bility region U of the random channel coefficient vector hk’s.
The statistical guarantee of this statistical learning based robust
optimization approximation approach is given by the following
proposition:

Proposition 2. Suppose the data samples in the data set
Dk are i.i.d. and chosen from a continuous distribution for
any k. The data set is split into two independent parts D1

k

and D2
k. Each uncertainty set is chosen as Uk = {hk :

(hk − ĥk)TΣ−1k (hk − ĥk) ≤ sk}. Their parameters ĥk,Σk,
and sk are determined following equation (22), equation (23),
and equation (27), respectively. Thus, any feasible solution
to problem PRO guarantees that the probabilistic-QoS con-
straints (15) are satisfied with confidence at least 1− δ.

Proof. Since G depends only on D1
k, we have

PrD2
k
(v ∈ V) = PrD2

k
(G(t?) ≥ q1−ε) ≥ 1− δ. (29)

Therefore, it is readily obtained that Pr(SINRk ≥ γk) ≥ 1− ε
satisfies with confidence at least 1− δ.

Note that j? exists only if

D−D1−1∑
k=0

(
D −D1

k

)
(1− ε)kεD−D1−k ≥ 1− δ, (30)

which implies that 1 − (1 − ε)D−D1 ≥ 1 − δ. In other
words, the required minimum number of samples is D >
D −D1 ≥ log δ/ log (1− ε) to achieve the 1 − δ confidence
of the probabilistic QoS constraint (13). Matrix Bk can be
computed as

Bk =
√
sk∆k, (31)

where ∆k is the Cholesky decomposition of Σk, i.e., Σk =
∆k∆

H
k . We summarize the whole procedure for learning the

high probability region U from data set D in Algorithm 1.
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Algorithm 1: Statistical Learning Based Approach
for the High Probability Region Uk

Input: the data set D = {h̃(1), · · · , h̃(D)}.
for each k = 1, · · ·K do

Data splitting: Randomly split the samples of
hk, namely Dk, into two parts D1

k and D2
k.

Shape learning: Set the shape parameters ĥk
and Σk as equation (22) and equation (23)
based on D1

k.

Size calibration: Set the size parameter sk as
G(j?) by computing the values of function G
on D2

k, where G is defined in equation (24) and
j? is chosen as equation (27).

Compute Bk =
√
sk∆k through Cholesky

decomposition Σk = ∆k∆
H
k .

end
Output: ĥk, Bk for all k.

C. Tractable Reformulations for Robust Optimization Problem

According to the ellipsoidal uncertainty model (20), the
robust optimization approximation (17) can be rewritten as

hH
k

(
1

γk
vkv

H
k −

∑
l 6=k

vlv
H
l

)
hk ≥ σ2

k (32)

hk = ĥk +Bkuk,u
H
kuk ≤ 1, (33)

where unk ∈ CL. By defining matrices

Hk =
[
ĥk Bk

]
∈ CNL×(NL+1) (34)

and using the S-procedure [36], we obtain the following
equivalent tractable reformulation for (32) and (33):

HH
k

(
1

γk
vkv

H
k −

∑
l 6=k

vlv
H
l

)
Hk � Qk (35)

λk ≥ 0, (36)

where λ = [λk] ∈ RK+ and Qk is given by

Qk =

[
λk + σ2

k 0
0 −λkINL

]
∈ C(NL+1)×(NL+1). (37)

The derivation details of (35) and (36) from (32) and (33) is
relegated to Appendix A.

Thus the proposed robust optimization approximation for
problem PCCP is given by the following group sparse beam-
forming problem with nonconvex quadratic constraints:

PRGS : minimize
v∈CNKL,λ∈RK

∑
n,l

1

ηn
‖vnl‖22 +

∑
n,l

P c
nlI(n,l)∈T (v)

subject to (35), λk ≥ 0,∀k ∈ [K] (38)
K∑
l=1

‖vnl‖22 ≤ P Tx
n ,∀n ∈ [N ]. (39)

Its computational complexity of solving problem PRGS is
independent of the sample size D. An effective approach for

obtaining approximate solution of nonconvex quadratic con-
strained quadratic program is to lift the aggregative beamform-
ing vector as a rank-one positive semidefinite matrix V = vvH

and simply drop the rank-one constraint, which is termed
as the semidefinite relaxation (SDR) technique [23]. The
obtained solution however may be infeasible for the original
nonconvex quadratic constraints. To induce the group sparsity
with nonconvex quadratic constraints, a quadratic variational
form of weighted mixed `1/`2-norm is adopted in [26]. In this
paper, we will adopt an iteratively reweighted minimization
approach which has demonstrated its effectiveness in cloud
radio access network [27], [28] to further enhance the group
sparsity of the aggregative beamforming vector. In addition, to
improve the feasibility for the nonconvex quadratic constraint
for each subproblem of the reweighted approach, we shall
provide a novel difference-of-convex-functions (DC) approach
for inducing rank-one solution. It should be mentioned that the
uplink-downlink duality is not applicable to efficiently address
the robust QoS constraints (35) due to the CSI uncertainty.

D. Integrating the Robust Optimization Approximation with a
Cost-Effective Sampling Strategy

Consider the block fading channel where the channel distri-
bution is assumed invariant [34] within the coherence interval
for channel statistics. The coherence interval for channel
statistics consists of Ts blocks, where each block is called a
coherence interval for CSI and the channel coefficient vector
remains unchanged within each block. However, collecting D
channel samples within each block leads to high signaling
overhead. To address this issue, we provide a cost-effective
sampling strategy for enabling robust transmission, whose
timeline is illustrated in Fig. 4.

At the beginning of the coherence interval for channel
statistics, we collect D i.i.d. channel samples as D. Based
on the data set D, we can learn the estimated channel coef-
ficient vector ĥk from equation (22) and the estimated high
probability region of the error ek as Bk from equation (31).
For the transmission in the first block, we can obtain {Hk} by
combining these two parts following equation (34) and solve
the resulting problem PRGS. For any other block t > 1, we
can obtain the estimated channel coefficient ĥ[t] as the sample
mean by collecting as few as one sample of the channel coef-
ficient vector. By replacing the estimated channel coefficient
ĥ and keeping the error information {Bk : k ∈ [K]}, we can
construct the parameter {Hk[t]} at the t-th block as

Hk[t] =
[
ĥk[t] Bk

]
,∀k ∈ [K], (40)

and design the transmitter beamformer by solving problem
PRGS({Hk[t]}), which significantly reduces the signaling
overhead for channel sampling. The effectiveness of this
cost-effective scheme will be demonstrated in Section V-A
numerically.

IV. REWEIGHTED POWER MINIMIZATION FOR GROUP
SPARSE BEAMFORMING WITH NONCONVEX QUADRATIC

CONSTRAINTS

This section presents a reweighted power minimization
approach to induce the group sparsity structure for problem
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Fig. 4. Timeline of a cost-effective channel sampling strategy.

PRGS. We further demonstrate that the nonconvex quadratic
constraints can be reformulated as convex constraints with
respect to a rank-one positive semidefinite matrix using a
matrix lifting technique, followed by proposing a DC approach
to induce rank-one solutions.

A. Matrix Lifting for Nonconvex Quadratic Constraints

We observe that constraints (35) are convex with respect
to vvH despite of its nonconvexity with respect to v. This
motivates us to adopt the matrix lifting technique [23] to
address the nonconvex quadratic constraints in problem PRGS
by denoting

Vij [s, t] = vsiv
H
tj ∈ CL×L (41)

Vij =

Vij [1, 1] · · · Vij [1, N ]
...

. . .
...

Vij [N, 1] · · · Vij [N,N ]

 = viv
H
j ∈ CNL×NL

(42)

V = vvH =

V11 · · · V1K

...
. . .

...
VK1 · · · VKK

 ∈ SNKL+ , (43)

where SNKL+ denotes the set of Hermitian positive semidefinite
(PSD) matrices. The aggregative beamforming vector v is
thus lifted as a rank-one PSD matrix V . The constraint Ck
of problem PRGS, which given by (35), can be equivalently
rewritten as the following PSD constraint

HH
k

(
1

γk
Vkk −

∑
l 6=k

Vll

)
Hk � Qk, (44)

and the transmit power constraint (39) can be equivalently
rewritten as

K∑
l=1

‖vnl‖22 =
K∑
l=1

Tr(Vll[n, n]) ≤ P Tx
n ,∀n = 1, · · · , N. (45)

Therefore, using the matrix lifting technique, we obtain an
equivalent reformulation for problem PRGS as

P : minimize
V ,λ

∑
n,l

(
1

ηn
Tr(Vll[n, n]) + P c

nlITr(Vll[n,n])6=0

)
subject to (44), λk ≥ 0,∀k ∈ [K] (46)

K∑
l=1

Tr(Vll[n, n]) ≤ P Tx
n ,∀n ∈ [N ] (47)

V � 0, rank(V ) = 1. (48)

Note that the constraints are still nonconvex due to the
nonconvexity of the rank-one constraint.

B. DC Representations for Rank-One Constraint

For a positive semidefinite matrix V ∈ SNKL+ , its rank is
one if and only if it has only one non-zero singular value, i.e.,

σi(V ) = 0, i = 2, · · · , NKL, (49)

where σi(V ) is the i-th largest singular value of V . The trace
norm and spectral norm of the positive semidefinite matrix V
are respectively given as

Tr(V ) =
NKL∑
i=1

σi(V ), ‖V ‖ = σ1(V ). (50)

Thus we obtain an equivalent DC representation for the rank-
one constraint of V :

R(V ) = Tr(V )− ‖V ‖ = 0. (51)

R is a DC function of V since both the trace norm and the
spectral norm are convex.

C. Reweighted `1 Minimization for Inducing Group Sparsity

Reweighted `1 minimization approach has shown its advan-
tages in enhancing group sparsity for improving the energy-
efficiency of cloud radio access networks [27], [28]. `1-norm is
a well recognized convex surrogate for the `0-norm. In order
to further enhance the sparsity, reweighted `1 minimization
is proposed to iteratively minimize a weighted `1-norm and
update the weights. For the objective function of problem P ,
we observe that the indicator function ITr(Vll[n,n])6=0 can be
interpreted as the `0-norm of Tr(Vll[n, n]). We can thus use
the reweighed `1 minimization technique via approximating
ITr(Vll[n,n])6=0 by wnlTr(Vll[n, n]), which consists of alter-
natively minimizing the approximated objective function and
updating the weight as

wnl =
c

Tr(Vll[n, n]) + τ
, (52)

where τ > 0 is a constant regularization factor and c > 0 is a
constant. If Tr(Vll[n, n]) is small, the reweighted `1 minimiza-
tion approach will put larger weight on the transceiver pair
(n, l), which prompts that the inference task l is not preferred
to be executed at the n-th edge node.
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D. Proposed Reweighted Power Minimization Approach

In this subsection, we provide a reweighted power mini-
mization approach by combining the matrix lifting, DC rep-
resentation and reweighted `1 minimization techniques. In the
j-th step, we shall update V [j+1] via solving

minimize
V ,λ

∑
n,l

( 1

ηn
+ w

[j]
nlP

c
nl

)
Tr(Vll[n, n])

subject to (44), λk ≥ 0,∀k ∈ [K]
K∑
l=1

Tr(Vll[n, n]) ≤ P Tx
n ,∀n ∈ [N ]

V � 0, rank(V ) = 1, (53)

and the weights {w[j]
nl } are updated following (52) which are

initialized as 1 at the beginning.
To solve problem (53) with nonconvex rank-one constraint,

we propose to use the DC representation (51) by solving the
following DC program

PDC : minimize
V ,λ

∑
n,l

( 1

ηn
+ w

[j]
nlP

c
nl

)
Tr(Vll[n, n]) + µR(V )

subject to (44), λk ≥ 0, ∀k ∈ [K]
K∑
l=1

Tr(Vll[n, n]) ≤ P Tx
n ,∀n ∈ [N ]

V � 0, (54)

where µ > 0 is the regularization parameter. Despite of the
nonconvexity of the DC problem, problem PDC can be effi-
ciently solved by the simplified DC algorithm, i.e., iteratively
linearizing the concave part [37]. At the t-th iteration, we shall
solve

minimize
V ,λ

∑
n,l

( 1

ηn
+ w

[j]
nlP

c
nl

)
Tr(Vll[n, n])

+µ(Tr(V )− Tr(G(t)V ))

subject to (44), λk ≥ 0,∀k ∈ [K]
K∑
l=1

Tr(Vll[n, n]) ≤ P Tx
n ,∀n ∈ [N ]

V � 0, (55)

where G(t) is one subgradient of spectral norm at V (t). It can
be computed as ∂‖V ‖2 = u1u

H
1 where u1 is the eigenvector

corresponding to the largest eigenvalue of matrix V . This
DC algorithm guarantees converging to a stationary point of
problem PDC from arbitrary initial points [37].

When the reweighted `1 minimization algorithm converges
at a rank-one solution V [j], we can extract the aggrega-
tive beamforming vector v? from the Choleskey decompo-
sition V [j] = v?v?H. The whole procedure of the proposed
reweighted power minimization approach is summarized in
Algorithm 2.

V. NUMERICAL RESULTS

In this section, we provide numerical experiments for
comparing the proposed framework with other state-of-the-
art approaches. We generate the edge inference system with

Algorithm 2: Proposed Reweighted Power Mini-
mization Approach for Problem P

Initialization: V [0], wnl.
while not converge do

V (0) ← V [j]

while not converge do
update V (t) as the solution to problem

(55)
end
V [j+1] ← V (t)

update the weights {w[j+1]
nl } according to

equation (52)
end
obtain v? through Choleskey decomposition
V [j] = v?v?H.

Output: v?.

N = 4 APs located at (±400,±400) meters and K = 4
mobile users randomly located in the [−800 800]×[−800 800]
meters square region. Each AP is equipped with L = 2
antennas. The imperfection model of the channel coefficient
vector between the n-th AP and the k-th mobile user is chosen
as hkn = 10−L(dkn)/20(ckn + ekn). The path loss model
is given by L(dkn) = 128.1 + 37.6 log10 dkn, the Rayleigh
small scale fading coefficient is given by ckn ∼ CN (0, I),
and the additive error is given by ekn ∼ CN (0, 10−4I). As
presented in Section III-B, D1 determines the accuracy of
the learned shape of the uncertainty set, while D2 determines
the accuracy of the calibrated size of the uncertainty set. To
balance these two points, the collected D independent samples
of hkn’s are split evenly for learning the shape and size of the
uncertainty ellipsoids, respectively, i.e., D1 = D2 = D/2.
For each AP, the power amplifier efficiency is chosen as
η1 = · · · = ηN = 1/4, the average maximum transmit
power is chosen as P Tx

1 = · · · = P Tx
N = 1W , and the

computation power consumption for each task φk at the n-
th AP is chosen as P c

nk = 0.60W . We set the target SINR as
γ1 = · · · = γK = γ, the tolerance level as ε = 0.05, and the
confidence level as δ = 0.05. The regularization parameters τ
is set as 10−6 and µ is set as 10.

A. Benefits of Taking CSI Uncertainty into Consideration

In this paper, we consider the CSI uncertainty in channel
sampling and propose to solve it with a learning-based robust
optimization approximation approach. To further reduce the
channel sampling overhead, we provide a cost-effective sam-
pling strategy in Secion III-D. We now evaluate its advantages
over the beamformer design without taking the CSI error into
consideration by supposing that each task is performed at all
APs. Specifically, we collect D = 200 i.i.d. channel samples in
the training phase within one coherent interval for CSI. In the
test phase, we only collect one channel sample h(1), construct
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Hk’s following equation (40) and solve the problem

minimize
V ,λ

∑
n,l

(
1

ηn
Tr(Vll[n, n]) + P c

nl

)
subject to (44), λk ≥ 0,∀k ∈ [K]

K∑
l=1

Tr(Vll[n, n]) ≤ P Tx
n ,∀n ∈ [N ]

V � 0. (56)

As comparison, the beamforming design without taking un-
certainty into consideration is given by solving the problem

minimize
V ,λ

∑
n,l

(
1

ηn
Tr(Vll[n, n]) + P c

nl

)
subject to h

(1)
k

H( 1

γk
Vkk −

∑
l 6=k

Vll

)
h
(1)
k ≥ σ

2
k, ∀k

K∑
l=1

Tr(Vll[n, n]) ≤ P Tx
n , ∀n,

V � 0. (57)

Note that we use SDR for both approaches for fairness. We
compare two approaches by generating 40000 realizations of
i.i.d. channel samples for testing, and regenerate the training
data set for the proposed approach every 200 realizations. We
compute the achieved SINR for each mobile device with the
solution to each approach, i.e., SINRk(v; h̃) where h̃ is the
true channel coefficient vector, and calculate the number of
realizations that the target QoS for each device is met, i.e.,
SINRk ≥ γk. The results shown in Table II demonstrate that
the proposed robust approximation approach has considerably
improved the robustness of QoS against CSI errors by a cost-
effective sampling approach.

TABLE II
NUMBER OF TESTS THAT QOS IS MET

User Index 1 2 3 4
Proposed Approach 39946 39946 39946 39946

Without considering uncertainty 15205 15123 15197 15214

B. Overcoming the Over-Conservativeness of Scenario Gen-
eration

As we point out in Section II-E, the scenario generation
approach is over-conservative since it imposes that the target
QoS constraints are satisfied for all samples, which would
lead to a smaller feasible region. Here we use numerical
experiments to demonstrate the advantage of the presented
robust optimization approximation approach in overcoming the
over-conservativeness. Consider the feasibility problem of the
robust optimization approximation approach given by

find V ,λ

subject to (44), λk ≥ 0,∀k ∈ [K],
K∑
l=1

Tr(Vll[n, n]) ≤ P Tx
n ,∀n ∈ [N ],

V � 0, (58)

and the feasibility problem of the scenario approach given by

find V

subject to h
(i)
k

H( 1

γk
Vkk −

∑
l 6=k

Vll

)
h
(i)
k ≥ σ

2
k, ∀k, i

K∑
l=1

Tr(Vll[n, n]) ≤ P Tx
n , ∀n,

V � 0. (59)

Note that we adopt the SDR technique in both approach for
purpose of fairness. We collect D = 200 i.i.d. channel samples
for each realization, run both algorithms for 25 random real-
izations of the data set, and compare the probability of yielding
feasible solutions using the scenario generation approach and
the presented robust optimization approximation approach.
The results in Fig. 5 reveal that the statistical learning based
robust approximation considerably improves the probability
of feasibility compared with the scenario generation approach
though we only obtain sufficient conditions for the robust
optimization counterpart using S-procedure in Section III-C.
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Fig. 5. Probability of feasibility using scenario generation and the robust
optimization approximation approach over the target SINR γ.

C. Convergence Behavior

By choosing the reweighting parameter as c = 1/ ln(1 +
τ−1), the proposed reweighted power minimization approach,
i.e., Algorithm 2, essentially approximates the `0-norm accord-
ing to Ix6=0 = ‖x‖0 = limτ→0 ln(1 + xτ−1)/ln(1 + τ−1),
and minimizes the approximated objective function

f(V ) =
∑
n,l

( 1

ηn
Tr(Vll[n, n])

+ P c
nl

ln(1 + τ−1Tr(Vll[n, n]))
ln(1 + τ−1)

)
+ µR(V ) (60)

under constraints (46) and (47) using an majorization-
minimization (MM) technique as stated in [27]. Fig. 6 illus-
trates the convergence behavior of the proposed reweighted
power minimization approach in terms of the objective func-
tion f by collecting D = 200 channel samples. We also
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plot the corresponding trajectories of the group sparsity of the
aggregative beamforming vector v in Fig. 7, i.e., total number
of inference tasks performed at all edge computing nodes. We
observe that the number of tasks to be performed at edge
computing nodes increases with a greater value of target QoS
γ, which leads to higher total power consumption of the edge
inference system.
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Fig. 6. Convergence behavior of the proposed reweighted power minimization
approach with different target SINR γ.
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Fig. 7. Trajectories of the total number of inference tasks performed at all
edge computing nodes with different target SINR γ.

D. Total Power Consumptions over Target SINR

We then conduct numerical results to compare the perfor-
mance of different algorithms for problem P with D = 200
i.i.d. channel samples, including the proposed reweighted
power minimization approach termed as “reweighted+DC” and
other state-of-the-art algorithms listed below:
• “mixed `1/`2+SDR”: This algorithm is proposed in

[26], which adopts the quadratic variational form of the

weighted mixed `1/`2-norm for inducing group sparsity
and SDR to address the nonconvex quadratic constraints.

• “reweighted+SDR”: To improve the energy efficiency
of downlink transmission in cloud-RAN, we adopt the
iteratively reweighted minimization algorithm [27] for
inducing the group sparsity and SDR [23] for the non-
convex quadratic constraints.

• “CB+SDR”: We assume that all tasks are performed
at each AP and conduct coordinated beamforming for
minimizing the transmission power consumption under
probabilistic-QoS constraints.

We also set c = 1/ ln(1 + τ−1) as stated in Sec. V-C.
The performances of all algorithms averaged over 100 channel
realizations are illustrated in Fig. 8 and Fig. 9. Fig. 8 presents
the total power consumption of each algorithm and demon-
strates that the proposed DC algorithm yields lower total power
consumption than other approaches, which is owed to its better
capability to induce group sparsity as shown in Fig. 9. Note
that the total number of tasks for the “CB+SDR” algorithm is
always KN = 16.
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Fig. 8. Total power consumption over target SINR.

Through all numerical results, we have seen considerable
advantages of the presented statistical learning based ro-
bust optimization approximation and the proposed reweighted
power minimization algorithm in providing energy-efficient
processing and robust transmission service for edge inference.

VI. CONCLUSION

In this work, we presented an energy-efficient processing
and robust cooperative transmission framework for executing
deep learning inference tasks for mobile devices. Specifically,
we proposed to minimize the sum of computation power
and transmission power consumption under the probabilistic-
QoS constraints via adaptive task selection and coordinated
beamforming design. The joint chance constraints therein
were further addressed by a statistical learning based robust
optimization approximation approach. This yielded a group
sparse beamforming problem with nonconvex quadratic con-
straints. We then developed a reweighted power minimization
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Fig. 9. Total # of tasks performed at APs over target SINR.

approach by iteratively solving a DC regularized reweighted
`1 minimization problem and updating the weights, thereby
tackling both the group sparse objective function and noncon-
vex quadratic constraints. Numerical results demonstrated that
the proposed approach achieved the lowest total power con-
sumption among other state-of-the-art algorithms, and avoided
the drawbacks of other methods for joint chance-constrained
programs.

There are still some open problems to be studied:

• This work considers the architecture that each inference
task is performed at multiple base stations separately.
An interesting problem is to consider the hierarchical
distributed structure of deep neural networks over the
cloud and the edge [38].

• In this work, we consider a basic ellipsoid model for each
uncertain channel coefficient vector. It is interesting to use
data-driven approach with more complicated model of
the high probability region to reduce its volume, such as
clustering the data samples and using a union of ellipsoids
as the high probability region.

• It is still an open problem to provide the theoretical guar-
antee of the proposed reweighted power minimization
algorithm since the conditions for convergence guarantee
of reweighted approach in [27], [39] are not met.

APPENDIX A
DERIVATION OF (35) USING S-PROCEDURE

We first rewrite (33) as

hkτk = ĥkτk +Bkũk, ũ
H
k ũk ≤ τ2k , (61)

where uk = ũk/τk ∈ CL, τk > 0. Let

xk =
[
τHk ũH

k

]H ∈ CNL+1, (62)

we can obtain that

hkτk =Hkxk. (63)

Thus we know

hH
k (

1

γk
vkv

H
k −

∑
l 6=k

vlv
H
l )hk − σ2

k ≥ 0 (64)

⇔(hkτk)
H(

1

γk
vkv

H
k −

∑
l 6=k

vlv
H
l )hkτk − σ2

kτ
2
k ≥ 0 (65)

⇔(Hkxk)
H(

1

γk
vkv

H
k −

∑
l 6=k

vlv
H
l )Hkxk − σ2

kτ
2
k ≥ 0 (66)

⇔xH
kP

0
kxk ≥ 0, (67)

where P 0
k ∈ SNL+1 is given by

HH
k (

1

γk
vkv

H
k −

∑
l 6=k

vlv
H
l )Hk −


σ2
k 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 . (68)

Likewise, ũH
k ũk ≤ τ2k , can be rewritten as

xH
kP

1
kxk ≥ 0, (69)

where P 1
k ∈ SNL+1 is given by

P 1
k =

[
1
−IN

]
(70)

Thus, we shall use the S-procedure

xH
kP

1
kxk ≥ 0 =⇒ xH

kP
0
kxk ≥ 0, (71)

which is given by

P 0
k ≥ λkP 1

k , λk ≥ 0. (72)

Therefore, we obtain the tractable reformulation for the joint
chance constraints (13) as

HH
k (

1

γk
vkv

H
k −

∑
l 6=k

vlv
H
l )Hk � Qk, (73)

where λ = [λ1, · · · ,λK ] = [λnk] ∈ RN×K+ and Qk is given
by

Qk =

[
λk + σ2

k

−λkINL

]
∈ C(NL+1)×(NL+1). (74)
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