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ABSTRACT
Container systems (e.g., Docker) provide awell-defined, light-
weight, and versatile foundation to streamline the process
of tool deployment, to provide a consistent and repeatable
experimental interface, and to leverage data centers in the
global cloud infrastructure as measurement vantage points.
However, the virtual network devices commonly used to con-
nect containers to the Internet are known to impose latency
overheads which distort the values reported by measurement
tools running inside containers. In this study, we develop a
tool called MACE to measure and remove the latency over-
head of virtual network devices as used by Docker containers.
A key insight of MACE is the fact that container functions all
execute in the same kernel. Based on this insight, MACE is
implemented as a Linux kernel module using the trace event
subsystem to measure latency along the network stack code
path. Using CloudLab, we evaluate MACE by comparing the
pingmeasurements emitted from a slim-ping container to the
ones emitted using the same tool running in the bare metal
machine under varying traffic loads. Our evaluation shows
that the MACE-adjusted RTT measurements are within 20
µs of the bare metal ping RTTs on average while incurring
less than 25 µs RTT perturbation. We also compare RTT
perturbation incurred by MACE with perturbation incurred
by the built-in ftrace kernel tracing system and find that
MACE incures less perturbation.

1 INTRODUCTION
Container technology directly benefits Internet research by
streamlining the tool deployment process and exposing new
vantage points at cloud-oriented data centers around the
world [1, 4, 5]. The executables, scripts, and libraries needed
for running an experiment remotely can be packaged into
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container images which are then deployed in standardized
platforms (e.g., Docker [14]) and orchestration systems (e.g.,
Kubernetes [7]), eliminating the need for installing depen-
dencies, compiling tools and drastically reducing the deploy-
ment footprint when compared with virtual machines (VMs).
In terms of vantage points, the global data centers of the
top three cloud service providers Microsoft Azure, Google,
and Amazon contribute 87 new locations for containerized
deployment [1, 4, 5]. In the research community, the Plan-
etLab consortium officially initiated the adoption of LXC
containers as their node provisioning mechanism in 2012,
contributing over 700 geographically diverse container-ready
vantage points [12].

The building momentum around container technology
in research efforts raises the question: can we accurately
containerize Internet measurements?While containers do pro-
vide better performance than VMs, what are the container
networking overheads and how do these overheads bias
containerized Internet measurements? To answer these ques-
tions, the current work looks in particular at the round-trip
latency overhead imposed on the ping tool and begins the de-
velopment of a generic container latency-monitoring system.
In resting systems under Docker’s default bridged network-
ing mode, ping round trip time (RTT) is inflated on the order
of 50 µs [19]. As discussed in section 4, when other con-
tainers in the same system generate traffic, the inflation can
increase to over 300 µs depending on traffic volume. Accurate
measurement of this RTT inflation must be available to the
measurement container at arbitrary times in order to make
sense of the observed RTTs.

Estimating network stack latency is nearly impossible for
tools running inside containers because, under the typical
bridged and overlay networking modes1, containers only
observe an isolated slice of the host OS’s network stack.
Timestamps collected in the kernel and directly on hardware
network interface cards (NICs) are not available to container-
ized tools as these timestamps are reset by virtual network
devices. To continue leveraging the benefits of bridged and
overlay networking while simultaneously accounting for
latency, we propose the adoption of a mechanism running
in the host’s kernel which directly measures network stack
latency and reports the results to containers on a need to
know basis.

1https://docs.docker.com/network/
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In this work we develop MACE, a trace-based method [17,
27, 31], to directly measure the RTT inflation introduced
by the kernel network stack. Building on the insight that
container functions all execute in the same kernel, we lever-
age the kernel’s perspective to observe the network stack
latencies of packets ingressing and egressing container envi-
ronments. MACE runs in the background on container hosts
used for network studies, incurring minimal perturbation on
the host while allowing vast improvement in the accuracy of
measurements made from containers. We implement MACE
as a kernel module interfacing with the Linux trace event
subsystem. From trace probes placed on key events in the
network stack, MACE gathers per-packet ingress and egress
latencies and forwards this information to userspace via per-
namespace device files. The key contributions of this work
are:
• Preliminary assessment of the challenges involved in using

containers to obtain accurate delay measurements on the
Internet;

• Development of a trace-based method called MACE to
account for the container system’s overhead by interfacing
with kernel trace events;

• Implementation and evaluation of our method by applying
MACE to ping measurements in a realistic deployment.
To facilitate independent validation of our results, source
code of MACE is publicly available under the GPL v3.0
license2.

The rest of this work is organized as follows: §2 surveys
previous work and discusses the issues faced in measuring
the container overhead; §3 describes MACE’s design and
implementation; §4 offers evaluation of MACE’s accuracy
and perturbation; and §5 discusses directions for improving
MACE based on our evaluation results.

2 RELATEDWORK
In this section, we address related work on measuring con-
tainer system overheads and highlight key challenges in
accounting for these overheads in Internet measurement.
We also provide a brief look at efforts using trace for latency
monitoring to motivate our development of MACE.
Static Approaches: Prior efforts analyze container over-
heads in comparison with virtual machines (VMs) in wide-
ranging performance surveys. The static analysis provided
by these works offer insights into the advantages of contain-
ers over VMs, but the results are limited to the particular
hardware and software configurations under test. Xavier
et al. [32] and Felter et al. [19] use various benchmarks to
compare the CPU, memory, disk-IO, and network perfor-
mance of VMs, containers, and native installations showing

2http://github.com/chris-misa/mace

a container RTT latency overhead between 10 to 30 µs un-
der the default Linux-bridge network configuration. Perhaps
the most focused discussion of container networking can
be found in Zhao et al. [33], which provides a systematic
evaluation of different virtual networking topologies and
looks at the effect of NUMA node affinity and number of
flows on network performance.
Dynamic Approaches: In realistic environments, the net-
work traffic from other containers running on the same host
has a significant impact on the latency overhead of the con-
tainer system, as does the particular hardware and software
configuration (see section 4). In light of this, container over-
head measurement must be recast as a dynamic measure-
ment problem. Some container measurement efforts do con-
sider the possibility of dynamic monitoring: [30] suggests
some techniques for monitoring the end-to-end latency of
container-based VNF chains, [16] explores and evaluates
existing performance analysis tools for Docker, and [20] in-
tegrates the Faban bench-marking system [3] in a container-
ized environment. None of these studies provide adequate
solutions to account for overheads in containerized Internet
measurement.
Mitigating Virtual Network Latencies: Several recent
works propose redesigning the network stack to improve the
performance of container networking. For example [34] pro-
poses a flow-based virtualization scheme and [24] proposes
virtualized RDMA. These efforts offer increased performance
in terms of throughput for data center applications, but do
not yield any benefits for containerized Internet measure-
ment. For instance, measurement tools such as ping and
traceroute generate large numbers of packets with no partic-
ular flow-level semantics while the hardware requirements
for RDMA make is a non-starter. We leave restructuring of
the network stack to support both high-performance con-
tainer networking and Internet measurement tools as an
open problem, focusing in this work on accurately measur-
ing the container latency overhead as a first step.

3 MACE DESIGN & IMPLEMENTATION
To address container network latency as a dynamic measure-
ment problem, we develop MACE as a Linux kernel module
which employs the trace-event subsystem to directly mea-
sure network stack latencies. An application seeking to use
MACE to account for network stack latency must only re-
quest that MACE be activated for its network namespace and
then read from the file which exposes the latency ring buffer
created for that namespace. In this section, we detail the
architecture of MACE, describe MACE’s userspace interface,
and discuss some issues of implementation.

http://github.com/chris-misa/mace
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Figure 1: MACE architecture.
3.1 Architecture
As shown in figure 1, MACE works by filtering the raw
stream of Linux trace events into per-packet egress and
ingress latencies for each network namespace. MACE’s
register_entry and register_exit functions manage
egress and ingress hash tables to track packets between trace
probes while MACE’s push_event function gathers latencies
computed from these tables into a per-namespace ring buffer.
Finally, userspace applications obtain latencies by reading
the device special file /dev/mace which pulls entries from
the ring buffer for the reading process’s namespace and sysfs
files which return aggregated statistics. This multi-layered,
in-kernel filtering approach offers far less perturbation and
than a generic tracing utility such as ftrace and greatly
reduces the amount of potentially sensitive trace data for-
warded to userspace.

3.2 Implementation
MACE is implemented as a Linux kernel module in ∼1k lines
of C code, utilizing Linux kernel hash functions, radix trees,
traceprobes, and the device file framework. To deal with
concurrency in the network stack, MACE employs spin locks
and atomic integers, ensuring the accuracy of computed
latencies. The compiled binary is ∼30kB and expands on
insertion to ∼40kB.

4 EVALUATION OF MACE
We conduct initial microbenchmark experiments to gain in-
sight on the container networking latency overhead and to
evaluate the performance of MACE. Our results show that
MACE is able to accurately account for the latency induced
by the Linux bridge used in docker’s default networking

mode in a busy environment with multiple containers vying
for network resources. We also show that MACE incurs sig-
nificantly less perturbation than the built-in ftrace system.

4.1 Setup and Methodology
Our CloudLab [26] testbed consists of two m510 nodes3 on
the same experimental network. Both nodes run Ubuntu
18.04 with Linux kernel 4.15.0 and docker-ce 18.09.3. Our
test container runs a fork of the iputils ping utility, modified
to use gettimeofday for receive timing to facilitate accounting
for network stack overheads. This modification allows us
to reason directly about the network stack latency and is
representative of many other latency measurement utilities
(e.g. owamp4). To attain ground-truth measurement of the
network RTT, we develop another fork of the iputils ping
code which uses hardware timestamping to calculate RTT
from the host’s NIC5.
In order to simulate worst-case cloud networking condi-

tions, we add background ping containers executing flood
ping against the target while the probe measurements are
taken. To reduce scheduler noise, these background contain-
ers are sequentially pinned to the 16 logical CPUs of the
m510 nodes, starting back at CPU 0 after the 16th container
is added.

4.2 Effects of Packet Size
To gain initial insight into the nature of the container latency
overhead, we observe the flood ping RTT in a resting system
with different packet sizes (i.e., 16 B, 56 B, 120 B, 504 B,
and 1472 B) (see Fig. 2). These packet sizes reflect a wide
range of applications between the minimum and maximum
transmission unit.

Fig. 2 shows the difference in mean RTT for each of 5 runs
on 5 different cloudlab node pairs. There does not seem to be
any strong correlation between packet size and the container
latency overhead. We conclude that the container induced
portion of this bias is not affected by packet size. Building on
this conclusion, we execute the following experiments for
one particular packet size and assume the results will hold
for other packet sizes as well.

4.3 Accuracy and Coverage
In this sectionwe present results from our experiments aimed
at verifying the accuracy of MACE’s reported latencies. We
run 2k-packet flood pings from native and container environ-
ments with 1472 B payloads, repeating the process 5 times
after 5 s intervals to mitigate the effect of temporal network

3Each node has an eight-core Intel Xeon D-1548 processor at 2.0 GHz with
64GB DDR4-2133 RAM and a dual-port Mellanox ConnectX-3 10 GB NIC.
4http://software.internet2.edu/sources/owamp/owamp-3.4-10.tar.gz
5The mean hardware latency is around 20µs.

http://software.internet2.edu/sources/owamp/owamp-3.4-10.tar.gz
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Figure 2: Difference betweenmean containerRTTand
mean native RTT in a resting system. There is no sig-
nificant impact of packet size on the container latency
overhead.

anomalies. Each experiment is executed on 5 different pairs
of CloudLab nodes to mitigate any bias introduced by the
experiment network. In this manner, we gather 50 000 dis-
tinct RTT reports for each tested setting. In the following
graphs, error bars show a 95% confidence interval over all
RTT reports under the normal assumption.
Accuracy: To measure the accuracy of MACE, we take the
RTT emitted from the container and subtract MACE’s re-
ported egress and ingress latencies to form container cor-
rected RTT values, then compare these container corrected
RTTs to the hardware base-line. We perform the same pro-
cesses with the same ping version running in the native
environment to attain native corrected RTTs. Additionally,
we compare with a native reference RTT take by the orig-
inal SO_TIMESTAMP-using verion of ping commonly found
on Linux systems.

Fig. 3 shows the difference between each of these software-
emitted RTTs and the hardware-emitted baseline as a func-
tion of the number of traffic-generating containers. From this
plot we see that the container corrected and native corrected
results are consistently within 20µs of the native reference
result, even as the container overhead increases. This demon-
strates that MACE’s reported latencies are accurate enough to
compute corrected RTTs directly comparable with traditional
native implementations of ping.Another notable result visible
in fig. 3 is that even traditional native RTT measurements
can be shifted up to 100µs by traffic running from isolated
containers on the same host.
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Figure 3: Mean error compared with hardware RTT
ground-truth. The container corrected trace (black) us-
ing MACE to account for latency is comparable to the
native reference trace (green).

Coverage: While MACE’s design allows for the generation
of per-packet latency information, collisions in the ingress
and egress intra-kernal tracking tables can lead to dropped
latencies for some packets. To understand the impact of this
effect, we inspect the fraction of all RTTs emitted from our
monitored container and monitored native ping runs for
which MACE reported both egress and ingress per-packet
latencies. The results across different background traffic set-
tings are shown in fig. 4. We observe that MACE reports
latencies for nearly all packets, though decline in coverage
occurs much more rapidly for the monitored container pro-
cesses than the monitored native processes with a sort of
bottoming-out after adding the 17th traffic container.

4.4 Perturbation
In this section we compare the perturbation incurred by
MACE with the perturbation incurred by the Linux-native
ftrace kernel tracer. The frace system requires no modules
or patching and is understood to allow visibility into ker-
nel behavior while incurring minimal perturbation [22]. We
access ftrace through the trace-cmd [28] utility and only
activate tracing on the particular events used by MACE (see
section 3). Flood ping probes are run in a manner consistent
with the previous experiment under increasing background
traffic loads and all trace and latency results are discarded
to avoid storage issues. We calculate perturbation as the
difference in mean reported RTT between monitored and
un-monitored ping runs in a particular environment.
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Figure 4: Coverage as the fraction of packets forwhich
MACE successfully computed ingress and egress la-
tencies. Higher egress and ingress times lead to more
missed packet for the container environment.

Fig. 5 compares perturbation calculated for MACE and
ftrace in both native and container environments. These
results show thatMACE consistently incurs lower perturbation
than ftrace, especially as background traffic increases, stay-
ing for the most part below 20µs and 10µs for the container
and native environments respectively. Despite its optimized
per-CPU ring buffering strategy, increasing the number of
active CPUs still causes increase in ftrace’s perturbation.
While [22] already identified issues with ftrace, alterna-
tive tracing systems (e.g. [18]) require additional kernel-
instrumentation via module insertion or patching.
More problematically, generic tracing systems require

large amounts of trace data to be stored and processed in
userspace raising storage, privacy, and security concerns. For
example previous iterations of MACE used ftrace to gather
trace events and the resulting intermediate files could grow
over 8 GB in size. By filtering trace events in the kernel, our
current implementation of MACE only forwards requested
latency data to userspace leading to 3.9 MB latency files for
the 2k-packet ping runs described above.
Summary: Our testbed results demonstrate that MACE’s
calculated ingress and egress latencies are able to account
for the network stack latency of docker’s default bridged
networking mode to with in 20µs for 95% of all packets. We
also observe thatMACE incurs significantly less perturbation
than a comparable setting of ftrace (an advantage of ∼90µs
when the network is heavily loaded).

0 5 10 15 20 25 30

0
20

40
60

80
10

0

Number of traffic flows

RT
T 

M
ea

n 
Pe

rtu
rb

at
io

n 
(µ

s)

MACE Native
MACE Container
ftrace Native
ftrace Container

Figure 5: Comparison of RTT perturbations incurred
by MACE and ftrace with the same trace events acti-
vated.

5 FUTUREWORK
In this section, we discuss the possibilities and challenges of
extending MACE to other protocols and applications, a key
focus of our ongoing efforts. We also discuss directions for
future work to improve MACE’s design and implementation
toward the goals stated in section 1.

5.1 Broadening MACE’s Applicability
The method developed here to account for network stack
latencies potentially offers a more general approach for de-
noising Internet latency measurements. A key focus of our
ongoing work is to develop MACE to support a wide vari-
ety of measurement tools and container standards such as
CNI [2]. Tools such as traceroute [11], yarrp [15], and scam-
per [25] directly measure RTTs while tools in the OWAMP
suite [29] such as owping measure separate out-bound and
in-bound one-way delays. Since MACE already supports
separate ingress and egress latency measurement, adapting
to these tools is simply a matter of developing MACE to
interpret the different system calls and protocols used. We
also plan to explore the possibility of using MACE’s latency
reports to account for network throughput overheads as
measured by tools such as iperf [6] and netperf [8]. Finally,
adapting MACE to fit into standards such as CNI [2] would
immediately enable MACE-corrected measurement in com-
mon container management systems such as Singularity [9]
and Kubernetes [7].

The current study identifies the following implementation
challenges in adapting MACE to a wider set of applications:
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The System Call Challenge: While the ping utility em-
ployed as a sample application in this study makes consistent
use of the sendto and recvmsg systems calls to send and
receive network packets, one of the key challenges faced
in applying MACE to other Internet measurement tools is
the wide variety of network communication system calls.
In Linux there are at least four different options to send
and receive data on a connected socket (e.g. send, sendto,
sendmsg, write) and each system call packages packet data
in slightly different formats which will need to be identified
and parsed by the sys_enter and sys_exit trace probes.
The Correlation Challenge: For each socket-api system
call mentioned above, there are multiple layer 4 protocols
used to encapsulate data. While MACE makes an effort to
provide accurate timestamps on each reported latency, in
our evaluation we found these timestamps did not provide
a high enough level of precision to confidently correlate
latencies with reported RTTs. The current implementation
of MACE targets the ICMP protocol and includes ICMP se-
quence numbers with reported latencies for correlation at
the application layer. Most common protocols feature such a
per-packet sequence number which could be reported with
per-packet latencies, but MACE must be implemented to ex-
plicitly identify the protocol and parse its header to extract
the sequence number.
5.2 Improving MACE’s Design
Hardware Timestamps: The SO_TIMESTAMPING interface
used by our modified ping utility to measure ground-truth
hardware RTT attaches timestamps to sk_buffs as they en-
ter and exit the kernel from the driver layer. While access-
ing this data in the net_dev_xmit and netif_receive_skb
trace probes is trivial, utilizing these timestamps to compute
latency deltas requires synchronization between the NIC’s
hardware clock and the kernel’s time keeping mechanisms.
This method could allow MACE to include driver effects
in its latency reports yielding accuracy comparable to the
hardware baseline employed in this study as reference.
In-bandMeasurement:While our current implementation
of MACE relies on a separate system to monitor packet la-
tencies, we also intend to explore the benefits of an approach
known as in-band measurement [13, 23]. In this model, times-
tamps could be injected into packet data segments either in
the kernel, network driver, or Smart-NIC [10, 21] and mea-
surement applications could directly determine the network
stack latency by reading these timestamps on received pack-
ets. This approach offers a more general latency monitoring
solution, but also poses challenges for clock synchroniza-
tion and requires modification to application code or packet
filtering on the receiving end.
Better Correlation Strategies: Evaluations of our current
implementation of MACE show that copies between kernel

and userspace needed for event correlation incur a substan-
tial bottleneck on MACE’s performance. In previous design
iterations we had some success using simple heuristics to
correlate trace events at the system call layer though such
methods yield reduced accuracy. If MACE were implemented
as a patch rather than as a module, the structures and func-
tions probed in this study could be modified directly to in-
clude unique identifying information for each packet across
layers eliminating the need to copy data for correlation.

Summary: While our current implementation of MACE is
able to accurately account for latencies imposed by Linux
bridged networking in the kernel, we find that more work is
necessary to extend MACE to account for all latencies expe-
rienced by packets ingressing and egressing containers and
to make MACE’s results applicable to diverse measurement
protocols. We hope to continue improving MACE toward
the goals of accuracy, minimal perturbation, and wider ap-
plicability.

6 CONCLUSION
In this work, we developed MACE, a system for measuring
the network stack latency of containerized applications with
a focus on accounting for the latency overheads imposed
on Internet measurement tools. MACE reports per-packet
ingress and egress latencies for nearly all packets in a busy
testbed system. We evaluated MACE’s accuracy by subtract-
ing its reported latencies from RTT emitted by ping running
in a container and compared the results with ground-truth
RTT computed using hardware timestamps and a reference
version of ping running in the native context. MACE’s re-
ported latencies are able to correct the container RTT to
within 20µs of the native reference version on average. Addi-
tionally we noted that MACE incurs significantly less over-
head than other tracing solutions such as ftrace due to
its ability to dynamically filter packets in the trace probe
code. Finally, we detailed plans to improve MACE in terms
of accuracy, perturbation, and applicability to other Internet
measurement tools.
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