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An Efficient Deep Learning Framework for Low Rate Massive
MIMO CSI Reporting
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Abstract—Channel state information (CSI) reporting is im-
portant for multiple-input multiple-output (MIMO) wireless
transceivers to achieve high capacity and energy efficiency in
frequency division duplex (FDD) mode. CSI reporting for massive
MIMO systems could consume large bandwidth and degrade
spectrum efficiency. Deep learning (DL)-based CSI reporting
integrated with channel characteristics has demonstrated success
in improving CSI compression and recovery. To further improve
the encoding efficiency of CSI feedback, we develop an efficient
DL-based compression framework CQNet to jointly tackle CSI
compression, codeword quantization, and recovery under the
bandwidth constraint. CQNet is directly compatible with other
DL-based CSI feedback works for further enhancement. We pro-
pose a more efficient quantization scheme in the radial coordinate
by introducing a novel magnitude-adaptive phase quantization
framework. Compared with traditional CSI reporting, CQNet
demonstrates superior CSI feedback efficiency and better CSI
reconstruction accuracy.

Index Terms—Massive MIMO, FDD, CSI feedback, quantiza-
tion, deep learning.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems
have shown great promise in delivering high spectrum and
energy efficiency for 5G and future wireless communication
systems [1]. By utilizing a large number of antennas in the
massive MIMO framework, gNB (or gNodeB) in 5G can
achieve very high downlink throughput if sufficiently accurate
downlink channel state information (CSI) is available at the
gNB. Consequently, gNB needs to acquire the downlink CSI
in an accurate and timely manner to fully utilize the spatial
diversity and multiplexing gains.

In time division duplex (TDD) systems, gNB can leverage
its uplink CSI as the estimation of its downlink CSI based
on the well known reciprocity between downlink and uplink
CSIs. In frequency division duplex (FDD) systems, however,
uplink and downlink channels are in different frequency bands.
Thus, it is difficult to only rely on uplink CSI to estimate
the downlink CSI directly as the channel reciprocity becomes
weak. Consequently, the gNB transmitter of FDD systems
would require user equipment (UE) to provide certain CSI
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reporting about the downlink CSI. For massive MIMO sys-
tems, such feedback data can be substantial since the large
number of antennas leads to very high CSI dimensionality
[2]. Large bandwidth in high rate links further exacerbates the
high feedback load.

To reduce the required bandwidth for CSI reporting in
FDD systems, compressed sensing (CS)-based approaches can
exploit the channel properties of low rank or sparsity to derive
a compressed CSI representation for feedback. Two major cor-
relation properties used in CS-based CSI feedback approaches
include spatial CSI correlation [3], [4], [5] that stems from
the limited scattering characteristics of signal propagation,
and temporal CSI correlation [6] owing to Doppler effects.
However, CS-based approaches still have some limitations. On
the one hand, CS-based approaches require a strong channel
sparsity condition which is not strictly held in some cases.
On the other hand, CS algorithms are often iterative and
computationally intensive during the decoding process, which
may lead to long delays.

Deep learning (DL) is a powerful tool for exploring the
underlying structures from large data sets, and has been widely
used in computer vision and natural language processing [7].
It can play a helpful role in CSI acquisition when traditional
methods generate limited performance. There has been a recent
surge of successful applications to derive reliable CSI in
massive MIMO systems for channel estimation [8] and low
rate CSI feedback [9], [10], [11], [12], [13], [14].

To conserve feedback bandwidth and improve downlink CSI
reconstruction accuracy for massive MIMO, the authors of [9]
first developed a CSI compression and recovery mechanism
using an autoencoder structure [15], and demonstrated better
accuracy than CS-based methods in terms of downlink CSI
reconstruction from limited UE feedback. Then, channel cor-
relations have been further combined with the DL networks to
enhance the CSI feedback performance. The work of [10] ex-
ploited the FDD bi-directional channel correlation. By jointly
utilizing the available uplink CSI and low rate UE feedback in
massive MIMO systems at gNB, downlink CSI reconstruction
accuracy gain was shown over the DL architecture based only
on UE feedback. Another work [11] proposed the use of
a long-short time memory (LSTM) network [16] known as
CsiNet-LSTM to exploit the temporal correlation of CSI. In
[12], a new LSTM network further reduced the number of
parameters to be trained while maintaining the CSI recovery
accuracy. Besides, the DL network architectures have also
been optimized to improve CSI feedback performance. In
[13], a spherical normalization based CSI feedback framework
was designed to optimize the input distribution and make the
network more applicable to variational signal strength. In [14],
a DL network was proposed to extract CSI features on multiple
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resolutions for massive MIMO systems.
In the aforementioned DL-based works, CSI feedback gen-

erally focused on the dimension reduction of CSI matri-
ces, while the redundancy in the codeword can still exist
owing to their data type. Common implementations of the
DL networks comply with IEEE 754 standard [17]. Single
precision, which is defined in this standard and used in CSI
feedback [9], [10], [11], [14], is the most typical data type
adopted in DL networks [18]. Although DL methods have
delivered noticeable performance improvement in reducing the
dimension of CSI matrices for massive MIMO, current CSI
reporting works that use the single precision (32-bit) to encode
feedback coefficients still consume too much bandwidth. To
reduce the number of bits required by each codeword, low-
bit quantization should take place in encoding after dimension
compression.

Clearly, low-bit quantization for CSI codeword can degrade
CSI reconstruction accuracy. Consequently, it is important
to optimize codeword quantization together with dimension
compression to maintain high CSI reconstruction accuracy
without consuming excessive bandwidth in massive MIMO
systems. A recent work [19] showed that encoding precision
could be reduced with manageable accuracy loss in image
classification. There are a few recent works involved in the
quantization of CSI codewords. In [20], uniform quantization
was used to discretize CSI codewords for the feedback.
In [21], the µ-law quantization was utilized to encode the
codeword after dimension compression. Owing to the non-
differentiable property of quantization operation, the weights
of encoder networks are hard to be updated during the training.
Consequently, only the decoder network can be optimized
after quantization, while the weights of the encoder networks
are pretrained without the quantizer. However, neither µ-law
quantization nor uniform quantization alone can efficiently
handle the CSI feedback in low-bit quantization cases, which
we shall demonstrate in the performance evaluation section of
this work.

To achieve the end-to-end optimization for CSI feedback
networks with the quantizer, [22] applied the independently
and identically distributed (i.i.d) uniformly distributed noise
to approximate the effect of quantization error during training.
The authors then exploited entropy encoding to further reduce
feedback bits. It was shown that the feedback noise in the
training phase can unfortunately degrade the CSI feedback
performance during the testing phase [21] because the deep
neural networks (DNNs) need to build some redundancy to
combat the uncertainty due to noise. Another recent method
[23] proposed a specific quantization DNN to improve the
CSI reporting performance. It first projected the dimension-
compressed codeword to (−1, 1) using the ‘tanh’ function, be-
fore exploiting the uniform quantization together by modifying
the quantization gradient to 1 during back propagation. Owing
to the range projection and gradient alteration, the portability
in a new feedback network and the reuse of pretrained weights
of the decoder without quantizer can be influenced. Besides,
all codewords share the same quantization parameters, while
each codeword within the dimension-compressed vector can
have different importance.

In this paper, we develop an efficient CSI compression
solution and design an end-to-end DL framework CQNet
to jointly optimize CSI compression, codeword quantization,
and recovery to improve CSI feedback accuracy and reduce
CSI feedback payload. Our CQNet exploits a simple plug-in
quantizer that fits nicely into existing DL-based CSI feedback
works and can directly facilitate DL-based CSI feedback.

Our contributions in this paper are summarized as follows:
• Inadequately designed quantization module hinders the

practical deployment of existing DL-based CSI feed-
back mechanisms. In this work, we propose a universal
CSI compression framework (named CQNet) to jointly
optimize CSI compression, codeword quantization, and
recovery under limited bandwidth constraint. CQNet is
compatible with existing CSI feedback frameworks by
only inserting a specially designed quantizer module.

• We develop an efficient quantizer block, which can
customize the quantization intervals for each element
in a dimension-compressed vector. To further improve
efficiency, the traditional µ-law compander is included in
an enhanced type of quantization block. We demonstrate
that adjusting the element-wise quantization stepsize in a
pretrained dimension-compression CSI feedback network
can achieve higher accuracy in comparison with retrain-
ing the decoder network for the quantized codewords.

• Departing from existing feedback frameworks to sepa-
rately quantize in-phase component and quadrature com-
ponent of the downlink CSI (e.g., [9], [11], [12], [14]),
we develop a DL-based quantization solution for more ef-
ficient CSI encoding in radial coordinate (e.g., [10], [13])
and introduce a special DL-based magnitude-adaptive
phase quantization framework. The new framework pro-
vides better flexibility of phase quantization and can
regulate the weight of quantization entropy to achieve a
trade-off between bandwidth and CSI recovery accuracy.

• We substantially integrate CQNet with the enhanced
versions [13] of two previous DL-based solutions for
CSI compression and feedback CsiNet [9] and DualNet-
MAG [10] to demonstrate the simplicity and efficacy of
CQNet in improving bandwidth efficiency. Test results
demonstrate that the proposed framework can achieve
good CSI feedback accuracy and robustness, with low
overhead.

• We analyze the codeword quantization and reconstruction
of DL-based CSI feedback mechanisms to investigate the
underlying principles for the success of CQNet.

The rest of the paper is organized as follows. Section II
illustrates the system model. In Section III, we investigate
the influence of feedback bandwidth on CSI reconstruction
accuracy under a uniform quantization framework. In Section
IV, the proposed DL-base joint dimension compression and
codeword quantization framework CQNet is introduced in
detail. Section V shows the simulation results and performance
analysis. Finally, Section VI concludes this paper.

II. SYSTEM MODEL

Consider a single-cell massive MIMO system, in which the
gNB has Nb � 1 antennas and the UE has a single antenna.
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The system applies orthogonal frequency division multiplexing
(OFDM) over Nf subcarriers, for which the downlink received
signal at the n−th subcarrier is

y
(n)
d = h

(n)
d

H
w

(n)
T x

(n)
d + n

(n)
d , (1)

where h
(n)
d ∈ CNb×1 denotes the channel vector of the n−th

subcarrier, w(n)
T ∈ CNb×1 denotes the transmit beamformer,

x
(n)
d ∈ C is the transmitted symbol, and n(n)d ∈ C denotes the

additive noise. (·)H denotes the conjugate transpose. With the
downlink channel vector h(n)

d , gNB can calculate the transmit
beamformer w

(n)
T . The uplink received signal of the n−th

subcarrier is given by
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where w
(n)
R ∈ CNb×1 denotes the receive beamformer, and

subscript u denotes uplink signals and noise, similar to (1).
The downlink and uplink CSI matrices in the spatial frequency

domain are denoted as H̃d =
[
h
(1)
d , ...,h

(Nf )
d

]H
∈ CNf×Nb

and H̃u =
[
h
(1)
u , ...,h

(Nf )
u

]H
∈ CNf×Nb , respectively.

To reduce the feedback overhead, we first exploit the
property that CSI matrices exhibit some sparsity in the delay
domain since the delay among multiple paths lies in a partic-
ularly limited period [24]. The CSI matrix Hf in frequency
domain can be transformed to be Ht in delay domain using
an inverse discrete Fourier transform (IDFT), i.e.,

FHHf = Ht, (3)

where F and FH denote the Nf×Nf unitary DFT matrix and
IDFT matrix, respectively. After IDFT of (3), most elements
in the Nf × Nb matrix Ht are near zero except for the first
Qf rows. Therefore, we truncate the channel matrix to the first
Qf rows that are with distinct non-zero values, and utilize Hd

and Hu to denote the first Qf rows of matrices after IDFT of
H̃d and H̃u, respectively.

Downlink CSI of massive MIMO can be better compressed
and reconstructed by utilizing the autoencoder based CSI
feedback, where the encoder and decoder are designed for
CSI dimension compression and reconstruction, respectively.
Furthermore, auxiliary information including previously con-
structed CSI within channel coherence time [11], [12] and
uplink CSI at the gNB [10] can be incorporated into the CSI
decoder network to further reduce the redundancy in downlink
CSI reporting by the UEs and improve the reconstruction
accuracy of the time-varying downlink CSI.

To efficiently compress the downlink CSI in massive MIMO
systems while compatible with the previous autoencoder based
CSI feedback works, we design a modular DNN framework
CQNet that can jointly optimize the dimension compression,
quantization and CSI decoding process. The recovery module
at the transmitter is correspondingly optimized for CSI re-
covery. As shown in Fig. 1, our CSI feedback framework for
FDD downlink channel reconstruction consists of 3 modules:
a dimension compression module, a quantizer module, and a
recovery module. By modeling the encoder and decoder of the
works focusing on dimension compression as the dimension
compression module and recovery module respectively, the

Dimension

Compression 

Module

Recovery Module

Quantizer  

Module Auxiliary Input
(If necessary)

CSI

Matrix

Feedback

CSI

Matrix

UE

gNB

Fig. 1: CSI feedback framework.

CQNet framework can be integrated with corresponding works
directly [9], [10], [11], [12], [13], [14], etc. For the recovery
module, available CSI within coherence time and uplink CSI
at the gNB can be exploited as the auxiliary input to help
reconstruct the downlink CSI. We take the enhanced versions
[13] of CsiNet in [9] and DualNet-MAG in [10] as examples to
jointly optimize dimension compression and codeword quan-
tization of downlink CSI feedback. These corresponding new
architectures are respectively named as CsiQnet and DualQnet.

We shall let Ĥd denote the reconstructed downlink CSI
matrix. We define the quantization function as fquan(·). For
CsiQnet, the dimension compression module, quantizer mod-
ule, and recovery module can be denoted, respectively, by

s1 = fc,1(Hd), (4)
ŝ1 = fquan,1(s1), (5)

Ĥd = fr,1(ŝ1). (6)

For DualQnet, the dimension compression module, quantizer
module, and recovery module can be denoted, respectively, by

s2 = fc,2(Hd), (7)
ŝ2 = fquan,2(s2), (8)

Ĥd = fr,2(ŝ2,Hu). (9)

The optimization of downlink CSI compression and recovery

method can be formulated as minimizing
∥∥∥Hd − Ĥd

∥∥∥2, where
‖·‖ denotes the Frobenius norm.

III. CSI FEEDBACK IN LOW-BIT QUANTIZATION

The DL-based CSI feedback works including CsiNet in [9]
and DualNet in [10] have demonstrated substantial perfor-
mance gain in terms of downlink CSI feedback reduction and
reconstruction accuracy. In [13], the performance of CsiNet
and DualNet-MAG was enhanced by improving the network
structures (named as CsiNet Pro and DualNet Pro) as well as
the data preprocessing method. However, in addition to the
benefit of downlink CSI compression, additional encoding of
the compressed CSI feedback coefficients from the original
float32 format can further reduce the downlink CSI feedback
payload for massive MIMO systems drastically.
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Toward this goal, we first evaluate the impact of codeword
quantization bitwidth on CSI reconstruction accuracy by exam-
ining a simple uniform quantizer. We start from testing CsiNet
Pro and DualNet Pro by simply adding a uniform quantizer
between the encoder DNN and decoder DNN to assess the
impact of quantization distortion.
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Fig. 2: Architectures of CsiNet Pro (a) and DualNet Pro (b).
A quantizer module is inserted between the encoder DNN and
decoder DNN.

As shown in Fig. 2 (a), CsiNet Pro utilizes an autoencoder
architecture, where an encoder DNN acts as a dimension
compression module and a corresponding decoder DNN is
responsible for CSI reconstruction. Each complex CSI matrix
is split into real and imaginary parts, rearranged into two
feature maps of the input for the encoder. The encoder network
contains four 7 × 7 convolutional (conv) layers with 16,
8, 4, 2 channels for feature extraction, and an M -unit fully
connected (FC) layer for dimension compression. The decoder
network consists of a fully connected layer for dimension de-
compression and four convolutional layers for CSI calibration.
Compared with CsiNet, CsiNet Pro exploits more CNN kernels
and layers in the encoder to extract the codewords that can
contain more features of CSI matrices from the input.

DualNet Pro leverages the magnitude correlation between
uplink and downlink to improve CSI feedback efficiency. As
shown in Fig. 2 (b), DualNet Pro processes the magnitude
and phase separately. After separation, the CSI magnitudes are
sent to the encoder network including four 7 × 7 convolutional
layers with 16, 8, 4, 1 channels and an M -unit fully connected
layer for dimension compression. The gNB decoder uses the
compressed codewords and the locally available uplink CSI
magnitudes together to jointly decode downlink CSI. The
received codewords are first mapped to their original length
using a fully connected layer. The conjugation layer combines
both downlink CSI and uplink CSI for the decoding. To
save feedback bandwidth while limiting quantization error,
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Fig. 3: CSI recovery accuracy at different quantization levels.
M is the length of feedback vector after dimension compres-
sion.

a magnitude-adaptive phase quantization (MAPQ) is applied
in which CSI coefficients with larger magnitude receive finer
phase quantization, and vice versa.

Uniform quantization is simple and well known in practice.
It is basically a rounding process, in which each sample
value is rounded to the nearest value among a finite set of
possible quantization levels. We can limit the amplitude of CSI
coefficients between [smin, smax]. Let ` be the number of bits
for amplitude quantization. Each CSI coefficient’s amplitude
can be uniformly quantized into 2` levels:

ŝ = ∆b s
∆
e, where ∆ =

smax − smin

2` − 1
. (10)

We include uniform quantization into the DL-based CSI
feedback framework. Specifically, we first train CsiNet Pro
and DualNet Pro without quantization in the initial end-to-end
approach. Next, we apply uniform quantization on the com-
pressed CSI coefficients, before sending them on the uplink
to the decoder at the gNB. The smax and smin, respectively,
are the maximum and minimum settings using the pretrained
model.

To evaluate the influence of codeword quantization on the
CSI reconstruction accuracy, we use the COST 2100 channel
model to generate CSI matrices [25]. A uniform linear array
(ULA) of Nb = 32 transmit antennas is set up with half-
wavelength spacing in an indoor environment with uplink and
downlink bands at 5.1 GHz and 5.3 GHz, respectively. The
bandwidth, Nf and Qf are set to 20MHz, 1024 and 32,
respectively. Fig. 3 shows the resulting NMSE for CsiNet
Pro and DualNet Pro under different levels of quantization
2` as we vary ` from 4 to 10 bits. The lengths of vectorized
input for CsiNet Pro and DualNet Pro before the dimension
compression are 2048 and 1024, respectively. For CsiNet Pro,
we set the length of compressed codeword vector to M = 64
and 256, respectively. For DualNet Pro, we set the length of
compressed codeword vector to M = 32 and 128, respectively.
Results from float32 serve as the baseline in CSI feedback.

A few observations can be made from the results of Fig.
3. First, high precision feedback of 32 bits per CSI value is
unnecessary, as 9-bit uniform quantizer achieves nearly the
same accuracy as float32 for both CsiNet Pro and DualNet
Pro without retraining the neural networks for the quantized
codewords. Second, both CsiNet Pro and DualNet Pro are
more robust to quantization errors at lower compression.
Finally, CSI reconstruction accuracy degrades with coarser
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Fig. 4: Proposed CQNet. CQNet can optimize the codeword
quantization of general CSI feedback directly by inserting a
plug-in quantizer module which can customize element-wise
quantization stepsizes for the feedback vector and improve
quantization accuracy.

quantization. When ` drops below 7, the reconstruction ex-
periences a clear degradation.

These test results motivate our study to design a more
efficient and suitable quantization solution which can deliver
high CSI reconstruction accuracy while using smaller ` to
further improve the feedback bandwidth efficiency.

IV. CQNET

Optimum quantization depends on the distribution of data
under quantization and the performance metric. For example,
non-uniform quantizer such as the µ-law method can improve
the signal-to-quantization noise ratio (SQNR) for lower power
signals. Clearly, it is impractical to exhaustively test a huge
number of encoding schemes for the downlink CSI coefficients
generated by the encoder DNN in order to determine the best
fit. Instead, we shall develop a novel DNN approach to learn
and optimize the quantization intervals in order to improve the
CSI recovery accuracy for the limited number of quantization
levels. Furthermore, with the help of end-to-end optimization,
the module for dimension compression and CSI recovery can
also be refined.

A. Joint Compression and Quantization

We propose an end-to-end “CQNet”, which can jointly
optimize CSI dimension reduction, quantization and CSI re-
construction. As shown in Fig. 4, CQNet consists of an
encoder DNN at the UE which includes a dimension compres-
sion module and a quantizer module, paired with a decoder
network at the gNB. The compression module can adopt the
encoder neural network of CsiNet Pro, DualNet Pro, or any
other one for dimension compression. The decoder module can
also be from a general CSI feedback framework. Dimension
compression transforms the downlink CSI matrix Hd into a
codeword vector s of dimension M which moves into the
quantizer module. The quantizer module, parameterized by

-4 -2 0 2 4

-4

-2

0

2

4

Fig. 5: Illustration of the approximate rounding function for
3-bit quantization: Blue line is the desired rounding function;
Red line is the corresponding approximation function.

a trainable forward quantization weight vector w, maps the
unquantized s into an index vector k that corresponds to a
quantized codeword ŝ. The quantizer module can quantify the
input vector from 32 bits (float32) to ` bits per compressed
input value (` � 32). The gNB, upon reception of the
quantized codeword on the uplink, can send the codeword to
the decoder network.

To facilitate backpropagation during training, a soft quan-
tizer can replace the non-differentiable quantizer function only
during the training of the neural networks for the weights
update. After training, a quantizer with strict rounding will
determine the quantization index vector k and quantized
codewords ŝ for uplink feedback. When the quantization
bits/value is `, the elements in k are denoted by ki ∈
{−2`−1,−2`−1 + 1, ..., 2`−1 − 1}. Since the corresponding
elements in k and ŝ have a one-to-one mapping, either can be
encoded for feedback. After receiving the quantized codeword
on the uplink, the gNB will send it to the decoder network to
recover the downlink CSI matrix Ĥd.

Different from previous works that share the same quan-
tization parameters for all the input to the quantizer, CQNet
customizes the quantization step length for each location of
the dimension-compressed vector. We define the weights of
the quantizer such at the quantization intervals as wi for each
element si in the compressed CSI vector s. As illustrated in
Fig. 4, the forward quantization stage can be implemented as a
set of element-wise division filters which have only M param-
eters followed by a rounding function R̃nd(·). After forward
quantization stage, an inverse quantization stage is added to
reconstruct the approximated codeword ŝ using a vector 1�w
before feeding into the decoder module. Consequently, the
quantizer module can be formulated as ŝ = R̃nd(s�w)�w,
where � and � are Hadamard division and Hadamard product,
respectively.

The rounding function can be viewed as an activation
function of neurons acting on the outputs from element-
wise multiplications. Since the ideal rounding function Rnd(·)
has zero gradient almost everywhere and is otherwise non-
differentiable, slow convergence may take place during back-
propagation training. To mitigate this problem, we propose an
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Fig. 6: Enhanced quantizer module using the µ-law compan-
der. The quantizer module has been shown in Fig. 4.

approximate rounding function

R̃nd(x, `, r) =

2`−1−1∑
i=−2`−1

sigmoid[r(x− i− 0.5)]− 2`−1, (11)

which is differentiable and easy to implement. Note that
R̃nd(·) is a summation of sigmoid functions with parameters
` and r. Here, ` is the number of quantization bits for each
element in feedback vector s, whereas r controls the sigmoidal
steepness. Fig. 5 presents the true and the approximate round-
ing functions using ` = 3 as an example. Bear in mind that the
approximate R̃nd(·) is only for training of the DNN weights.
Upon the completion of training, the true rounding function is
used.

Motivated by the work in [21] where µ-law quantization can
achieve a better performance than uniform quantization after
retraining the decoder network for the quantized codewords,
we exploit the µ-law compander to formulate an enhanced
quantizer module. The CQNet using the enhanced quantizer
module is named as µ-CQNet. As shown in Fig. 6, the input
is first normalized to the range [−1, 1] for µ-law companding.
Then the µ-law compression and expansion can be done using
the following equation and its inverse equation:

F (x) = sgn(x)
ln(1 + µ |x|)

ln(1 + µ)
, x ∈ [−1, 1]. (12)

The output from the µ-law expansion is finally denomalized
to the quantized vector ŝ.

Then we take the CsiNet Pro and DualNet Pro as examples
to show how to implement the CQNet framework with existing
works that focused on the dimension compression of massive
MIMO CSI matrices. CsiNet Pro [13] is an enhanced version
of CsiNet [9]. The structure of CsiNet Pro has been shown in
Fig. 2 (a). It utilizes the autoencoder architecture, where an en-
coder DNN acts as a compression module and a corresponding
decoder DNN is responsible for CSI reconstruction. Each CSI
matrix is split into real and imaginary parts, rearranged into
two sets of encoder DNN input. The CQNet architecture that
uses CsiNet Pro for CSI dimension reduction module and CSI
recovery is named as CsiQnet. The dimension compression

module is followed by the quantizer module shown in Fig. 4.
The CsiQnet using the enhanced quantizer shown in Fig. 6 is
named as µ-CsiQnet. The decoder network of CsiNet Pro is
directly used in CsiQnet to decode the quantized codewords.

DualNet Pro [13] has been shown in Fig. 2 (b). It is
an enhanced version of DualNet-MAG in [10]. DualNet Pro
exploited the uplink-downlink CSI correlation to improve the
CSI recovery accuracy. The bi-directional channel correla-
tion between CSI magnitudes helps the decoder recover the
downlink CSI magnitudes with better accuracy by leveraging
the low-rate feedback codewords and locally available uplink
CSI magnitudes. The CQNet architecture that uses DualNet
Pro for CSI dimension reduction and CSI recovery is named
as DualQnet. DualQnet uses the DualNet Pro’s encoder net-
work for dimension compression at the UE, and uses the
DualNet Pro’s decoder network at the gNB to recover the
CSI. Quantizer module is inserted between the dimension
compression module and decoder network. The DualQnet
using the enhanced quantizer shown in Fig. 6 is named as
µ-DualQnet.

We define the loss function of CsiQnet or DualQnet:

L(Ĥd,w) = Lm(Ĥd,Hd) + λLquan(w), (13)

as a combination of mean square error (MSE) loss Lm and a
quantization loss Lquan. Lquan is used for the regularization
that accounts for quantization efficiency and convergence. One
simple function for this purpose is Lquan(w) = 1/ ‖w‖.
The training objective is to find the encoding and decoding
parameters which can achieve the optimum CSI reconstruction
accuracy given the specific quantization bits per value `.
Although adjusting λ can help limit the bandwidth after
entropy encoding, we mainly focus on adjusting the ` in this
paper to control the bandwidth since the entropy encoding
highly relies on the input data distribution.

Through training based on a large MIMO CSI data set gen-
erated by using well known practical channel models such as
COST 2100 model [25], CsiQnet and DualQnet can converge
to optimized settings. During live downlink CSI feedback, both
CsiQnet and DualQnet can generate more efficiently quantized
codewords ŝi which can significantly improve the accuracy of
CSI reconstruction at fixed bandwidth or bitwidth. CsiQnet and
DualQnet enable more effective bandwidth usage with little
CSI reconstruction accuracy loss. We also demonstrate that
with the help of µ-law compander, µ-CsiQnet and µ-DualQnet
can have better robustness than others.

To train the model, normalization is applied in both down-
link and uplink CSI matrices. Adam optimizer is adopted to
update the DL network parameters. The initial learning rate
is set to 0.001. To accelerate the convergence speed of the
training, we utilize the weights trained in CsiNet Pro and
DualNet Pro to initialize the dimension compression modules
and decoder networks of CsiQnet and DualQnet, respectively.
Notice that DualQnet optimizes the magnitude feedback dur-
ing joint training to minimize (13). For the separated phase
feedback of compressed CSI, we shall design another MAPQ
DNN in Section IV-B.
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B. DL-based Phase Quantization

DualNet Pro utilizes the magnitude correlation of bi-
directional CSIs in radial coordinate to reduce the amount
of feedback for CSI magnitudes and improve CSI feedback
efficiency. However, the weak phase correlation between up-
link/downlink CSI requires the UE to efficiently quantize
and encode all downlink CSI phases for feedback. However,
it is well known that uniform phase quantization results in
unnecessarily fine quantization at low magnitude and coarse
quantization at high magnitude. Therefore, bandwidth effi-
ciency phase quantization is an important issue to tackle in
DualQnet.

Let M = [Mi,j ] be the magnitudes of CSI matrix, P =
[Pi,j ] be the phases of CSI matrix, M̂ be the recovered
magnitudes of CSI matrix, and P̂ be the recovered phases
of CSI matrix, respectively. We can write a matrix ejP whose
elements are ejPi,j . The optimization objective of DualNet
Pro is to minimize the MSE of recovered CSI matrices, i.e.,
E{
∥∥∥Hd − Ĥd

∥∥∥2} = E{
∥∥∥M� ejP − M̂� ejP̂

∥∥∥2}, where �
denotes Hadamard matrix product. It is challenging to solve
this problem since the recovered magnitude and phase in-
fluence the MSE jointly. To reduce the complexity of this
problem, we consider the upper bound:∥∥∥M� ejP − M̂� ejP̂

∥∥∥2
=
∥∥∥M� ejP −M� ejP̂ + M� ejP̂ − M̂� ejP̂

∥∥∥2
6 2

∥∥∥M� ejP −M� ejP̂
∥∥∥2 + 2

∥∥∥M� ejP̂ − M̂� ejP̂
∥∥∥2

= 2
∥∥∥M� (ejP − ejP̂)

∥∥∥2 + 2
∥∥∥M− M̂

∥∥∥2 .
(14)

Consequently, the optimization goal can be relaxed to mini-
mize

E(M,P)

(∥∥∥M� (ejP − ejP̂)
∥∥∥2)+ EM

(∥∥∥M− M̂
∥∥∥2) .

DualQnet can minimize EM(‖M − M̂‖2). It is clear that
the first part E(M,P)(‖M� (ejP − ejP̂)‖2) represents phase
quantization error amplified by the corresponding magnitude.

Therefore, to further reduce feedback bandwidth, CSI quan-
tization error can be kept small by applying the magnitude-
adaptive phase quantization (MAPQ) principle in which CSI
coefficients with larger magnitude adopt finer phase quantiza-
tion, and vice versa. After recovering the magnitude, gNB can
restore the quantified phase based on MAPQ. Such MAPQ can
keep the quantization error close for a range of magnitudes.
Since quantization bits of phase vary with the magnitude, the
expectation of quantization bits depends on the distribution of
CSI magnitude. Thus, we need to allocate the number of phase
quantization bits based on the distribution of CSI magnitude
under limited average bitwidth. Such a problem typically
become a mixed integer nonlinear programming problem as
described in [26], which is NP-hard.

A heuristic quantization bit allocation solution was provided
in [10] based on examining the data set. In this method, the
cumulative distribution function (CDF) of CSI magnitudes

7 7 conv, 16

7 7 conv, 8

7 7 conv, 4

7 7 conv, 1

Input: 32 32, 1 

(Magnitude)

Output: 32 32, 1

(Quantization bits)

Input: 32 32

(Phase)

Loss Function

CSI Matrix, 32 32

Complex

Lambda layer

Quantizer block

Fig. 7: Illustration of the magnitude-adaptive phase quantiza-
tion.

is estimated to determine magnitude values corresponding to
CDF value of 0.5, 0.7, 0.8, and 0.9, respectively. These four
points divide the CSI magnitudes into five ordered segments
from low to high. Accordingly, 3, 4, 5, 6, 7 phase quantization
bits are allocated, respectively, to encode the CSI phases. This
set of MAPQ codewords given in [10] can generate codewords
of the mean length of 4.1 bits/value to achieve the same MSE
as that obtained using a 6-bit uniform quantizer.

However, the heuristic method of [10] is inflexible with
respect to the segments. Given different mean bitwidth con-
straints, we have to determine different allocation based on
heuristics. Thus, we propose a more flexible and general
design method in this work.

We propose an innovative DNN to solve the bit allocation
problem. This new framework PhaseQuan can optimize the
allocation of MAPQ quantization bits for phase based on
unsupervised learning. As shown in Fig. 7, PhaseQuan utilizes
the magnitudes as the input to DNN and includes CSI phases,
magnitudes and corresponding quantization bits in its loss
function. The magnitude input passes through three 7 × 7
convolutional (conv) layers with 16, 8 and 4 channels, which
explore the potential spatial correlation within the CSI matrix.
The ensuing convolutional layer, lambda layer, and quantizer
block are used to project the output of the last hidden layer
to quantization bits. The convolutional layer first utilizes the
“sigmoid” activation to project the input within (0, 1). The
lambda layer is defined as log2( 1

x+ε ), in which ε > 0 is a small
value to ensure non-zero denominator. Here, 1

x+ε corresponds
to the number of quantization intervals. Logarithm log2(·) and
the quantizer module can map the number of quantization
intervals to the number of quantization bits.

To minimize E(M,P)(‖M� (ejP−ejP̂)‖2) within the con-
straint on the quantization bitwidth, we adopt the entropy of
phase as the optimization regularizer since more quantization
bits lead to higher phase entropy. Thus, we propose a loss
function

L(M,P,Y) = Lm(M,P,Y) + λLy(Y), (15)

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on June 29,2020 at 22:44:41 UTC from IEEE Xplore.  Restrictions apply. 



0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2993626, IEEE
Transactions on Communications

8

where Y is a matrix of integer elements representing the
number of quantization bits for the corresponding CSI matrix
element, optimized by the PhaseQuan. The phase quantization
error evaluation function is set to be

Lm(M,P,Y) = E(M,P)

(∥∥∥M� ej(P̂−P)
∥∥∥2) ,

in which P̂ is the quantized phase matrix. Additionally, define
an entropy H(P̌i,j) for quantized phase P̌i,j that corresponds
to magnitude Mi,j . In this paper, we assume the phase to be
uniformly distributed over 2π [27]. Consequently, H(P̌i,j) =
Yi,j . As a result, we use

Ly(Y) = E(M,P)

 1

Qf ×Nb

∑
i,j

H(P̌i,j)


as an entropy regularizer to reduce the number of quantization
bits in phase feedback. Adjustable parameter λ value governs
the trade-off between the quantization bits of phase and the
reconstruction loss.

V. PERFORMANCE EVALUATION

A. Experiment Setup

We use the industry-grade COST 2100 model [25] to
generate massive MIMO channels for both training and testing
of our DNN architecture. The training set size is 70, 000 and
testing set size is 30, 000. The values of epoch and batch size
are set to 1000 and 200, respectively. We test two scenarios:
(a) indoor channels with 5.1 GHz uplink band and 5.3 GHz

downlink center frequency.
(b) semi-urban outdoor channels with 850 MHz uplink band

and 930 MHz downlink center frequency.
Uplink and downlink bandwidths of 20 MHz are selected for
the indoor and outdoor scenarios.

We place gNB at the center of a square area of lengths
20m for indoor coverage and 400m for outdoor coverage,
respectively. We randomly position UEs within the coverage
area. The gNB uses ULA with Nb = 32 antennas and
Nf = 1024 subcarriers. After transforming the channel matrix
Hf into the delay domain Ht, only the first 32 rows are kept
for feedback reporting due to sparsity. To evaluate the accuracy
of CSI recovery, we use normalized MSE

NMSE =
1

n

n∑
k=1

‖Hk
d − Ĥk

d‖2/‖Hk
d‖2, (16)

where k and n are the index and total number of samples in
the testing set, respectively.

We compare CsiQnet and DualQnet with CsiNet Pro and
DualNet Pro using other quantization methods, including:
• Uniform quantization (UQ) used in [20]. The decoder

network is retrained after codeword quantization for fair
comparison.

• µ-law non-uniform quantization (µQ) used in [21]. The
decoder network is retrained after codeword quantization.

• JCnet in [23]. JCnet projects codewords into (−1, 1)
using the ‘tanh’ function, before exploiting UQ together
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Fig. 8: CSI recovery comparison at different quantization
levels among CQNet, UQ and µQ.

by modifying the quantization gradient to 1 during back-
propagation .

The performances of µ-CsiQnet and µ-DualQnet are also
compared. We use the pretrained weights of CsiNet Pro and
DualNet Pro for the initialization of dimension compression
module and decoder network for all quantization methods. For
the µ-law quantization, we use µ = 255 in the companding
function.

For the CsiQnet and CsiNet Pro, CSI matrix is divided into
two (real and imaginary) channels as the input to the DNN.
We compare the CSI reconstruction performance under the
compressed dimension M = 64 and 256. For DualQnet and
DualNet Pro, we compare the CSI reconstruction performance
under the compressed dimension M = 32 and 128.

B. CSI Reconstruction Performance Evaluation

To provide clear demonstrations, we first compare the CSI
reconstruction accuracy achieved by CsiQnet and DualQnet
with the CSI accuracy of CsiNet Pro and DualNet Pro using
UQ and µQ under five different bit-widths from 2 to 6. Single
precision float32 result is given for a baseline comparison.

Fig. 8 compares the NMSE performance of our proposed
CsiQnet and DualQnet with the corresponding networks using
UQ and µQ. As shown in Fig. 8, CsiQnet and DualQnet both
outperform corresponding networks using UQ in all bit-widths
and µQ when the bit-widths are less than 6. Importantly, the
accuracy gap grows with decreasing number of quantization
bits/value. This result demonstrates that our end-to-end DNN
framework can jointly integrate CSI compression and quanti-
zation with reconstruction to achieve performance superior to
the approach of combining individually optimized modules.
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Fig. 9: CSI recovery comparison at different quantization
levels among CQNet, µ-CQNet, µQ and JCnet.

Fig. 8 also shows that non-uniform µQ generally delivers
better performance than UQ.

From the results in Fig. 8, we observe more robust per-
formance when the compressed dimension M is relatively
small. The NMSE degrades faster when M is large. The
possible reason is that the lower dimension compression relies
on principal components, while high-accuracy reconstruction
further requires more detailed information of compressed
vectors. Thus, a smaller feedback error can lead to a larger
degradation in reconstruction accuracy when the compression
is low.

We next examine the performance comparison of the CSI
reconstruction accuracy among CQNet, µ-CQNet, µQ and
JCnet under bitwidths of 4, 5, and 6 in Fig. 9. As shown in Fig.
9, µ-CsiQnet, and µ-DualQnet can achieve better performance
than other schemes. Furthermore, the results from CsiQnet and
DualQnet are marginally better than or comparable to JCnet.
Typically, µQ in CsiNet Pro and DualNet Pro achieves lower
CSI reconstruction accuracy than others.

C. Robustness Evaluation

To further test the robustness of CsiQnet and DualQnet,
we consider the case when there is only one neural network
trained for the codeword quantization and reconstruction but
different bitwidths may be required due to the bandwidth
changes. We select 6 quantization bits/value as an example
to evaluate the robustness in the indoor case. Since µQ
outperforms UQ clearly when quantization bits/value is 6, we
evaluate the robustness of µQ, JCnet, CQNet and µ-CQNet
without UQ for CsiNet Pro and DualNet Pro.

Considering a DNN previously trained for bitwidth of 6. If
the UE is not assigned sufficient uplink bandwidth to transmit
6-bit codewords, we need to shorten the codewords into 2, 3, 4,
or 5 bit codewords. Fig. 10 provides the resulting performance
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Fig. 10: Robustness evaluation using the networks trained in
6 quantization bits/value CSI at fewer quantization bits/value
cases.

of CsiQnet and DualQnet under different feedback band-
widths. As shown in Fig. 10, the performance of µ-CsiQnet
and µ-DualQnet clearly outperforms CsiNet and DualNet-
MAG using µQ, CQNet, and JCnet. Consequently, µ-CQNet
framework can better encode CSI feedback in bandwidth
limited scenarios.

D. Quantizer Optimization

CQNet can achieve good CSI construction accuracy un-
der the low-bit quantization through end-to-end optimization.
Since CQNet consists of three modules including dimension
compression module, quantizer module and recovery module,
it is valuable to understand where the performance gain
is from. For example, much training and storage overhead
can be saved if the quantizer optimization can provide most
of performance gains, since our quantizer only requires M
parameters to be learned.

In this subsection, we try to figure out how much benefit
can be provided by just optimizing the quantizer module or the
recovery module. We compare four schemes for CsiNet Pro
and DualNet Pro in the indoor cases to check the performance
gains:
• UQ/µQ, untrained. After the quantization of the code-

word, this scheme does not retrain the decoder network,
so it provides the lower bound for performance optimiza-
tion.

• UQ/µQ. This scheme retrains the decoder after the code-
word quantization, thus corresponds to the gains from the
optimization of the recovery module.

• CQNet/µ-CQNet, quan. This scheme only trains the pa-
rameters within the quantizer, thus corresponds to the
gains from the optimization of the quantizer module. Note
that, only M parameters are required to be learned.

• CQNet/µ-CQNet. The performance of this scheme is the
upper bound through end-to-end optimization.

Fig. 11 shows the NMSE comparison of the above four
schemes. The schemes using the µ-law compander are sep-
arated from the linear ones. As shown in Fig. 11, UQ/µQ
without retraining the decoder has the worst performance.
Furthermore, “CQNet/µ-CQNet, quan” generally outperforms
CsiNet Pro and DualNet Pro using UQ and µQ with retrained
decoders obviously, which means that more gains can be
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Fig. 11: CSI recovery comparison when optimizing the differ-
ent module of the CSI feedback framework.

achieved by optimizing the quantizer than optimizing the
decoder. It also illustrates that our designed quantizers are
efficient by adjusting the element-wise quantization stepsize
for the elements within a feedback vector.

E. Quantization Evaluation

In this subsection, we analyze the performance of our
quantizer module, and try to go inside the DL networks to
explore why CsiQnet and DualQnet outperform the UQ and
µQ methods.

We first compare the performance of our approximate
rounding function with the true rounding function during the
testing phase. We show the MSE between the outputs of
R̃nd(·) and exact rounding in Numpy for various numbers
of quantization levels. As shown in Table I, MSE generally
is near −24 dB, negligible when compared with the rounded
integers. We also compared the NMSE of CSI reconstruction
when using R̃nd(·) versus Rnd(·). The differences are well
below −0.15 dB.

It would be helpful for us to examine the effect of quan-
tization error empirically to understand the performance of

TABLE I: MSE (dB) of the approximate rounding function

Indoor Outdoor

CsiQnet

Bits M = 64 M = 256 M = 64 M = 256
2 -25 -25 -24 -24
3 -24 -24 -24 -24
4 -24 -24 -24 -24
5 -24 -24 -24 -24
6 -24 -24 -24 -24

DualQnet

Bits M = 32 M = 128 M = 32 M = 128
2 -25 -25 -25 -24
3 -24 -24 -24 -24
4 -24 -24 -24 -24
5 -24 -24 -24 -24
6 -24 -24 -24 -24

TABLE II: NMSQE (dB) of UQ, CsiQnet, µQ, and µ-CsiQnet.

Codeword
dimension

Quantization
bits/value UQ CsiQnet µQ µ-CsiQnet

M=64 5 -10.09 -23.36 -19.55 -21.66
6 -16.22 -26.44 -25.69 -26.93

M=256 5 -3.89 -20.30 -19.20 -21.68
6 -10.48 -24.36 -25.40 -26.96

TABLE III: The average entropy of quantized codeword (bits).

Codeword
dimension

Quantization
bits/value UQ CsiQnet µQ µ-CsiQnet

M=64 5 2.10 4.24 4.35 4.41
6 3.06 4.77 5.37 5.38

M=256 5 1.38 3.86 4.20 4.38
6 2.17 4.52 5.22 5.44

different CSI feedback methods under study. We measure the
normalized mean square quantization error (NMSQE) defined
as E[‖s−ŝ‖

2

‖s‖2 ]. Consider 5- and 6-bit quantization per feedback
value, respectively. We select CsiNet Pro with M = 64 and
256 in the indoor scenario when comparing the quantization
errors of UQ, CsiQnet, µQ, and µ-CsiQnet. As shown in
Table II, CsiQnet and µ-CsiQnet achieve lower NMSQE than
UQ and µQ. The comparison clearly presents one reason on
why CQNet and µ-CQNet can provide better CSI recovery
accuracy.

We also evaluate the average entropy of quantized codeword
from UQ, CsiQnet, µQ, and µ-CsiQnet. From the information
theoretic perspective, higher entropy can lead to higher CSI
recovery accuracy. As shown in Table III, CsiQnet and µ-
CsiQnet deliver higher entropy, respectively, than UQ and
µQ. This result provides an information theoretic interpretation
on the advantages of CQNet and µ-CQNet. Furthermore, we
observe that for 5-bit quantization, CsiQnet achieves better
performance than µQ even with a smaller entropy. This result
suggests that CQNet packs more useful information in its
quantization codewords than µQ does.

Once the CSI feedback is quantized, entropy encoding can
be exploited to further compress the CSI feedback [22]. Com-
pared with estimating the entropy of quantized codewords in
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Fig. 12: Bitwidth adjustment in entropy encoding by control-
ling the quantization stepsize.
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Fig. 13: Quantization bits-NMSE trade-off under different λ.

the training process for backpropagation , our quantizer mod-
ule enables a more efficient way in much lower complexity
by controlling the quantization weight vector w. We show an
example of controlling the entropy of the quantized codewords
by adjusting the λ in equation (13). We try the arithmetic
coding [28], which is a simple and common entropy encoding
to encode the quantized CSI coefficients. We consider CsiQnet
with 6 bits per CSI value as examples. The NMSE and average
required numbers of bits per CSI value after entropy encoding
are shown in Fig. 12. As shown in Fig. 12, by adjusting the λ,
average required numbers of bits per CSI value can be easily
adjusted.

F. Phase Quantization

In order to flexibly allocate the phase quantization bits under
different bandwidth limitation and reconstruction accuracy
requirement, we train PhaseQuan under different λ values and
illustrate the effect of λ on average phase quantization bits and
reconstruction accuracy. Intuitively, smaller λ leads to higher
reconstruction accuracy, though at a cost of higher feedback
overhead. The converse also holds.

The bitwidth-NMSE trade-off under different λ is shown in
Fig. 13. We use the phase quantization method in DualNet-
MAG as the baseline, and evaluate 3 cases of magnitude
knowledge for CSI reconstruction. We consider (a) perfect CSI
magnitude; (b) DualQnet after dimension compression using
5 quantization bits per value with M = 128, and (c) DualQnet
using 5 quantization bits per value with M = 32. As shown in
Fig. 13, the performances of PhaseQuan are comparable to the
baseline with better flexibility by adjusting λ. NMSE decreases
with increasing quantization bitwidth. With a large λ value, the
DNN tries to reduce the number of quantization bits, which in
turn degrades NMSE. To find the suitable λ for a given NMSE,
we can first select several candidate values of λ to train the
PhaseQuan as reference anchors. By interpolating λ according
to user’s requirements in terms of CSI reconstruction accuracy
and the available feedback bandwidth, we can obtain the phase
quantization parameters under these constraints.

On the other hand, with lower accuracy in magnitude, the
influence of quantization bits becomes weaker. This means
that we can save bits in phase quantization according to the
magnitude accuracy. For example, in the indoor cases when
M = 32, phase quantization using 2.8 bits/value and 4.1
bits/value can generate similar NMSE. In the outdoor cases
when M = 32, phase quantization using 3.1 bits/value and
4.1 bits/value can generate similar NMSE. In future works,
we should jointly optimize the compression and encoding of
magnitude and phase.

VI. CONCLUSIONS

Recent successes of DL in achieving more efficient CSI
feedback for massive MIMO systems in FDD deployment
strongly motivate further investigations of bandwidth-efficient
encoding of the compressed CSI coefficients. In this paper,
we propose a novel and end-to-end DL-based CSI feedback
framework CQNet to jointly optimize dimension compression,
codeword quantization, and CSI recovery for massive MIMO
wireless transceivers. We integrate CQNet with two DL-based
CSI feedback mechanisms, and demonstrate clear savings of
feedback bandwidth and improved CSI reconstruction accu-
racy over massive MIMO wireless links. CQNet offers superior
performance using few quantization bits with little loss of CSI
reconstruction accuracy. We further present a DL-based CSI
phase encoder for the CSI feedback framework (DualNet Pro)
that exploits bi-directional channel correlation and improve the
flexibility to manage the trade-off between CSI reconstruction
accuracy and feedback bandwidth.
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