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Abstract. In this paper, we study the interior error estimates of a class of finite volume
element methods (FVEMs) over quadrilateral meshes for elliptic equations. We first derive the
global H!- and L?-norms error estimates for a general case that the exact solution might be singular,

3
namely, v € H21¢ with € > 0 arbitrarily small. These estimates generalize the existing results that

were established under the regularity assumption v € H?. Then, we establish negative-norm error
estimates for solutions with different regularity conditions. Finally, we study the interior estimates
to show that the interior error of the FVEMs is bounded by the combination of the best local
approximation error and a proper negative-norm error. We provide numerical results to verify our
interior estimates.
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1. Introduction. The finite volume method (FVM) is an important numerical
tool solving partial differential equations (PDEs) and enjoys great popularity among
engineering computations, especially in computational fluid dynamics. See, for exam-
ple, [10, 13, 19, 20, 27, 29, 30, 32, 39, 37]. During the past several decades, the study
on FVMs has also been an active research area in the computational mathematics
community. See [1, 2, 4, 7, 8,9, 10, 12, 21, 23, 26, 29, 36, 38, 42] and the references
cited therein. However, it is a challenging task to set up a systematic theory for
the FVM as satisfactory as that for the finite element method (FEM), especially for
high-order schemes.

The finite volume element method (FVEM), also known as the box method [1, 16,
36], the generalized finite difference method [23], and the vertex-centered FVM [6], is
one of the FVMs which seek the approximate solution in a certain finite element space.
With the help of the FE space, the discretization error of the FVEM can be analyzed
under the framework of a Petrov—Galerkin scheme [23, 42]. The linear FVEM is
closely related to the linear FEM, for which the error analysis has been well established
[1, 4, 11, 16, 23, 42]. However, the high-order FVEMs are significantly different from
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high-order FEMs and it is more challenging to obtain the error estimate. The early
efforts on high-order FVEMSs can be traced back to [40, 24, 23, 5, 31, 42, 41]. Recently,
a class of high-order FVE schemes over quadrilateral meshes has been designed and
analyzed in [43]. In this class of FVEMs, the control volume was constructed using
Gauss points in each quadrilateral element and optimal error analysis in the global
energy norm was derived. Then in [25] and [17], the L?- and L>-norm errors are also
shown to have optimal convergence under appropriate assumptions on the solution
regularity and on the underlying meshes.

As a continuation of [43, 22, 15, 25, 17], in this paper we study interior H!- and L?-
norm error estimates for high-order FVEMs. To illustrate our ideas and techniques,
we will consider the FVEMs for the following model problem:

(1.1) -V.-wVu)=f in Q, u=0 on 09,

where 2 C R? is a bounded polygonal domain, f a given real valued function, and
the coefficient matrix v € (L®(2))2*? is uniformly bounded and positive definite in
the sense that that there exists two constant v, > 0 such that for all £ € R?, there
holds w||£]” < E7vE < w1

Note that interior estimates of the FEMs for (1.1) have been investigated in a
series of papers (see, e.g., [28, 33, 35, 34]). For the FEMs, the interior error in an
interior region of the domain is bounded by the local approximation error and the FE
negative-norm error in the global domain. It is also known that the FE negative-norm
estimate has been thoroughly studied in the literature (see, e.g., [3]).

The main difficulty in the analysis of the FVEM interior error is that the FVEM
bilinear form is not symmetric and does not induce an inner product naturally. There-
fore, the duality argument used in the negative-norm and interior estimates of the
FEM does not apply to the FVEM. To overcome this difficulty, we shall estimate the
difference between the FVEM and FEM bilinear forms and the difference between the
corresponding right-hand sides. Starting with the ideas in [25, 15], we will develop
new analytical techniques to obtain negative-norm estimates and interior estimates
for the FVEM.

Note that the solution of (1.1) may be singular near the nonsmooth points on
the boundary, while the FVEM theory in the literature was established under the
assumption that solution u is sufficient regular. For instance, u € H? is the minimum
requirement for most of the exiting results. Thus, we first generalize the current
global FVEM error estimate to the case when wu is singular. With the help of the
trace theorem [14], we obtain convergence results for the case u € H3/?*¢ with € > 0
arbitrary small. Consequently, our negative-norm estimates for the FVEM will be
established under low-regularity assumptions.

For the interior error estimate of the FVEM, we follow two main steps. In the first
step, we estimate a discrete version of (1.1) given by the FVEM in an interior domain
Go. One important result is that the H'- and L?-norms of this discrete error are
bounded by its negative-norms. In the second step, we bound the H'- and L?-norms
of the FVEM error in an interior domain Gy by the approximate error in a slightly
larger domain G and the negative-norm of the error.

The findings in this paper are important for the theoretical development of the
FVEMs. First, all the current estimates for the FVEMs are based on the assumption
that the exact solution u at least belongs to H2. Here, we allow less-regular solutions
uweH %“, € > 0 arbitrary small, to derive optimal H'- and L?-error estimates. This
makes the estimates of the FVEM available for singular problems. Second, to the
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best of our knowledge, it is the first time that the negative-norm and interior error
estimates are obtained for high-order FVEMs.

The organization of this paper is as follows. In section 2, we generalize the global
H'- and LZ-estimates to equations with low-regularity solutions. In section 3, we
present two negative-norm estimates for the FVEM, one under the high-regularity
assumption and the other under low-regularity assumption on the equation. The
interior estimates are included in section 4. We provide numerical test results in
section 5 to verify the theory. Concluding remarks are given in section 6.

Throughout the paper, we denote the standard Sobolev space on 2 by H™(Q) if
m is an integer, and let L? = HY. Let H{*(2) be the completion of C§°(Q) in H™ ().
For a noninteger v > 0, let the space H” and H| be defined by interpolation. We use
the notation || [|o = ||*||a,o for a € R if 2 is the underlying domain. For two regions A
and B, A C B means that A is an interior proper subset of B (i.e., dist(0A,dB) > 0),
while A C B means that A is a subset of B (A can be equal to B). In addition,
“a < 7 means that a can be bounded by 8 multiplied by a constant which depends
on the underlying domain and the coefficient matrix v, but not on the functions or
the mesh size involved in the estimates. Meanwhile, “a ~ 7 means “a < 7 and
B ar

2. Global error estimates in H'- and L2-spaces. In this section, we gen-
eralize the global H!'- and L2?-norm error estimates of high-order FVEMs in [25, 43]
(under high-regularity assumptions on the exact solution) to the case that the solution
has lower regularity.

2.1. High-order FVEMs. We recall a class of FVEM introduced and inves-
tigated in [43]. Let 7, = {7} be a quasi-uniform quadrilateral partition of €,
where h = max,c7;, (diamr) is the mesh parameter. Denote the set of all vertices
and all edges of T, by N and &, respectively. Moreover, let NP = N, \ 99,
E = E\ O, NP = N, N Q, and £ = &, N OQ be the set of interior vertices,
internal edges, boundary vertices, and boundary edges, respectively. Throughout the
whole paper, we suppose that the quadrilateral mesh 7y, is always of O(h?)-distortion
from a parallel mesh in the sense that the distance between midpoints of two diagonals
of each 7 € Ty, is bounded by O(h?) (cf. [25, 41]), and we suppose that the coefficient
matrix v is in (W?2¥(0))2*?2 piecewisely with respect to Tj,.

Define the continuous finite element space of all bi-k polynomials associated with
T

Sh=53(Q) = {ve C(Q)

where QF(#) is the space of all bi-k polynomials and F; is the bilinear transformation

Oy =voF, € Qk(%) V7 € Th,and v|sq = 0},

from the reference 7 = [—1,1]? to 7. Then, the FEM for (1.1) is to find up, pg € Sh,
such that
(2.1) a(un,re,x) = (WVunre, Vx) = (f,x) VYx € Sh,

where (v,w) = [, vwdzdy is the L* inner product and a(-,-) is the FEM bilinear
form.

A class of FVE schemes can be defined as follows. For each 7 € T, let F. be
the affine transformation from the reference 7+ = [—1,1]% to 7. Let {g;|i = 1,...,k}
be the collection of the k& Gauss points, i.e., zeros of Ly (the Legendre polynomial of
degree k), on the interval [—1,1]; let {l;|j = 0,...,k} be the collection of the k + 1
Lobatto points of degree k in the interval [—1,1]. Namely, Iy = —1,l; = 1, and
{lmm =1,...,k — 1} are the k — 1 zeros of L. We define the sets of the Gauss
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points and the Lobatto points in 7 by G- = {g7; = F-(gi,9;)|i,j € {1,...,k}} and
L, = {LZ’J» = F.(l;,1;)]i,j € {0,1,...,k}}, respectively. Moreover, let G = Ur¢7, G-
and £ = U,¢e7, L, be the sets of all Gauss and Lobatto points in 7}, respectively. The
FVE scheme is designed by constructing the so-called dual mesh associated with the
Gauss points. We decompose each 7 € Ty, into (k + 1)? subquadrilaterals 7p, P € G,,
by connecting each Gauss point on one edge of 7 to the one at the same position on its
opposite edge. For any given Lobatto point P € L, a control volume Vp is constructed
as the union of all subquadrilaterals containing the node P. The collection of all
control volumes 7, = {Vp|P € L} constitutes the dual mesh of 2.
The FVE solution of (1.1) is a function u;, € Sy, satisfying

(2.2) - / vVuy, - nds = fdzdy
BVP VP

on each control volume Vp, P € L° where n is the unit outward normal on the
boundary curve dVp. Define the test space

Vh = Vh(Q) = Span{djvp ’P € ‘Co}7

where £° = £\ 99 is the set of all interior Lobatto points and v 4 is the characteristic
function of some set A C Q defined by a(z) =1ifz € Aand Ya(x) =0ifx € Q\ A.
Then, (2.2) can be rewritten in the following Petrov—Galerkin form:

(2.3) an(up,wy) = (f,wn) Ywp € Vp,

where the FVEM bilinear form is defined for all v € Hg (), w), = > pero WPYPvy € Vp
as

(2.4) ap(v,wp) = — Z wp/ vVo - nds.

Denoting by & the set of interior edges of the dual partition 7", the bilinear form
ap(+,+) can be rewritten as

(2.5) ap(v,wy) = Z [wh]E/ Vg—flds Yo e HY(Q), wy € Vi,
E

Ecg;,

where [wp]p = wh’V2 — wh‘vl denotes the jump of the wy across the common edge
E = Vi NV, of two volumes Vi,V, € 7, and n denotes the normal vector on E
pointing from V; to V5.

2.2. H'- and L?-norm error estimates. With the form (2.3), the convergence
properties of the FVEM can be established under the framework of a Petrov—Galerkin
method. Namely, the FVEM error can be estimated by studying the continuity and
the inf-sup condition of the FVEM bilinear form ap(-,-) (cf. [42]).

Along this direction, it is shown in [43] that when 7T}, is sufficiently shape regular,
there holds the following inf-sup condition:

(2.6) inf sup 2al0:Wh) 5

vh€Sh w, eV, |Unl1 |wh‘;z ~
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where the seminorm in the test space V}, is defined by

2

|wh|;L: Z hy /wh ds

Ecg;

with hp as the diameter of an edge E. We mention that by defining a from-trial-to-
test mapping IT (cf. [43, 25] for a detailed definition), the inf-sup condition (2.6) is
equivalent to the coercivity

(2.7) |ah(vh,v}‘;)| > |’Uh|% Yoy, € Sh,

where we have used the notation v; = Ilvy € V;, and the equivalence |vp|; ~ |U;‘L|;L
For the continuity, it is shown in [42] that

(2.8) lan (v, wn)| S oln|wsl,

holds for all v € Hg(Q2) N H? () and wy € Vj,, where the seminorm | - |5 in the
broken space H?(2) = {v € HY(Q) : v|, € H? for all 7 € T} is defined as |v], =

1
(Xrer, 013, + h2[v|3 ) ? with h, as the diameter of 7. Here we would like to point
out that in fact, the inequality (2.8) holds for functions in a larger broken Sobolev

space

3
Hy =Hy(Q)={ve H(Q):v|, c H*VT €T}, a> o

. . . 2(a—1) 1
with the associated seminorm [v|n.o = (32, c7. (|v]7 +h7 (e \v|i77))2 forallv € Hy.

Namely, we have the following lemma.

LEMMA 2.1. The inequality (2.8) holds for all v € H}(Q) N HY (a > 2) and
wp, € Vi, with | - |p replaced by | - |, h-

Proof. By the Cauchy—Schwartz inequality, we have

N

2
lap (v, wp)| = [wh] & /u—ds < |wnlh, Z hE/ (V) ds

EEE/ E€g;,

By Theorem 1.4.2 in [14], for all 7 € T,,v € H?(7),3 > %, there holds

_1 _1
[0lo,0r S 7 2 [olor + B2 F o0,

where the hidden constant depends only on the shape of 7. Choosing § = a — 1 and
combining with the fact that each entry of v is bounded by a constant, we have

2

2.9 lan(,wn)l Slwaly | D2 Y (Vo +221Vol3) | S [vlnalwals,
Ec&] Ent#0

which completes the proof. ]

With the inf-sup condition (2.6) and the generalized continuity (2.9), it is easy to
show the following H' error estimates.
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THEOREM 2.2. Let u € H'*5(Q) (3 < s < k) and up € Sy, be the exact solution
and the FVEM solution of (1.1), respectively. Then

(2.10) lu—unllt < B |lullss1

Proof. Let ur € Sy, be the nodal interpolation of u. According to (2.9) and (2.7),
we have

lur = unll} < an(ur —up,up —up) = ap(ur —u,up —uy) S Ju—wrlpagsllur —upl
Then, we obtain by the triangle inequality,

lu—wunllt < llu—wurlly + lur —unlls S llw—urlls + [u—ur|ns1

1/2
1) Sl (S W) S F
TETH

which completes the proof. ]

Remark 2.3. Theorem 2.2 generalizes the estimate in [25, 43], where (2.10) was
shown only for positive integer s. Here (2.10) holds for any real number 1/2 < s < k.

For the L? error estimate, an optimal order estimate has been given in [25] under
the assumption that u € H**1(Q) and f € H*(Q). In this paper, we extend this result
to the more general case in which u € H'**(Q) and f € H*(Q2) (1/2 < s < k). To this
end, we introduce an index t that is determined by the geometry of the domain €.
For any sufficiently smooth function g € C*(Q), let ¥ be the solution of the problem

(2.12) -V-wVy)=9g inQ, =0 on 0N
The index ¢t > 0 is such that

(2.13) Yler1 S llglle—1

holds for all g € C*°(Q). In fact, let § be the largest interior angle of 2. Then, for all
0 < t < /0, the inequality (2.13) holds. We point out that for (1.1), the regularity
index s of the solution u depends on both the right-hand function f and the geometry
of 2. When the boundary of polygonal domain has large interior corners, even when
f is smooth, the full regularity property ||u|/x+1 < || f]lk—1 may not be valid. We also
mention that the regularity of u is a local property. In an interior region, the index s
only depends on f, in other words, when f is sufficiently smooth, the solution u can
display a full regularity in an interior region of €2; see section 4 for details.

Following the routines in [25], we obtain the global L? error estimate.

THEOREM 2.4. Let u € H'T5(Q) with % < s < k and up € Sy be the exact
solution and the FVEM solution (1.1), respectively. If f € H*(Q), then

(2.14) llu = wnllo S R0 (flullgar + [L£1]5)-

Remark 2.5. Comparing to the L? estimates for the FEM, we observe that the L?
error estimate for the FVEM has an additional regularity requirement for f. For the
special case k = s = 1, a counterexample has been designed in [18] to illustrate that
u € H's is not sufficient to obtain the optimal order L? estimates for the FVEM
and the additional term || f||s on the right-hand side of (2.14) is necessary.

Remark 2.6. The L? estimate in [25] is a special case of Theorem 2.4 where s = k
and t = 1.
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3. Negative-norm error estimates. We begin with a definition of negative
norms. For any subset A C Q and any integer m > 0, the negative norm is defined as

||U||—m7A _ sup (Ua QD)A ,
0#£p€C (A) ||<P||m,A

where (v,¢)a = [, vodzdy.
LEMMA 3.1. For allv € H,]fHH,O <I<kand&, € SQ(Q), we have

(3.1) la(v,&n) = an(v, &) S A0l kgigr,n 1l lt1,n-

Proof. Following Theorem 4.4 in [25], we rewrite the FVE bilinear form ay(-,II-)
as a Gauss quadrature of the FE bilinear form a(,-) and then
(32) a(&h,v) = an(€n,v*) = Y (ag(€n,v) — ang(én,v*))

QETh

with

1 k
ah,Q(gha U*) - a‘Q(gha U) = /_1 El(@h Q)d?) + Z AiEQ(@la g’L)

i=1
1 k

+ / Eg(@g,i)di:—l-ZAjEl(@%gj);
-1 j=1

here A;, g; are the weights and abscissae of the k-point-Gauss-quadrature for comput-
ing the integral f_ll 2(z)dz,

1 k 1 k
Bi(F) = [ P - Y ARGl E(Fd) = [ F@i)di- 3 A5,
- i=1 - =1

and ©; = ;g = 5:5:V;, i = 1,2 with

~ >, ~ & ~ 8A 8A AN NG
Vi(2,9) = Vi(=1,9) +[1V (b”a; +bl1ag> (2 ,9)dz ,

r A A S A Y ~ 817 6’{} ~ A N
Vate.d) = VoG -0+ [ 5 (b + om0 ) i

The matrix b= ((—=1)"7b; j)2x2 and (bi ;j)2x2 = Jg' (DFQ)(DFg)" satisfies
(3.3) |Diby,| <AL 1 <1,m <2,

where i = 41,12, 41,72 > 0 and |i| = i1 + i2 and DFy is the Jacobi matrix of Fiy and
Jg is the determinant of DFg.

Next we estimate F1(01,7), E2(O2, ), E2(01,¢;), and E1(0O2, g;). For any given
7 € [-1,1], E1(©1,9) is the difference between an exact integral and a Gauss quad-
rature of order k, and then we have

ak-&-l

W(al('vy)

Ev(©1,9)] < H
Q
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By the Leibnitz formula, it is easy to obtain
okt ok+L [ 928, af+1£h ok+l—=i
BH  gaer® = gaer (8:66A Z Chiugy | gt ) gV

Using the Leibnitz formula again, we have

ak:Jrl*j R ak+lfj71 D) oo
e | = [gerr (gt + 7 )|
< k+§_1 (am(ﬁgfé) ok Hl=i=l=mp,, 3m(ﬁ%§) ak+l_j_1_mbll>
~ — o5m Opk+l—j—1-m opm Opk+i—j—1-m
< T k+l—j—1—m N L 00 < pktl—j—1
(3.5) < n;) h <u(% o "5 . @) <h lvllkt1.05

where in the last inequality, we have used the chain rule, ||v||2k,00 < 1, and the fact
that

Consequently,

ko1 kg1
IEv©1,9) S D W Enlrze D BT ollmie
=

= m=0

Zv?‘

1k+1l—5—1
S ollnsoléallioe

=0 m=0

S HIER ka0 llv lks0-

2/\

Since here & € (0,1) is arbitrary, actually we obtain

(3.6) IE1(01, oo S P* T I€n k41,010 Ik+1.0-
Similarly, we have
(3.7) 1 E1(O2, )loo < B* 1R llk41,0110 kti41,0-

For E, we also have ||E2(01,-)]lco. [ B2(O2, oo S P**|€nlIkr1,0 /0]l k+141,- Plug-
ging the estimates (3.6) and (3.7) into (3.2), we obtain (3.1). The proof is com-
pleted. O

With this estimate for the difference between the FVEM and FEM bilinear forms,
we first derive a negative-norm estimate under a high regularity assumption on the
solution.

THEOREM 3.2. Let u € H*H1 (0 <1< k) and uy, be the exact solution and the
FVEM solution, respectively. Then for any integer 0 < p < k — 1, we have

(3.8) lu = wnl|—p S RHREPED .

P ~

Proof. For simplicity, we denote ¢ = u — uy,. By (2.13), we obtain

e7g a e?w
(3.9) lelp= sup 98 < g 0¥
geCS (Q) lglly ~ pec= |\1/J||1+min(t,p+1)
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Letting 17 € S¥(£2) be the nodal interpolation of v, one obtains

(310) a(ev 1/’) - a(e’ - 11)1) + a(ea 1/11)
For the first term of the right-hand side (3.10), we have
(311)  ale, ¥ —vr) S llellulle = wrlle £ A OPD o [ min o) -

For the second right term of (3.10), we use the fact that
an(e;¥1) = an(u, ¥1) — an(un, ¥7) = 0,
the Theorem 2.2, (3.1), and the inverse inequality (see [28])
lonllg S PP~ vnll, Yon € SE(2),p < g <k,
to derive that

la(e, ¥1)| = lale,¥r) — an(e,v7)| S B lu — wnllkrirnllvrlksnn
(3.12) < hHmi“(t’pH)||U||k+z+1||1/JH1+min(t,p+1)~
Plugging (3.11) and (3.12) into (3.10) and (3.9), we obtain (3.8). 0

Note that for the FEM, the optimal negative-norm estimate is |lef_x—1) <
REFmInEL) ||yl 41, ([3]). Here for the FVEM, we require the regularity u € H?**! for
the optimal order k 4+ min(k,t). Since the elliptic problems considered here may have
singular solutions, we next present a result in which u has singularities.

THEOREM 3.3. Let w € HT! with % < s <1 and up be the exact solution
of (1.1) and the FVEM approzimation solution, respectively. Then for any integer
0<p<k-—1,if fe H G+t we have

(3.13) T s |

||u||1+s + Hf||min(t,p+1))-

Proof. Following the estimates in Theorem 3.2, we only need to bound the two
terms on the right-hand side of (3.10). For the first term, because of (2.10), we have

(3.14) lale, ¥ =)l S lelale =l S RO a9 1 mingt,pen)-

For the second term, we have that

a(eawl) = G(U - uh7/¢1) - ah(u - Uhﬂ/ﬁ)

(3.15) = ap(un, V1) — alun, ¥r) + (f,¥r —¥7).
By (3.1) and the inverse inequality, one has
(3.16) lan (un, ¥}) — a(up, ¥r)| < A2 EPTD )|y 0 mingepr)-
Letting f; € Sy~'(Q) be the interpolation of f, one has (cf. Theorem 4.7 in [25])
(3.17)

|(f, 1 — 7))

=|(f = fr, 0 =D S If = frllollvr = ¥7llo
5 h|¢]|1hmin(t7p+1) Hf||min(t,p+1) S h1+min(t,p+1) ||f||min(t,p+l) ||¢H1+min(t,p+l)~
Combining (3.14)—(3.17), we derive the desired inequality (3.13). 0

Remark 3.4. In Theorem 3.3, we have an additional requirement f € H™nt.p+1),
Since the regularity of u depends on both f and the geometry of €2, u might have
singularity even if f € C*. The requirement f € H™"(*P+1) does not contradict the
low regularity assumption u € H'*5.
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4. Interior error estimates. In this section, we investigate the interior error
estimates in the H! and L? spaces for the FVE scheme (2.3). We begin with some
necessary notation. For an interior domain A C €, let S,(A4) and V,(A) be the
restriction on A of S5,(Q2) and Vj,(Q), respectively. Moreover, let Sp(A) = {x €
Sp(A) @ supp x C A}, and Vi (A) = {x € Vin(A4) : supp x C A}. It is clear that
S}L(A) C Sy and Vh(A) CVy, forall AcC Q.

Suppose now Dy = B(xzg,r9) C D = B(xg,r) C  are two fixed concentric discs
with radii 7o and r, respectively. We also assume that the mesh size h is sufficiently
small, such that for any concentric discs between Dy and D, the distance between
their boundaries for any two adjacent discs is larger than koh, where ko is a positive
constant. Let w € C5°(Dy), and then for all x € Si(D), there exists { € Sy (D), such
that the following superapproximation holds for 0 <7 <1

(4.1) lox = ¢lln.p < H*~"lIxl1.p-

The inequality (4.1) can be derived by using Theorem 4.6.11 in [3] for the case that
7 is an integer. And there is an example to verify this inequality in [28]. Note that
the hidden constant in (4.1) may depend on the center xg and the radii ro and r.

By the proof of Lemma 3.1, we find that the inequality (3.1) is also valid on an
interior region of the domain 2. In particular, letting Dy C D C §2 be two arbitrary
but fixed concentric discs with dist(0Dg, D) 2 h, we have

(4.2)
(&, vn) Do — an(Ensv7) Dol S PP nllkst,n, 01100kt 1,0.0 S BENER 10D 10kl k41,8,

where a(-, ) py, an(:,-)p, and ||« ||g+1,n,p are restrictions of a(-, -), ax(+,-) on the subset
Dy and || - ||g+1,n on D.

Next, we introduce the local FVE projection Ry, = R,f which maps any function
v € Hy(Ag) and v = 0 in A\ Ay (where A9 C A and dist(0Ag,dA) > koh) to
Rpv € Si(A) such that

(4.3) ap(Rpv,wy) = ap(v,wp) Ywy € f/h(A).

Note that when A = D is a disc in the interior of €2, the boundary of D is sufficiently
smooth, and the full regularity property |¢|k+2.0 < |lgllx.p holds for all v € H}(D)
satisfying the equation

(4.4) -V.-wVy)=g in D, =0 on OD.

Therefore, by Theorem 2.2, for all v € Hg (Do) (H'**(D) and v =0 in D\ Dy with
%<s§k,wehave

(4.5) lo = Rollip 5[0l e

Furthermore, since | —Av||s,p < ||v]|s+2,p, by Theorem 2.4, for v € Hg (Do) ( H*T*(D)
and v =0in D\ Dy with 1 < s <k, we have

(4.6) [ = Ruvllo,p < h*FH[v]ls+2,p-
4.1. Estimates of the discrete FVE interior error. The aim of this paper

is to estimate the FVE error e = u — up, on an interior domain Gp C G C Q with
dp = dist(0Gy, 0G) 2 h. Note that Gy can be covered by a finite number of discs
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Dyo(z;,do/2) with center x; and radius dy/2, where G is the closure of Gjy. Therefore,
it is sufficient to derive interior estimates on each disc Dg(z;, dp/2) in order to obtain
the interior estimates on the domain Gg. Thus, without loss of generality, we only
need to consider the local estimate on an interior disc Dy C D C .

Noticing that e satisfies the error equation

(4.7) an(e,vy) =0 Vo, € Sp(D),
we let Zj, € S, (D) be a function that satisfies
(4.8) an(Zn,vi) =0 Yo, € Sp(D).

In fact, Zj can be regarded as the discrete version of e in Sj, (D). The estimates of
Zp, will play an important role in the local estimates of the FVE error e. Thus, in
this subsection, we analyze Z; in different norms. We begin with a negative-norm
estimate for Z;,. The main idea is to combine the techniques established in [28] for
the negative-norm estimates of the FEM and the estimates of the difference between
the FEM and FVEM bilinear forms established in section 3.

LEMMA 4.1. Let Dy = B(xo,70) C D = B(xo,7) C Q be two fized concentric
discs with ro,r > 0 independent of h. Then for all integers 0 < p < k — 1 and for h
sufficiently small, we have

(4.9) 1Zull~p.00 S PP Z0ll1.0 + 120l —p-1.D-
Proof. Let D' = B(xg, 24"), D" = B(xo, ©£*"), and w € C§°(D’) with w = 1
on Dy. Then for p > 0, we have

7 , 7 ,
(410) [ Zallppo S NZullppr = sup  EZmODr <, A@Zn¥)n
gece oy Ngllpor ™ yece o 1¥llp+2,pr

where 1) is the solution of (4.4). By (4.8), we have that for all x € S, (D"),

a(wZp, ) pr = a(Zp,wp) + (21, V - (WY Vw)) + (Zp, vVw - Vi)
= (b — X) + (Z, ¥ - () + (Zay vV - V) + (i )
=a(Zp,w —x) + (Zn, V- (0bVw)) + (Zp,vVw - Vi)
(4.11) +a(Zn, X) — an(Zn, X*)-

Choosing x as the nodal interpolation of wi in Sj,(D”), we have

(4.12) lawZn, )| S N Znllv,orllwy = xll,pr S B P Z3ll1 ol p+2.p-
Moreover, since w € C§°(D’) and v € C*(D’), we have
(4.13) [(Zn, V- VW) + (Zn, vVw - V)| S (1 Zn]l-p-1. 0¥ llp+2.0-

On the other hand, by (4.2) and inverse inequality we have

|a(Zns X) = an(Zn, X S W21 Zolly,p I Xllp+2.0.0
SEFPUZ o (X = w¥llps2n.p + [wllpi2.p,0)
(4.14) S WP Zulle,p ¥ llp+2,p-
Plugging (4.12)—(4.14) into (4.11), one obtains
(4.15) a(wZn, ¥)pr < (W12l + 120l -p—1.0) [ llp+2.0-
Combining (4.10) and (4.15), we obtain the estimate (4.9). d
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LEMMA 4.2. Given the conditions in Lemma 4.1, we obtain

(4.16) | Znllo,py < Pl Z1|

1.0 + [ Znll-p-1.D-

Proof. Let Dy C Dy C --- C Dppq1 = D be concentric discs with increasing radii.
Setting p = 0 in (4.9), we have

(4.17) 1Znllo.p0 < PN Znllv.Dy + 120l -1,0, -
Then we reapply (4.9) to estimate || Z,||—1,p,.- By h < 1, we have
(4.18) 1Znllo,po < Pl Znll1, 0. + 120l -2, D.-

Continuing this process until to Dp1, we obtain the desired result (4.16). a

LEMMA 4.3. Given the conditions in Lemma 4.1, we have

(4.19) 120,00 < Rl|Zn]

1,0 + | Znll—p-1.D-

Proof. Let Dy C D' C D" c D be fixed concentric discs with increasing radii
and w € C§°(D’) with w =1 on Dy. Then, we have

(4.20) 1Zn

l1,00 < lwZill1,pr < |lwZh — Rp(wZi)|1,p7 + [|Ra(wZh)1,pr,

where R, = RE”.
Next, we estimate the two terms on the right-hand side of (4.20). For the first
term, we use (2.11), (4.1), and the inverse inequality to obtain

||WZh — Rh(O‘)Zh)”l,D” S lnf |C(JZh — C‘h,%—&-e

CESK(D")
= inf (wZn = ¢l + h/* e wZn = (g yer
¢ceS, (D) ( TEZ‘Th 5te,
(4.21) S M Zulvp,

where € is an arbitrary small positive constant. For the second term, letting ¢ =

Rp(wZ 3
Rz then (6] pr = 1, ¢ € $4(D”) and we have

(4.22) | Rrn(wZp)ll1,pr S an(wZp, ¢*)pr-

By the definition of bilinear form aj and (4.8), we have

o(wZ
an(WZn, " )pr = Y WF}E/ v (8nh)ds
Ec(&,nD") E
0z ow
= v—wet —xds+ Y. [¢']e / Zynv 2 —ds
Ec(&; nD") Ec(&;,nD")
(4.23) £ K+ K,
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where y € Si(D") is arbitrary. By the Cauchy-Schwartz inequality, the trace in-
equality, and the inverse inequality and the boundedness of v, we have

ow 2
K. < * |/ . 7 ow
Ko S o |h,D E hE/E< hy@n) ds

Ee(&,nD")

Nl

S 16", pr Yo D Uzl + 1B ZaVwli L)
Ee€(&,ND") ENT#(

(4.24) S0 b pr Szl | S éloel Zullo.nr
TE€(TRND'")

To estimate K7, we write

(4.25) K=K+ K2+ K3

with

Ee€(&;,nD") B
Ko = Z /EVGT[ ¢* — (Inw)*¢"]ds,
Ec(&;,nD")
Z
K 3= Z V%[(Ihw)*dk — x"]ds.

BeE,nD)’E

By the continuity of a; and the boundedness of v, we have

(4.26) [Kial Shlwho Y /
E

Ee(€,nD")

OZn .,
D 8| ds S B2l pelély,pr

and

(4.27) |K12| S Z

Ee(&;,nD")

S W Znl1,pr |l pr

[ Gl Dy Yol

Moreover, following the proof of (4.24), we choose x to satisfy (4.1) for ¢. Then
(4.28) |K1,3] £ 12k, [(Inw)d — x|1,07 < Bl Zn|1,p7|8l1,0-
Plugging (4.24)—(4.28) into (4.22) and combining with (4.21), it follows that

(4.29) 1Znll1,00 S Bl Z1

1,07 + | Zn

0,D" -

For the term || Zyjo,p in (4.29), we can further apply the estimate (4.16) in Lemma
4.2 and Dy replaced by D”. Then the estimate (4.19) follows from (4.20), (4.21), and
(4.29). 0

Using Lemma 4.3, we next show that the H! norm of Zj, in an interior domain
can be bounded by its negative norm in a slightly larger interior region.
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LEMMA 4.4. Given the conditions in Lemma 4.1, we have

(4.30) 1Znll1,00 S 1 Znll-p-1.D-

Proof. Let Do C Dy C -+ C Dpt3 = D be concentric discs with increasing radii.
Applying Lemma 4.3 with Dy and D replaced by D;, D11, 0 < j < p+1, we obtain

(4.31) 1Znll1,0; S PIZ0llvD,00 + 120l —p-1.D,41 -
Stating with j = 0 and iterating p 4+ 2 times, one gets

(4.32) 1Znll.00 S W *21Z0ll1,D, 12 + 120l -p-1.D,10-
From the inverse inequality, we have

(4.33) w2\ z,,

10,42 S 2]l -p-1.0-
The inequality (4.30) then follows from (4.32) and (4.33). ad

4.2. Interior estimates of the FVE error. In this section, we derive the
interior H' and L? norm error estimates for the FVEM (2.3).

THEOREM 4.5. Let Gy C G C Q be fized interior subregions of Q with h < d =
dist(0Gy, 0G) and d be independent of h. Suppose u € H'™*(G) (3 < s < k) and let
the integer 0 < p < k — 1. Then we have

(4.34) lu = unllrco S A l|ulls1,e + v = unll-p.c;
furthermore, if u € H*T2(G) (3 < s < k), we have

(4.35) lu = unllo,co S A ulls42.c + lu— unl—p.c-

Proof. Using a covering argument, it suffices to show (4.34) and (4.35) for the
case that Gy and G are two concentric discs Dy C D C  with increasing radii. In
what follows, we let Dy C Dj C D' C D" C D be five fixed concentric discs with
increasing radii, and the cut-off function w € C§°(D’) satisfying w = 1 on DJ,.

We first show (4.34). Letting e = u — uy, for R, = RP" we have

(4.36) lell1,py < llwu — Ry (wu)ll1,pr + || Ru(wu) — unll1,p,-

We observe that for any v € Sj,(D}),
an(Rp(wu) — up,v*)py = ap(wu — up,v*)p; = ap(u — up,v*)p; =0,

which implies (4.8) with Z, = Rp(wu) — up, and D replaced by D{. Thus, by Lemma
4.4, we have

(4.37)  [|Bn(wu) — unll1,p,

S [1Bn(wu) = unll—p.py S llu = unll—p,py + llwu = B (wu)ll-p.p;

S llw=unll-p.p + llwu = Ru(wu)ll1,p7 S [lu — unll—p,p + B*|Julls+1,0,

where we have used (4.5) in the last inequality. On the other hand, by (4.5), we also
have

(4.38) lwu = Rp(wu)ll1,pr S h°[|ulls1,D-
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Then by (4.36), (4.37), and (4.38), we obtain

(4.39) lell1,po S P llulls+1,0 + [lell—p,p-

Thus, by the covering argument, the estimate (4.34) is obtained.
Next we show (4.35). Similar to (4.36), we have

(4.40) lello,py < llwu = Ri(wu)llo,pr + [[Br(wu) — unllo,n-

By Lemma 4.2 with Z;, = Rj,(wu) — up,, we have

(4.41) | Rp(wu) —unllo,p, S hl|Rr(wu) — unlli,py + [[Rr(wu) —unl|—p Dy -
Utilizing (4.37) with Dy replaced by Dj), one gets

(4.42) [ B (wu) = unll1,py S llell-p.o + h*llulls41,0-

Moreover, by (4.6), we have

R (ww) = unll—p,py S llwu — Bu(wu)ll—p, 04 + lu = unll-p,p;

(4.43) < llwu = Ri(wu)llo.or + llell—p.p £ 2 |[ullss2,p + lell—p.p-

Plugging (4.43) and (4.42) into (4.41), we obtain

(4.44) 1Rn(wu) = unllo,p, < h**H ullss2,p + llell—p.p-

For the first term on the right-hand side of (4.40), using (4.6), we obtain
(4.45) lww = Ru(wu)llo.pr b ullss,p-

Then, plugging (4.42) and (4.44) into (4.40), we have

(4.46) lello,py < P FHlulls42,0 + llell—p.p-

The estimate (4.35) follows by the covering argument.

d

Remark 4.6. The hidden constant in Theorem 4.5 depends on the domains G|
and G that are arbitrary fixed. In practical computations, it is also important to
quantify such dependence when dist(0Gy, dG) is close to h. This shall give rise to
local estimates for the FV approximation in interior regions near the singular point.
Note that for a disc A := B(xg,d) C Q, the dilation & = (z — x¢)/d translates A
into the unit disc A = B(0,1) and Sj,(A) into a new finite dimensional space Sh/d(fl).
Using the scaling argument, the inequalities (4.34) and (4.35) are still valid for A with

h replaced by h/d, where the hidden constant is independent of d.

COROLLARY 4.7. Let Gy C G C Q be interior subregions of Q and u € H'**(G)
with 3 < s < k and [s] = max{n € Z|n < s} (Z is the set of integers). Suppose

h < d:= dist(0Go, 0G) < 1. Then, for 0 <p <k —1, we have

[s]+1
(4.47) lellnco S Ao lulsyr.e + (h/d)* > d¥ I u|gi1—je + AP el —p.o-
=0
Furthermore, if u € H*72(G),
[s]+2 .
(448)  elloo S h*F ulsra + (h/d)* ™ Y d* 2 ul g0 6 +d7Plle]l-pe-
j=0
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Proof. Let Do(z;) C D(x;) C 2 be two concentric discs centered at x; with radii
r/2 and r, respectively. Note that Gy can be covered by a finite number of discs
Dy(x;) such that z; € Gy, and U;D(x;) is a subset of G. Thus, it suffices to show the
estimates (4.47) for the two discs Dy(z;) and D(z;). To simplify the notation, we let
Dy = Dy(z;) and D = D(x;) below.

We use a local coordinate system on D, such that z; is the origin. Then, the
dilation # = (x — ;) /d translates Dy and D to Dy and D with dist(d Do, dD) = 1/2.
Meanwhile, for a function v on D, we define 9(%) = v(z). Therefore, by the scaling
argument, we have

(4.49) el b, = & elopys 0 >0,
and é satisfies
(4.50) ap(é,9%) =0,

where © € ,Sc’h/d(f)). Therefore, using Theorem 4.5 with é and h replaced by h/d on
interior regions Dy C D, we have

(4.51) 1elly,p, S PPd™ Nl 5+ lEll -, o

(4.52) 1ellg.p, S h*TH ™ Il p + 1€l 5-
In addition, by the definition of the H P norm and d < 1, for 0 < j < p, we have
(4.53) lell_;p < d™* el -j.p-

Then by (4.49) and (4.51)—(4.53), we obtain

[s]+1
lell,po S h*lulsr,o + (B/d)* > d¥ 7 uliga_jp +d P lel| —p.p,
j=0
[s]+2 '
lello.ny S A ulsa,p + (h/d)* > d¥ 2T |uf 40 ; b+ d7Plle]|p.p,
j=0
which completes the proof. 0

Remark 4.8. Theorem 4.5 is the special case of Corollary 4.7 where d is a constant
independent of h. According to Theorem 4.5, the H' norm of the error in an interior
region away from the singular point is bounded by the combination of the best local
approximation error in the finite element space and a negative norm of the interior
error. Note that for finite volume methods, the term |le||_, ¢ in general is determined
by the smoothness of u and the adjoint problem.

Corollary 4.7 provides the interior error estimates when the boundary distance
between the two interior regions is small. An implication of these estimates is that if
the interior region of interest G is close to the singular point, we have d = O(h). In
this case, the additional factors (functions of d) in the estimates (4.47) can override
the high-order convergence in |le||—, ¢ (see Theorem 3.2) and consequently make the
upper bounds of the local error in Gy comparable to the upper bounds of the global
error.
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H

Fi1c. 5.1. The computational domain of Example 5.1 and the interior domain (in red).

5. Numerical tests. In this section, we provide numerical results to support
our theoretical findings in Theorem 4.5.

Ezample 5.1. We consider the problem (1.1) with identity matrix on the domain
Q= ([-1,1)2\ [0,1] x [-1,0]) (i.e, L-shape Figure 5.1), which has the exact solution

2 . (2 a? Yy
u=a3sin|-p|——,a= x2+y2,,u:arctan(f),
3 4 T

and the right-hand function f = 1.

We see that u € H®/37¢(2), where ¢ > 0 is arbitrarily small and hence s = 2/3—e.
In this case, we see that f € C'°°. Since the largest interior angle of the domain is
0= 37’7, we know the auxiliary problem associated with ) € H'*t where 0 < t < 2/3.
From (3.13), we derive that for any 0 <p <k —1

(5.1) lel—p.0 S 227 ullsa—c.0-

For this specific example, the convergence order in any negative norm is no better
than that in the L?(Q) norm. Meanwhile, we observe that u is singular at z = (0,0),
and u is of C*° in the interior domain Gy = [, 2] which is away from 2.

Substituting the inequality (5.1) to estimates in Theorem 4.5, we obtain

(5-2) lellr.co S R lullesre, + 027> ulls/3—c.0.

(5.3) lelo.ca S A lulliesry + Y lulls 3—c 0,

where G C  is slightly larger than Go. Hence, for k = 1 the interior estimate in H!
norm should be optimal, but for & > 2, it should be at most h*/372¢. While for the
L? norm, the interior estimate yields no better than the global convergence.

In Table 5.1, we display the numerical results for the finite volume approximation
of Example 5.1. We see in the table that the estimates in the global L? and H' norms
are O(h*/372¢) and O(h?/3~¢) for both k = 1,2, while the local error in an interior
domain Gy is optimal only for £ = 1 in the H' norm but for other cases the convergent
rates are around h3. It demonstrates that the numerical results are consistent with
our theoretical prediction in (5.2) and (5.3) and therefore verify the theory.

Ezample 5.2. We consider the problem on the domain 2 = [0,1]? with the exact
solution

o

u=x(1-2z)y(l-ya 2,

where a = /22 + y2.
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TABLE 5.1
Example 5.1: The convergence rates.

Global domain 2 Interior domain Go
h llello,o Order |lell1,0 Order llello,gq ~ Order |le|l1,qq Order
Q' 1/64 7.40E-04 — 3.53E-02 — 6.54E-05 - 1.49E-03 -
1/128 2.93E-04 1.34 2.23E-02 0.66 2.57E-05 1.35 7.40E-04 1.01
1/256 1.16E-04 1.34 1.44E-02 0.66 1.01E-05 1.34 3.69E-04 1.00
1/512 4.58E-05 1.34 9.11E-03 0.66 4.00E-06 1.34 1.84E-04 1.00
Q% 1/64 1.39E-04 - 1.54E-02 - 1.16E-05 - 4.57E-05 -
1/128 5.45E-05 1.35 9.72E-03 0.67 4.61E-06 1.33 1.77E-05 1.37
1/256 2.15E-05 1.34 6.13E-03 0.67 1.83E-06 1.33 6.93E-06 1.35
1/512 8.47E-06 1.34 3.86E-03 0.67 7.25E-07 1.33 2.74E-06 1.34
TABLE 5.2

Ezxample 5.2: The convergence rates.

Global domain Q Interior domain G
h llello.o Order |le|l1,0 Order llello,go, ~ Order |le|l1,aq Order
Q2 1/8 2.03E-03 - 1.46E-01 - 1.31E-05 - 3.94E-04 —
1/16 7.23E-04 1.49 1.04E-01 0.49 2.39E-06 2.45 9.89E-05 1.99
1/32 2.57E-04 1.49 7.38E-02 0.49 4.25E-07 2.50 2.47E-05 2.00
1/64  9.10E-05 1.50 5.23E-02 0.50 7.48E-08 2.50 6.18E-06 2.00
Q3 1/32 1.07E-04 - 4.67TE-02 - 7.11E-08 - 3.94E-07 —
1/64  3.79E-05 1.50 3.30E-02 0.50 1.26E-08 2.50 6.14E-08 2.67
1/128 1.34E-05 1.50 2.33E-02 0.50 2.23E-09 2.50 1.01E-08 2.61
1/256 4.74E-06 1.50 1.65E-02 0.50 3.94E-10 2.50 1.70E-09 2.56

We can see that u € H3/27¢(Q) for ¢ > 0 arbitrarily small and hence s = 1/2 —e.
Note that the singularity in u is around the origin z = (0, 0). The largest interior angle
is @ = /2, which indicates that the function in the duality argument v € HT(Q)
with 0 < ¢t < 2. From (3.13), for any 1 < p < k — 1 with k& > 2 we can derive

(5-4) lell—p S A2~ lull3/2—c-

By (2.14) and (2.10) we expect to see the convergence in the global L? and H!
norms be O(h*/?27¢) and O(h'/27¢), respectively. Considering the interior domain
Go = [%, %]2, the solution w is smooth. Applying (5.4) in Theorem 4.5, we obtain that
for all u € H**1(Gy) (G is slightly larger than G and u is smooth in G)

(5:5) lelli.co S A llulleriey + B>~ *lulls/z-c0,

(5.6) lello.co S PP M ullksr,cy + 22272 ulls/5—c 0-

Therefore, for k = 2 the interior convergence rates should be O(h?) (resp., O(h?572))
in H! (resp., L?) norm, while the interior accuracy should be O(h?572¢) in H! and
L? norms for k = 3.

The numerical results of Example 5.2 are listed in Table 5.2. We can see from
the table that the interior and global estimates are consistent with our theoretical
prediction.

6. Conclusion. The error analysis for high-order FVEM is a challenging task.
This paper is one in a series that attempts to set up a mathematical foundation for a
family of high-order FVEM over quadrilateral meshes. In previous works [17, 25, 43],
we analyzed the stability, H' error, L? error, and maximum-norm error of high order
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FVEM over quadrilateral meshes. In this article, we present our study on negative-
norm error estimates and interior error estimates, especially for problems with low-
regularity solutions.

We point out that as in the L2-norm estimates for the FVEM, we require a slightly

stronger regularity to achieve optimal convergence order for the negative-norm error
estimates than that for the FEM. Consequently, the regularity requirement to obtain
optimal convergence order in a local domain is also a little bit stronger than that for
the FEM.
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