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ABSTRACT
High-dimensional matrix-variate time series data are becoming widely available in many scientific fields,
such as economics, biology, andmeteorology. To achieve significant dimension reduction while preserving
the intrinsic matrix structure and temporal dynamics in such data, Wang, Liu, and Chen proposed a matrix
factor model, that is, shown to be able to provide effective analysis. In this article, we establish a general
framework for incorporating domain and prior knowledge in the matrix factor model through linear
constraints. The proposed framework is shown to be useful in achieving parsimonious parameterization,
facilitating interpretation of the latent matrix factor, and identifying specific factors of interest. Fully uti-
lizing the prior-knowledge-induced constraints results in more efficient and accurate modeling, inference,
dimension reduction as well as a clear and better interpretation of the results. Constrained, multi-term, and
partially constrained factor models for matrix-variate time series are developed, with efficient estimation
procedures and their asymptotic properties. We show that the convergence rates of the constrained
factor loading matrices are much faster than those of the conventional matrix factor analysis under many
situations. Simulation studies are carried out to demonstrate finite-sample performance of the proposed
method and its associated asymptotic properties.We illustrate the proposedmodel with three applications,
where the constrained matrix-factor models outperform their unconstrained counterparts in the power of
variance explanation under the out-of-sample 10-fold cross-validation setting. Supplementarymaterials for
this article are available online.
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1. Introduction

High-dimensional matrix-variate time series have been widely
observed nowadays in a variety of scientific fields including
economics, meteorology, and ecology. For example, the World
Bank and the International Monetary Fund collect and publish
macroeconomic data of more than 30 variables spanning over
100 years and over 200 countries covering a variety of demo-
graphic, social, political, and economic topics. These data neatly
form a matrix-variate time series with rows representing the
countries and columns representing various macroeconomic
indexes. Typical factor analysis of such data either converts the
matrix into a vector or modeling the row or column vectors
separately (Chamberlain 1983; Chamberlain and Rothschild
1983; Bai 2003; Bai and Ng 2002, 2007; Forni et al. 2000, 2004;
Pan and Yao 2008; Lam, Yao, and Bathia 2011; Lam and Yao
2012; Chang, Guo, and Yao 2015). However, the components of
matrix-variates are often dependent among rows and columns
with certain well-defined structure. Vectorizing amatrix-valued
response, or modeling the row or column vectors separately
may overlook some intrinsic dependency and fail to capture the
matrix structure.Wang, Liu, andChen (2019) proposed amatrix
factor model that maintains and uses the matrix structure of the
data to achieve significant dimension reduction.

In factor analysis of matrix time series and in many other
types of high-dimensional data, the problem of factor interpre-
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tations is of paramount importance. Furthermore, it is impor-
tant in many practical applications to obtain specific latent
factors related to certain domain theories, and with the aid of
these specific factors to predict future values of interest more
accurately. For example, financial researchers may be interested
in extracting the latent factors of level, slope, and curvatures
of the interest-rate yield curve and in predicting future equity
prices based on those factors (Diebold, Piazzesi, and Rudebusch
2005; Diebold, Rudebusch, and Aruoba 2006; Rudebusch and
Wu 2008; Bansal, Connolly, and Stivers 2014).

In many applications, relevant prior, or domain knowledge
is available or data themselves exhibit certain specific structure.
Additional covariates may also be measured. For example, in
business and economic forecasting, sector or group informa-
tion of variables under study is often available. Such a priori
information can be incorporated to improve the accuracy and
inference of the analysis and to produce more parsimonious
and interpretable factors. In other cases, the existing domain
knowledge may intrigue researchers’ interest in some specific
factors. The theories and prior experiencemay provide guidance
for specifying the measurable variables related to the specific
factors of interest. It is then desirable to build proper constraints
based on those measurable variables to effectively obtain the
factors of interest.

To address these important issues and practical needs, we
extend the matrix factor model of Wang, Liu, and Chen (2019)

© 2019 American Statistical Association
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by imposing natural constraints among the column and row
variables to incorporate prior knowledge or to induce specific
factors. Incorporating a priori information in parameter esti-
mation has been widely used in statistical analysis, such as the
constrainedmaximum likelihood estimation, constrained least-
squares, and penalized least-squares. Constrained maximum
likelihood estimationwith the parameter space defined by linear
or smooth nonlinear constraints have been explored in the
literature. Hathaway (1985) applies the constrained maximum
likelihood estimation to the problem of mixture normal dis-
tributions and shows that the constrained estimation avoids
the problems of singularities and spurious maximizers often
encountered by an unconstrained estimation. Geyer (1991) pro-
poses a general approach applicable to many models speci-
fied by constraints on the parameter space and illustrates his
approach with a constrained logistic regression of the incidence
ofDown’s syndrome onmaternal age. Penaltymethods have also
been customarily used to enforce constraints in statistical mod-
els including generalized linear models, generalized estimating
equations, proportional hazardsmodels, andM-estimators. See,
for example, Frank and Friedman (1993), Tibshirani (1996), Liu
et al. (2007), Fan and Li (2001), Zou (2006), and Zhang and
Lu (2007). It is shown that including the soft constraints as
penalizing term enhances the prediction accuracy and improves
the interpretation of the resulting statistical model.

For factormodels of time series, Tsai andTsay (2010) andTsai
et al. (2016) impose constraints, constructed by some empirical
procedures, that incorporate the inherent data structure, to both
the classical and approximate factor models. Their results show
that the constraints are useful tools to obtain parsimonious
econometric models for forecasting, to simplify the interpreta-
tions of common factors, and to reduce the dimension. Moti-
vated by similar concerns, we consider constrained, multi-term,
and partially constrained factor models for high-dimensional
matrix-variate time series. Our methods differs from Tsai and
Tsay (2010) in several aspects. First, we deal with matrix factor
model and thus have the flexibility to impose row and col-
umn constraints. The interaction between the row and column
constraints are explored. Second, we adopt a different set of
assumptions for factor model. The factor models in Tsai and
Tsay (2010) and Tsai et al. (2016), following the definition in
Bai (2003), Bai and Ng (2002, 2007), Forni et al. (2000, 2004),
attempt to separate the common factors that affect the dynam-
ics of most original component series from the idiosyncratic
series that at most affect the dynamics of a few original time
series. Such a definition is appealing in analyzing economic
and financial phenomena. But the fact that idiosyncratic part
may exhibit serial correlations poses technical difficulties in
both identification and inference. These factor models are only
asymptotically identifiable because a rigorous definition of the
common factors can only be established when the dimension
of time series goes to infinity. In our setting, the matrix-variate
time series is decomposed into two parts: a dynamic part driven
by a lower-dimensional factor time series and a static part
consisting of matrix white noises. Since the white-noise series
exhibits no dynamic correlations, the decomposition is unique
in the sense that both the dimension of the factor process and the
factor loading space are identifiable for a given finite sample size.
See Lam, Yao, and Bathia (2011), Lam and Yao (2012), Chang,

Guo, and Yao (2015), and Wang, Liu, and Chen (2019) for
more detailed comparisons between these two different model
definitions.

The rest of the article is organized as follows. Section 2 intro-
duces the constrained, multi-term, and partially constrained
matrix-variate factormodels. Section 3 presents estimation pro-
cedures for constrained and partially constrained factor mod-
els with different constraints. Section 4 investigates theoretical
properties of the estimators. Section 5 presents some simulation
results, whereas Section 6 contains three applications. Section 7
concludes. All proofs are in theAppendix (supplementarymate-
rials).

2. The ConstrainedMatrix Factor Model

For consistency in notation,we adopt the following conventions.
A bold capital letter A represents a matrix, a bold lower letter
a represents a column vector, and a lower letter a represents
a scalar. The jth column vector and the kth row vector of the
matrix A are denoted by A·j and Ak·, respectively.

Let {Y t}Tt=1 be amatrix-variate time series, whereY t is a p1×
p2 matrix, that is,

Y t = (
Y·1,t , . . . ,Y·p2,t

) =
⎛⎜⎝ Y ′

1·,t
...

Y ′
p1·,t

⎞⎟⎠
=
⎛⎜⎝ y11,t · · · y1p2,t

...
. . .

...
yp11,t · · · yp1p2,t

⎞⎟⎠ .

Wang, Liu, and Chen (2019) proposed the following factor
model for Y t ,

Y t = �Ft�′ + U t , t = 1, 2, . . . ,T, (1)

where Ft is a k1×k2 latentmatrix-variate time series of common
fundamental factors, � is a p1 × k1 row loading matrix, � is
a p2 × k2 column loading matrix, and U t is a p1 × p2 matrix
of random errors. In Equation (1), (�,�) and (c�,�/c) are
equivalent if c �= 0.

In Model (1), we assume that vec(U t) ∼ WN(0,�e) and
is independent of the factor process vec(Ft). That is, {U t}Tt=1
is a white noise matrix-variate time series and the common
fundamental factors Ft drive all dynamics and co-movement
of Y t . � and � reflect the importance of common factors and
their interactions. Wang, Liu, and Chen (2019) provide several
interpretations of the loading matrices � and �. Essentially,
� (�) can be viewed as the row (column) loading matrix that
reflects how each row (column) in Y t depends on the factor
matrix Ft . The interaction between the row and column is
introduced through the multiplication of these terms.

The definition of common factors in Model (1) is similar
to that of Lam, Yao, and Bathia (2011). This decomposition
facilitates model identification in finite samples and simpli-
fies the procedure of model identification and statistical infer-
ence. However, under the definition, both the “common fac-
tors” defined in the traditional factor models and the serially
correlated idiosyncratic components will be identified as fac-
tors. The method in Wang, Liu, and Chen (2019) can only
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identify “common” factors in the sense that those identifiable
factors must be of certain strength. Weak factors will be left
“erroneously” in the noise in application. Moreover, when the
dimensions p1 and p2 are sufficiently large, interpretation of the
estimated common factors F̂t becomes difficult because of the
uncertainty and dependence involved in the estimates of the
loading matrices � and �.

Tomitigate the aforementioned difficulties and, more impor-
tantly, to incorporate natural and known constraints among
the column and row variables, we consider the following con-
strained and partially constrained matrix factor models.

A constrained matrix factor model can be written as
Y t = HRRFtC′H′

C + U t , (2)
where HR and HC are pre-specified full column-rank p1 × m1
and p2 × m2 constraint matrices, respectively, and R and C
are m1 × k1 row loading matrix and m2 × k2 column loading
matrix, respectively. For meaningful constraints, we assume
k1 ≤ m1 << p1 and k2 ≤ m2 << p2. Compared with the
matrix factor model in Equation (1), we set � = HRR and
� = HCC with HR and HC given. The number of parameters
in the left loading matrix R is m1k1, smaller than p1k1 of the
unconstrainedmodel. The number of parameters in the column
loading matrix C also decreases from p2k2 to m2k2. The con-
straint matrices HR and HC are constructed based on prior or
domain knowledge of the variables.

2.1. Examples of Constraint Matrices

We first consider discrete covariate-induced constraint
matrices, using dummy variables. Continuous covariate may
be segmented into regimes. As an illustration, we consider the
following toy example of corporate financial matrix-valued time
series. Suppose we have eight companies, which can be grouped
according to their industrial classification (Tech and Retail) and
also their market capitalization (Large and Medium). The two
groups form 2 × 2 combinations as shown in Table 1.

Constraint matrix H(1)
R in Table 2 uses only industrial clas-

sification. To combine both industrial classification and market
cap information, we first consider an additive model constraint
on the 8 × k1 (k1 ≤ 3) loading matrix � in Model (1). The
additive model constraint means that the ith row of �, that is,
the loadings of k1 row factors on the ith variable, must assume
the form λi · = uj · + vl ·, where the ith variable falls in group
(Industryj,MarketCapl), k1-dimensional vectors uj · and vl · are
the loadings of k1 row factors on the jthmarket cap group and lth
industrial group, respectively. The most obvious way to express
the additive model constraint is to use row constraints H(2)

R
in Table 2. Then, in the constrained matrix factor model (2),
HR = H(2)

R and R = (u1 ·, u2 ·, v1 ·, v2 ·)′.
Further, we consider the constraint incorporating an inter-

action term between industry and market cap grouping infor-
mation. Now the ith row of � has the form λi · = uj · +
vl · + αj,lw, where w is the k1-dimensional interaction vector
containing loadings of k1 row factors and αij is the interaction
term determined by uj · and vl · jointly. For example,

αj,l =
{
1 if j = l = 1 or 2,
−1 if j = 1, l = 2 or vice versa.

In this case, for the constrained matrix factor model (2),
HR = H(3)

R and R = (u1 ·, u2 ·, v1 ·, v2 ·,w)′. Note that H(2)
R and

H(3)
R here are not full column rank and can be reduced to a full

column rankmatrix satisfying the requirement in Section 3. But
the presentations ofH(2)

R andH(3)
R are sufficient to illustrate the

ideas of constructing complex constraint matrices.
To illustrate a theory-induced constraint matrix, we consider

the yield curve latent factor model. Nelson and Siegel (1987)
propose the Nelson–Siegel representation of the yield curve
using a variation of the three-component exponential approx-
imation to the cross-section of yields at any moment in time,

y(τ ) = β1 + β2

(
1 − e−λτ

λτ

)
+ β3

(
1 − e−λτ

λτ
− e−λτ

)
,

where y(τ ) denotes the set of zero-coupon yields and τ denotes
time to maturity.

Diebold and Li (2006) and Diebold, Rudebusch, and Aruoba
(2006) interpreted the Nelson–Siegel representation as a
dynamic latent factor model where β1, β2, and β3 are time-
varying latent factors that capture the level (L), slope (S), and
curvature (C) of the yield curve at each period t, while the terms
that multiply the factors are respective factor loadings, that is,

y(τ ) = Lt + St
(
1 − e−λτ

λτ

)
+ Ct

(
1 − e−λτ

λτ
− e−λτ

)
.

The factor Lt may be interpreted as the overall level of the yield
curve since its loading is equal for all maturities. The factor St ,
representing the slope of the yield curve, has a maximum load-
ing (equal to 1) at the shortest maturity and then monotonically
decays through 0 (to −1) as maturities increase. And the factor
Ct has a loading, that is,−1 at the shortest maturity, increases to
an intermediate maturity (equal to 2) and then falls back to −1
as maturities increase. Hence, St and Ct capture the short-end
and medium-term latent components of the yield curve. The
coefficient λ controls the rate of decay of the loading of Ct and
the maturity, where St has maximum loading.

Multinational yield curve can be represented as amatrix time
series {Y t}Tt=1, where rows of Y t represent time to maturity
and columns of Y t denotes countries. To capture the char-
acteristics of loading matrix specific to the level, slope, and
curvature factors, we could set row loading constraint matrix
to, for example, HR = [h1, h2, h3], where h1 = (1, 1, 1, 1, 1)′,
h2 = (1, 1, 0,−1,−1)′, and h3 = (−1, 0, 2, 0,−1). In Section 5,
we try to mimic multinational yield curve and generate our
samples from this type of constraints.

2.2. Multi-Term and Partially ConstrainedMatrix Factor
Models

If there are two “distinct” sets of constraints and the factors
corresponding to these two sets do not interact, Model (2) can
be extended to amulti-term matrix factor model as

Y t = HR1R1F1tC′
1H′

C1 + HR2R2F2tC′
2H′

C2 + U t . (3)

For example, countries can be grouped according to their geo-
graphic locations, such as European and Asian countries, and
also grouped according to their economic characteristics, such
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Table 1. Groups of companies by industry and market capitalization.

Table 2. Illustration of constraint matrices constructed from grouping information by additive model.

as natural resource based and manufacture based economies,
and the corresponding factors may not interact with each other.

Note that Equation (3) can be rewritten as Equation (2), with
HR = [

HR1 HR2
]
,HC = [

HC1 HC2

]
,

R =
[
R1 0
0 R2

]
,C =

[
C1 0
0 C2

]
, and Ft =

[
F1t 0
0 F2t

]
.

Hence, Equation (3) is a special case of Equation (2) with the
strong assumption that the factor matrix is block diagonal. Such
a simplification can greatly enhance the interpretation of the
model.

Remark 1. The pre specified constraint matrices HR1 and HR2
do not have to be orthogonal. Neither does the pair HC1 and
HC2 . An estimation procedure is presented in Remark 3 in
Section 3.3. The rates of convergence will change as a result of
information loss from the estimation procedure to deal with the
nonorthogonality of HR1 and HR2 . Since we can always trans-
form non-orthogonal constraint matrices to some orthogonal
constraint matrices, we shall focus on the case when HR1 and
HR2 (orHC1 andHC2 ) are orthogonal.

In many applications, prior or domain knowledge may not
be sufficiently comprehensive or may only provide a partial
specification of the constraint matrices. In the above example,
it is possible that the countries within a group react to one set of
factors the same way, but differently to another set of factors. In
such cases, a partially constrained factor model would be more

appropriate. Specifically, a partially constrained matrix factor
model can be written as

Y t = [
HR1R1 �2

] [F11,t F12,t
F21,t F22,t

] [
C′
1H′

C1
�′
2

]
+ U t , (4)

where HR1 , R1, HC1 , and C1 are defined similarly as those in
Equation (3). Fij,t ’s are commonmatrix factors corresponding to
the interactions of the row and column loading space spanned
by the columns ofHR andHC and their complements,�2 is p1×
q1 row loadingmatrix and�2 is a p2×q2 column loadingmatrix.
Again, we have q1 < p1, q2 < p2 and vec(Fij,t)’s are independent
with vec(U t). We assume that H′

R1�2 = 0 and H′
C1

�2 = 0,
because all the row loadings that are in the space of HR1 and
all the column loadings that are in the space of HC1 could be
absorbed into the first parts of loading matrices. Thus, we could
explicitly rewrite the model as

Y t = [
HR1R1 HR2R2

] [F11,t F12,t
F21,t F22,t

] [
C′
1H′

C1
C′
2H′

C2

]
+ U t , (5)

where HR2 is a p1 × (p1 − m1) constraint matrix satisfying
H′

R1HR2 = 0,HC2 is a p2×(p2−m2) constraintmatrix satisfying
H′

C1
HC2 = 0, R2 is (p1 − m1) × q1 row loading matrix, and C2

is a (p2 − m2) × q2 column loading matrix.
In the special case, when F21,t = 0 and F12,t = 0. Model (4)

can be further simplified as

Y t = HR1R1F11,tC′
1H′

C1 + HR2R2F22,tC′
2H′

C2 + U t . (6)
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Model (6) is different from themulti-termmodel of Equation
(3) in that the matrix HR2 in Equation (5) is induced from HR1
while theHR2 in Equation (3) is an informative constraint, with
a lower dimension.

In the special case when HC1 = Ip1 (there is no column
constraint), Model (5) becomes

Y t = [
HR1R1 HR2R2

] [F1,t
F2,t

]
C′ + U t ,

where F1,t = [F11,t , F12,t] and F2,t = [F21,t , F22,t]. The left
loading matrix still spans the entire p1 dimensional space, but
the first part of loading matrix R1 has a clearer interpretation.

The partially constrained matrix factor model (5) incorpo-
rates partial information HR1 and HC1 in the unconstrained
model (1) without ignoring the possible remainders. If we
include all four matrix factors in the four subspaces divided
by the interactions of HR1 and HC1 and their complements, the
number of parameters in Equation (5) is the same as that in the
unconstrained model (1). However, as shown by Theorem 1
in Section 4, the rates of convergence are faster than those
of the unconstrained matrix factor model. Furthermore, in
many applications, inclusion of only two matrix-factor terms
is adequate in explaining a high percentage of variability, as
exemplified by the three applications in Section 6.

Remark 2. Subpanel structure in multivariate time series
is encountered frequently in real applications. For example,
macroeconometric data often consist of large panels of time
series which can be further divided into smaller but still quite
large subpanels or blocks. Built upon Forni et al. (2004), Hallin
and Liška (2007), and Hallin and Liška (2011) considered n-
dimensional random variable x = [y′ z′]′ with subpanel
vectors y ∈ R

ny and z ∈ R
nz and proposed a method

to identify and estimate joint and block-specific common
factors. There are connections between the subpanel structure
and the constrained structure considered in this article. Both
approaches produce certain block structures in the loading
matrix. Consider the vector factor model case. With two
subpanels, the model becomes

[
y
z

]
=
[
A11 A12 0
A21 0 A23

]⎡⎣f 1f 2
f 3

⎤⎦+
[
εy
εz

]
.

Such a model can be constructed under the constraint approach
by specifying

H =
[
I I 0
I 0 I

]
and R =

⎡⎣ A11 0 0
0 A12 0

A21 − A11 0 A23

⎤⎦ ,

where I’s and 0’s are identity and zeromatrices of proper dimen-
sions. However, our current estimation procedure is not able
to force certain submatrice in R to zero, though the model
can be turned into a multi-term factor model as discussed in
Section 2.2. On the other hand, the constraint approach is more
flexible in introducing various types of structure in the loading
matrix as illustrated in Section 2.1.

The benefits of considering partially constrained matrix fac-
tor models are 2-folds. Firstly, the model is capable of identi-
fying, from the complement spaces of HR and HC, the factors
that are unknown to researchers. In this case, the dimensions of
F22,t are typically much smaller than those of F11,t even though
the loading matrices R2 and C2 still have large numbers of rows
(p1 − m1) and (p2 − m2), respectively. This is because the
constraint part should have accommodated the main and key
common factors. The spirit is similar to the two-step estimation
of Lam and Yao (2012) in which one fits a second-stage factor
model to the residuals obtained by subtracting the common part
of the first-stage factor model.

The second benefit is that the model is able to identify the
factors corresponding to the pre-specified constraint matri-
ces and their inherit interpretation. That is, F11,t represents
the factor matrix with row and column factors affecting the
observed matrix-variate time series in the way as specified by
the constraints HR and HC completely. Consider the multina-
tional macroeconomic index example. If HR is built from the
country classification information, how the rows in F11,t affect
the observations can be completely explained by the country
groups instead of individual countries and the row factors in
F11,t have a clearer interpretation related to the classification.
In many practical applications, researchers are interested in
obtaining specific latent factors related to some domain theories
and use these specific factors to predict future values of interest
as guided by domain theories. For example, in the yield curve
example in Section 2.1, economic theory implies that the level,
slope, and curvature factors affect the observations in the way
specified by, for example, HR = [h1, h2, h3], where h1 =
(1, 1, 1, 1, 1)′, h2 = (1, 1, 0,−1,−1)′, and h3 = (−1, 0, 2, 0,−1).
Then the estimation method in Section 3 is capable of iso-
lating HR1R1F11,tC′

1H′
C1
, hence correctly estimating the load-

ings and the specified level, slope, and curvature factors in the
constrained spaces. As a result, the constrained factor model
can serve as a method to identify and isolate specific factors
suggested by domain theories or prior knowledge.

3. Estimation Procedure

Similar to all factor models, identification issue exits in the
constrained matrix-variate factor model (2). Let O1 and O2
be two invertible matrices of size k1 × k1 and k2 × k2. Then
the triples (R, Ft ,C) and (RO1,O−1

1 FtO−1
2 ,O2C) are equivalent

under Model (2). Here, we may assume that the columns of R
andC are orthonormal, that is,R′R = Ik1 andC′C = Ik2 , where
Id denotes the d×d identitymatrix. Evenwith these constraints,
R, Ft , and C are not uniquely determined in Equation (2), as
aforementioned replacement is still valid for any orthonormal
O. However, the column spaces of the loading matrices R and
C are uniquely determined. Hence, in the following sections,
we focus on the estimation of the column spaces of R and C.
We denote the row and column factor loading spaces byM(R)

and M(C), respectively. For simplicity, we suppress the matrix
column space notation and use the matrix notation directly.

3.1. Orthogonal Constraints

We start with the estimation of the constrained matrix-variate
factor model (2). The approach follows the ideas of Tsai and
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Tsay (2010) and Wang, Liu, and Chen (2019). In what follows,
we illustrate the estimation procedure for the column space of
R. The column space of C can be obtained similarly from the
transpose of Y t ’s. For ease in representation, we assume that the
process Ft hasmean 0, and the observationY t ’s are centered and
standardized throughout the article.

Suppose, we have orthogonal constraints H′
RHR = Im1 and

H′
CHC = Im2 . Define the transformation Xt = H′

RY tHC. It
follows from Equation (2) that

Xt = RFtC′ + Et , t = 1, 2, . . . ,T, (7)

where Et = H′
RU tHC.

This transformation projects the observed matrix time
series into the constrained space. For example, if HR is the
orthonormal matrix corresponding to the group constraint
H(1)

R of Table 2, then H ′
RY t is a 2 × p2 matrix, with the first

row being the normalized average of the rows of Y t in the first
group and the second row being that in the second group. Such
an operation conveniently incorporates the constraints while
reduces the dimension of data matrix from p1 × p2 tom1 ×m2,
making the analysis more efficient.

Since Et remains to be a white-noise process, the estimation
method in Wang, Liu, and Chen (2019) directly applies to the
transformed m1 × m2 matrix time series Xt in Model (7). For
completeness, we outline briefly the procedure. See Wang, Liu,
and Chen (2019) for details.

To facilitate the estimation, we use the QR decomposition
R = Q1W1 and C = Q2W2. The estimation of column spaces
of R and C is equivalent to the estimation of column spaces of
Q1 and Q2. Thus, Model (7) can be reexpressed as

Xt = RFtC′ + Et = Q1ZtQ′
2 + Et , t = 1, 2, . . . ,T, (8)

where Zt = W1FtW ′
2, Q′

1Q1 = Im1 , and Q′
2Q2 = Im2 .

Let h be a positive integer. For i, j = 1, 2, . . . ,m2, define

�zq,ij(h) = 1
T − h

T−h∑
t=1

cov(ZtQ2,i·,Zt+hQ2,j·), and (9)

�x,ij(h) = 1
T − h

T−h∑
t=1

cov(Xt,·i,Xt+h,·j), (10)

which can be interpreted as the auto-cross-covariance matrices
at lag h between column i and column j of {ZtQ′

2}Tt=1 and
{Xt}Tt=1, respectively. For h > 0, �x,ij(h) defined in Equa-
tion (10) does not involve the covariance terms incurred by Et
because of the whiteness condition.

For a fixed h0 ≥ 1 satisfying Condition 2 in Appendix A
(supplementary materials), define

M =
h0∑
h=1

m2∑
i=1

m2∑
j=1

�x,ij(h)�x,ij(h)′

= Q1

⎧⎨⎩
h0∑
h=1

m2∑
i=1

m2∑
j=1

�zq,ij(h)�zq,ij(h)′
⎫⎬⎭Q′

1. (11)

SinceM and thematrix sandwiched byQ1 andQ′
1 are positive

definite matrices, Equation (11) implies that the eigen-space of
M is the same as the column space ofQ1 if themiddle term is full

rank (Condition 2 in Appendix A, supplementary materials).
Hence, M(Q1) can be estimated by the space spanned by the
eigenvectors of the sample version ofM. The normalized eigen-
vectors q1, . . . , qk1 corresponding to the k1 nonzero eigenvalues
of M are uniquely defined up to a sign change. Thus Q1 is
uniquely defined by Q1 = (q1, . . . , qk1) up to a sign change.
We estimate Q̂1 = (̂q1, . . . , q̂k1) as a representative of M(Q1)
orM(R)

The estimation procedure is based on the sample version of
these quantities. For h ≥ 1 and a prescribed positive integer h0,
define the sample version ofM in Equation (11) as the following,

M̂ =
h0∑
h=1

m2∑
i=1

m2∑
j=1

�̂x,ij(h)�̂x,ij(h)′, where

�̂x,ij(h) = 1
T − h

T−h∑
t=1

Xt,·iX′
t+h,·j. (12)

Then, M(Q1) can be estimated by M(Q̂1), where Q̂1 =
(̂q1, . . . , q̂k1) and q̂i is an eigenvector of M̂, corresponding to its
ith largest eigenvalue. TheQ2 is defined similarly for the column
loading matrix C and M(Q̂2) and Q̂2 can be estimated with
the same procedure to the transpose of Xt . Consequently, we
estimate the normalized factors and residuals, respectively, by
Ẑt = Q̂′

1XtQ̂2 and Û t = Y t − HRQ̂1ẐtQ̂
′
2H′

C.
The above estimation procedure assumes that the number of

row factors k1 is known. To determine k1, Wang, Liu, and Chen
(2019) used the eigenvalue ratio-based estimator of Lam and
Yao (2012). Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂m1 ≥ 0 be the ordered
eigenvalues of M̂. The ratio-based estimator for k1 is defined as

k̂1 = arg min
1≤j≤K

λ̂j+1

λ̂j
,

where k1 ≤ K ≤ p1 is an integer. In practice we may take K =
�p1/2	. k2 can be estimated with the same procedure with the
M̂-matrix corresponding to the transpose of Xt .

Although the estimation procedure on the transformed series
Xt is exactly the same as that of Wang, Liu, and Chen (2019),
the asymptotic properties of the estimator are different due to
the transformation, as shown in Section 4, and Xt is of lower
dimension.

3.2. Nonorthogonal Constraints

If the constraint matrix HR (or HC) is not orthogonal, we can
perform column orthogonalization and standardization, similar
to that in Tsai and Tsay (2010). Specifically, we obtain

HR = �RKR,

where �R is an orthonormal matrix and KR is a m1 × m1
upper triangular matrix with nonzero diagonal elements.HC =
�CKC can be obtained in the same way.

LettingXt = �′
RY t�C,R∗ = KRR, andC∗ = KCC, we have

Xt = R∗FtC∗′ + Et , t = 1, 2, . . . ,T, (13)

where Et = �′
RU t�C. Since Et remains a white-noise process,

we apply the same estimation method as that in Section 3.1 to
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obtain Q̂∗
1 and Q̂

∗
2 as the representatives ofM(R̂∗

) andM(Ĉ∗
).

Then the estimators of R and C are R̂ = K−1
R Q̂∗

1 and Ĉ =
K−1
C Q̂∗

2. Note that KR and KC are invertible lower triangular
matrices.

3.3. Multi-Term ConstrainedMatrix FactorModel

Without loss of generality, we assume that both row and column
constraint matrices are orthogonal matrices. IfHR1 andHR2 (or
HC1 andHC2 ) are orthogonal, we obtain, for t = 1, 2, . . . ,T,

H′
R1Y tHC1 = R1F1,tC′

1 + H′
R1U tHC1 ,

H′
R2Y tHC2 = R2F2,tC′

2 + H′
R2U tHC2 ,

whereH′
R1U tHC1 andH′

R2U tHC2 are white noises. The estima-
tors of R̂1, Ĉ1, F̂1,t , R̂2, Ĉ2, and F̂2,t can be obtained by applying
the estimation procedure described in Section 3.1 toH′

R1Y tHC1

andH′
R2Y tHC2 , respectively.

Remark 3. For multi-term constrained model (3), HR1 and
HR2 (or HC1 and HC2 ) may not necessarily be orthogonal. In
this case, we illustrate the estimation procedure for the column
loadings. Define projection matrices PH⊥

R1
= I − HR1H′

R1 and

PH⊥
R2

= I − HR2H′
R2 , which represent the projections onto

the spaces perpendicular to the column spaces ofHR1 andHR2 ,
respectively. Left multiplying Equation (3) by PH⊥

R2
and PH⊥

R1
,

respectively, and taking transpose of the resulting matrices, we
have

Y ′
tPH⊥

R2
= HC1C1F′

1,tR′
1H′

R1PH⊥
R2

+ U ′
tPH⊥

R2
,

Y ′
tPH⊥

R1
= HC2C2F′

2,tR′
2H′

R2PH⊥
R1

+ U ′
tPH⊥

R1
,

where PH⊥
R2
U t and PH⊥

R1
U t are white noises. The column load-

ing estimators Ĉ1 and Ĉ2 can be obtained by applying the proce-
dure described in Section 3.1 to H′

C1
Y ′
tPH⊥

R2
and H′

C2
Y ′
tPH⊥

R1
,

respectively. Note that the p1×m1 matrix PH⊥
R2
HR1 is no longer

full rank or orthonormal. However, the row and column loading
spaces and latent factors can be fully recovered if the dimension
of the reduced constrained loading spaces still larger than the
dimensions of the latent factor spaces. However, the rates of
convergence will change. For example, the rate of convergence
of Ĉ1 will depend on ‖PH⊥

R2
HR1R1‖22 instead of ‖HR1R1‖22.

3.4. Partially ConstrainedMatrix FactorModel

For the partially constrainedmatrix factormodel (5), we assume
that H′

R1HR2 = 0 and H′
C1
HC2 = 0. Define the transformation

X(lk)
t = H′

RlY tHCk for l, k = 1, 2. Then the transformed data
follow the structure,

X(lk)
t = RlFlk,tC′

k + E(lk)
t , l, k = 1, 2,

where E(lk)
t = H′

RlU tHCk remains a white-noise process.
LetM(lk) represent theMmatrix defined in Equation (11) for

each X(lk)
t , l, k = 1, 2. Define M(l·) = ∑2

k=1M(lk) for l = 1, 2,

then

M(l·) = Q(l)
1

⎧⎨⎩
2∑

k=1

h0∑
h=1

m2∑
i=1

m2∑
j=1

�
(lk)
zq,ij(h)�

(lk)
zq,ij(h)

′
⎫⎬⎭Q(l)′

1 ,

l = 1, 2, (14)

has the same column space as that ofRl, for l = 1, 2, respectively.
The estimators of R̂l, l = 1, 2, can be obtained by applying

eigen-decomposition on the sample version of M(l·) defined
similarly to Equation (12).Ck, k = 1, 2, can be obtained by using
the same procedure on the transposes of X(lk)

t for l, k = 1, 2. In
the special case ofModel (6) if F21,t = 0 and F12,t = 0, the above
estimation is essentially the same procedure as those described
in Section 3.1 applying to X(ll)

t for l = 1, 2.
This procedure effectively projects the observed matrix time

series Y t into four orthogonal subspaces, based on the con-
straints obtained from the domain knowledge or some empirical
procedure. Because X(lk)

t , l, k = 1, 2 are orthogonal, they can be
analyzed separately. In our setting, we divide a p1 × p1 ambient
space of row loading matrix into two orthogonal p1 × m1 and
p1 × (p1 − m1) subspaces. The estimation procedure for the
partially constrained model ensures the structural requirement
that X(l1)

t and X(l2)
t share the same row loading matrix for the

same lwithout sacrificing the dimension reduction benefit from
column space division. More generally, we could divide the
space of loading matrix into more than two parts to accommo-
date each application. Under this partially constrained model,
the orthogonality assumption between Flk,t , l, k = 1, 2 is not
important as they are latent variables.

Remark 4. In situations when the prior or domain knowledge
captures most major factors, it is reasonable to assume that
mi grows slower than pi and the row (column) factor strength
(defined in Condition 6 in Section 4 ) of the main factor F11,t
is no weaker than that of the remainder factor F22,t . Improved
estimators of R̂l, l = 1, 2, can be obtained by applying eigen-
decomposition on the sample version ofM(l1) defined similarly
to Equation (12). Improved estimators of Ĉk, k = 1, 2, can be
obtained by using the same procedure on the transposes ofX(1k)

t
for k = 1, 2.

4. Theoretical Properties

In this section, we present the convergence rates of the esti-
mators under the setting that p1, p2, m1, m2, and T all go to
infinity while the dimensions k1, k2 and the structure of the
latent factor are fixed over time. In what follows, let ‖A‖2, ‖A‖F ,
and ‖A‖min denote the spectral norm, Frobenius norm, and the
smallest nonzero singular value of A, respectively. When A is
a square matrix, we denote by tr(A), λmax(A) and λmin(A) the
trace, maximum and minimum eigenvalues of the matrix A,
respectively. For two sequences aN and bN , we write aN 
 bN if
aN = O(bN) and bN = O(aN).

The asymptotic convergence rates are significantly different
from those in Wang, Liu, and Chen (2019) due to the con-
straints. The results reveal more clearly the impact of the con-
straints on signals and noises and the interaction between them.
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We only consider the case of the orthogonal constrained model
(2). Asymptotic properties of nonorthogonal, multi-term, and
partially constrained matrix factor model are trivial extensions.

Several regularity conditions (Conditions 1–5) are listed
in the Appendix (supplementary materials). They are similar
to those in Wang, Liu, and Chen (2019) and are used to
derive the limiting behavior of Equation (12) toward its
population version. The following condition requires some
discussion.

Condition 6. Factor strength. There exist constants δ1 and δ2 in
[0, 1] such that ‖HRR‖22 
 p1−δ1

1 
 ‖HRR‖2min and ‖HCC‖22 

p1−δ2
2 
 ‖HCC‖2min.
Since only Y t is observed in Model (2), how well we can

recover the factor Ft from Y t depends on the “factor strength”
reflected by the coefficients in the row and column factor load-
ing matricesHRR andHCC. For example, in the case ofHRR =
0 or HCC = 0, Y t carries no information on Ft . In the
following, we assume ‖Ft‖ does not change as p1, p2,m1, andm2
change.

The rates δ1 and δ2 in Condition 6 are called the strength for
the row factors and the column factors, respectively. If δ1 = 0,
the corresponding row factors are called strong factors because
Condition 6 implies that the factors have impacts on the major-
ity of p1 vector time series. The amount of information that
observed process Y t carries about the strong factors increases
at the same rate as the number of observations or the amount of
noise increases. If δ1 > 0, the row factors are weak, whichmeans
that the information contained in Y t about the factors grows
more slowly than the noises introduced as p1 increases. The
smaller the δ′s, the stronger the factors. In the strong factor case,
the loading matrix is dense. See Lam, Yao, and Bathia (2011) for
further discussions.

If we restrict HR to be orthonormal, ||HRR||22 = ||R||22 

p1−δ1
1 and there is an interplay betweenHR andR as p1 increases.
In order forHR to remain orthonormal, when p1 increases, each
element of HR decreases at the rate of p−1/2

1 . At the same time,

each element ofR on average increases at the rate of
√
p1−δ1
1 /m1.

The column factor loading ||HCC||22 behaves in the same way.
As p1 and p2 increase, each element of the transformed error Et
remains a growth rate of 1 under Condition 3 (see Lemma 1 in
Appendix A (supplementarymaterials), but the dimension of Et
ism1 ×m2 which grows at a slower rate than p1 ×p2. The factor
strength is defined in terms of the observed dimension p1 and
p2 and the overall loading matrices HRR and HCC, but clearly
howm1 andm2 increase with p1, p2 is also important because it
controls the signal-to-noise ratio in the constrained model.

We have the following theorems for the constrained matrix
factor model. Asymptotic properties for the multi-term and the
partially constrained models are similar and can be derived
easily.

Theorem 1. Under Conditions 1–6 and m1p−1+δ1
1 m2p−1+δ2

2
T−1/2 = o(1), asm1, p1,m2, p2, and T go to ∞, it holds that

‖Q̂1 − Q1‖2 = Op

(
max

(
T−1/2,

m1

p1−δ1
1

m2

p1−δ2
2

T−1/2

))
,

Table 3. Convergence rate of the loading space estimator.

m1m2 
 p1p2 p1−δ1
1 p1−δ2

2 = o(m1m2) m1m2 = o(p1−δ1
1 p1−δ2

2 )

Rate pδ1
1 pδ2

2 T−1/2 m1m2p
−1
1 p−1

2 · pδ1
1 pδ2

2 T−1/2 T−1/2

‖Q̂2 − Q2‖2 = Op

(
max

(
T−1/2,

m1

p1−δ1
1

m2

p1−δ2
2

T−1/2

))
.

Remark 5. The convergence rate for the unconstrained model
is pδ1

1 p
δ2
2 T−1/2 in Wang, Liu, and Chen (2019). The rates for the

constrained model under different relations betweenm1m2 and
p1p2 are shown in Table 3.

For strong factors with δ1 = δ2 = 0, the convergence rates
are the same for the constrained and unconstrained models.
However, m1p−1+δ1

1 m2p−1+δ2
2 T−1/2 = o(1) is automatically

satisfied since pi >> mi. Also, the constrained models have
much smaller number of parameters, hence potentially have
higher efficiency.

For weak factors, the constrained models have better con-
vergence rate in most cases. It depends on the growth rate of
the ratio between m1m2 and p1−δ1

1 p1−δ2
2 . The smaller the ratio,

the faster the convergence rate. It can be viewed as strength
gained due to the constraints. For example, whenm1 = pα1

1 and
m2 = pα2

2 , the convergence rate is pδ1+α1−1
1 pδ2+α2−1

2 T−1/2, and
we achieve a better rate than that of the unconstrained case if
α1 < 1 or α2 < 1. It effectively increases the strength from
δ1 and δ2 to δ1 − (1 − α1) and δ2 − (1 − α2), respectively.
Hence, the constraints are particularly useful for weak strength
cases.

When m1m2 = O(p1−δ1
1 p1−δ2

2 ), we achieve the optimal rate
Op
(
T−1/2). Note the unconstrained model can only achieve

this rate in the case of strong factor. The constrained model
can achieve the optimal rate even in the weak factor case. A
special case is when the dimensions of the constrained row
and column loading spaces m1 and m2 are fixed, the conver-
gence rate is T−1/2 regardless of the factor strength condition.
Increasing p1 or p2 while keeping m1 and m2 fixed amounts to
increasing the sample points in the constrained spaces. When
the constrained spaces are properly specified, the additional
information introduced from more sample points will accrue
and translate into the transformed signal part in Equation (7),
while the transformed noise gets canceled out by averaging.
However, the convergence rate is still bounded below by the
convergence rate of the estimated covariance matrix. When
m1m2 
 p1p2, the convergence rates of the constrained and
unconstrainedmodels are the same.A special case is whenm1 =
c1p1 and m2 = c2p2, that is, the dimensions of the constrained
loading spaces increase with p’s linearly.

Remark 6. Under some conditions the convergence rates in
Theorem 1 may improve significantly. For example, if �u ≡
var(vec(U t)) is diagonal (i.e., Ut,ij and Ut,lk are uncorrelated for
(i, j) �= (l, k)) and if we have the grouping constraints (i.e., H(1)

R
in Section 2.1), then each elements in Et is a group average.
var(Et,ij) is smaller by a factor of m1m2

p1p2 and goes to zero when
m1m2
p1p2 = o(1).
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Remark 7. If the constraints are correct, it would induce certain
intrinsic sparsity in the auto-cross-correlation matrix under the
unconstrained model. For such intrinsic sparsity conditions,
we may instead use thresholding estimator for large covariance
matrix by Bickel and Levina (2008) in Equation (11). This will
lead to faster convergence rates. See Section 3.2 of Chang, Guo,
and Yao (2018). By explicitly incorporating constraints in the
model, the loading matrix is condensed and the sparsity issue
becomes less serious.

Remark 8. The factors under our definition contain the classic
“common factors” and the serially correlated idiosyncratic com-
ponents. As shown by the theoretical properties and simulation
studies, the constrained matrix factor model helps identify the
weak factors. However, the method is still limited in the sense
that it can only identify “common" factors of some strength
δ < 1. In the case of δ = 1, although the loading spaces can still
be consistently estimated with very large T (pT−1/2 = o(1)),
the factor itself cannot be consistently estimated. Therefore,
serially correlated idiosyncratic components for which δ = 1
are left “erroneously" in the noise in application. Hopefully, the
constraints may improve the effective factor strength.

Theorem 2. Under Conditions 1–6, and if m1p−1+δ1
1 m2p−1+δ2

2
T−1/2 = o(1) and theMmatrix in Equation (11) has k1 distinct
positive eigenvalues, then the eigenvalues {λ̂1, . . . , λ̂m1} of M̂,
sorted in the descending order, satisfy

|λ̂j − λj| = Op
(
max

(
p2−2δ1
1 p2−2δ2

2 , m1p1−δ1
1 m2p1−δ2

2

)
·T−1/2

)
,

for j = 1, 2, . . . , k1,

|λ̂j| = Op
(
max

(
p2−2δ1
1 p2−2δ2

2 , m2
1m

2
2

)
· T−1

)
,

for j = k1 + 1, . . . ,m1,

where λ1 > λ2 > · · · > λm1 are the eigenvalues ofM.

Theorem 2 shows that the estimators of the nonzero eigen-
values ofM converge more slowly than those of the zero eigen-
values. This provides the theoretical support for the ratio-based
estimator of the number of factors described in Section 3.1. The
assumption that M has k1 distinct positive eigenvalues is not
essential, yet it substantially simplifies the presentation and the
proof of the convergence properties.

The convergence rates for the unconstrained model are
	λ

pT ≡ p2−δ1
1 p2−δ2

2 T−1/2 for the nonzero eigenvalues and
pδ1
1 p

δ2
2 T−1/2 · 	λ

pT for the zero eigenvalues, respectively. See
Wang, Liu, and Chen (2019). The rates for the constrained
model under different relations between m1m2 and p1p2 are
shown in Table 4.

In the cases of strong factors or weak factors with m1m2 

p1p2, our result is the same as that of Wang, Liu, and Chen
(2019). In all other cases, the gap between the convergence rates
of nonzero and zero eigenvalues ofM is larger in the constrained
case.

Let St be the dynamic signal part of Y t , that is, St =
HRRFtC′H′

C = HRQ1ZtQ′
2H′

C. From the discussion in
Section 3.1, St can be estimated by

Ŝt = HRQ̂1ẐtQ̂
′
2H′

C.

Some theoretical properties of Ŝt are given below.

Theorem 3. Under Conditions 1–6 and m1p−1+δ1
1 m2p−1+δ2

2
T−1/2 = o(1), we have

1√p1p2
‖̂St − St‖2

= Op
(
max

(
p−δ1/2
1 p−δ2/2

2 , m1p−1+δ1/2
1 m2p−1+δ2/2

2

)
· 1√

T
+ 1√p1p2

)
,

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Op
(
p−δ1/2
1 p−δ2/2

2 T−1/2 + p−1/2
1 p−1/2

2

)
,

if m1m2 = Op(p1−δ1
1 p1−δ2

2 ),

Op
(
m1p−1+δ1/2

1 m2p−1+δ2/2
2 T−1/2 + p−1/2

1 p−1/2
2

)
,

otherwise.

Theorem 3 shows that as long as m1m2 = o(p1p2) we
achieve for weak factor cases a faster convergence rate than
Op
(
pδ1/2
1 pδ2/2

2 T−1/2 + p−1/2
1 p−1/2

2

)
—the convergence rate of

the unconstrainedmodel inWang, Liu, and Chen (2019).When
m1m2 = Op(p1−δ1

1 p1−δ2
2 ), we get an even better rate. Note that

the estimation of the loading spaces are consistent with fixed p1
and p2 in Theorem 1. But the consistency of the signal estimate
requires p1, p2 → ∞.

Asymptotic theories for estimators of nonorthogonal, multi-
term constrained factor models are trivial extensions of the
above properties for the orthogonal constrained factor model.

5. Simulation

In this section, we present some simulation study to illustrate
the performance of the estimation methods of Section 3 in
finite samples. We also compare the results with those of
unconstrained models. We employ data generating models
with orthogonal full and partial constraints, respectively. In
the simulation, we use the Student t-distribution with 5 degrees
of freedom to generate the entries in the disturbancesU t . Using
Gaussian noises shows similar results.

As noted in Section 3, the row and column factor loading
matrices � = HRR and � = HCC are only identifiable up to
a linear space spanned by its columns. Following Lam, Yao, and
Bathia (2011) and Wang, Liu, and Chen (2019), we adopt the
discrepancy measure used by Chang, Guo, and Yao (2015): for
two orthogonal matrices O1 and O2 of size p × q1 and p × q2,
then the difference between the two linear spaces M(O1) and
M(O2) is measured by

D(M(O1),M(O2)) =
(
1 − 1

max(q1, q2)
tr
(
O1O′

1O2O′
2
))1/2

.

(15)

Clearly, D(M(O1),M(O2)) assumes values in [0,1]. It
equals to 0 if and only if M(O1) = M(O2) and equals to 1
if and only if M(O1) ⊥ M(O2). If O1 and O2 are vectors,
Equation (15) is the cosine similarity measure. We report this
space distance D(·, ·) as a measurement of the discrepancy
between estimated and true loading spaces.
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Table 4. Convergence rate of estimators for nonzero and zero eigenvalues ofM.

λj m1m2 
 p1p2 p1−δ1
1 p1−δ2

2 = o(m1m2) m1m2 = o(p1−δ1
1 p1−δ2

2 )

Zero pδ1
1 pδ2

2 T−1/2 · 	λ
pT (

m1m2
p1p2

)2pδ1
1 pδ2

2 T−1/2 · 	λ
pT p−δ1

1 p−δ2
2 T−1/2 · 	λ

pT

Nonzero 	λ
pT m1m2p

−1
1 p−1

2 · 	λ
pT p−δ1

1 p−δ2
2 · 	λ

pT

Ratio pδ1
1 pδ2

2 T−1/2 m1m2p
−1+δ1
1 p−1+δ2

2 T−1/2 T−1/2

5.1. Case 1. Orthogonal Constraints

In this case, the observed data Y t ’s are generated according to
Model (2),

Y t = HRRFtC′H′
C + U t , t = 1, . . . ,T,

under the following design.
The latent factor process Ft is of dimension k1 × k2 =

3 × 2. The entries of Ft follow k1k2 independent AR(1)
processes with Gaussian white noise N (0, 1) innovations.
Specifically, vec(Ft) = 	F vec(Ft−1) + εt with 	F =
diag(−0.5, 0.6, 0.8,−0.4, 0.7, 0.3). The dimensions of the con-
strained row and column loading spaces are m1 = 12 and
m2 = 3, respectively. Hence, R is 12 × 3 and C is 3 × 2.
The entries of R and C are independently sampled from the
uniform distribution U(−p−δi/2

i
√
mi/pi, p−δi/2

i
√
mi/pi) for

i = 1, 2, respectively, so that the condition on the factor strength
is satisfied. The disturbance U t = 
1/2�t is a white-noise
process, where the elements of �t are independent random
variables of Student t-distribution with five degrees of freedom
and the matrix 
1/2 is chosen so that U t has a Kronecker
product covariance structure cov(vec(U t)) = �2 ⊗ �1, where
�1 and�2 are of size p1×p1 and p2×p2, respectively. For�1 and
�2, the diagonal elements are 1 and the off-diagonal elements
are 0.2.

The effects of factor strength are investigated by varying fac-
tor strength parameter (δ1, δ2) among (0, 0), (0.5, 0), (0.5, 0.5).
For each pair of δi’s, the dimensions (p1, p2) are chosen to be
(20, 20), (20, 40), (40, 20), and (40, 40). The sample sizes T are
0.5p1p2, p1p2, 1.5p1p2, and 2p1p2. For each combination of the
parameters, we use 500 realizations. And we use h0 = 1 for
all simulations. The estimation error of M(Q̂i) is defined as
D(Q̂i,Qi), where the distanceD is defined in Equation (15).

The row constraintmatrixHR is a p1×12 orthogonalmatrix.
For p1 = 20, HR is assumed to be a block diagonal matrix
I4 ⊗D, where Ik is the identify matrix of dimension k and D =
[d1, d2, d3] is a 5 × 3 matrix with d′

1 = (1, 1, 1, 1, 1)/
√
5, d′

2 =
(−1,−1, 0, 1, 1)/2, d′

3 = (−1, 0, 2, 0,−1)/
√
6. These three dj

vectors can be viewed as the level, slope, and curvature, respec-
tively, of a group of five variables. Therefore, the 20 rows are
divided into 4 groups of size 5. When we increase p1 to 40 while
keeping m1 = 12 fixed, we double the length of each vector
in the columns of D, using d′

1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)/
√
10,

d′
2 = (−1,−1,−1,−1, 0, 0, 1, 1, 1, 1)/

√
8, and

d′
3 = (−1,−1, 0, 0, 2, 2, 0, 0,−1,−1)/

√
12.

The column constraint matrix HC is a p2 × 3 orthogonal
matrix. For p2 = 20, the three columns of HC are generated
as hc,1 = [17/

√
7, 07, 06]′, hc,2 = [07, 17/

√
7, 06]′, hc,3 =

[07, 07, 16/
√
6]′, where 0k denotes a k-dimensional zero row

vector. The constraints represent a 3-group classification. The 20
columns are divided into 3 groups of size 7, 7, and 6, respectively.

In increasing p2 to 40 while keepingm2 = 3 fixed, we double the
length of each vector in the columns defined above.

Table 5 shows the performance of estimating the true number
of row and column factors separately. The subscripts c and
u denote results from the constrained model (2) and uncon-
strained model (1), respectively. fc and fu denote the relative
frequency of correctly estimating the true number of factors
k. From the table, we make the following observations. First,
when the row and column factors are strong, that is, (δ1, δ2) =
(0, 0), both constrained and unconstrainedmodels can estimate
accurately the number of factors, but the constrained mod-
els perform better when the sample size is small. Second, if
the strength of the row factors is weak, but the strength of
the column factors is strong, that is, (δ1, δ2) = (0.5, 0), the
unconstrainedmodels fail to estimate the number of row factors
k1, but the constrained models continue to perform well for
both k1 and k2. Furthermore, as expected, the performance of
the constrained models improves with the sample size. Finally,
if the strength of the row and columns factors is weak, that
is, (δ1, δ2) = (0.5, 0.5), both models encounter difficulties in
estimating the correct number of row factors k1 for the sam-
ple sizes used. However, the constrained models continue to
perform well for the number of column factors k2. Here, m1
and m2 are different and play a role. Since m1 > m2, k2 is
estimated with higher accuracy, especially in the weak factor
case.

Figure 1 shows the boxplots of the estimation errors in esti-
mating the loading spaces of Q = Q2 ⊗ Q1 using the cor-
rect number of factors. The gray boxes are for the constrained
models. From the plots, it is seen that when both row and
column factors are strong, that is, (δ1, δ2) = (0, 0), and the
number of factors is properly estimated, the mean and SD of
the estimation errorsD(Q̂,Q) are small for bothmodels, but the
constrained model has a smaller mean estimation error. When
row factors are weak, that is, (δ1, δ2) = (0.5, 0), and the true
number of factors is used, the estimation error of constrained
models remains small whereas that of the unconstrainedmodels
is substantially larger.

Table 6 shows the mean and standard deviations of the esti-
mation errors D(Q̂i,Qi) for row (i = 1) and column (i = 2)
loading spaces separately for the constrainedmodel (2). Column
loading spaces are estimated with higher accuracy because the
dimension of the constrained column space (m2) is smaller
than that of the constrained row space (m1). Intuitively, after
transformation Equation (7), the ratio of the effective column
factor strength ‖C‖22 and noise level ‖Et‖22 is larger than the
ratio of the effective row factor strength ‖R‖22 and noise level
‖Et‖22. From the table, we see that (a) the mean of estimation
errors decreases, as expected, as the sample size increases and
(b) the mean of estimation errors is inversely proportional to
the strength of row factors.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 785

Table 5. Relative frequencies of correctly estimating the number of row (column) factors k1 (k2) in the case of orthogonal constraints, where pi are the dimension, T is the
sample size, and fu and fc denote the results of unconstrained and constrained factor model, respectively. .

k1 T = 0.5 p1 p2 T = p1 p2 T = 1.5 p1 p2 T = 2 p1 p2
δ1 δ2 p1 p2 fu fc fu fc fu fc fu fc

0 0

20 20 0.264 0.942 0.728 0.996 0.952 1 0.996 1
20 40 0.734 1 0.998 1 1 1 1 1
40 20 0.786 0.994 1 1 1 1 1 1
40 40 1 1 1 1 1 1 1 1

0.5 0

20 20 0 0.202 0 0.508 0 0.734 0 0.926
20 40 0 0.692 0 0.97 0 0.994 0 1
40 20 0 0.352 0 0.77 0 0.908 0 0.964
40 40 0 0.872 0 0.984 0 0.996 0 0.994

0.5 0.5

20 20 0 0.052 0 0.036 0 0.01 0 0.006
20 40 0 0.052 0 0.022 0 0.008 0 0.004
40 20 0 0.062 0 0.006 0 0 0 0.002
40 40 0 0.018 0 0.006 0 0.006 0 0.044

k2 T = 0.5 p1 p2 T = p1 p2 T = 1.5 p1 p2 T = 2 p1 p2
δ1 δ2 p1 p2 fu fc fu fc fu fc fu fc

0 0

20 20 1 1 1 1 1 1 1 1
20 40 1 1 1 1 1 1 1 1
40 20 1 1 1 1 1 1 1 1
40 40 1 1 1 1 1 1 1 1

0.5 0

20 20 0.988 0.996 1 1 1 1 1 1
20 40 1 1 1 1 1 1 1 1
40 20 1 1 1 1 1 1 1 1
40 40 1 1 1 1 1 1 1 1

0.5 0.5

20 20 0.02 0.762 0.104 0.962 0.272 0.992 0.58 1
20 40 0 0.956 0.09 0.998 0.472 1 0.85 1
40 20 0 0.952 0.026 1 0.196 1 0.572 1
40 40 0 1 0.03 1 0.438 1 0.906 1

NOTE: Table on top is for k1, while table on the bottom is for k2.

T = 0.5p1p2 T = 1.5p1p2 T = 1p1p2 T = 2p1p2

(20,20) (40,20) (20,40) (40,40) (20,20) (40,20) (20,40) (40,40) (20,20) (40,20) (20,40) (40,40) (20,20) (40,20) (20,40) (40,40)

0.00

0.05

0.10

0.15

0.20

(p1,p2)

Sp
ac

e 
D

is
ta

nc
e

δ1=0, δ2=0

T = 0.5p1p2 T = 1.5p1p2 T = 1p1p2 T = 2p1p2

(20,20) (40,20) (20,40) (40,40) (20,20) (40,20) (20,40) (40,40) (20,20) (40,20) (20,40) (40,40) (20,20) (40,20) (20,40) (40,40)

0.0

0.2

0.4

0.6

(p1,p2)

Sp
ac

e 
D

is
ta

nc
e

δ1=0.5, δ2=0

model constrained unconstrained

Figure 1. Boxplots of the estimation accuracy measured byD(Q̂,Q) of Equation (15) for the case of orthogonal constraints. Gray boxes represent the constrained model.
The results are based on 500 iterations. See Table 17 in Appendix C (supplementary materials) for plotted values.

To investigate the performance of estimation under different
choices of h0, which is the number of lags used in Equation
(11), we change the underlying generating model of vec(Ft)
to a VAR(2) process without the lag-1 term, vec(Ft) =
	Fvec(Ft−2) + εt . Here, we only consider the strong factor

setting with δ1 = δ2 = 0 and use the sample size T = 2p1p2
for each combination of p1 and p2. All the other parameters
are the same as those in the prior simulation. Table 7 presents
the simulation results. Since vec(Ft), and hence vec(Y t), has
zero auto-covariance matrix at lag 1, M̂ under h0 = 1 contains
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Table 6. Means and SDs (in parentheses) of the estimation accuracy measured by D(Q̂,Q) of Equation (15) for constrained factor models. The case of orthogonal
constraints is used.

T = 0.5 p1 p2 T = p1 p2 T = 1.5 p1 p2 T = 2 p1 p2

δ1 δ2 p1 p2 D(̂Q1,Q1) D(̂Q2,Q2) D(̂Q1,Q1) D(̂Q2,Q2) D(̂Q1,Q1) D(̂Q2,Q2) D(̂Q1,Q1) D(̂Q2,Q2)

0 0

20 20 0.71(0.18) 0.13(0.07) 0.51(0.13) 0.09(0.05) 0.41(0.09) 0.07(0.04) 0.35(0.07) 0.06(0.03)
20 40 0.46(0.11) 0.08(0.04) 0.32(0.07) 0.05(0.03) 0.27(0.06) 0.04(0.02) 0.23(0.05) 0.04(0.02)
40 20 0.40(0.12) 0.07(0.04) 0.28(0.07) 0.05(0.03) 0.23(0.06) 0.04(0.02) 0.19(0.05) 0.04(0.02)
40 40 0.26(0.07) 0.04(0.02) 0.18(0.04) 0.03(0.02) 0.14(0.04) 0.03(0.01) 0.13(0.03) 0.02(0.01)

0.5 0

20 20 1.84(0.75) 0.5(0.23) 1.23(0.35) 0.30(0.15) 0.95(0.23) 0.22(0.11) 0.81(0.18) 0.17(0.09)
20 40 1.08(0.30) 0.26(0.13) 0.74(0.18) 0.15(0.08) 0.61(0.14) 0.12(0.06) 0.52(0.12) 0.10(0.05)
40 20 1.18(0.45) 0.28(0.15) 0.78(0.23) 0.17(0.09) 0.64(0.18) 0.13(0.07) 0.54(0.14) 0.11(0.06)
40 40 0.71(0.21) 0.14(0.08) 0.48(0.13) 0.09(0.05) 0.39(0.1) 0.07(0.04) 0.35(0.09) 0.06(0.03)

0.5 0.5

20 20 5.84(0.62) 2.04(0.53) 5.35(0.75) 1.63(0.42) 4.68(1.17) 1.33(0.34) 4.20(1.31) 1.13(0.32)
20 40 5.62(0.68) 1.98(0.40) 4.75(1.13) 1.47(0.30) 3.96(1.33) 1.18(0.27) 3.32(1.35) 0.97(0.24)
40 20 5.53(0.61) 1.52(0.50) 4.68(1.25) 1.00(0.37) 3.64(1.46) 0.76(0.30) 2.87(1.42) 0.61(0.25)
40 40 5.01(1.01) 1.32(0.38) 3.64(1.47) 0.84(0.29) 2.62(1.46) 0.61(0.20) 1.98(1.14) 0.49(0.19)

NOTES: The subscripts 1 and 2 denote row and column, respectively. All numbers in the table are 10 times of the true numbers for clear presentation. The results are based
on 500 simulations.

Table 7. Performance of estimation under different choices of h0 when vec(Ft) = 	Fvec(Ft−2) + εt .

p1 p2 h0 = 1 h0 = 2 h0 = 3 h0 = 4

fc

20 20 0.12 1.00 1.00 1.00
20 40 0.16 1.00 1.00 1.00
40 20 0.12 1.00 1.00 1.00
40 40 0.22 1.00 1.00 1.00

fu

20 20 0.00 0.89 0.58 0.43
20 40 0.00 1.00 1.00 0.95
40 20 0.00 1.00 1.00 0.97
40 40 0.00 1.00 1.00 1.00

Dc(Q̂,Q)

20 20 2.83(1.13) 0.36(0.07) 0.37(0.07) 0.38(0.08)
20 40 2.69(1.15) 0.23(0.05) 0.23(0.05) 0.24(0.05)
40 20 2.54(1.21) 0.20(0.05) 0.20(0.05) 0.21(0.06)
40 40 2.31(1.17) 0.13(0.03) 0.13(0.03) 0.14(0.04)

Du(Q̂,Q)

20 20 4.37(1.29) 0.51(0.07) 0.53(0.07) 0.53(0.08)
20 40 4.30(1.30) 0.34(0.04) 0.35(0.04) 0.35(0.04)
40 20 4.36(1.31) 0.36(0.04) 0.37(0.04) 0.37(0.05)
40 40 4.34(1.34) 0.24(0.02) 0.24(0.03) 0.25(0.03)

NOTES: Metrics reported are relative frequencies of correctly estimating k, means and SDs (in parentheses) of the estimation accuracy measured byD(Q̂,Q). Means and
SDs are multiplied by 10 for ease in presentation. fu and fc denote unconstrained and constrained models.

no information on the signal, and, as expected, both the
constrained and unconstrainedmodels fail to correctly estimate
the number of factors and the loading space. On the other hand,
both models are able to correctly estimate the number of factors
when h0 > 1 with the constrained model faring better. The fact
that h0 = 2, 3, 4 give similar results shows that the choice of
h0 is not critical to the performance of the proposed method as
long as it is sufficiently large to describe the pattern of the auto-
covariance matrices of the data. See Condition 2 in Appendix
A (supplementary materials). In practice, one can select h0 by
examining the sample cross-correlation matrices of Y t .

5.2. Case 2. Partial Orthogonal Constraints

In this case, the observed data Y t ’s are generated using Model
(5),

Y t = HRR1FtC′
1H′

C + LRR2GtC′
2L′

C + U t , t = 1, . . . ,T.

Parameter settings of the first part HRR1FtC′
1H′

C are the same
as those in Case 1. The latent factor process Gt is of dimension
q1 × q2 = 5 × 4. The entries of Gt follow q1q2 independent

AR(1)processeswithGaussianwhite noiseN (0, 1) innovations,
vec(Gt) = 	G vec(Gt−1) + εt with 	G being a diagonal matrix
with entries (−0.7, 0.5,−0.2, 0.9, 0.1, 0.4, 0.6,−0.5, 0.7, 0.7,
−0.4, 0.4, 0.4,−0.6,−0.6, 0.6,−0.5,−0.3, 0.2,−0.4). The row
loading matrix LRR2 is a 20 × 5 orthogonal matrix, satisfying
H′

RLR = 0. The column loading matrix LCC2 is a 20 × 4
orthogonal matrix, satisfying H′

CLC = 0. The entries of
R2 and C2 are random draws from the uniform distribution
between −p−ηi/2

i
√
pi/(pi − mi) and p−ηi/2

i
√
pi/(pi − mi) for

i = 1, 2, respectively, so that the conditions on factor strength
are satisfied. Factor strength is controlled by the δi’s.

Model (5) could be written in the following form:

Y t = (HRR1 LRR2)

(
Ft 0
0 Gt

)(
C′
1H′

C
C′
2L′

C

)
+ U t ,

t = 1, . . . ,T.

In this form, the true number of factors is k0 = (k1+r1)(k2+r2)
and the true loading matrix is (HCC1 LCC2) ⊗ (HRR1 LRR2).
Table 8 shows the frequency of correctly estimating k0 based on
500 iterations. In the table, fu denotes the frequency of correctly
estimating k0 for unconstrained model. fcon1 and fcon2 denote
the same frequency metric for the first matrix factor Ft and
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Table 8. Relative frequencies of correctly estimating the number of factors for partially constrained factor models.

T = 0.5 p1 p2 T = p1 p2 T = 1.5 p1 p2 T = 2 p1 p2
δ1 δ2 δ3 δ4 p1 p2 fu fcon1 fcon2 fu fcon1 fcon2 fu fcon1 fcon2 fu fcon1 fcon2

0 0 0 0

20 20 0 0.94 0 0 1.00 0 0 1.00 0 0.01 1.00 0
20 40 0 1.00 0 0 1.00 0 0.03 1.00 0 0.19 1.00 0
40 20 0.15 0.99 1.00 0.81 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00
40 40 0.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0 0 0.5 0

20 20 0 0.94 0 0 1.00 0 0 1.00 0 0 1.00 0
20 40 0 1.00 0 0 1.00 0 0 1.00 0 0 1.00 0
40 20 0 0.99 0.54 0 1.00 0.84 0 1.00 0.97 0 1.00 1.00
40 40 0 1.00 0.98 0 1.00 1.00 0 1.00 1.00 0 1.00 1.00

0.5 0.5 0.5 0.5

20 20 0 0.07 0 0 0.04 0 0 0.01 0 0 0.01 0
20 40 0 0.07 0 0 0.02 0 0 0.01 0 0 0.01 0
40 20 0 0.06 0 0 0.01 0 0 0 0 0 0 0
40 40 0 0.06 0 0 0 0 0 0 0 0 0.03 0

NOTE: The full table including all combinations is presented in Table 18 in Appendix C (supplementary materials).

second matrix factor Gt of the constrained model. The number
of factors in Ft is estimated with a higher accuracy because the
dimension of constrained loading space for Ft is m1m2 = 36,
which is smaller than that for Gt , (p1 − m1)(p2 − m2) = 136.
The result again confirms the theoretical results in Section 4.
Note that Table 8 only contains selected combinations of factor
strength parameters δi’s (i = 1, . . . , 4). The results of all combi-
nations of factor strength are given in Table 18 in Appendix C
(supplementary materials).

Figures 2 and 3 present boxplots of estimation errors under
weak and strong factors based on 500 simulations, respectively.
Again, the results show that the constrained approach effec-
tively improves the estimation accuracy. The performance of
constrained model is good even in the case of weak factors.
Moreover, with stronger signals and larger sample sizes, both
approaches increase their estimation accuracy.

6. Applications

In this section, we demonstrate the advantages of constrained
matrix-variate factormodelswith three applications. In practice,
the number of common factors (k1, k2) and the dimensions
of constrained row and column loading spaces (m1, m2) must
be pre-specified to determine an appropriate constrained factor
model. The numbers of factors (k1, k2) can be determined by
any existing methods, such as those in Lam and Yao (2012) and
Wang, Liu, and Chen (2019). For any given (k1, k2), the dimen-
sion of constrained row and column loading spaces (m1,m2) can
be determined by either (a) prior or substantive knowledge or
(b) an empirical procedure. The results show that even simple
grouping information can substantially increase the accuracy in
estimation.

6.1. Example 1: Multinational Macroeconomic Indices

We apply the constrained and partially constrained factor mod-
els to the macroeconomic indexes collected from OECD. The
dataset contains 10 quarterly macroeconomic indexes of 14
countries from 1990.Q2 to 2016.Q4 for 107 quarters. Thus,
we have T = 107 and p1 × p2 = 14 × 10 matrix-valued
time series. The countries include developed economies from
North American, European, and Oceania. The indexes cover

four major groups, namely production, consumer price, money
market, and international trade. Each original univariate time
series is transformed by taking the first or second difference or
logarithm to satisfy themixing condition specified in Condition
4 in the supplementary materials. Detailed descriptions of the
dataset and the transformation used are given in Table 15 and 16
of Appendix B (supplementary materials). Figure 4 shows the
transformed time series of macroeconomic indicators of multi-
ple countries.

We first fit an unconstrained matrix factor model and obtain
estimates of the row loading matrix and the column loading
matrix. In the row loadingmatrix, each row represents a country
by its factor loadings, whereas, in the column loading matrix,
each row represents a macroeconomic index by its factor load-
ings. A hierarchical clustering algorithm (Xu andWunsch 2005;
Murtagh and Legendre 2014) is employed to cluster countries
and macroeconomic indices based on their representations in
the common row and column factor spaces, respectively, under
Euclidean distance and ward.D criterion. Figure 5 shows the
hierarchical clustering results. Based on the clustering result,
we construct the row and column constraint matrices. It seems
that the row constraint matrix divides countries into six groups:
(i) United States and Canada; (ii) New Zealand and Australia;
(iii) Norway; (iv) Ireland, Denmark, and United Kingdom; (v)
Finland and Sweden; (vi) France, Netherlands, Austria, and
Germany. The grouping more or less follows geographical par-
titions with Norway different from all others due to its rich
oil production and other distinct economic characteristics. The
column constraint matrix divides macroeconomic indexes into
five categories: (i) GDP, production of total industry excluding
construction, and production of total manufacturing ; (ii) long-
term government bond yields and 3-month interbank rates and
yields; (iii) total CPI and CPI of Food; (iv) CPI of Energy; (v)
total exports value and total imports value in goods. Again, the
grouping agrees with common economic knowledge.

Table 9 shows estimates of the row and column loading
matrices for constrained and unconstrained 4×4 factormodels.
The loading matrices are normalized so that the norm of each
column is one. They are also varimax-rotated to reveal a clear
structure. The values shown are rounded values of the estimates
multiplied by 10 for ease in display. From the table, both the row
and column loading matrices exhibit similar patterns between
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Figure 2. The strong factors case. Boxplots of the estimation accuracymeasured byD(Q̂,Q) for partially constrained factormodels. The gray boxes are for the constrained
approach. The results are based on 500 realizations. See Table 19 in Appendix C (supplementary materials) for the plotted values.
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Figure 3. The weak factors case. Boxplots of the estimation accuracy measured byD(Q̂,Q) for partially constrained factor models. The gray boxes are for the constrained
approach. The results are based on 500 realizations. See Table 19 in Appendix C (supplementary materials) for the plotted values.

unconstrained and constrained models, partially validating the
constraints while simplifying the analysis.

Table 10 provides the estimates under the same setting as
that of Table 9 but without any rotation. From the table, it
is seen that except for the first common factor of the row
loading matrices there exist some differences in the estimated
loadingmatrices between unconstrained and constrained factor
models. The results of constrained models convey more clearly
the following observations. Consider the row factors. The first
row common factor represents the status of global economy
as it is a weighted average of all the countries under study.
The remaining three row common factors mark certain differ-

ences between country groups. For the column factors, the first
column common factor is dominated by the price index and
interest rates; The second column common factor is mainly the
production and international trade; The remaining two column
common factors represent interaction between price indexes,
interest rates, productions, and international trade.

Table 11 compares the out-of-sample performance of uncon-
strained, constrained, and partially constrained factor models
using a 10-fold cross-validation (CV) for models with different
number of factors. We divide the entire time span into 10
sections and choose each of them as testing data. With time
series data, the training data may contain two disconnected
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Figure 4. Time series plots of macroeconomic indicators of multiple countries (after data transformation). Only a subset of the countries and indicators are plotted due to
the space limit. Country and indicator abbreviation are given in Tables 15 and 16 of Appendix C (supplementary materials).

time spans. We calculate two matrices M̂1 and M̂2 according to
Equation (12) for the two disconnected time spans separately.
The matrix M̂ is redefined as the sum of M̂1 and M̂2. Loading
matrices and latent dimensions are estimated from this newly
defined M̂with procedures in Section 3. Residual sumof squares
(RSS), their ratios to the total sum of squares (RSS/TSS), and the
number of parameters are the average of the 10-fold CV. Clearly,
the constrained factor model uses far fewer parameters in the
loading matrices yet achieves slightly better results than the
unconstrained model. Using the same number of parameters,
the partially constrained model is able to reduce markedly the
RSS over the unconstrained model.

In this particular application, the constrained matrix factor
model with the specified constraint matrices seems appropriate
and plausible. If incorrect structures (constraint matrices) are

imposed on themodel, then the constrainedmodelmay become
inappropriate. As we can see from the next example, a single
orthogonal constraint actually hurts the performance. In cases
like this, we need a second or a third constraint to achieve
satisfactory performance. Nevertheless, the results from the
constrainedmodel are better than those from the unconstrained
model.

6.2. Example 2: Company Financial Measurements

In this application, we investigate the constrainedmatrix-variate
factor models for the time series of 16 quarterly financial mea-
surements of 200 companies from 2006.Q1 to 2015.Q4 for 40
observations. Appendix D (supplementary materials) contains
the descriptions of variables used and their definitions, the 200
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Figure 5. Macroeconomic series: clustering loading matrices.

Table 9. Estimations of row and column loading matrices (varimax rotated) of constrained and unconstrained matrix factor models for multinational macroeconomic
indices.

Model Loading Row USA CAN NZL AUS NOR IRL DNK GBR FIN SWE FRA NLD AUT DEU

Runc,rot R̂′
rot

1 7 7 1 1 −1 −2 −1 0 1 0 0 0 0 −1
2 0 1 −2 −1 1 1 1 2 4 3 4 4 4 4
3 2 −1 5 5 1 5 3 2 −1 1 1 0 0 0
4 −1 1 1 2 9 −3 0 0 0 1 −1 1 0 0

Rcon,rot R̂′
rotH

′
R

1 6 6 0 0 0 2 2 2 −1 −1 0 0 0 0
2 −1 −1 0 0 0 3 3 3 4 4 3 3 3 3
3 0 0 7 7 0 1 1 1 1 1 −1 −1 −1 −1
4 0 0 0 0 10 0 0 0 1 1 0 0 0 0

Model Loading Row CPI:Food CPI:Ener CPI:Tot IR:Long IR:3-Mon P:TIEC P:TM GDP IT:Ex IT:Im

Cunc,rot Ĉ′
rot

1 6 7 3 −1 1 0 0 −1 −1 0
2 −2 1 4 1 −1 0 0 0 6 6
3 0 0 1 8 6 −1 0 1 0 0
4 1 −1 0 0 0 6 6 5 0 0

Ccon,rot Ĉ′
rotH

′
C

1 7 7 0 0 0 0 0 0 0 0
2 0 0 6 0 0 0 0 0 6 6
3 0 0 0 7 7 0 0 0 0 0
4 0 0 −2 0 0 6 6 6 1 1

NOTE: The loadings matrix are multiplied by 10 and rounded to integers for ease in display.

companies and their corresponding industry group and sector
information. Data are arranged in matrix-variate time series
format. At each t, we observe a 16 × 200 matrix, whose rows
represent financial variables and columns represent companies.
Thus, we have T = 40, p1 = 16, and p2 = 200. The
total number of time series is 3200. Following the convention
in eigenanalysis, we standardize the individual series before
applying factor analysis. This dataset was used inWang, Liu, and
Chen (2019) for an unconstrained matrix factor model.

The column constraint matrix HC is constructed based on
the industrial classification of Bloomberg. The 200 companies
are classified into 51 industrial groups, such as biotechnology,
oil & gas, computer, among others. Thus, the dimension of HC
is 200 × 51. Since we do not have adequate prior knowledge on

corporate financial, we do not impose any constraint on the row
loading matrix. Thus, in this application, we useHR = I16.

We apply the unconstrained model (1), the orthogonal con-
strained model (7), and the partial constrained model (5) to
the data. Table 12 shows the average residual sum of squares
(RSS) and their ratios to the total sum of squares (TSS) from a
10-fold CV for models with different number of factors. Again,
it is clear, from the table, that the constrained matrix factor
models use fewer numbers of parameters in loading matri-
ces and achieve similar results. If we use the same number
of parameters in the loading matrices, variances explained by
the constrained matrix factor models are much larger than
those of the unconstrained ones, indicating the impact of over-
parameterization. This application with 3200 time series is typ-
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Table 10. Estimations of row and column loading matrices of constrained and unconstrained matrix factor models for multinational macroeconomic indices.

Model Loading Row USA CAN NZL AUS NOR IRL DNK GBR FIN SWE FRA NLD AUT DEU

Runc R̂′
1 3 2 2 2 2 2 3 3 3 3 3 3 3 3
2 4 2 5 5 1 0 1 0 −3 −1 −2 −2 −2 −3
3 3 6 −2 −2 4 −5 −3 −1 1 0 −1 1 0 0
4 −4 −3 0 2 8 −1 1 0 −1 1 0 1 0 0

Rcon R̂′H′
R

1 1 1 2 2 2 3 3 3 4 4 3 3 3 3
2 5 5 3 3 4 0 0 0 −2 −2 −2 −2 −2 −2
3 −1 −1 5 5 −6 0 0 0 0 0 −1 −1 −1 −1
4 −4 −4 3 3 6 −2 −2 −2 1 1 −1 −1 −1 −1

Model Loading Row CPI:Food CPI:Ener CPI:Tot IR:Long IR:3-Mon P:TIEC P:TM GDP IT:Ex IT:Im

Cunc Ĉ′
1 1 4 2 4 3 3 3 3 4 4
2 5 3 6 −1 1 −3 −4 −4 0 0
3 5 −1 2 −1 1 4 4 3 −4 −4
4 0 −1 −2 7 5 −2 −2 0 −3 −3

Ccon Ĉ′H′
C

1 6 −2 6 4 4 0 0 0 −2 −2
2 0 0 0 3 3 5 5 5 3 3
3 −3 3 −3 5 5 −3 −3 −3 1 1
4 3 5 3 −1 −1 −2 −2 −2 5 5

NOTES: No rotation is used. The loadings matrix are multiplied by 10 and rounded to integers for ease in display.

Table 11. Results of 10-fold CV of out-of-sample performance for themultinational
macroeconomic indexes.

Model # Factor 1 # Factor 2 RSS RSS/TSS # Parameters

Full (6,5) 570.50 0.449 134
Constrained (6,5) 560.31 0.442 61
Partial (6,5) (6,5) 454.41 0.358 134

Full (5,5) 613.26 0.482 120
Constrained (5,5) 604.63 0.477 55
Partial (5,5) (5,5) 516.27 0.407 120

Full (4,5) 658.15 0.517 106
Constrained (4,5) 649.85 0.512 49
Partial (4,5) (4,5) 576.94 0.454 106

Full (4,4) 729.46 0.573 96
Constrained (4,4) 721.96 0.568 44
Partial (4,4) (4,4) 657.13 0.517 96

Full (3,4) 787.80 0.620 82
Constrained (3,4) 768.64 0.605 38
Partial (3,4) (3,4) 719.46 0.567 82

Full (3,3) 868.43 0.684 72
Constrained (3,3) 852.76 0.671 33
Partial (3,3) (3,3) 813.16 0.640 72

NOTES: The numbers shown are average over the cross-validation, where RSS and
TSS stand for residual and total sum of squares, respectively.

ical in high-dimensional time series analysis. The number of
parameters involved is usually huge in a unconstrained model.
Via the example, we showed that constrained matrix factor
models can substantially reduce the number of parameterswhile
keep the same explanation power.

6.3. Example 3: Fama–French 10 by 10 Series

Finally, we investigate constrained matrix-variate factor models
for the monthly market-adjusted return series of Fama–French
10 × 10 portfolios from January 1964 to December 2015 for
624 months and overall 62,400 observations. The portfolios are
the intersections of 10 portfolios formed by size (market equity,
ME) and 10 portfolios formed by the ratio of book equity to
market equity (BE/ME). Thus, we have T = 624 and p1 × p2 =

Table 12. Summary of 10-fold CV of out-of-sample analysis for the 16 corporate
financial measurements for each of 200 companies.

Model # Factor 1 # Factor 2 RSS RSS/SST # parameters

(4,10) 8140.32 0.869 2064
(4,12) 7990.04 0.853 2464Full
(4,19) 7587.11 0.810 3864

Constrained (4,10) 8062.63 0.861 574
(4,10) (4,2) 7969.83 0.851 936Partial (4,10) (4,9) 7623.25 0.814 1979

(4, 20) 7539.68 0.805 4064
(4, 27) 7261.49 0.775 5464Full
(4, 39) 6872.18 0.734 7864

Constrained (4, 20) 7646.70 0.816 1084
(4, 20) (4,7) 7292.06 0.779 2191Partial (4, 20) (4,19) 6815.96 0.728 3979

(5,10) 8012.10 0.855 2080
(5,12) 7849.34 0.838 2480Full
(5,19) 7420.04 0.792 3880

Constrained (5,10) 7942.95 0.848 590
(5,10) (5,2) 7849.40 0.838 968Partial (5,10) (5,9) 7472.10 0.798 2011

(5,20) 7368.63 0.787 7960
(5,23) 7250.73 0.774 4680Full
(5,39) 6641.13 0.709 7880

Constrained (5,20) 7489.20 0.800 1100
(5,20) (5,3) 7357.80 0.786 1627Partial (5,20) (5,19) 6595.03 0.704 4011

(5,30) 6960.70 0.743 6080
(5,34) 6813.93 0.727 6880Full
(5,59) 5988.15 0.639 11880

Constrained (5,30) 7184.53 0.767 1610
(5,30) (5,4) 6997.21 0.747 2286Partial (5,30) (5,29) 5936.64 0.634 6011

NOTES: The numbers shown are average over the cross-validation and RSS and TSS
denote, respectively, the residual and total sum of squares.

10×10matrix-variate time series. The series are constructed by
subtracting the monthly excess market returns from each of the
original portfolio returns obtained from French (2017), so they
are free of the market impact.

Using an unconstrainedmatrix factor model,Wang, Liu, and
Chen (2019) carried out a clustering analysis on the ME and
BE/ME loading matrices after rotation. Their results suggest
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Table 13. Estimates of the loading matrices of constrained and unconstrained matrix factor modes for Fama–French 10 × 10 portfolio returns.

Model Loading Column Rotated estimated loadings

Ru
R̂′ 1 0.43 0.46 0.44 0.43 0.33 0.16 0.05 −0.02 −0.20 −0.23

2 −0.01 −0.01 −0.05 0.09 0.18 0.39 0.39 0.62 0.51 0.16

R̂′H′
R

1 0.44 0.44 0.44 0.44 0.44 −0.04 −0.04 −0.04 −0.04 −0.15
2 0.04 0.04 0.04 0.04 0.04 0.50 0.50 0.50 0.50 0.06

Cu
Ĉ′ 1 0.70 0.48 0.37 0.30 0.14 0.07 0.05 −0.05 −0.09 0.15

2 0.29 −0.07 −0.10 −0.23 −0.30 −0.32 −0.34 −0.44 −0.48 −0.34

Ĉ′H′
C

1 0.78 0.36 0.36 0.36 0 0 0 0 0 0
2 0.24 −0.18 −0.18 −0.18 −0.37 −0.37 −0.37 −0.37 −0.37 −0.37

NOTES: The loading matrices are varimax rotated and normalized for ease in comparison.

HR = [hR1 , hR2 , hR3], where hR1 = [1(5)/√5, 0(5)], hR2 =
[0(5), 1(4)/2, 0], and hR3 = [0(9), 1]. Therefore, ME factors
are classified into three groups of smallest 5 MEs, middle 4
MEs, and the largest ME, respectively. For cases when we need
4 row constraints, we redefine hR2 = [0(5), 1(3)/√3, 0(2)]
and add a fourth column hR4 = [0(8), 1, 0]. For column con-
straints, HC = [hC1 , hC2 , hC3 ], where hC1 = [1, 0(9)], hC2 =
[0, 1(3)/√3, 0(6)], hC3 = [0(4), 1(6)]. Therefore, BE/ME fac-
tors are divided into three groups of the smallest BE/MEs,
middle 3 BE/MEs, and the 6 largest BE/ME, respectively. For
cases when we need 4 column constraints, we redefine hC3 =
[0(4), 1(4)/2, 0(2)] and add a fourth column hC4 = [0(8), 1(2)].

Table 13 shows the estimates of the loading matrices for the
constrained and unconstrained 2 × 2 factor models. The load-
ing matrices are varimax-rotated for ease in interpretation and
normalized so that the norm of each column is one. From the
table, the loading matrices exhibit similar patterns, but those of
the constrained model convey the following observations more
clearly. Consider the row factors. The first factor represents
the difference between the average of the 5 smallest ME group
and the weighted average of the remaining portfolio whereas
the second factor is mainly the average of the medium 4 ME
portfolios. For the column loading matrix, the first factor is
a weighted average of the smallest BE/ME portfolio and the
middle three portfolios. The second factor marks the difference
between the smallest BE/ME portfolio from a weighted average
of the two remaining groups. Finally, it is interesting to see that
the constrained model uses only 16 parameters, yet it can reveal
information similar to the unconstrained model that employs
40 parameters. This result demonstrates the power of using
constrained factor models.

Table 14 compares the out-of-sample performance of uncon-
strained and constrained matrix factor models using a 10-fold
CV for models with different number of factors constructed
similarly to that of Table 11. In this case, the prediction RSS
of the constrained model is slightly larger than that of the
unconstrained one with the same number of factors, which may
results from the misspecification of the constrained matrices.
Testing the adequacy of the constrained matrix is an important
research topic to be addressed in future research. On the other
hand, the constrained model uses a much smaller number of
parameters than the unconstrained model.

7. Summary and Discussion

This article established a general framework for incorporating
domain or prior knowledge induced linear constraints in the

Table 14. Performance of out-of-sample 10-fold CV of constrained and uncon-
strained factor models using Fama–French 10 × 10 portfolio return series, where
RSS and RSS/TSS denote, respectively, the residual and total sum of squares.

Model # Factor 1 # Factor 2 RSS RSS/SST # Parameters

(3,3) 3064.40 0.500 60
(3,4) 2905.79 0.474 70Full
(3,6) 2644.59 0.431 90

Constrained (3,3) 3115.16 0.508 24
(3,3) (3,3) 2819.06 0.460 60Partial (3,3) (1,1) 3079.79 0.502 36

(3,2) 3316.55 0.541 50Full (3,4) 2905.79 0.474 70
Constrained (3,2) 3361.03 0.548 18

(3,2) (3,2) 3169.79 0.517 50Partial (3,2) (1,1) 3323.25 0.542 31

(2,3) 3269.50 0.533 50
(2,4) 3152.63 0.514 60Full
(2,6) 2976.18 0.431 90

Constrained (2,3) 3372.79 0.550 18
(2,3) (2,3) 3154.36 0.514 50Partial (2,3) (1,2) 3296.73 0.538 37

(2,2) 3473.32 0.567 40
(2,3) 3269.50 0.533 50Full
(2,4) 3152.63 0.514 60

Constrained (2,2) 3535.56 0.577 16
(2,2) (2,2) 3415.25 0.557 40Partial (2,2) (2,1) 3486.15 0.569 33

matrix factor model. We developed efficient estimation pro-
cedures for constrained, multi-term, and partially constrained
matrix factor models. Constraints can be used to achieve parsi-
mony in parameterization, to facilitate factor interpretation, and
to target specific factors indicated by the domain theories. We
derived asymptotic theorems justifying the benefits of impos-
ing constraints. Simulation results confirmed the advantages of
constrained matrix factor model over the unconstrained one in
finite samples. Finally, we illustrated the applications of con-
strained matrix factor models with three real datasets, where
the constrained factor models outperform their unconstrained
counterparts in explaining the variabilities of the data using out-
of-sample 10-fold cross-validation and in factor interpretation.

Under the model setting we adopt, both strong and weak
factors exist in the dynamic component. The proposed con-
strained model incorporates prior information and improves
the rates of convergence in the case of weak factors. For the
strong factor case, it achieves the same asymptotic rates as those
of the unconstrained models. Yet it entails smaller number of
parameters and requires weaker assumption on the growth rates
of dimensions and sample size. Several interesting topics are
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open for further researches. First, a natural question is how we
know the existence of weak factors in real data. Lam and Yao
(2012) used a two-step approach to facilitate the discovery of
weak factors that may be masked by strong factors. They ran a
second decomposition to the residual from the first step to find
the weak factors that may be masked from the strong factor in
the first step. A possible method to test the existence of weak
factor will be to test the existence of common factors in the
second step. Also, data containing subpanels or block structure
is a common situationwhereweak factors arise.Hallin and Liška
(2011) developed method to identify and estimate joint and
block-specific common factors among different panels. Similar
result can be achieved by using constrained vector factor model
in Tsai and Tsay (2010). Data containing subpanels can also be
cast into matrix observations by putting subpanels as columns.
The column spaces of loadings can be divided into subspaces
that correspond to the joint and block-specific common factors.
However, more sophisticated estimation procedures need to
be developed to exclude overlap of the column spaces. The
constrained matrix factor model provides building blocks for
future research on combining constraints to represent different
structures and on devising estimation procedures.

Supplementary Materials

The supplementary materials contain all technical proofs, more informa-
tion on the data sets used in the real applications, and some extra simulation
results. (UASA_A_1584899_SM4831.pdf)
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