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Degradation under dynamic operating conditions: Modeling, competing
processes and applications

Mohammadmahdi Hajihaa, Xiao Liua, and Yili Hongb

aDepartment of Industrial Engineering, University of Arkansas, Fayetteville, Arkansas; bDepartment of Statistics, Virginia Tech,
Blacksburg, Virginia

ABSTRACT
This paper investigates degradation modeling under dynamic conditions and its applications.
Both univariate and multiple competing degradation processes are considered with individual
degradation paths being described by Wiener processes. Parametric and non-parametric
approaches are used to capture the effect of environmental conditions on process parame-
ters. For competing degradation processes, we obtain the probability that a particular process
reaches a pre-defined threshold, before other processes, over future time intervals. In particu-
lar, we consider the potential statistical dependence among the latent remaining lifetimes of
multiple degradation processes due to unobserved future environmental factors. Two case
studies, aircraft piston pump wear and US highway performance deterioration, are presented.
Comprehensive comparison studies are also performed to generate some critical insights on
the proposed approach. Data have been made available on GitHub.
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1. Introduction

Advances in sensing technologies enable the monitor-
ing of degradation processes under dynamic operating
and environmental conditions. System operating and
environmental data, also known as the SOE data, rep-
resent one of the most significant trends in modern
reliability analysis in the age of Big Data (Hong,
Zhang, and Meeker 2018; Meeker and Hong 2014).
Compared to traditional degradation data, SOE data
not only contain critical information on system field
variation, but also enable the real-time estimation of
system remaining useful life (Bian, Gebraeel, and
Kharoufeh 2015; Elsayed 2012; Elwany and Gebraeel
2009; Fang, Paynabar, and Gebraeel 2019; Gebraeel
and Pan 2008; Liu et al. 2013; 2020; Tian and Liao
2011; Ye and Chen 2014; Zhao, Xu, and Liu 2018).

1.1. Motivating examples

Two motivating examples are firstly presented and re-
visited in Section 3.

1.1.1. Motivating example I: Degradation of aircraft
hydraulic piston pump

Hydraulic piston pump, shown in Figure 1, is a crit-
ical component of an aircraft hydraulic system. The

pistons are designed to complete suction and dis-
charge of fluid alternatively in a reciprocating motion.
The hydraulic piston pump is subject to degradation
due to a number of reasons. Accumulation of conta-
minated particles between the valve plate and cylinder
block surface causes three-dimensional abrasive wear
leading to fluid leakage. The instability of oil film
causes abrasive contact between piston bore and pis-
ton surface exacerbates the leakage problem. The slid-
ing motion under lubrication causes swash plate and
slippers abrasive wear. Because these systems generally
have long lifetime, failure data are scarce and degrad-
ation data provide important information on the reli-
ability modeling and prediction of aircraft hydraulic
piston pump.

The wear rate of aircraft hydraulic piston pump
depends on two critical operating conditions: the
angular speed xt, and the discharge pressure pt. The
physical wear mechanism is known and given by the
following wear model (Ma et al. 2019):

dxt
dt

/ ph1t x
h2
t exp ðh3pt þ h4xtÞ [1]

where xt is the amount of wear, and fhig4i¼1 are model
parameters which need to be estimated from degrad-
ation data. As an illustrative example, Figure 2 shows
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the (standardized) degradation, discharge pressure and
rotational speed based on a lab testing data set.

1.1.2. Motivating example II: Long-term pavement
performance degradation

Highway performance degradation refers to the evolu-
tion of crack length on highway sections under
dynamic use conditions. The data are available from
the Long-Term Pavement Performance (LTPP) pro-
gram, Federal Highway Administration (LTPP 2019).
As an illustration, Figure 3 shows the highway per-
formance index and standardized AADT (Annual
Average Daily Traffic) of Highway 16, Yellow Head
County, Alberta, Canada. The highway performance
deteriorates over time under the influence of AADT.
Unlike the first motivating example where the physical
degradation mechanism is well understood, the para-
metric relationship between highway performance and
AADT is not available and usually subject to a high
degree of uncertainty.

1.2. Literature review

Degradation models, without explicitly considering the
environmental and operating conditions, have been exten-
sively investigated over the last two decades. An import-
ant class of degradation models, motivated by the early
work of Birnbaum and Saunders (1969), Bhattacharyya
and Fries (1982) and Doksum, H�oyland, and Hoyland
(1992), focuses on the modeling of degradation using sto-
chastic processes, including Wiener process (Tseng and
Peng 2004), Gamma process (Chen and Ye 2018; Jiang,
Feng, and Coit 2015; Singpurwalla 1995), Inverse
Gaussian process (Chen and Ye 2018; Ye and Chen
2014), and random fields for spatio-temporal degradation
data (Liu, Yeo, and Kalagnanam 2018). Stochastic proc-
esses allows us not only to model the temporal correl-
ation structure of a degradation process, but also to
leverage the well-established mathematical properties,
such as sample path properties and transition density.

The modeling of degradation data under changing
environments has received much attention in recent
years (Bian and Gebraeel 2012; Elwany and Gebraeel
2009; Gebraeel and Pan 2008; Hong et al. 2015; Liao
and Tian 2013; Zhai and Ye 2018). Figure 4 summa-
rizes the main modeling strategies for environmental
conditions and degradation processes, while Table 1
highlights the main differences of some selected work
based on the modeling strategies.

In terms of the modeling of environmental condi-
tions, both stochastic and deterministic models have
been adopted as shown in Figure 4. For example,
Kharoufeh (2003) and Bian, Gebraeel, and Kharoufeh
(2015) modeled environmental condition by continu-
ous-time Markov chain (CTMC), Zhou, Serban, and
Gebraeel (2014) modeled environmental conditions by a
multinational distribution, while Hong et al. (2015) con-
sidered the case where environmental conditions are

Figure 1. Aircraft hydraulic piston pump with physical
wear mechanism.

Figure 2. Aircraft hydraulic piston pump degradation: (a) standardized degradation level, (b) standardized discharge pressure, and
(c) standardized rotational speed.
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given by deterministic functions of time. Shen and Cui
(2016) considered systems operating in K different envi-
ronments. Stochastic processes are used to model the
transition between environmental regimes as well as the
transition of system states within a regime. Random
environmental shocks, which cause instantaneous
changes to degradation level, have also been considered
(Huang et al. 2019; Jiang, Feng, and Coit 2015; Rafiee,
Feng, and Coit 2014; Yang et al. 2018). For example,
Yang et al. (2018) considered a process whose hazard
rate of sudden failure is affected by random shocks
induced by environment following non-homogeneous
Poisson distribution. Huang et al. (2019) considered an
environmental shock as a sharp increase in stress level
over a short period of time that causes a sudden
increase in degradation level. Jiang, Feng, and Coit
(2015) proposed a Gamma degradation model consider-
ing i.i.d. shocks arriving according to a homogeneous
Poisson process.

In terms of how the degradation process is mod-
eled, important modeling strategies include the gen-
eral path model (Hong et al. 2015, Hong, Tan, and Ye
2019), stochastic processes (Bian, Gebraeel, and

Kharoufeh 2015; Bian and Gebraeel 2013; Kharoufeh
2003; Liao and Tian 2013), and non-parametric func-
tional approach (Zhou, Serban, and Gebraeel 2014).
Thomas et al. (2019) modeled the degradation rate of
lithium-ion cells as a function of environmental con-
ditions (temperature) and the current degradation.
Hong, Tan, and Ye (2019) investigated the oxidation
process due to emerging contaminants. The model
accounts for the joint effect of agents on degradation
rate via shape-restricted Bernstein bases. Zhai and Ye
(2018) presented a Wiener process degradation model
that considers the correlation of units in the same
operating conditions, i.e., the block effect.

The modeling of multivariate degradation processes
under dynamic environments is relatively scarce in
the literature. One approach relies on a constructed
composite Health Index (HI) for degradation model-
ing and prognostics by fuzing data collected from
multiple sensors (Chehade et al. 2018; Liu, Chehade,
and Song 2017; Song, Liu, and Zhang 2018; Yan et al.
2016). Such an approach converts the modeling of

Figure 3. Degradation of Highway 16, Yellow Head County, Alberta, Canada (Left panel: highway performance index; Right panel:
standardized annual average daily traffic).

Figure 4. Modeling approaches for environmental conditions
and degradation processes.

Table 1. Selected work in degradation modeling under
dynamic conditions.
Environmental
models

Degradation
models Selected work

E1 D2 Kharoufeh (2003); Bian, Gebraeel,
and Kharoufeh (2015); Shen and
Cui (2016)

E2 D3 Zhou, Serban, and Gebraeel (2014)
E3 D1 Rafiee, Feng, and Coit (2014)
E3 D2 Jiang, Feng, and Coit (2015)
E4 D1 Hong et al. (2015); Jin et al. (2019);

Thomas et al. (2019)
E4 D2 Bian and Gebraeel (2013); Liao and

Tian (2013); Huang et al. (2019)
E4 D1, D4 Yan et al. (2016); Liu, Chehade, and

Song (2017); Song, Liu, and
Zhang (2018)

E4 D2, D3 Hong, Tan, and Ye (2019)
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multiple sensor signals to a univariate health index,
which provides a better characterization of system
conditions than individual sensor data. Peng et al.
(2016) also investigated the Bayesian degradation ana-
lysis of complex systems with multiple degradation
indicators under dynamic conditions. One challenge
in the modeling of multiple degradation processes
arises from the potential dependence among proc-
esses. Zhao, Xu, and Liu (2018) investigated the ADT
planning with competing failure modes, Liu, Tan, and
Pare (2017) proposed a physics-based dynamical
model for multiple degradation processes of system
internal states under dynamic operating conditions,
Liu et al. (2020) considered multiple dependent deg-
radation processes and environmental influence. Fang,
Pan, and Hong (2020) investigated the reliability ana-
lysis for coherent systems subject to multiple corre-
lated degradation processes. In the above-mentioned
literature, Copula has been used to establish the
dependence among degradation processes.

1.3. Overview

This paper investigates the modeling of both univariate
and multiple competing degradation processes under
dynamic conditions. Key contributions of this paper
include: i) For multiple degradation processes under the
classical setup of competing risks model, we obtain the
probability that a particular process reaches a pre-
defined threshold, before other processes, over a given
future time interval. In particular, a frailty model is pro-
posed to capture the potential statistical dependence
among latent remaining lifetimes of multiple degrad-
ation processes due to unobserved future environmental
factors; ii) We investigate both parametric and non-
parametric approaches to capture the effects of multiple
operating and environmental conditions. Such effects
are embedded within the classical Wiener degradation
process originated from the Nelson’s Cumulative
Exposure model, i.e., individual degradation processes
are modeled by Wiener processes with both the drift
and diffusion coefficients being proportionally influ-
enced by common environmental conditions; iii) We
perform comprehensive numerical studies, including
comparison studies, of the proposed approaches based
on real data from two different applications. For the
second case study, the processed US highway perform-
ance degradation data (LTPP 2019) have been made
publicly available for future research and benchmarking.

Section 2 presents the basic modeling framework
for degradation data under dynamic conditions. In
Section 2.1, we obtain the probability that a system

fails due to a particular degradation process within a
given future time interval. Section 2.2 investigates the
degradation modeling under changing environmental
conditions for individual processes. Two case studies
and a numerical example are given in Section 3 to
illustrate the model and provide some useful insights
on system degradation under changing environmental
conditions. Section 4 concludes the paper.

2. Degradation modeling under dynamic
conditions

We start with a general scenario where a system is sub-
ject to n ðn � 1Þ degradation processes (n¼ 1 for the
univariate case). Each degradation process i, i ¼ 1, :::, n,
is influenced by time-varying conditions, and is mod-
eled by a measurable real-valued stochastic process

XðiÞ
t : 0,1Þ ! R½ [2]

where XðiÞ
t represents the degradation level at time t

for process i. Associated with each process there exists
a failure threshold gðiÞ: Without loss of generality, we
assume that gðiÞ ¼ 0 and xðiÞ0 > 0: Based on the clas-
sical competing risks model, the system fails when
any of the n degradation processes hits its failure
threshold, and the system lifetime is given by:

T ¼ minfTð1Þ,Tð2Þ, :::,TðnÞg [3]

where TðiÞ ¼ infðt : XðiÞ
t � 0Þ is the latent First-

Passage-Time (FPT) for process i. In a special case
when n¼ 1, the system lifetime is simply written
as T ¼ Tð1Þ:

Equation [3] requires us to (i) investigate the distri-
bution of T (Section 2.1), (ii) obtain the latent FPT for
individual degradation processes under dynamic condi-
tions (Section 2.2), and (iii) perform statistical inference
given the observed degradation data (Section 2.2.3).

2.1. The overall framework

From reliability prediction and system prognostics
point of view, of central interest is the distribution of
T in Eq. [3]. In particular, we are concerned with an
important question frequently arising from engineer-
ing practice: at time ~t , what is the probability PðiÞ

D that
the system fails due to process i within a future time
interval ð~t ,~t þ D�, provided with the last available
degradation measurement taken at time s < ~t? In
other words, we are interested in the probability that
a particular degradation process hits its threshold
before other processes over ð~t ,~t þ D�: This scenario is
illustrated in Figure 5.
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Note that, the probability PðiÞ
D depends on whether

the multiple degradation processes are stochastically
dependent for t > s: For any process i, let xðiÞs be the
last available degradation measurement at time s, and
let FðiÞð�ðiÞ; xðiÞs Þ be the distribution of the latent
remaining lifetime �ðiÞ for process i given the degrad-
ation level xðiÞs at time s. Then, Propositions 1 and 2
respectively show how the probability PðiÞ

D can be
found for independent and dependent cases.

Proposition 1: System Reliability (Independent Case).
If all degradation processes are stochastically independ-
ent for all t > s, and the system functions at time ~t
(> s), then, the probability that the system fails due to
degradation process i, i ¼ 1, :::, n, within the interval
ð~t ,~t þ D� is

PðiÞ
D ¼

ðD
0

n1ð�ð1Þ , :::, �ði�1Þ
, �ðiþ1Þ

, :::, �ðnÞÞn2ð�ðiÞÞ
n o

�:1n
d�

[4]

where

n1ð�ð1Þ, :::, �ði�1Þ, �ðiþ1Þ, :::, �ðnÞÞ

¼
Yn

j¼1, j6¼i

ð1
0
ð1� FðiÞð�ðjÞ; uÞÞpðiÞðu,~t ; xðjÞs Þdu [5]

n2ð�ðiÞÞ ¼
@

@�ðiÞ

ð1
0
FðiÞð�ðiÞ; uÞpðiÞðu,~t; xðiÞs Þdu: [6]

and pðiÞðu,~t; xðiÞs Þ is the transition density for process i
from degradation level xs at time s to degradation level
u at time ~t > s:

This proposition can be shown as follows. For
independent degradation processes, the joint system
survival function is:

Gð�ð1Þ, �ð2Þ, :::, �ðnÞÞ ¼
Yn
i¼1

ð1� FðiÞð�ðiÞ; xðiÞ~t
ÞÞ [7]

where x~tðiÞ is the (unobserved) degradation level at
time ~tð> sÞ, and

FðiÞð�ðiÞ; xðiÞ~t Þ ¼
ð1
0
FðiÞðvðiÞ; uÞpðiÞðu,~t ; xðiÞs Þdu: [8]

Hence, it follows from Crowder (2001) that the
sub-density of the latent remaining lifetime for any
process i is given by

f ðiÞsubð�Þ ¼ � @Gð�ð1Þ, �ð2Þ, :::, �ðnÞÞ
@�ðiÞ

� �
¼ n1ð�ð1Þ, :::, �ði�1Þ, �ðiþ1Þ , :::, �ðnÞÞn2ð�ðiÞÞ

� �
��1n
[9]

where n1ð�Þ and n2ð�Þ are given by Eqs. [5] and [6].
Finally, the probability that the system fails due to

degradation process i within the interval ð~t ,~t þ D� is
obtained from the sub-density as follows:

PðiÞ
D ¼ Ð D

0 f ðiÞsubð�Þd�
¼ Ð D

0 n1ð�ð1Þ, :::, �ði�1Þ, �ðiþ1Þ , :::, �ðnÞÞn2ð�ðiÞÞ
� �

��1nd�:

[10]

The proposition above assumes that the multiple
degradation processes are stochastically independent
for all t > s, which is not always the case in reality.
As shown in Figure 5, although the historical environ-
mental condition can be observed up to ~t , the future
environmental condition beyond ~t is rarely known
exactly. It is possible that the future degradation proc-
esses are influenced by some common but unobserved
random factor Z�: As a result, the latent remaining
lifetimes, �ð1Þ, �ð2Þ, :::, �ðnÞ, corresponding to the n
processes become stochastically dependent. Hence, it
is natural to assume that the latent remaining lifetimes
would become independent if the random factor Z�

was exactly known. This implies that the latent
remaining lifetimes are conditionally independent
given Z� ¼ z� :

Gð�ð1Þ, �ð2Þ, :::, �ðnÞjz�Þ ¼ exp ð�z�wÞ and w

¼
Xn
i¼1

KðiÞð�ðiÞÞ [11]

where KðiÞð�ðiÞÞ is the cumulative hazard function cor-
responding to degradation process i and is given by:

KðiÞð�ðiÞÞ ¼ � log ð1� FðiÞð�ðiÞ; xðiÞt ÞÞ: [12]

The random factor Z� is known as frailty. We
adopt a Gamma frailty model by assuming that Z�

follows a Gamma distribution for its flexibility in tak-
ing variety of shapes (Abbring and Van Den Berg
2007). Since it is well-known that the Gamma shape
and inverse scale parameters are not identifiable in a
Gamma frailty model, we assume that Z� has mean
one and variance xZ� , and the unconditional system
joint survival function becomes (Liu 2012):

Gð�ð1Þ, �ð2Þ, :::, �ðnÞÞ ¼ ð1þ xZ�wÞ� 1
xZ� : [13]

Figure 5. The scenario considered in this paper: s is the time
when the last degradation measurement is taken; ðs,~t� is the
interval over which the system properly functions; and ð~t ,~t þ
D� is the interval over which the system reliability is
of interest.
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Proposition 2: System Reliability (Dependent Case).
If the stochastic dependence among competing degrad-
ation processes is captured by the frailty model [13] for
t > s, and the system still functions at time ~t > s,
then, the probability that the system fails due to deg-
radation process i, i 2 ½1, :::, n�, within the interval
ð~t ,~t þ D� is

PðiÞ
D ¼ Ð D

0 � @Gð�ð1Þ , �ð2Þ , :::, �ðnÞÞ
@�ðiÞ

� �
��1n

d�

¼ Ð D
0 K0ðiÞ ð�Þ 1þ xz�

Xn
j¼1, i 6¼j

KðjÞð�Þ
( )� 1

xz�
�1

d�:

[14]

2.2. Degradationmodeling under dynamic conditions

The two propositions above hinge on the distribution
FðiÞð�ðiÞ; xðiÞs Þ of the latent remaining lifetime �ðiÞ given
the last available degradation level xðiÞs at time s, as
well as the transition density pðiÞðu, t; xðiÞs Þ: Apparently,
both FðiÞð�Þ and pðiÞð�Þ depend on how the degradation
process XðiÞ

t is modeled, which is to be discussed in
this subsection. Throughout this section, the super-
script �ðiÞ is dropped for simplicity.

Consider a Wiener degradation process, fXtgt�0,
as follows:

Xt ¼ x0 þ
ðt
0
lsdsþ

ðt
0
rsdBs [15]

where lt and rt are the time-dependent drift and dif-
fusion, and fBtgt�0 is a standard Wiener process such
that: (i) B0 ¼ 0; (ii) for every 0 � t0 < t1 < ::: < tm,
the increments Bt1 � Bt0 ,Bt2 � Bt1 , :::,Btm � Btm�1 are
independent random variables; (iii) for each 0 � s <
t < 1, the increment Bt � Bs is a Gaussian random
variable with mean 0 and variance t – s; and (iv) the
sample paths are continuous functions. In a special
case when both lt ¼ l0 and rt ¼ r0 for all t, model
[15] degenerates to a linear degradation process with
time-invariant diffusion, Xt ¼ x0 þ l0t þ r0Bt:

Both lt and rt are influenced by dynamic conditions,
which are described by a q-dimension time series, zt ¼
ðz1, t , z2, t, :::, zq, tÞ: To capture the influence of zt on
fXtgt�0, we assume the following parameterization:

lt ¼ l0 exp
Xq
j¼1

gjðzj, tÞ
8<
:

9=
; � l0jt [16]

r2t ¼ r20 exp
Xq
j¼1

gjðzj, tÞ
8<
:

9=
; � r20jt [17]

where gjð�Þ, j ¼ 1, 2, :::, q, captures the effect of the jth
environmental condition and satisfies:

	 gjðzÞ is non-decreasing in z, i.e., a harsher environ-
mental condition does not reduce the degrad-
ation rate.

	 gjðz0Þ ¼ 0 which implies that l0 and r0 are the
initial values of l and r under the initial environ-
mental condition z0.

	 jt is measurable, i.e., for t � 0, we
have

Ð t
0 jsds < 1:

Equations [16] and [17] indicate that the degrad-
ation rate at time t depends only on the environmen-
tal conditions at t, regardless of the history of the
degradation process. This consideration can be justi-
fied by the well-known Nelson’s Cumulative Exposure
(CE) model (Nelson 2009) originated from the
Palmgren-Miner linear damage hypothesis and has
been widely adopted in reliability modeling under
time-varying conditions (Liao and Elsayed 2006; Liu
and Qiu 2011). For degradation process (Eq. [15]), the
Nelson’s CE model necessarily implies that Xt ¼ Xft

for some time transformation function ft (Doksum,
H�oyland, and Hoyland 1992; Peng and Tseng 2010;
Ye and Chen 2014). If the first order derivative of ft
exists, it follows from Eqs. [15]–[17] that:ðt

0
lsds ¼

ðft
0
l0ds ¼ l0ft [18]

ðt
0
rsdBs ¼

ðft
0
r0dBs ¼ r0Bft : [19]

It is easy to see that the parameterization (Eq. [16])
can be obtained from Eq. [18] by letting f0t ¼ jt:
Since jt is measurable, the stochastic integralÐ t
0 j

1=2
t ðyÞdBy exists and has the same distribution as

the time-transformed Brownian motion Bft in Eq.
[19]. Then, we obtain Eq. [17] from Eq. [19]. Note
that, it is implied by Eqs. [16] and [17] that the envir-
onmental condition affects both the drift and diffusion
such that the ratio between lt and r2t remains
unchanged: Ð t

0 lsdsÐ t
0 r

2
s ds

¼ lt
r2t

¼ l0
r20

¼ c [20]

for some constant c.
Finally, substituting Eqs. [16] and [17] into Eq.

[15], we obtain the following degradation process with
time-dependent mean-value function and time-
dependent diffusion, Xt ¼ x0 þmt þ et, where mt ¼
l0

Ð t
0 jsds ¼ l0ft and et ¼ r0

Ð t
0 j

1=2
s dBs: For
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measurable j, the stochastic integral et is Gaussian
with mean zero and variance r20ft ¼ r20

Ð t
0 jsds:

2.2.1. The effect of environmental conditions, g(z)
The function gjð�Þ, j ¼ 1, 2, :::, q, captures the effect of
the jth environmental condition. In this subsection,
both parametric and non-parametric approaches are
used to model gjðzÞ: The subscript �j is omitted in this
subsection without ambiguity.

The parametric approach assumes a functional
form for g(z) motivated by known physics or engin-
eering domain knowledge. For example, in our first
motivating example in Section 1.1, the physical wear
mechanism of hydraulic piston pump, under given
pressure and rotational speed, is known and can be
described by Eq. [1].

When physics or engineering knowledge is not
available or too complicated to be utilized, non-para-
metric models of g(z) become more useful. For
example, in our second motivating example in Section
1.1, the degradation of highway concrete asphalt has
extremely complex interactions with external environ-
mental factors and is subject to a high degree of
uncertainty which cannot be well explained by the
first-principle physics model.

Adopting the non-parametric approach, we model
g(z) by a linear combination of spline bases (piecewise
polynomials). Since gðz0Þ ¼ 0 and g(z) needs to be
non-decreasing in z, shape-restricted splines are
required (Hong et al. 2015; Meyer 2008; Ramsay
1998). In particular,

gðzÞ ¼
Xq¼bþh

q¼1

cqI
ðhÞ
q ðzÞ, cq � 0 [21]

where h is the order of the spline function, b is the
number of knots, fcqgbþh

q¼1 are the coefficients to be
estimated, and IðhÞq ðzÞ is the qth I-spline base:

IðhÞq ðzÞ ¼
ðz
zmin

MðhÞ
q ðuÞdu [22]

where MðhÞ
q ðuÞ is the qth base of order h in M-splines

which can be computed recursively as

and zmin ¼ d1 ¼ ::: ¼ dh < dhþ1 < ::: < dhþb <

dhþ1þb ¼ ::: ¼ d2hþb ¼ zmax: Since M-splines are non-
negative, Eq. [22] gives non-decreasing bases of I-
splines. Hence, g(z) in Eq. [22] is non-decreasing in z
for non-negative coefficients of basis functions cq.

To illustrate the non-parametric approach, we
model a simulated degradation data set (shown in
Figure 7) using the non-parametric approach
described above. Then, the estimated degradation path
is compared to that obtained from the parametric
approach which assumes the correct relationship
between degradation and environmental conditions
(i.e., the best-case scenario for the parametric
approach). Here, the underlying function gð�Þ is taken
to be gðzÞ ¼ h�1ðz � z0Þ: Figure 6 shows the esti-
mated j, as a function of the environmental condition
z, for different combinations of the order, h, and the
number of knots, b. We see that the shape-restricted
splines ensure that j is non-decreasing in z, i.e., the
harsher environment condition does not reduce the
degradation rate. Table 2 shows the candidate values
for the order and knots with the corresponding AIC,
BIC, and the maximized log-likelihood (to be dis-
cussed in Section 2.2.3). See that, when h¼ 1 and
b¼ 3, the minimum AIC and BIC, and the maximum
log-likelihood are achieved.

Table 3 provides the estimated parameters as well
as the asymptotic 90 percent confidence intervals for
l, r and the four coefficients fcig4i¼1 when dataset 1
is used. Figure 7a shows the comparison between the
estimated mean degradation paths, respectively
obtained from the non-parametric method and the
parametric method. In particular, we re-simulate
another dataset, and compare the estimated mean
degradation paths respectively obtained from the
non-parametric method (h¼ 2 and b¼ 4) and the
parametric method; see Figure 7b. In both cases, it is
worth noting that the non-parametric approach has a
comparable performance with the parametric
approach which assumes the correct parametric form
of gð�Þ (i.e., the best-case scenario which is in fact
unrealistic in practice). The non-parametric approach
effectively models the degradation under dynamic

MðhÞ
q ðzÞ ¼

1ðdq � z < dqþ1Þ 1
dqþ1 � dq

if h ¼ 1

hðz � dqÞMðh�1Þ
q ðzÞ þ ðdqþh � zÞMðh�1Þ

qþ1 ðzÞ
ðh� 1Þðdqþh � dqÞ 1ðdq � z < dqþ1Þ if h > 1:

8>>><
>>>:

[23]
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conditions without making parametric assumptions
on gð�Þ:

2.2.2. Latent remaining life
Let Pðu, t; xsÞ be the probability that a degradation
process has not reached a certain level u at time t
conditioning on Xs ¼ xs: Then, the conditional transi-
tion density of the degradation process (Eq. [15]) is

pðu, t0; xsÞ ¼ d
du

Pðu, t0; xsÞ [24]

where t0 ¼ t � s is the remaining life. The transition
density can be obtained as follows

pðu, t0; xsÞ ¼ 1
2
ðps2t0 Þ�1=2fAðuÞ � exp ð�2xscÞBðuÞg

[25]

where

AðuÞ ¼ exp �ðu� xs �mt0 Þ2
4s2t0

( )
,

BðuÞ ¼ exp �ðuþ xs �mt0 Þ2
4s2t0

( ) [26]

and

Figure 6. Estimated j, as a function of the environmental condition z, for different combinations of h and b.

Figure 7. (a) Comparison of non-parametric (h¼ 1 and b¼ 3) and parametric modeling approaches; (b) Comparison of non-para-
metric (h¼ 2 and b¼ 4) and parametric modeling approaches based on another simulated dataset.
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mt0 ¼ l0

ðt0
0
jsþsds, s2t0 ¼

1
2
r20

ðt0
0
jsþsds: [27]

Hence, conditioning on the degradation level xs at
time s, the distribution of remaining life for a con-
stant failure threshold g¼ 0 can be found as (Cox and
Miller 1965):

where the error function erfð�Þ is defined as erfðuÞ ¼
2p�1=2

Ð u
0 e�t2dt: To obtain the second line on the

right-hand-side of Eq. [28], note thatð1
0
AðxÞdx ¼ ðps2t0 Þ1=2 1� erf � xs þmt0

2st0

� �� �
[29]

ð1
0
BðxÞdx ¼ ðps2t0 Þ1=2 1� erf � xs �mt0

2st0

� �� �
: [30]

For illustrative purposes, consider a degradation
process (Eq. [15]) under dynamic environmental con-
dition with l0 ¼ �0:5, r0 ¼ 1, x0 ¼ 10 and jt ¼
exp ðh�1ðzt � z0ÞÞ: Let the environmental condition be
specified by a continuous function
zt ¼ sin ð0:1tÞ þ cos ðtÞ: Figure 8 shows the environ-
mental condition, time-varying degradation rate, CDF
and pdf of the FPT of the degradation process. It is
worth noting that the pdf of the FPT is no longer

unimodal under dynamic environmental condition. As
shown in Figure 8d, between times 0 and 40, the
density function oscillates with the environmental
condition. As a result, the probability of failure is not-
ably higher over the time periods when the environ-
mental condition becomes harsher (i.e., the spikes in
the density function).

If the degradation process is under discrete envir-
onmental conditions (such as the CTMC model con-
sidered in Kharoufeh (2003) and Bian, Gebraeel, and
Kharoufeh (2015)), we consider a condition specified
by a piece-wise constant function, i.e., there exists a
partition 0 � t1 < t2 < t3 < s such that zt is a con-
stant on the sub-interval ½tj, tjþ1Þ for j ¼ 1, 2: Figure 9
shows the environmental condition, degradation rate,
CDF and pdf of the FPT of the degradation process.
The effect of the changing environmental condition
on the degradation process is clearly shown. For
example, when the environmental condition suddenly
jumps at time 10, a jump is also observed in the pdf
of FPT, leading to a high failure probability between
times 10 and 15.

2.2.3. Parameter estimation
Propositions 1 and 2 in Section 2.1 show how the fail-
ure probability and failure mode (i.e., PðiÞ

D ) can be

evaluated over any time interval ð~t ,~t þ D�, given that
the last available degradation measurement is taken at
some time s < ~t : Section 2.2 presents the degradation
model, FPT distribution, as well as the transition
density which are required to evaluate PðiÞ

D : In this sec-
tion, we focus on estimating the unknown parameters
in the degradation model. It is assumed that,

	 For degradation process i, i ¼ 1, . . . , n, a number
of mðiÞ þ 1 measurements are taken at discrete
times tðiÞ ¼ ðtðiÞ0 , tðiÞ1 , . . . , tðiÞmðiÞ Þ over a time period
½0, s�: Here, 0 ¼ tðiÞ0 < tðiÞ1 < . . . < tðiÞmðiÞ � s:

	 The observed degradation data are denoted by
xðiÞ ¼ ðxðiÞ0 , xðiÞ1 , . . . , xðiÞmðiÞ Þ where xðiÞ0 is the initial
degradation measurement at time 0.

	 If the system fails at ~t due to process i, cðjÞ ¼
s� tðjÞ

mðjÞ is the censored observation for process j

Table 3. Parameter estimation with 90 percent asymptotic
confidence intervals for Dataset 1.
Parameters MLE Asymptotic 90 percent confidence interval

l �0.004 (-0.011, 0.003)
r 0.025 (0.003, 0.046)
c1 1.075 (-1.044, 3.194)
c2 1.37 (0.248, 2.491)
c3 0.838 (-0.147,1.823)
c4 0.633 (-0.311, 1.577)

Table 2. Model selection for different combinations of h
and b.
h b AIC BIC Log-Likelihood # of Parameters

1 4 �106.897 �92.70559 60.04487 7
1 3 �109.201 �97.548 60.51007 6
2 2 �107.0636 �95.5919 59.53182 6
2 3 �107.2299 �93.8457 60.61493 7
3 1 �106.835 �95.36289 59.41751 6
3 2 �106.1661 �92.7819 60.08303 7
4 1 �105.5677 �92.18355 59.78385 7
4 2 �103.748 �88.45179 59.87399 8

Fðt0; xsÞ ¼ 1� Ð1
0 pð�, t0; xsÞd�

¼ 1� 1
2

1� erf � xs þmt0

2st0

� �� �
� exp ð�2xscÞ 1� erf � xs þmt0

2st0

� �� �� �
[28]
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for j ¼ 1, 2, . . . , n and j 6¼ i: If the system still
functions at s, cðiÞ ¼ s� tðiÞ

mðiÞ is the censored obser-
vation for process i, i ¼ 1, 2, . . . , n:

	 The cause of system failure is denoted by the vec-
tor d ¼ ðdð1Þ, dð2Þ, . . . , dðnÞÞ such that dðiÞ ¼ 1 if the
failure is due to degradation process i; otherwise
dðiÞ ¼ 0: Note that under the assumption of com-
peting risks,

Pn
i¼1 d

ðiÞ � 1: if no failure has
occurred up to s,

Pn
i¼1 d

ðiÞ ¼ 0, i.e. d is a
zero vector.

Then, the likelihood function of the model parame-
ters is

L ¼
Yn
i¼1

YmðiÞ

j¼1

pðxðiÞj , tðiÞj ; xðiÞj�1Þ

:
Yn
i¼1

YmðiÞ

j¼1

pð0, tðiÞj ; xðiÞj�1Þd
ðiÞ
:
Yn
i¼1

ð1� FðcðiÞ; xðiÞmðiÞ ÞÞ1�dðiÞ

[31]

Figure 8. Degradation under continuous dynamic environmental conditions: (a) environmental condition, (b) degradation rate, (c)
CDF of the FPT, and (d) pdf of the FPT.

Figure 9. Degradation under discrete environmental conditions: (a) environmental condition, (b) degradation rate, (c) CDF of the
FPT, and (d) Multimodal pdf of the FPT.
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The first term on the right-hand-side of Eq. [31] is
the contribution to the total likelihood from the
observed degradation data, i.e., it is the multiplication
of the transition densities of the degradation at time
tðiÞj , given the observed degradation xðiÞj�1 at time tðiÞj�1:

The transition density between two consecutive times
is given as follows

pðxðiÞj , tðiÞj ; xðiÞj�1Þ ¼
1

2
ffiffiffiffiffiffiffiffiffiðpSðp

tðiÞj�1, t
ðiÞ
j�1Þ

fAðxðiÞj�1Þ

� exp ð�2cxðiÞj�1ÞBðxðiÞj Þg [32]

where

AðxðiÞj Þ ¼ exp �ðxðiÞj � xðiÞj�1 �MðtðiÞj�1, t
ðiÞ
j ÞÞ2

4SðtðiÞj�1, t
ðiÞ
j Þ

0
@

1
A [33]

BðxðiÞj Þ ¼ exp �ðxðiÞj þ xðiÞj�1 �MðtðiÞj�1, t
ðiÞ
j ÞÞ2

4SðtðiÞj�1, t
ðiÞ
j Þ

0
@

1
A [34]

MðtðiÞj�1, t
ðiÞ
j Þ ¼ l0

ðtðiÞj
tðiÞj�1

jsds [35]

SðtðiÞj�1, t
ðiÞ
j Þ ¼ 1

2

ðtðiÞj
tðiÞj�1

r2s ds ¼
1
2
r20ðkðiÞj � kðiÞj�1Þ [36]

The second and the third terms on the right-hand-
side of Eq. [31] are the contributions to the total like-
lihood, respectively, from the observed system lifetime
and censored observations. The second term vanishes
when no system failure is observed at time s. Details

of implementing the MLE as well as obtaining the
confidence intervals are provided in the next section.

3. Case studies, numerical examples
and comparison

We revisit the two motivating examples in Section 1.1
and illustrate the applications of the proposed
approach. The first case study investigates the degrad-
ation of aircraft hydraulic piston pump, while the
second case study models the highway performance
degradation data from the U.S. Federal Highway
Administration.

3.1. Case study I: Degradation of aircraft
hydraulic piston pump

Aircraft hydraulic piston pump, shown in Figure 1, is a
critical component of aircraft hydraulic system. As
described in Section 1.1, a hydraulic piston pump does
a complete cycle of suction and discharge of fluid in
spinning motion. This mechanism is controlled by an
engine that rotates the cylinder block and the tilted
swash plate connected to the piston bores. Due to the

Table 4. Parameter estimation for hydraulic piston pump
degradation.
Parameters MLE Approximate 90 percent confidence interval

l0 �0.199 (-0.254, �0.144)
r0 0.253 (0.216, 0.290)
h1 �0.119 (-0.707, 0.470)
h2 0.158 (-0.352, 0.668)
h3 0.016 (-0.002, 0.034)
h4 0.004 (-0.010, 0.018)

Figure 10. The estimated mean degradation path and the 90 percent bootstrap confidence interval.
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rotating motion, abrasion between some friction parts is
inevitable (swash plate/slipper, valve plate/cylinder
block, and piston/cylinder bore). Continuous abrasion
causes the pump to degrade, and the pump degradation
is measured as the volume (in milliliter) of return oil
per minute. The degradation rate depends on discharge
pressure (ranges from 21 to 28Pa) and rotational speed
(ranges from 3,000 to 4,500 rpm).

In our dataset, the degradation data (i.e., the vol-
ume of return oil) are aggregated over 10-hour inter-
vals. The degradation level is standardized such that
the initial degradation starts from 100. The discharge
pressure and rotational speed are also standardized
from 0 to 100. The physical relationship between the
degradation (i.e., return oil) and operating conditions
(i.e., discharge pressure and rotational speed) is
known; see Eq. [1]. Hence, the parametric approach is
adopted to model the relationship between degrad-
ation rate and operating conditions:

lt ¼
dxt
dt

¼ ph1t x
h2
t exp ðh3pt þ h4xtÞ [37]

where lt is the degradation rate at time t, pt and xt

are respectively the discharge pressure and rotational
speed, and fhig4i¼1 are the unknown model parameters
to be estimated. Hence, it follows from Eq. [16] that:

jt ¼ lt
l0

¼ exp f log ðph1t xh2
t Þ þ ðh3pt þ c4xtÞ � log ðph10 xh2

0 Þ
� ðh3p0 þ h4x0Þg:

[38]

The degradation model above contains six parame-
ters: l0, r0, and fhig4i¼1 Zfhig4i¼1: Table 4 shows the

MLE as well as the 90 percent large-sample confidence
intervals for the model parameters.

Figure 10 shows the estimated mean degradation
path and the 90 percent bootstrap confidence interval.
The confidence interval is obtained using the boot-
strap method (Efron and Tibshirani 1994; Meeker and
Escobar 2014):

	 Let h be a collection of the model parameters, h ¼
ðl0,r0, h1, h2, h3, h4Þ: Based on the estimated
parameters and covariance matrix, (ĥ, R̂), a large
number of B (B¼ 2000) bootstrap samples of h is
generated. The generated h is denoted
by hðbÞ, b ¼ 1, 2, . . . ,B:

	 A number of B bootstrap degradation paths, XðbÞ
t ,

are sampled based on hðbÞ for b ¼ 1, 2, . . . ,B:
	 Based on the bootstrap degradation paths, the

MLE of the model parameters ĥ
ðbÞ
, are obtained

for b ¼ 1, 2, . . . ,B. Then, based on the estimated
model parameters ĥ

ðbÞ
, a number of B mean deg-

radation paths �X ðbÞ
t are computed.

	 To compute the confidence intervals of the mean deg-
radation path at time t, we sort the bootstrap mean
paths �X ðbÞ

t in increasing order denoted by ~X
ðbÞ
t . Then,

the approximate 90 percent confidence intervals for
the mean degradation path are given by ½~X ðlÞ

t , ~X
ðuÞ
t �

where l ¼ B
 Unor½2U�1
norðqÞ þ 2U�1

norða=2Þ�, u ¼
B
 Unor ½2U�1

norðqÞ þ 2U�1
norð1� a=2Þ�, and q is the

proportion of ~X
ðbÞ
t that are less than the estimated

mean degradation path calculated from ĥ.

Figure 10 shows that the proposed model well explains
the degradation data under time-varying operating con-
ditions, and captures the uncertainty associated with the
estimated mean degradation path. For example, it is

Figure 11. (a) Estimated degradation rate (magnitude in square root) with respect to rotational speed (standardized) and dis-
charge pressure (standardized): the surface in the middle shows the estimated degradation rate, while the surfaces above and
below show the 90 percent bootstrap conference intervals, respectively. (b) Estimated degradation rate over time and its 90 per-
cent bootstrap confidence intervals.
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possible to see that the degradation rate (approximately
at time 50) suddenly increases due to the change of oper-
ating conditions, and this change is accurately captured
by the proposed model. The degradation path obtained
from the non-parametric approach (h¼ 2 and b¼ 3) is
also included in Figure 10. Similar to the observations
from Figure 7, the non-parametric approach, without
making parametric assumptions on g(z), has comparable
performance to the parametric approach. Throughout
this paper, the Nelder-Mead algorithm is used to obtain
the parametric degradation model (Glaudell, Garcia, and
Garcia 1965), while the nonparametric model is obtained
by nonlinear optimization algorithms subject to box con-
straints which force the parameters cq to be non-negative
so that the function g(z) is non-decreasing in z.

To understand how degradation rate changes over
time as the operating conditions vary, Figure 11a shows
the estimated relationship between the degradation rate
and rotational speed and discharge pressure. The 90
percent bootstrap confidence interval is also included
in the figure. It is seen that, the harsher the operating
conditions (i.e., higher discharge pressure and rota-
tional speed), the higher the degradation rate. Figure
11b shows the evolution of degradation rate over time

as the pressure and rotational speed change. The time-
dependent variation of degradation rate justifies the
importance of modeling the impact of operating condi-
tions on degradation.

Next, we compare the proposed modeling approach
to two alternatives: the dynamical model and the
Wiener degradation model without considering envir-
onmental conditions. The dynamical model used in
the comparison study is similar to the one described
in Liu, Tan, and Pare (2017) and is given as follows:

DYt ¼ Ftat þ et et � N rð0,VÞ
at ¼ at�1 þ wt wt � N rð0,WÞ [39]

where is the increment of degradation level, is the
hidden states, e and w are Gaussian, and Ft ¼ ðpt,xtÞ
contains the operating conditions, where pt and xt are
respectively the discharge pressure and rotational
speed at time t. The Gibbs sampling algorithm is used
to solve at the same time the filtering, smoothing and
forecasting problems with unknown parameters.

Figure 12 shows the Boxplot of the relative error
for the observed degradation levels between the pro-
posed model, the dynamical model [39] and the
Wiener process degradation model without consider-
ing environmental conditions. It is seen that the pro-
posed model yields the lowest mean relative error
(<1 percent) among all three models. It also clearly
shows the importance of taking into account the
environmental condition in degradation modeling, as
the model without considering such conditions has
much worse performance.

3.2. Case study II: Degradation of US highway
performance

This section re-visits the second motivating example
in Section 1.1, which is concerned with the highway
performance degradation in the US and Canada. As
discussed in Section 1.1, the highway performance

Figure 12. Comparison of the relative error between the pro-
posed model, the dynamical model and the Wiener process
model without considering environmental conditions.

Figure 13. Degradation modeling for Highway #16, Yellow Head County, Alberta, Canada: (a) observed degradation data and esti-
mated mean degradation path; (b) Annual Average Daily Traffic (AADT) over time; (c) estimated ĵ which captures the effect of
AADT on highway degradation; (d) plot of ĵ as AADT changes over time.
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(crack length) degrades over time and the degradation
rate depends on a number of time-varying environ-
mental factors, especially the traffic volume.

We obtained the data from the Long-Term
Pavement Performance (LTPP) Program of the
Federal Highway Administration (FHWA) (LTPP
2019). This program collects the pavement perform-
ance data from approximately 1,800 highway sections
in the US and parts of Canada. It consists of seven
modules including inventory, maintenance, monitor-
ing (deflection, distress, and profile), rehabilitation,
materials testing, traffic, and climatic. Each road sec-
tion is associated with a unique SHRP (Strategic
Highway Research Program) identification number.

The processed data have been made available on
GitHub (https://github.com/dnncode/LTPP-Data).

For illustrative purposes, we first focus on the data
collected from one particular highway section:
Highway #16, Yellow Head County, Alberta, Canada.
Figure 13a shows the highway performance degrad-
ation measured by the crack percentage over time.
Here, the degradation level is standardized such that
the initial degradation is 100. Figure 13b shows the
Annual Average Daily Traffic (AADT) which varies
over the years. It is seen from Figure 13a that the
road experienced a rapid performance degradation
over 1991–2006, over which the AADT significantly
increased as clearly shown in Figure 13b. It is interest-
ing to observe that, when AADT slightly dropped
over the time period from 2001 to 2003, the road per-
formance degradation appears to be slower over the
same time period. After 2003, the AADT started
increasing again, causing a rapid road performance
degradation. This observation shows the importance
to incorporate AADT into the modeling of road per-
formance degradation.

Unlike case study I where the physical relationship
between degradation rate and environmental

Table 5. Parameter estimation with confidence intervals for
case study II.
Parameter MLE Asymptotic 90 percent confidence interval

l �0.079 (-0.671, 0.513)
r 0.39 (-1.036, 1.815)
c1 1.894 (-6.214, 10.001)
c2 1.567 (-0.195, 3.328)
c3 0 (-1.622, �8.183)
c4 0 (1.622, 2.441)

Figure 14. Relative modeling error (in percentage) for the 53 highway sections.
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conditions is known, the complex relationship
between highway performance degradation and
AADT is not available and is subject to a high level of

uncertainty. Hence, in case study II, it is necessary to
resort to the non-parametric method, described in
Section 2.2.1, in order to capture the effect of traffic

Figure 15. Degradation modeling for U.S. highway performance (road sections 1 to 5).
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volume on highway performance degradation. It fol-
lows from Eq. [21] that gðzÞ ¼ Pq¼bþh

q¼1 cqI
ðhÞ
q ðzÞ and

cq � 0: As discussed in Section 2.2.1, the number of

knots, b, depends on the chosen order, h, through an
empirical relationship, b � n

1
2hþ1 as suggested in

Ramsay (1998). Table 5 shows the estimated

Figure 16. Degradation modeling for U.S. highway performance (road sections 6 to 10).
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parameters as well as the 90 percent large-sample
approximate confidence intervals of the model param-
eters. From Figure 13c, it is observed that j is non-
decreasing function in AADT. Also note that, it
appears j is bounded meaning that the degradation
rate does not further increase after the AADT has
reached a certain level.

Following the same approach, we model the degrad-
ation of a number of 53 highway sections selected from
the LTPP dataset. Figure 14 shows the box plot of the
relative error (in percentage) for the 53 highway sections.
The mean relative error is less than 5 percent for 45 out
of the 53 highway sections, while the mean relative error
is less than 10 percent for 52 highway sections. Similar to
the first case study, Figure 14 also includes the compari-
son between the proposed model, the dynamical model
[39] and the Wiener process degradation without consid-
ering the environmental conditions, for the 53 highway
sections. The mean (median) relative errors for the three
models are respectively, 3.28 percent (2.55 percent), 3.97
percent (3.90 percent), and 4.02 percent (3.55 percent),
demonstrating the performance of the proposed model.

To further illustrate the modeling performance, the
constructed degradation models are shown for 10 selected
road sections; see Figures 15 and 16. It is seen that, the
proposed approach well models the degradation of high-
way performance, as well as the complicated interactions
between degradation rate and traffic volume.

3.3. Reliability prediction under competing
degradation processes

In the third numerical example, we investigate the reli-
ability prediction for a system subject to two competing
degradation processes and dynamic environmental con-
ditions. Of interest is the system reliability over some

future time intervals, given the degradation data
observed up to time s; as described in Section 2.1.

Degradation data are simulated over the time inter-
val ½0, 50�: In particular, the first degradation process
does not depend on environmental condition by let-
ting jt ¼ 1, while the second degradation process is
influenced by the environmental condition through a
function jt ¼ exp ðh�1ðzt � z0ÞÞ: The environmental
condition and simulated degradation data over ½0, 50�
are shown in Figure 17. The model involves five
parameters, ðlð1Þ0 , lð2Þ0 , rð1Þ0 , rð2Þ0 , hÞ, which can be
found by maximizing the log-likelihood function (Eq.
[31]). In this example, the ML estimates are l̂ð1Þ

0 ¼
�0:16, l̂ð2Þ

0 ¼ �0:12, r̂ð1Þ
0 ¼ 0:12, r̂ð2Þ

0 ¼ 0:08 and ĥ ¼
0:89: The estimated mean paths of the two degrad-
ation processes are shown in Figure 17b by solid lines.
Conditioning on the observed degradation data up to
time s¼ 50, the system reliability depends on the
future environmental condition zt for t > s: However,
the environmental condition from the last observation
time s onward can rarely be known exactly, and the
predicted environmental condition is always subject to
prediction error. For example, although one might be
able to predict the temperature fluctuation or trend,
the actual temperature is likely to vary around the
predicted values. In this numerical example, we
denote the environmental condition over a future
time interval ½s, sþ D� by Z� ¼ a� þ e� , where � ¼
t � s, a� is a deterministic function, and e� is a zero-
mean stochastic process, i.e., Eðe�Þ ¼ 0: The choice of
e� is case-dependent. For example, e� can be simply
chosen as a normal white noise or a random processes
which captures the temporal correlation of the envir-
onmental condition. For illustrative purposes, we let
e� be a Brownian motion in this example with mean
zero and time-dependent variance r2e�, reflecting the

Figure 17. (a) The simulated environmental condition, (b) degradation data for both degradation processes and the estimated
mean degradation paths.
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fact that the environmental condition becomes more
difficult to be predicted as � increases.

Conditioning on the last observed degradation at
time s, the system reliability under changing environ-
mental condition Z� is given by

Rð�Þ ¼ EZ�
fGð�ð1Þ , �ð2ÞÞ��12g [40]

where Gð�ð1Þ, �ð2ÞÞ can be found in Section 2.1. The
computation of Eq. [40] is complex since the expect-
ation is taken with respect to the r-algebra, rfz� , 0 �
� � Dg, generated by the entire future paths of the
environmental condition. A simulation-based proced-
ure is thus adopted to compute the system reliability
as follows:

Step 1: Generate a large number of realizations of
the environmental condition from the stochastic pro-
cess Z� ¼ a� þ r� for 0 � � � D, and denote the mth

simulated environmental condition by ZðmÞ
�

for m ¼ 1, 2, :::M:
Step 2: For each realization of the environmental

condition, compute the probabilities that the system
fails due to one of the two degradation processes from
Proposition 1:

Pð1Þ
D ¼

ðD
0
n1ð�ð2ÞÞn2ð�ð1ÞÞ��12d� [41]

Pð2Þ
D ¼

ðD
0
n1ð�ð1ÞÞn2ð�ð2ÞÞ��12d� [42]

and compute the system reliability for given as fol-
lows:

RðmÞð�Þ ¼ Gð�ð1Þ, �ð2ÞÞ, 0 � � � D: [43]

Step 3: Calculate the system reliability, Rð�Þ, under
stochastic environment by averaging RðmÞð�Þ :

Rð�Þ � R̂ð�Þ ¼ 1
M

XM
m¼1

RðmÞð�Þ [44]

In other words, the system reliability is approxi-
mated by the sample mean. Since M is finite in prac-
tice, for any 0 � � � D, it follows from the Central
Limit Theorem that R̂ð�Þ!d Nð0, r2MÞ where the vari-
ance can be estimated by r̂2

M ¼ M�1 PM
m¼1ðRðmÞð�Þ �

Rð�ÞÞ2 Hence, the approximation (Eq. [44]) can be
made sufficiently accurate due to the law of large
numbers, i.e., R̂ð�Þ ! Rð�Þ as M ! 1:

In this numerical example, suppose that the future
environmental condition is stochastic and can be rep-
resented by:

Z� ¼ 0:03� þ sin ð0:1�Þ þ cos ð�Þ þ e� , 0 � � � D

[45]

where D¼ 50, and e� is a Brownian motion with
mean zero with time-dependent variance r2e� and
re ¼ 0:1: Hence, the future environment is stochastic
and the uncertainty grows in time. Following the pro-
cedure described above, we obtain, from a large num-
ber of iterations N¼ 5,000, the system reliability,
Rð�Þ, over the time interval ½0, 50�: Figure 18a shows
20 randomly selected simulated environmental condi-
tions as well as the average environmental condition
computed from the 5,000 simulated samples. Figure
18b shows the comparison between the estimated reli-
ability and actual reliability function obtained from
simulation. In particular, we simulate the future deg-
radation paths and obtain the actual failure times.
Then, the Kaplan-Meier (KM) method is used to
obtain the empirical (conditional) reliability. It is seen
that, the estimated reliability function well matches
with the empirical reliability obtained from simulated

Figure 18. (a) 20 randomly selected simulated environmental conditions as well as the mean environmental condition computed
from the 5,000 simulated samples; (b) Estimated reliability functions and the actual reliability obtained from simulation; (c)
Estimated reliability function with 90 percent bootstrap confidence interval.
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failure data. In Figure 18b, we also include the esti-
mated conditional reliability ignoring the environmen-
tal conditions, which clearly over-estimates the system
reliability. Figure 18c shows the estimated reliability

with its 90 percent confidence interval obtained from
the bootstrap samples RðmÞð�Þ in Eq. [43].

Using the results presented in Proposition 1, Figure
19a shows the probabilities that the system fails over a

Figure 19. Probabilities that the system fails due to one of the two competing degradation processes: (a) the environmental con-
dition is based on Eq. [45]; (b) the environmental condition is based on Eq. [46].

Figure 20. Probabilities that the system fails due to one of the two competing processes for xZ� ranges from 0 to 100 and
for D ¼ 30, 40, 45, 50:
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future time interval ð50, 100� due to degradation proc-
esses 1 or 2 are respectively 0.53 and 0.47 (note that,
s¼ 50 which is the current time and D¼ 50). Since
the sum of Pð1Þ

50 and Pð2Þ
50 is approximately one, the sys-

tem will almost certainly fail within the next 50 time
periods. For comparison purposes, we modify the lin-
ear component in Eq. [45], and let the new changing
environmental condition be denoted by

Z� ¼ 0:05� þ sin ð0:1�Þ þ cos ð�Þ þ e� , 0 � � � D:

[46]

Figure 19b shows the new probabilities that the sys-
tem fails due to one of the two competing degradation
processes. See that, since the modified environmental
condition (Eq. [46]) is severer than that defined in Eq.
[45], degradation process 2 (which is influenced by
the environment condition) naturally becomes the
dominant cause of failure: the probability that the sys-
tem fails due to degradation process 2 increases to
97 percent from 47 percent. This significant change
strongly demonstrates the importance of taking into
account environmental and operating conditions for
reliability prediction using degradation data.

As discussed in Section 2.1, it is common that the
multiple degradation processes are influenced by some
common but unknown random environmental factor
Z�: As a result, the latent remaining lifetime of the
two competing degradation processes become depend-
ent, which is modeled by a Gamma Frailty model; see
Proposition 2. Assuming that the Gamma frailty has
mean one and variance xZ�, Figure 20 shows the
probabilities that the system fails due to one of the
two competing processes for xZ� ranges from 0 to
100, and for D ¼ 30, 40, 45, 50: The environmental
condition still follows [45].

Figure 20a shows that the system is more likely to
fail due to the first degradation process in the next 30
time periods. However, in the next 40, 45, and 50
time periods, the probabilities that the system fails
due to the second degradation process becomes higher
as shown in Figure 20b,c. This is precisely due to the
fact that the future environmental condition [45] is
getting severer, causing a higher degradation rate of
the second process. Note that, only the second deg-
radation process is influenced by the environmental
condition in this example. As xZ� becomes larger (i.e.,
the statistical dependence between the latent remain-
ing lifetimes become stronger), the probabilities that
the system respectively fails due to processes 1 and 2
become lower simultaneously, indicating higher sys-
tem reliability. This can be seen from Eq. [13] where
the joint survival function is monotone increasing in

xZ�: Hence, it is clearly demonstrated that the pre-
dicted reliability can be very different with and with-
out considering the environmental conditions. Such
observations strongly justify the importance of includ-
ing environmental and operating conditions into reli-
ability analysis using degradation data.

4. Conclusion

This paper investigated the degradation modeling
under dynamic environmental conditions. The main
results can be applied to both univariate degradation
and a more general case with multiple competing deg-
radation processes. Parametric and non-parametric
approaches have been employed to capture the effect
of dynamic environmental conditions on degradation.
The Wiener process was used to describe individual
degradation processes, and the remaining lifetime dis-
tribution has been obtained for individual processes.
Leveraging the classical competing risks model, this
paper obtained the probability that the system fails
due to a particular degradation process over a given
future time interval of interest, provided with the deg-
radation data observed up to a certain point in the
past. A Gamma frailty model has been adopted to
capture the statistical dependency among latent
remaining lifetimes of multiple degradation processes,
due to some common but unobserved external factors.
Such a result can serve an extremely important role in
practice for system health prognostics and predictive
maintenance planning. The applications of the pro-
posed approach have been illustrated through two
case studies and comprehensive numerical studies
based on simulated data. These numerical experiments
not only demonstrated the effectiveness of the pro-
posed approach, but also strongly justified the import-
ance and necessity of taking into account dynamic
environmental and operating conditions in reliability
analysis based on degradation data. The model is
motivated by the well-known Nelson’s Cumulative
Exposure (CE) model, implying that the ratio between
the drift and diffusion coefficients remains unchanged.
Like any modeling assumptions, the assumption adds
additional constraints to the model. Fortunately, even
if such an equation does not hold, the proposed mod-
eling framework still works but the first passage time
distribution can only be obtained through simulation
or approximation. In other words, the closed-form
expression of the remaining life distribution is no lon-
ger available, but can be approximated numerically
through simulation.
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