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Abstract. Program synthesis is the problem of finding a program that
satisfies a given specification. Most program synthesizers are based on
enumerating program candidates that satisfy the specification. Recently,
several new tools for program synthesis have been proposed where Sat-
isfiability Modulo Theories (SMT) solvers are used to prune the search
space by discarding programs that do not satisfy the specification.

The size of current tree-based SMT encodings for program synthesis
grows exponentially with the size of the program. In this paper, a new
compact line-based encoding is proposed that allows a faster enumera-
tion of the program space. Experimental results on a large set of query
synthesis problem instances show that using the new encoding results in
a more effective tool that is able to synthesize larger programs.

Keywords: Program synthesis · Satisfiability Modulo Theories ·
Enumerative search · SQL

1 Introduction

The goal of program synthesis is to automatically generate programs that satisfy
a given high-level specification. Once considered a utopian dream, the recent
advances in program synthesis are making this approach more practical and
have shown that it can be useful to both end-users and programmers. A common
approach is to use input-output examples as specifications. Even though these
specifications are incomplete, i.e. a program may satisfy the specification but
may not be the program that the user desires, these are easy to create and
can be used to solve many real-world applications. This approach is known as
programming-by-example (PBE) and has been used to automate tedious tasks
in a plethora of applications, such as string manipulations in spreadsheets [10,
15], list transformations [2,9], table reshaping [7], code completion [14], helping
programmers to use libraries [8], and SQL queries [18–20]. Program synthesis is
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Fig. 1. Enumeration-based program synthesis

not merely an academic research topic since it is also transitioning into industry.
Microsoft’s FlashFill [10] is the most successful application of program synthesis
by Microsoft for string manipulation and it is integrated into Microsoft Excel.
Other companies are also starting to look for applications of program synthesis
to their products, namely OutSystems [1] and query synthesis.

Even though there are many approaches to program synthesis, the most com-
mon one is to perform an enumerative search over the space of programs that sat-
isfy the specifications. Figure 1 shows the high-level architecture of enumeration-
based program synthesizers. They take as input the specification that describes
the intention of the user (e.g., input-output examples) and a domain-specific
language (DSL) that defines the search space. Program synthesizers typically
enumerate programs in increasing order of the number of DSL components. For
each candidate program P, they check if P satisfies the specifications. If this is
the case, then the desired program was found. Otherwise, the program synthe-
sizer learns a reason for failure and enumerates the next candidate program.

Recent approaches combine enumerative search with deduction with the goal
of performing early pruning of infeasible programs [7], or to learn from past failed
candidate programs in order to prune all equivalent infeasible programs [6].

Suppose that a user wants to synthesize an SQL query using examples. In
particular, given tables supplier and parts with the schema “supplier(id: integer,
sname: string, address: string)” and “parts(id: integer, pname: string, color:
string)”, the user wants to find the names of parts, pnames, for which there
is some supplier. 1 This could be accomplished with the following SQL query:

SELECT pname
FROM parts, supplier
WHERE parts.id = supplier.id

To enumerate the space of programs that satisfy the specifications, program
synthesizers must first construct an underlying representation of the feasible
space. Figure 2 shows the typical tree representation used by program synthe-
sizers (e.g., [3,6,7]), for the above query example. Each node can be a library
component or a terminal symbol. Program synthesizers can then traverse the
space of possible candidates by enumerating all possible trees of a given depth.
However, for approaches that rely on logical deduction, the space of feasible pro-
grams must be encoded a priori by using either a Boolean Satisfiability (SAT)

1 This corresponds to exercise 5.2.1 from a classic textbook on databases [13].
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Fig. 2. Tree-based representation of the search space
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Fig. 3. Line-based representation of the search space

or Satisfiability Modulo Theory (SMT) encoding [6,7]. A common approach to
encode all feasible programs is to represent them using a k-tree, where each node
has exactly k children and k is the largest number of parameters of the functions
in our library of components. Figure 2 shows an example of a 3-tree where each
node has 3 children. A complete program corresponds to assigning a label to
each node. Components that may have less than 3 parameters (e.g., SELECT),
will have the empty label empty ε assigned to their unused children.

A large downside of a k-tree representation is the exponential growth of the
size of the tree with respect to its depth. Since the encoding’s complexity depends
on the number of nodes, this makes it intractable to enumerate the search space
of candidate programs using an SMT encoding.

In this paper, we propose a new line representation illustrated in Fig. 3, where
we represent each line with its own subtree and add additional constraints to
connect the multiple subtrees. For the above SQL query, we would only need 12
nodes using a line-based representation instead of the 3-tree representation’s 40
nodes. When considering programs with 10 lines of code and k = 4, the line-
based representation only needs 50 nodes instead of the 1,398,101 nodes required
by the tree-based representation.

To summarize, this paper makes the following contributions:

– We formalize how to encode the traditional tree-based representation of a
program into SMT which has an exponential growth with respect to the
number of lines of a program.

– We propose a new compact SMT encoding based on a line representation of
programs that grows linearly with the number of lines of a program.

– We integrate the line-based encoding into a program synthesizer and empir-
ically evaluate our approach using SQL benchmarks. Experimental results
show that the line-based encoding significantly outperforms the tree-based
encoding and allows program synthesizers to more effectively enumerate the
search space and synthesize larger programs.
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table → select from(cols, table) | join(table, table) | parts | supplier
cols → column(col) | columns(col, cols)
col → pname | sname | id | color | address | ∗
empty → empty

Fig. 4. The grammar of a simple DSL for query synthesis; in this grammar, table is the
start symbol. All joins are natural joins between columns with the same name. Given
as input the tables supplier and parts, with the schema “supplier(id: integer, sname:
string, address: string)” and “parts(id: integer, pname: string, color: string)”.

2 Preliminaries

The Satisfiability Modulo Theories (SMT) problem is a generalization of the well-
known Propositional Satisfiability (SAT) problem. Given a decidable first-order
theory T , a T -atom is a ground atomic formula in T . A T -literal is either a T -
atom t or its complement ¬t. A T -formula is similar to a propositional formula,
but a T -formula is composed of T -literals instead of propositional literals. Given
a T -formula φ, the SMT problem consists of deciding if there exists a total
assignment over the variables of φ such that φ is satisfied. Depending on the
theory T , the variables can be of type integer, real, Boolean, among others.

Program synthesizers search the space of programs described by a given
domain-specific language (DSL). The syntax of the DSL is described by a
context-free grammar G. In particular, G is a tuple (Σ,R, S), where Σ rep-
resents the set of symbols, productions, and start symbol, respectively. Each
symbol σ ∈ Σ corresponds to built-in DSL constructs (e.g., select from, join),
constants, variables or inputs of the system. Each production rule p ∈ R has
the form p = (A → σ(A1, . . . , Am)), where σ ∈ Σ is a DSL construct and
A1, . . . , Am ∈ Σ are symbols for the arguments of σ.

Example 1. Consider a DSL D in Fig. 4, and suppose that a user wants to solve
the query presented in Sect. 1, i.e. she wants to find all the names of parts
for which there is some supplier. The desired query from D is the following
select from(column(pname), join(parts, supplier)). This query uses three pro-
duction rules p1 = select from, p2 = column, and p3 = join; the column pname;
and input tables parts and supplier.

3 Tree-Based Encoding

This section describes the tree-based encoding used on several state-of-the-art
synthesizers to perform program enumeration. Given a DSL, program synthesis
frameworks search for a program that is consistent with the input-output exam-
ples provided by the user. For the search process to be complete, these frameworks
use a structure capable of representing every possible program up to some given
depth of n. Let k be the greatest arity among DSL constructs. For programs with
n − 1 production rules, synthesizers adopt a tree structure of depth n, referred to
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v1 select from

v2 column

v4 pname v5 ε

v3 join

v6 parts v7 supplier

Fig. 5. k-tree representation of the query presented in Example 1

as k-tree, where each node has exactly k children. Figure 5 illustrates a 2-tree that
can be used to represent the query presented in Example 1.

In order to perform program enumeration using the tree representation, pro-
gram synthesizers encode the tree as an SMT formula such that a solution of the
SMT formula encodes a complete program by assigning a symbol to each node.

A detailed description of the SMT model follows. First, the encoding variables
are introduced. Next, the constraints of the SMT model are presented.

3.1 Encoding Variables

Let s be the length of the DSL’s set of symbols, s = |Σ|. Let id : Σ → N0 be a
function that maps each symbol to a unique non-negative integer in a one-to-one
mapping. As a result, this function provides a unique identifier (integer value
between 0 and s) to each symbol in Σ. In our encoding, we assume that the
empty production symbol (ε) is mapped to 0 (i.e. id(ε) = 0).

Consider the encoding for a program with a k-tree of depth n. Assume each
node in the k-tree is assigned a unique index. Let N be the set of all k-tree nodes
indexes such that N = I∪L where I denotes the set of internal node indexes and
L denotes the set of leaf node indexes. Let C(i) denote the set of child indexes
of node i ∈ N . Clearly, if i is a leaf node (i ∈ L), then C(i) = ∅.

In our encoding we define the following variables:

– V = {vi : 1 ≤ i ≤ |N |}: each variable vi denotes the symbol identifier in node
i of the k-tree;

– B = {bi : 1 ≤ i ≤ |N |}: each variable bi is a Boolean variable that denotes
if node i is associated to a production symbol (true) or a terminal symbol
(false).

3.2 Constraints

Let D be a DSL, Prod(D) denotes the set of production rules in D and Term(D)
the set of terminal symbols in D. Furthermore, let Types(D) denotes the set of
types used in D and Type(s) the type of symbol s ∈ Prod(D) ∪ Term(D). If
s ∈ Prod(D), then Type(s) denotes the return type of production rule s.

To ensure that every program enumerated is well-typed the following con-
straints must be satisfied.
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Leaf Nodes. The leaf nodes can only be assigned to terminal symbols because
they have no children. Therefore, we define the following constraint:

∀i ∈ L :
∨

p∈Term(D)

vi = id(p) (1)

Example 2. Given the DSL D from Fig. 4, the set of terminal symbols is
Term(D) = {parts, supplier, pname, sname, id, color, address, ∗, ε} and the set
of leaves is L = {4, 5, 6, 7}. Each leaf node in L must be assigned to a sym-
bol in Term(D). Hence, each leaf i ∈ L must satisfy: vi = id(parts) ∨ vi =
id(supplier) ∨ vi = id(pname) ∨ vi = id(sname) ∨ vi = id(id) ∨ vi =
id(color) ∨ vi = id(address) ∨ vi = id(∗) ∨ vi = id(ε).

Internal Nodes. If a production rule p is assigned to an internal node, then
the type of its children nodes must match the types of parameters of p. Let
Type(p, j) denote the type of parameter j of production rule p ∈ Prod(D). If
j > arity(p), then Type(p, j) = empty. If p is a terminal symbol, p ∈ Term(D),
then for every j, Type(p, j) = empty.

Let Σ(Type(p, j)) represent the subset of symbols in Σ of type Type(p, j).

∀i ∈ I, j ∈ C(i), p ∈ Σ :

vi = id(p) ⇒
∨

t∈Σ(Type(p,j))

vj = id(t) (2)

With constraint (2), all the programs generated will be well-typed since each
node is only assigned to a production rule if its children have the correct type.

Example 3. Consider again the query in Example 1. If the production select from
is assigned to the program’s root, v1, then Σ(Type(select from, 1)) = {column,
columns} and Σ(Type(select from, 2)) = {select from, join, parts, supplier}.
The following constraint must be satisfied: v1 = id(select from) ⇒

(
v2 =

id(column) ∨ v2 = id(columns)
)

and v1 = id(select from) ⇒
(
v3 =

id(select from) ∨ v3 = id(join) ∨ v3 = id(parts) ∨ v3 = id(supplier)
)
.

Output. Let t be the output type. Furthermore, consider that the program root
identifier is 1. Then, v1 must be assigned to a symbol that is consistent with the
output type t. Hence, the following constraint must be satisfied.

∨

s∈Σ(t)

v1 = id(s) (3)

Input. Let IN be the set of symbols provided by the user as input. In order to
guarantee that all generated programs use all the inputs provided by the user,
the following constraint is added:

∀p ∈ IN :
∨

i∈N

vi = id(p) (4)
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L1 : ret1 ← column(pname)
L2 : ret2 ← join(parts, supplier)
L3 : ret3 ← select from(ret1, ret2)

Fig. 6. Line-representation of the query from Example 1

Note that this is not required for the encoding’s correction. Nevertheless, we are
only interested in enumerating programs that use all inputs given by the user.

Exactly n − 1 Production Rules. Finally, we are interested in enumerating
programs using Exactly n − 1 production rules by adding the following con-
straints:

∀i ∈ N : bi = 1 ⇐⇒
∨

p∈Prod(D)

vi = id(p) (5)

( ∑

i∈N

bi

)
= n − 1 (6)

With constraints (5) and (6), we guarantee that given a k-tree of depth n,
each enumerated program will have exactly n − 1 production rules. State-of-
the-art program synthesizers iteratively search for programs in increasing depth.
Thus, constraint (6) allows pruning the search space, in order to avoid enumer-
ating repeated programs in future iterations of depth greater than n.

Encoding Complexity. Let k be the greatest arity between DSL constructs
and let n denote the number of productions (lines of code) in a program. In
terms of nodes complexity, the number of nodes increases exponentially with
the number of productions, as follows: kn+1−1

k−1 .

4 Line-Based Encoding

In this section, we propose a new encoding to represent programs. Our goal
is to represent a program as a sequence of lines where each line represents an
operation in the DSL. Instead of using a single k-tree to represent a program,
each line is represented as a tree with a depth of 1.

Consider the program in Fig. 6. One can represent this program as three trees
of depth 1 as shown in Fig. 7. Note that the result of the program is the value
returned by the third tree. Observe that reti is a new symbol that represents
the return value of line i.

4.1 Encoding Variables

Recall that D denotes a DSL, Prod(D) the set of production rules in D and
Term(D) the set of terminal symbols in D. Furthermore, Types(D) denotes the
set of types used in D and Type(s) the type of symbol s ∈ Prod(D)∪Term(D).
If s ∈ Prod(D), then Type(s) denotes the return type of production rule s.
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op1 column

a1,1 pname a1,2 ε

op2 join

a2,1 parts a2,2 supplier

op3 select from

a3,1 ret1 a3,2 ret2

Fig. 7. Each tree represents a production rule. The first tree represents line 1, the
second tree represents line 2 and the third tree represents line 3. ret1 (resp. ret2)
denotes the value returned in line 1 (resp. line 2).

Consider the encoding for a program with n lines where the maximum arity
of the operators is k, then we have the following variables:

– O = {opi : 1 ≤ i ≤ n} : each variable opi denotes the production rule used in
line i;

– T = {ti : 1 ≤ i ≤ n} : each variable ti denotes the return type of line i;
– A = {aij : 1 ≤ i ≤ n, 1 ≤ j ≤ k} : each variable aij denotes the symbol

corresponding to argument j in line i.

4.2 Constraints

Besides the production rules Prod(D) and terminal symbols Term(D), we define
one return symbol for each line in the program. Let Ret = {reti : 1 ≤ i ≤ n}
denote the set of return symbols in the program.

In our encoding, we define a different non-negative identifier for each symbol.
Here, we extend the id function to also consider the symbols that represent the
return value of each line. Let Symbols = Prod(D) ∪ Term(D) ∪ Ret define
the set of all symbols used in the program. Finally, let id : Symbols → N0 and
tid : Types(D) → N0 be one-to-one mappings of symbols and types, respectively,
to non-negative integer values.

Operations. First, the operations in each line must be production rules. Hence,
we have the following set of constraints:

∀1 ≤ i ≤ n :
∨

p∈Prod(D)

(opi = id(p)) (7)

The operation symbol used in each line implies the line’s return type.

∀1 ≤ i ≤ n, p ∈ Prod(D) : (opi = id(p)) ⇒ (ti = tid(Type(p))) (8)

Given a sequence of operations, the arguments of operation i must either be
terminal symbols or return symbols from previous operations. Hence, we have:

∀1 ≤ i ≤ n, 1 ≤ j ≤ k :
∨

s∈Term(D)∪{retr:r<i}
(aij = id(s)) (9)

Arguments. The arguments for a given operation i must have the same types
as the parameters of the production rule used in the operation. Let Type(p, j)
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denote the type of parameter j of production rule p ∈ Prod(D). If j > arity(p),
then Type(p, j) = empty. Hence, we have the following constraints when a return
symbol is used as an argument of an operation:

∀1 ≤ i ≤ n, p ∈ Prod(D), 1 ≤ j ≤ arity(p), 1 ≤ r < i :
((opi = id(p)) ∧ (aij = id(retr))) ⇒ (tr = tid(Type(p, j)))

(10)

A given terminal symbol t ∈ Term(D) cannot be used as argument j of an
operation i if it does not have the correct type:

∀1 ≤ i ≤ n, p ∈ Prod(D), 1 ≤ j ≤ arity(p),
s ∈ {t ∈ Term(D) : Type(t) 
= Type(p, j)} :

(opi = id(p)) ⇒ (aij 
= id(s))
(11)

Since the arity of a given operation i can be smaller than k, we must also
have that the arguments above the production’s arity must be assigned to the
empty symbol ε:

∀1 ≤ i ≤ n, p ∈ Prod(D), arity(p) < j ≤ k :
(opi = id(p)) ⇒ (aij = id(ε))

(12)

Output. Let Type(output) denote the type of the program’s output and let
PO ⊆ Prod(D) be the subset of production rules with return type equal to
Type(output), i.e., PO = {p ∈ Prod(D) : Type(p) = Type(output)}. The follow-
ing constraint ensures that the program’s output (last line, nth) has the desired
type.

∨

p∈PO

(opn = id(p)) (13)

Input. Let IN be the set of symbols provided by the user as input. In order to
guarantee that all generated programs use all the inputs, the following constraint
is used:

∀s ∈ IN :
∨

1≤i≤n

∨

1≤j≤k

(aij = id(s)) (14)

Lines Used Exactly Once. A feature of this new encoding is that the result
of a given operation can be used more than once. Notice that in the tree-based
encoding, one would have to reproduce the same operations in a different branch
of the tree. In order to compare the two types of enumeration, tree-based and
line-based, we can add a set of constraints restricting the usage of each opera-
tion’s result to only one usage. Clearly, the following constraints are not necessary
to the encoding’s correction.

∀retr ∈ Ret(D) :

⎛

⎝
∑

r<i≤n,1≤j≤k

(aij = id(retr))

⎞

⎠ = 1 (15)



592 P. Orvalho et al.

L1 : ret1 ← column(pname)
L2 : ret2 ← join(parts, supplier)
L3 : ret3 ← select from(ret1, ret2)

L1 : ret1 ← join(parts, supplier)
L2 : ret2 ← column(pname)
L3 : ret3 ← select from(ret2, ret1)

Fig. 8. Two line representations of the program from Example 1

Encoding Complexity. Let k be the greatest arity between DSL constructs
and let n denote the number of productions (lines of code) in a program. In
terms of nodes complexity, we can observe a drastic difference between both
types of enumeration, tree-based and line-based. In tree-based enumeration, the
number of nodes increases exponentially with the number of productions. On
the other hand, the number of nodes used by line-based enumeration increases
linearly, (k +1)×n, because the enumerator uses n trees, with k +1 nodes each,
to represent a program with n production rules.

4.3 Symmetric Programs

In line-based encoding, the number of solutions of the SMT formula is larger
than the number of solutions in the corresponding tree-based encoding. There
are two main reasons for this difference: (1) the line-based encoding can use the
return value of the same line of code more than once, and (2) the same program
can have more than one representation, i.e. symmetric programs.

Regarding reason (1), with constraint (15), we guarantee that the return
value of each line is used exactly once. Concerning reason (2), in the line-based
encoding, some programs can be represented with different sequences of lines.
However, in the tree-based encoding, as a result of the single tree representation,
the arguments of each production rule will always come from the same branch.

Example 4. Consider the DSL in Fig. 4 and the program select from(column
(pname), join(parts, supplier)) from Example 1. In tree-based encoding this pro-
gram has a single representation shown in Fig. 5. However, for the same program,
line-based encoding has two possible representations shown in Fig. 8.

In order for the line-based process to enumerate the same number of solutions
than the tree-based enumeration, it is necessary to find the symmetries in the
line-based encoding and block them. Otherwise, symmetric programs as the one
in Fig. 8 will be enumerated and the synthesizer will have to check both programs.
Therefore, if we have a solution α of line-based SMT formula and the synthesizer
verifies that the corresponding program is not consistent with the input-output
examples, then all solutions that encode symmetric programs in relation to α
can be blocked.

A simple way to find these symmetries is through a directed acyclic graph
of dependencies, where a vertex is defined for each program line, and edges
correspond to the line dependencies in the program. Let vi and vj denote the
vertexes in the graph corresponding to lines i and j with i < j. If the return
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value of line i is used as argument in line j, then a directed edge (vi, vj) must
be added to the graph. After building the graph, one can enumerate all possible
topological orders of vertexes in the dependency graph. Next, each program
associated with a topological order is blocked in the SMT formula.

Example 5. Consider the program from Example 1. Line 3 (L3) depends on line
1 (L1) and line 2 (L2). Therefore, lines 1 and 2 must occur before line 3. However,
the order of lines 1 and 2 can be changed. Hence, two solutions would be blocked
corresponding to permutations L1 − L2 − L3 and L2 − L1 − L3 of the program.

5 Experimental Results

In order to evaluate the new line-based encoding, we integrated our proposal in
the Trinity [4] synthesis framework. By default, Trinity uses tree-based enumer-
ation to search for programs and uses the Z3 SMT solver [5] with the theory
of Linear Integer Arithmetic in the enumeration process. Trinity, like most PBE
state-of-the-art synthesizers, takes as input a DSL, a set of examples, and any
constants or aggregate functions (e.g., mean) that the query may need. Trinity
starts by searching for programs with 1 production rule and iteratively increases
this bound until a program that satisfies all input-output examples is found.

All of the experiments presented in this section were conducted on an Intel(R)
Xeon(R) with E5-2630 v2 2.60 GHz CPUs, using a memory limit of 64 GB and
a time limit of 3,600 s. The goal of our evaluation was to answer the following
questions:
Q1. How does line-based enumeration compare against tree-based enumeration
in terms of encoding complexity? (Sect. 5.2)
Q2. How does line-based enumeration compare against tree-based enumeration
in general? (Sect. 5.2)
Q3. How does line-based enumeration compare against tree-based enumeration
for programs with more than three lines of code? (Sect. 5.2)
Q4. What is the performance impact of breaking symmetries in line-based enu-
meration? (Sect. 5.3)

5.1 SQL Benchmarks

We designed a DSL for SQL that can solve classic SQL queries from a database
textbook [13]. These benchmarks were previously used by well-known SQL syn-
thesizers [7,18,20]. We started with an initial set of 23 SQL benchmarks (cor-
responding to Sects. 5.1.1 and 5.1.2 of the database textbook [13]) and created
variants of these benchmarks until a total of 55 benchmarks.

Since we want to study the performance of each encoding with respect to the
size of the synthesized query, for each of these benchmarks, we generate six dif-
ferent SMT formulas to search for programs that use exactly n production rules
from our DSL, for a total of 330 benchmarks (55 × 6). The SMT formulas differ
in the number of productions that their programs must have, and it simulates
the search performed by a program synthesizer until a solution is found.
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Table 1. Number of tree nodes, variables and mean number of constraints used by
each approach for a given program’s size.

Encoding

Tree-based Line-based

Lines of code Nodes Variables Constraints Nodes Variables Constraints

1 5 10 379 5 6 44

2 21 42 1,703 10 16 118

3 85 170 6,999 15 30 224

4 341 682 28,183 20 48 362

5 1,365 2,730 112,919 25 70 532

6 5,461 10,922 451,863 30 96 734

Table 2. Number of solved benchmarks by each approach.

Lines of code 1 2 3 4 5 6 Total % Solved % Solved (LOC >= 4)

# Tests 55 55 55 55 55 55 330

Tree-based 55 55 54 34 18 2 218 66.06% 32.73%

Line-based 55 55 54 49 48 39 300 90.91% 82.42%

5.2 Comparison Between Line-Based and Tree-Based Encodings

Encoding Complexity. As presented in Sects. 3 and 4, the number of nodes
used by line-based enumeration increases linearly. On the other hand, in tree-
based enumeration the number of nodes increases exponentially with the number
of productions. The number of variables and constraints used by each type of
enumeration varies with the number of nodes. Table 1 shows the number of nodes,
variables and the mean number of constraints used by each type of enumeration
on the 330 SQL benchmarks. The number of nodes and variables are always the
same for a given program’s size. The number of constraints varies with the DSL
since each benchmark may use different constants and aggregate functions.

Performance. Table 2 shows the number of solved benchmarks by each encod-
ing for a given number of lines in our DSL. The performance for both encodings
is similar for programs with three or fewer lines of code. However, when the pro-
gram size increases, the difference between these approaches becomes clear. The
last line of Table 2, shows the percentage of solved benchmarks by each approach
with more than three lines of code. The tree-based encoding only solves 33% of
the benchmarks while line-based encoding solves 82%.

In terms of time spent in each benchmark, Fig. 9 shows two plots, a cactus
plot in Fig. 9a and a scatter plot in Fig. 9b. The cactus plot shows the cumula-
tive synthesis time (y-axis) against the number of benchmarks solved (x-axis).
Each point in the scatter plot represents a benchmark where the x-value (resp.
y-value) is the time spent by the line-based (resp. tree-based) enumerator on
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(a) Running times. (b) Comparison between encodings.

Fig. 9. Tree-based vs Line-based Enumerators.

(a) Number of blocked symmetric solu-
tions per benchmark.

(b) Runtime comparison without consid-
ering the overhead to find symmetries.

Fig. 10. Impact of breaking symmetries.

a given benchmark. Both plots, in Fig. 9, support the results shown in Table 2.
Additionally, the plots show that tree-based enumeration is, in general, signifi-
cantly slower than line-based enumeration.

These differences in time and number of benchmarks solved, in particular for
the instances with more than 3 lines, can be justified by the exponential number
of variables and constraints required by tree-based enumeration.
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5.3 Impact of Symmetry Breaking

We evaluate the impact of symmetry breaking on the performance of line-based
enumeration. For every solution α, we find all solutions symmetric to α and add
constraints to block them. Our experiments show that symmetry breaking does
not improve the performance of line-based enumeration. Possible explanations
for this behavior can be: (1) the number of symmetries is only significant for
programs with more than three lines, and (2) the overhead to find and block all
symmetric solutions is too large when compared to the time of each SMT call.

Figure 10a shows the total number of symmetric solutions blocked in each
benchmark using a logarithmic scale. Programs with one or two lines of code do
not have symmetries because they have only one representation. Programs with
three lines of code have at most one symmetry. Therefore, only programs with
more than three lines of code, have a significant number of blocked solutions,
i.e., blocked more than a thousand symmetric solutions (117 benchmarks). If we
only look at these 117 benchmarks, we observe that not breaking symmetries
solves 87 benchmarks, while breaking symmetries only solves 68 benchmarks.

Since breaking symmetries is ineffective even when a large number of sym-
metries is present, we analyzed the current overhead of finding and blocking
symmetric solutions. For each solution, we spend on average 0.091 s to find and
block all symmetric solutions. Figure 10b shows, per benchmark, the time spent
by the line-based enumerator with and without symmetry breaking, ignoring
the time spent searching for and blocking symmetric solutions. This plot shows
that, even if symmetry breaking was free, it does not improve the performance of
the line-based enumerator. We observed that, without symmetry breaking, each
SMT call takes on average 0.015 s. If we add symmetry breaking predicates, each
SMT call doubles its time to 0.030 s, on average. Since our enumeration relies
on solving many easy SMT calls, we concluded that the search space reduction
enabled by symmetry breaking does not compensate for the extra effort required
to break symmetries.

6 Related Work

Program synthesis has been widely used to synthesize queries using input-output
examples [4,7,17,18,20] or natural language [19]. Approaches for query synthesis
vary from using decision trees with fixed templates [17,20], to abstract repre-
sentations of queries that can potentially satisfy the input-output examples [18],
and to use SMT-based over-approximations to prune the search space [7].

Tree representations of program search spaces are commonly used in modern
program synthesis applications. For example, Bonsai [3] is a validation frame-
work for type systems that uses such representations to synthesize syntactically
incorrect programs wrongly accepted by the type checker. State-of-the-art pro-
gram synthesizers based on enumeration [4,6,7] also make use of tree-based
SMT encodings in order to prune the search space by checking if it is possible
to extend a given partial program to a complete program which satisfies the
input-output examples. The encodings studied in this paper can improve the
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enumeration of program synthesizers based on SMT encodings [4,6,7]. These
encodings are domain agnostic and can be used in other domains besides SQL
(e.g., lists, strings, tables, etc.) with expected improvements of the same order
of magnitude.

Alternatively, the synthesis problem can be directly encoded into SMT using
quantified formulas [11,12,16]. Brahma [11,12] is an oracle-guided synthesizer
that considers an SMT encoding with some similarities to the line-based encod-
ing proposed in Sect. 4. However, there are some fundamental differences: (1)
The program specification is generic and must be satisfied for all possible pro-
gram inputs. Therefore, Brahma essentially solves a single universally quantified
SMT formula in order to synthesize a program. (2) SMT specifications must
capture the complete semantics of the respective components, while state-of-
the-art enumeration-based synthesizers typically deal with specifications that
over-approximate the components’ behavior. (3) The authors focus on bit-vector
manipulation and do not consider arguments of different types. Synudic [16]
extends Brahma with additional restrictions on the structure of the program to
be synthesized. This allows users to either search for all programs that satisfy the
functional requirements or to narrow the search space to programs that satisfy
a given template. Even though there are some similarities between our encoding
and a purely SMT-based approach [11,12,16], we only need to encode a for-
mula where each solution represents a well-typed program. The SMT encoding
abstracts the semantics of the operators and is simpler than previous approaches
that encode the entire synthesis problem as an SMT problem. Moreover, an
enumeration-based approach makes thousands of SMT calls (each in the order
of milliseconds), while the SMT encodings from previous approaches [11,12,16]
typically solve one large quantified formula that can take a very long time.

7 Conclusions

In recent years, new platforms for software development have been made avail-
able where users with little programming skills are able to create and modify
software applications. These tools are able to hide many aspects of programming,
but some coding experience is still needed for some operations. Programming-
by-example is making programming more accessible by allowing users to create
incomplete specifications through input-output examples of these operations and
automatically synthesize the desired program.

Currently, the most common approach to program synthesis is to perform
an enumerative search on the space of programs and find one that satisfies the
specifications. In this paper, we propose a new compact SMT encoding for pro-
gram enumeration where each program is represented as a sequence of lines.
Experimental results on synthesis of SQL queries show that the proposed line-
based encoding allows a faster enumeration of programs when compared to the
usual tree-based encoding. Moreover, while the tree-based encoding does not
scale beyond a small number of operations, the new line-based encoding allows
to find programs with a larger sequence of operations.
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