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ABSTRACT

The problem of a spatially discontinuous diffusion coefficient (D(x)) is one that may be encountered in hydrogeo-
logic systems due to natural geological features or as a consequence of numerical discretization of flow properties.
To date, mass-transfer particle-tracking (MTPT) methods, a family of Lagrangian methods in which diffusion is
jointly simulated by random walk and diffusive mass transfers, have been unable to solve this problem. This
manuscript presents a new mass-transfer (MT) algorithm that enables MTPT methods to accurately solve the
problem of discontinuous D(x). To achieve this, we derive a semi-analytical solution to the discontinuous D(x)
problem by employing a predictor-corrector approach, and we use this semi-analytical solution as the weighting
function in a reformulated MT algorithm. This semi-analytical solution is generalized for cases with multiple 1D
interfaces as well as for 2D cases, including a 2 x 2 tiling of 4 subdomains that corresponds to a numerically-
generated diffusion field. The solutions generated by this new mass-transfer algorithm closely agree with an
analytical 1D solution or, in more complicated cases, trusted numerical results, demonstrating the success of our

proposed approach.

1. Introduction

Simulating diffusive transport under the condition of a spatially dis-
continuous diffusion coefficient is a challenging problem that is fre-
quently encountered in hydrogeological contexts (Uffink, 1983; LaBolle
et al., 2000; Appuhamillage et al., 2010; Semra et al., 1970; Oukili et al.,
2019). Physically, this can occur wherever there is an abrupt change in
the material properties of a medium, like the sharp interfaces between
different depositional units. Sharp discontinuities can also be seen in, for
example: fractured or composite media, local compaction zones, or at
the interface between a saturated and unsaturated zone. From a numer-
ical perspective, any non-constant hydraulic conductivity field that is
discretized will generate a diffusion/dispersion field containing numer-
ous discontinuities. Interpolation or averaging methods have been used
in the past to smooth these discontinuities, and these can be effective as
long as the differences in magnitude of the parameter(s) across the in-
terface is sufficiently small (in general, less than an order of magnitude).
However, when the difference in diffusion coefficients between cells, or
regions of a domain, becomes sufficiently large, the simplest versions of
these methods can fail, and overcoming this challenge requires a more
nuanced approach.

Random-walk particle-tracking (RWPT) methods are a class of
stochastic Lagrangian (mesh-free or gridless) methods that are com-
monly used to simulate advective-diffusive transport. These meth-
ods were originally formulated in the context of conservative (non-
chemically reactive) transport or cases of simple, linear reactions, such
as sorbing solutes or first-order decay (LaBolle et al., 1996; Salamon
et al., 2006). They are popular because they introduce no numerical dif-
fusion into the simulation of the advection (hyperbolic) operator, and
they also escape the burden imposed by restrictive stability conditions
in Eulerian (grid-based) methods, resulting in lower run times than cor-
responding Eulerian methods (Benson et al., 2017). Further, because
RWPT is a stochastic algorithm, statistics of concentrations can be read-
ily generated instead of expected values (point estimates). In this con-
text, the problem of discontinuous diffusion coefficients has received
much attention, resulting in various methods for overcoming the diffi-
culties of simulating such a system (e.g., Uffink, 1983; Appuhamillage
et al., 2010; Semra et al., 1970; Hoteit et al., 2002; Bechtold et al., 2011;
Oukili et al., 2019; Bagtzoglou et al., 1992; LaBolle et al., 1996; 2000),
each with their own merits and drawbacks.

One of the major advantages of classical RWPT is its speed, due to
the fact that every particle is completely independent of its neighbors.
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However, this also means that complex reactions cannot be simulated
since particle interactions are not allowed. Recent developments in
the field of RWPT have enabled methods to simulate complex and
nonlinear chemical reactions in the presence of transport using either
collision-based reactions between particles of opposite species (Benson
and Meerschaert, 2008; Paster et al., 2014; Bolster et al., 2016; Schmidt
et al., 2017; Sole-Mari et al., 2017; Sole-Mari and Fernandez-Garcia,
2018), or by treating individual particles as reaction volumes that com-
municate via diffusive mass transfers (Benson and Bolster, 2016). The
latter, referred to as mass-transfer particle-tracking (MTPT) algorithms,
offer the increased flexibility of being able to model arbitrarily complex
chemical reactions at relatively low computational cost (Engdahl et al.,
2017; Schmidt et al., 2019b), including generalized “reactions” such
as the aging of water parcels (Benson et al., 2019b). The mass-transfer
(MT) portion of these MTPT methods has been demonstrated to solve
the diffusion equation to O(Ar) (Schmidt et al., 2018) and exhibit
superlinear convergence as particle numbers grow large (Schmidt et al.,
2019a). Additionally, a method for parallelizing the MTPT method
via domain decomposition has recently been developed and achieves
linear speedup up to hundreds of computational cores/subdomains
(Engdahl et al., 2019). MTPT methods have also been shown to be
related to smoothed-particle hydrodynamics (SPH) methods (e.g.,
Herrera et al., 2009; Herrera and Beckie, 2013; Gingold and Monaghan,
1977; Monaghan, 2012) under specific modeling choices, including
the use of a Gaussian spatial kernel (Sole-Mari et al., 2019b). Despite
these advances, past work on MTPT methods has neither addressed the
impact of a discrete parameter field on the mass transfer operations nor
accounted for the possible errors that may be incurred.

All previously-mentioned random-walk methods may be employed
for diffusion coefficients with spatial discontinuities because they are
capable of simulating small-scale mixing and non-mixed spreading of
solute separately (Benson et al., 2019a). In other words, spreading may
be simulated by a random walk and mixing as a mass transfer. However,
accuracy of the mass-transfer step is only preserved for a smoothly vary-
ing field (i.e., one in which interpolation may be reasonably performed),
and the current MTPT schemes incur error when there is a sharp dis-
continuity. This is similar to the problems identified by LaBolle et al.
(2000) for classical RWPT. MTPT has clear applications for highly ac-
curate simulations of mixing-limited reactive transport, but this issue
undermines its accuracy. Thus, the purpose of the current paper is to
address this deficiency and ensure that MTPT methods remain accurate
even in such a case.

In Section 2, we outline the specific mathematical problem on which
we will focus, and introduce the methods used to solve the problem in
Section 3. In Section 3.1, we provide a brief overview of RWPT methods
and discuss how the problem of discontinuous diffusion coefficients is
typically handled, with specific focus on a particular predictor-corrector
technique (LaBolle et al., 2000) that we extend to MTPT. In Section 3.2,
we outline our approach to solving the discontinuous diffusion coeffi-
cient problem with an MTPT method by employing an alternative mass-
transfer kernel. Section 4 is devoted to discussing the results of apply-
ing the new MTPT method. Finally, Section 5 presents the conclusions
drawn from our work.

2. Analytic model

We consider a chemically-conservative, single species, purely dif-
fusive system that may be described by the (heterogeneous) diffusion
equation

%€ _v.(Dx)ve),

= x€QCRY,
ot =

>0, )
where C(t, x) [mol L™¢] is the concentration of the single species, D(x)
[L2 T~ is the scalar diffusion coefficient, which, for our purposes, may
be a function of space. For this work, we concern ourselves with the con-
dition where D may be discontinuous. This case leads to infinite spatial
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derivatives at all discontinuities, so the question is how best to numer-
ically evaluate the V - D term within the chosen method to minimize
artifacts of the discontinuity. The discontinuity we use for this study is
created by partitioning the domain, Q, into N, subdomains such that
Q=0Q,UQU...UQy , where each subdomain has its own constant-
valued diffusion coefficient, D;, i = 1, ..., Ng, and the interface between
subdomains i and j is denoted y;.

3. Computational methods
3.1. Random-walk particle-tracking method

The classical Lagrangian method for simulating the system of inter-
est is standard random-walk particle-tracking (RWPT) (Thomson, 1987;
LaBolle et al., 1996). In these methods, masses are divided among par-
ticles that simulate diffusion via the Langevin equation (formulated for
homogeneous D)

X,(t + A = X, () + £,V/2DAs, )

where X;(t) is the position of particle i at time t, At is the chosen sim-
ulated timestep, and §; is a d-dimensional vector of random numbers
drawn from a standard normal, N'(0, 1), distribution. In this basic form,
RWPT methods are unable to simulate the problem of discontinuous
diffusion coefficients (D(x)), described in Section 2. Conceptually, the
problem is that, during the course of a single-step random walk, a par-
ticle may “see” diffusion at the rates on both sides of the discontinuity
in D(x); however, there are well-documented strategies for overcoming
this.

The first general group of strategies are reflection methods (Uffink,
1983; Appuhamillage et al., 2010; Semra et al., 1970; Hoteit et al.,
2002), which may include a nonlinearly decomposed time step
(Bechtold et al., 2011), interpolation methods (Bagtzoglou et al., 1992),
or a combination thereof (LaBolle et al., 1996). A selection of these
are reviewed and compared in LaBolle et al. (1998), and the conclu-
sion reached therein is that, among the methods considered, those of
Uffink (1983); Semra et al. (1970) provide the best accuracy. A bench-
mark comparison of various methods is also conducted by Lejay and
Pichot (2016) who distinguish between methods that preserve or lose
important physical and numerical properties, and recent work of the
same authors presents a method that employs skew Brownian motion
densities with exponential timestepping to capture the dynamics of the
discontinuous D(x) problem (Lejay et al., 2019). Another recent ap-
proach (Oukili et al., 2019) employs negative-mass particles in a partial
reflection scheme, so as to keep the total mass in a system constant and
maintain particle independence.

To demonstrate how discontinuous D(x) is handled with RWPT, and
because we later use this method to generate reference solutions, we
briefly discuss the work of LaBolle et al. (2000). We consider this method
because it bears resemblance to the algorithm we present in Section 3.2.
Also, it is relatively simple to implement, and the extension to greater
than one spatial dimension is straightforward, unlike some other ap-
proaches. This method may be thought of as a predictor-corrector ap-
proach, and is formulated as

X, = X, (1) + £/2D(X,)At. 3)

X, (t + Af) = X,() + &/2D(X))At, )

In words, a “predictor” random walk is first taken from X;(t) to &; in
(3) to determine the diffusion coefficient that is then used in the “cor-
rected” random walk from X;(¢) to X, (¢ + Ar) in (4). A subtle but impor-
tant point is that the same random number, &; must be used in (4) that
was generated for (3).

3.2. Mass-transfer particle-tracking method

Another family of Lagrangian methods that has gained attention re-
cently are the mass-transfer particle-tracking (MTPT) methods, which
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are the focus of this work (Benson and Bolster 2016; Engdahl et al.,
2017; Schmidt et al., 2018, 2019a, 2019b). These methods are quite
similar to RWPT methods in that diffusion is typically still simulated,
in part, by random walks. However, the important distinction is that
particle masses are no longer fixed and can be transferred among par-
ticles according to an algorithm that also simulates diffusion. The MT
algorithm may be given as

N
mit + A1) = my(t) + Y Wy [m; () = m(0)], ®)

J=1

where m;(t) is the mass carried by particle i at time ¢, N is the number
of particles, and

W(X;. X :h)
(7R —

(6)
Pij
Note that this formulation is equivalent to choosing # = 1, in the context
of Sole-Mari et al. (2019b). Above, W is a Gaussian weighting function
that determines the amount of mass transferred from particle j to par-
ticle i (or vice-versa because W, in this case, is symmetric with respect
to X; and X;) and p;; is a normalizing constant that ensures conservation
of mass. We specify here that this normalization would not be required
in the limiting, infinite-particle case, but for any finite number of parti-
cles, N samples from the weighting function W (which is necessarily a
density) will not sum to unity and thus not conserve mass. As such, we
normalize our discretized density according to (6).
In the case of isotropic diffusion, we have

—d/2 ”Xj_Xi”2

W(X,;, X ;;(D; + D)An) = (2z(D; + D;)Ar) """ exp 30D, ¥ Dy |

O]

where d = 1,2, 3, is the number of spatial dimensions, and Dy := D(X}).
The matrix-vector form of (5) is written as

m(t + At) = Tm(?), )]
in which
T := 1+ W —diagWl), )

where I is the N x N identity matrix, 1 is an N x 1 vector of ones,
and diag(x) is a square matrix with the entries of vector x on its main
diagonal. A popular choice for p;; that results in symmetric W (and thus
conservation of mass by the operator T) is

g+ ' wy,

pij = ) 5 (10)

[N Qg

2 Q2

% Source Location (zg)
—Subdomain Boundary ()

X Source Location (zo)
M Subdomain Boundary (vy)

(a) (b)
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or, in words, p;; is the arithmetic mean of the sums of row i and column
j.

We see in the formulation outlined above that (7) is the analytical
solution to the diffusion equation over the interval [0, At] as a function
of position X;, given a unit point source located at X; (or vice-versa, with
respect to X; and Xj). If we rewrite (7) as

-d/2
W(XI,XI,(Dl-I-DJ)AI): (27[(D,+D1)AI) / exp [—m
i J

D, +D, 4/ X, - X1
- <4n<;>m> exp| -
2 4(%)At

~ \—d/2 I1X; _Xi||2
= (47rDAt) exp | -————— |,
4DAt

”Xj_Xi”2:|

an

we see that his formulation computes an effective diffusion coefficient,
ﬁ, as the arithmetic mean of the diffusion coefficients at particle lo-
cations X; and X; (or, equivalently, linearly interpolates the diffusion
coefficients between these two points and chooses the value located at
the midpoint). However, as discussed in LaBolle et al. (1996), this lin-
ear interpolation fails in the case of discontinuous diffusion coefficients
without the inclusion of some sort of reflection scheme to account for
the infinite divergence in D at the interface. Put simply, this method
only yields favorable results when D(x) can be reasonably approximated
with a linear fit over distances on the order of # := /(D; + D,)At, and
clearly a linear approximation of an infinitely steep gradient will not
suffice. We note here that if we employ a harmonic mean to compute D
in (11) we can obtain low-error results in 1D and in certain 2D cases,
but this approximation is not reliable in general. As such, it would seem
that we need a more flexible functional form for our weighting function
W, and the best possible choice would be the analytical solution to the
diffusion equation that accounts for discontinuities in D(x).

3.2.1. Analytical solution for mass-transfer weight function
Carslaw and Jaeger (1959) present a relatively simple solution in 1D

for the problem of two subdomains. We generalize that solution here
for an instantaneous pulse of unit concentration at location x = x, €
(—o0, ) and time ¢t = 0 (i.e., C(t = 0,x) = 6(x — x)). More specifically,
for a chosen y € (—, ) we define the subdomains to be Q; = (-0, 7]
and Q, = (y, ), each with constant diffusion coefficients D; and D,,
respectively. See Fig. 1(a) for a conceptual depiction of this system. If
Xy > v, we have

Cat,x) = C((t,x; Dy, Dy)Ig (x) + Cy(t, x; Dy, Dy)Ig, (x), (12)

Q, o, Fig. 1. Conceptual figures for the
discontinuous diffusion coefficient
problems we consider. (a) 1D prob-
lem with 2 subdomains, €; and

X Q,, with respective diffusion coeffi-
cients D; and D,. The subdomains

23 U are split by the point x=y, and the

% Source Location (zo) point-source  initial condition is lo-

—Subdomain Boundary (v) cated at the point x=y. (b) 2D
(C) problem with 2 subdomains, Q; and

Q,, with respective diffusion coeffi-

cients D; and D,. The subdomains are

split by the line x =y, and the point-source initial condition is located at the point x = (xy,,). (¢) 2D problem with 4 subdomains, Q;, Q,, Qg

D,,

Q,, with respective diffusion coefficients

D,, D3, D,. The subdomains are split by the
lines x =y, and y = y, and the point-source
initial condition is located at the point

x = (Xg, Yp)-
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where I, (2) is the indicator function on the set A, such that

I,
I,(2) = {0

and

zEA

g A (13)

2
D, D, (xD, Dyt)~'/? —‘x—y—(xo—y)\/ DI/DZ)
exp ,
(D,\/Dy + D;+/Dy) 4D, 1

Ci(t,x; Dy, D) =

(14)
Cy(t,x: Dy, Dy) = —— exp_lx_x0|2
26, %3 Dy, Dy) =
24/m Dyt 4Dyt
+ Dy+/Dy = D/ Dy exp —|x +x9 =27/
2(Dy\/D; + Dy \/Dy)\/7 Dyt 4Dyt
15)
and if x; < y, the complementary solution is
Cat.x) = Cy(t,x: Dy, D)), (x) + Cy (. x: Dy, D) g, (%) (16)

For the sake of compact notation, we may combine (12) and (16) into
Wyt x) = 6A(t, x; x0) g, (Xg) + Cy(t, x; xg) g, (Xg). 17

We note that the solution given in (17) is not symmetric with respect
to x and x, (this is seen most clearly in the numerator of the exponential
term in (14)); however, in application and due to the sharp decay in
the exponential, (17) is typically symmetric to the order of machine
precision. As our objective is to eliminate errors, including those from a
lack of symmetry, we alter the mass-transfer algorithm given in (5) such
that

N N
mi(t + At) = my(6) + Y\ Wmi(0) = Y Wymy(0), (18)
j=1 j=1

in which the mass of particle i at time 7 + At is its mass at time ¢ plus the
sum of all the incoming mass-transfers, minus the sum of all outgoing
mass-transfers. Also, because W;; # W;;, we now strictly define W,; to
be the normalized weight for the mass transfer from particle j to parti-
cle i (the converse is no longer true). Eq. (18) may be rewritten in an
analogous form to (8), with

T :=1+W-diag(1"W). (19)

If we use (17) as our weighting function in (19), again employing the
symmetric normalization given in (10) to form W (because W is al-
most certainly symmetric to machine precision), then we obtain a mass-
transfer method that generates very little error in simulating this system.
The algorithm for conducting a single mass transfer (within a timestep
of length At) according to this method is given in Algorithm 1, in which
WtFunction() is defined to be (17).

A major drawback of this method is that we must possess an ana-
lytic solution to the system of interest. Granted, for small At, this so-
lution is still relatively flexible; for example, we can still use this so-
lution in the case of a 1D domain with three subdomains (considered
in Section 4), provided that the time step is sufficiently small or the
magnitude of diffusion in the center domain is low enough that mass-
transfers do not “see” two subdomain boundaries at the same time.
Calculating an analytical solution is a non-trivial enterprise in spatial
dimensions greater than one, particularly if we have a more compli-
cated interface (for instance a 2 x 2 tiling of 4 subdomains in 2D, which
we consider in Section 4). In fact, even for the relatively “simple” 2D
problem of two half-planes, split by the line x = y (as considered in
Section 4.2), the analytical solution is quite complex and likely infeasi-
ble as a mass-transfer kernel (see Shendeleva, 2001). As such, we seek
a semi-analytical solution to the discontinuous D(x) problem, valid for
small At, that will be flexible enough that it may be applied, by exten-
sion, to higher-dimensional problems. We discuss this approach in the
following section.

Advances in Water Resources 140 (2020) 103577

Algorithm 1: Mass-transfer Algorithm for Non-symmetric Weight-
ing Function

Input: Particle positions, X = X(¢), and particle masses m = m(?).
Output: Updated particle masses, m = m(t + At).
> Build weight matrix

1 fori = 1to N do
2 forj = 1to N do
3 | W(.j)=WtFunction(xy = X(j). x = X(i), 7. Dy, Dy, Ar)
4 end
5 end

> Normalize weight matrix
fori = 1toNdo
forj = 1toN do
| Wi.j)=W.j)/ SumW i, ) + Sum(W(:.j) /2)
end
10 end
> Build transfer matrix
11 fori = 1to N do
12 forj = 1toNdo

13 | TG.j)=1+W(i.j)—Sum(W(:,i) > i*" column sum
14 end
15 end

16 m = matMul(T, m) > Conduct mass transfers

3.2.2. Semi-analytical solution for mass-transfer weight function

In order to formulate our semi-analytical solution to the problem of
a discontinuous diffusion coefficient, we take a predictor-corrector ap-
proach, much like that described in Section 3.1 (LaBolle et al., 2000).
We consider the same 1D problem setup outlined in Section 3.2.1; how-
ever, for x, > y, our semi-analytical solution shall have the form

Cs(t,x) = Cu(x; Dy, AN (Lo 1 (%) + Cp(x; Dy, AD) I g (%), (20)

where the subscript k stands for “keep” because this represents the
amount of solute that is kept in the domain where it started (and is
distributed according to a diffusion coefficient of D,), and the subscript
r stands for “redistribute” because this represents the mass that is re-
distributed according to a diffusion coefficient of D;, and x, is some
“corrected” x-value that alters the support of the C, solution so that
(20) conserves mass. Also, we make the distinction that C and C, are
parameterized by the necessarily small time step, At, rather than being
functions of t, because this solution is only valid for short time. In (20),
we define

Ci(x; Dy, At) := ! exp [_lx—x0|2]’ @2n
\/4rD, At 4D, At

Co(x: Dy AT i= —exp [— = —x0|2]. 2)
\/4x D, At 4D, At

Integrating each of these expressions over their respective support, in
order to compute the total mass in each branch of the total solution,
gives

my, = / Codx = L1 —ert [ L2201, 23)
v 2 \4D, At
/"c 1 Xg — X,
m, = C.(x)dx=-|1-erf| ——— ||, (24)
—o0 2 V4D At

where erf(-) is the error function. Setting m, = 1 = m; + m, and solv-
ing for x, yields

D,
X, =x9—(Xg—7) D, (25)
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—Analytié Solution

-+ Mass-Transfer

“I' @ Random-Walk

—Source Location (zg)
l—Subdomain Boundary (v)

H

 [D1 =5.00]

H

8

Concentration [mol L!]

8

I I N

;-positio;l [L]

and we may repeat the calculations above for x; < y, with the solution

Cs(t.x) = Cy(x: Dy, A (x) + C(x: Dy, ADI (%), (26)

to find

D,
X, =x9— (X9 —7%) E 27)

As in Section 3.2.1, we may combine (20) and (26) into one general
solution, namely

Ws(t, x) := GS(AI, x;x0) g, (xg) + Cs(At, x; xp) g, (X). (28)

Unfortunately, if we use Wy as the WtFunction () in Algorithm 1,
we obtain solutions that display a troubling amount of oscillation near
the subdomain boundary (see Fig. 2).

This is because we no longer have a symmetric weight matrix (even
numerically), due to Wy lacking symmetry with respect to x and x,, and,
as a result, it also no longer makes sense to apply the symmetric nor-
malization given in (10). In order for the mass-transfer method to both
conserve mass and generate solutions with low error, we must make the
following changes:

1. We normalize the weight matrix and form w by employing the
Sinkhorn-Knopp (SK) algorithm (Knight, 2008), a computationally-
efficient iterative method for obtaining a doubly-stochastic matrix
that is mathematically equivalent to alternately normalizing the
rows and the columns of a matrix to sum to unity. In order to con-
serve mass, the columns must be normalized last and must sum to
unity with high precision. We find that for all of the cases we con-
sidered, 1000 iterations produced satisfactory results.

2. We employ a weight matrix that is the transpose of that used in
Algorithm 1; i.e.,

W, = Ws(At,x = X;3x0 = X,).
To contrast, note that if we use (28) in Algorithm 1, we have
Wi 1= Ws(Af,x = X;3x9 = X))

This is done purely for numerical convenience, as applying the SK
algorithm to W converges more reliably to the desired stochastic
matrix W than applying SK to W. In fact, starting with W leads to
solutions that display a “kink” near the boundary, and much greater
resolution in both time and space is required to generate acceptable
solutions.

T Fig. 2. 1D purely-diffusive simulation for two
subdomains with diffusion coefficients D, and
D, (shown for 3 different values of D,). The
MTPT method employs the semi-analytical so-
lution given in (28) using Algorithm 1, and
is compared to the predictor-corrector RWPT
method of LaBolle et al. (2000) and the analyt-
ical solution given in Section 3.2.1. Results are
shown for a simulation with 5000 MT particles,
10° RW particles, At = 1072, and total simula-
tion time T = 6. All dimensioned quantities are
unitless. Note the oscillation that occurs near
the subdomain boundary (x = y) for the D, =
0.05 case (yellow plot). This is attributable to
applying Algorithm (1) (symmetric normaliza-
tion) rather than Algorithm 2 (Sinkhorn-Knopp
normalization) (For interpretation of the refer-
ences to color in this figure legend, the reader
is referred to the web version of this article.).

D, = 2.50] |
D, = 0.50

Written in the sum form of (5) and (18), after normalizing W via SK
to form W, the above amounts to

m(t + A)

N N
mt)+ Y Wym;(t) = Y Wjm,(t)
Jj=1

Jj=1

N
m(t)+ Y Wy m;(t) = my(1)
j=l '

N —
X Wm0, 29)
j=1

or in matrix-vector form we have
m(t + A1) = Wm(). (30)

The algorithm for conducting mass-transfers (within a timestep of length
At), according to this modified method is presented in pseudocode in
Algorithm 2, in which WtFunction () is defined to be (28).

Algorithm 2: Modified Mass-transfer Algorithm for Semi-
analytical Weighting Function

Input: Particle positions, X = X(¢), and particle masses m = m(z).
Output: Updated particle masses, m = m(t + Ar).
> Build weight matrix
fori = 1to N do
forj = 1to N do
| W(i.j) = WtFunction(xy = X(i), x = X(j), 7. Dy, D, A1)
end

aoA W N =

end
> Normalize weight matrix
for i = 1 to normCount do
W = rowNormalize (W)
W = colNormalize (W)
end
o m = matMul(W,m)

> Normalize the rows of W
> Normalize the columns of W

© ® N o

=

> Conduct mass transfers

We note that the normalization, conducted at lines 6-9 in
Algorithm 2, is not strictly the SK algorithm, but is instead meant to
be demonstrative, rather than computationally efficient.

Extension to 2D

A major advantage of our semi-analytical solution is that it is
straightforward to extend to 2D by applying the same strategy as used
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in 1D. Let us first consider the case of 2 subdomains that are split by
the line x =y, Q| = {(-o0,y] xR} and Q, = {(y, ) x R} with respec-
tive constant diffusion coefficients D;, D,. The initial condition is again
the instantaneous point source C(¢ = 0, x) = 6(x — x;), and x = (xg, ¥p)-
See Fig. 1(b) for a conceptual depiction of this system. In this case, our
general solution is nearly identical to the 1D case, namely

Ws(t,x) := 6S(At, X; xO)IQ| (xg) + Cg(At, x; xO)Igz(xO), 3D

where Cg and és are the same as in (20) and (26), and the form of Cj
and C, are merely altered to contain 2D Gaussian functions; i.e.,

CP(x; D, A1) :=

! )
47DAt 4DAr | " P2
32)

The extension to a more complicated subdomain interface is also
straightforward. In this case, we consider a 2 x 2 tiling of 4 sub-
domains in 2D, and this condition captures the challenges presented
by a highly heterogeneous diffusion (velocity) field that is discretized
on a grid, perhaps generated by a finite-difference method. Specif-
ically, the challenge is that mass originating in a given quadrant
can end up in any or all of the three neighboring quadrants, with
the most complicated path being the diagonal one across the origin.
For this problem the full domain Q is split along the lines x =y,
and y =y,. Thus, we have Q; = {(r,, 0] X (y), )}, Q, = {(=00,7,]1x
(ry, )}, Q3 = {(—00,7,] X (—00,7,1}, Q4 = {(y, ) X (—00,7,]} with re-
spective constant diffusion coefficients D, D,, D3, D4. Once again, the
initial condition has the form C(t = 0, x) = 6(x — x), with xy = (xg, ¥)-
See Fig. 1(c) for a conceptual depiction of this system. The general so-
lution may be written

Ws(t,x) : = C;(At,x;xo)lgl(xo) +C§(At,x;xo)192(x0)
+C (AL, x; x0) I, (Xg) + C(AL, x; %) g, (%0)- (33)

Above, the portion of the solution corresponding to x, € Q, is composed
of the sum of four local solutions with the form of (32), namely

Cy(t,x) 1 = C2P(x; Dy, A (x)

+CPP (1 Dy ADI 1215 o))

2D,
FCT 0 D3y AT 11315 _o0,y13) (%)

+C?P(x; Dy, ADL(, o(—ooyi (%) (34)

where x7 and y” are the x and/or y corrections for the mass-transfers
from subdomain €; to ©; and are calculated so as to ensure conservation
of mass. Similar to the 1D problem, we have

12—  _ _ D,
‘x(,- - xO (x() yx) D1 )

5 =y = 3 - 10y B
(35)

D
ve=rn=-00-1/5

D,
¥4 =y0- (o -1/ 5

and the calculations are analogous for the portions of (33) corresponding
to the other subdomains.

As in the 1D case, the solutions given in (31) and (33) do not con-
serve mass if they are used as the WtFunction () in Algorithm 1, but
they do conserve mass and generate minimal error if they are used in
Algorithm 2.

4. Results
In this section, we consider the results of applying the MTPT al-

gorithm described in Section 3.2 to solve a series of increasingly-
complicated test problems involving discontinuous D(x). To do this we
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constrain our tests to only the mass-transfer (MT) portion of the MTPT
algorithm (i.e., stationary particles that do not random-walk), and we
compare the results of our simulation to known solutions. In the simple
1D case of 2 subdomains, we compare our MTPT results to an analytical
solution, and in all other cases, we use the established RWPT predictor-
corrector method of LaBolle et al. (2000) as our baseline for comparison.

We note that the idealized case of stationary, evenly-spaced parti-
cles we consider does not appear to bear much resemblance to an actual
Lagrangian, or particle-tracking, method in which particles are stochas-
tically positioned due to random walk diffusion. However, even when
particles random-walk, the MT algorithm is fully deterministic within
each timestep, and, in fact, is conceptually a finite difference scheme
with a stochastic stencil. In previous work, the evenly-spaced, stationary
condition is shown to bear more similarity to the random-walking par-
ticle case than it does to a randomly-spaced, stationary condition (Sole-
Mari et al., 2019b). The reason for this is that when particles random-
walk, they are “on average” equally-spaced at any given time; whereas,
randomly-spaced, stationary particles inevitably contain persistent gaps
between particles that degrade solution accuracy. As a result, in order
to isolate the performance of the MT algorithm and analyze its accu-
racy, we choose to simulate the algorithm on evenly-spaced, stationary
particles.

From an algorithmic standpoint, we generate the MTPT results ac-
cording to Algorithm 2, and we use the appropriate semi-analytical so-
lution as WtFunction(). For the MTPT case, we model the initial
condition by assigning the mass corresponding to unit mass to the parti-
cle located at x,, and in the RWPT case, we place all particles at location
X, each with mass 1/N. We then simulate a purely diffusive system with
discontinuous D(x) up to final time T. For MTPT, constructing the nu-
merical solution at final time is as simple as plotting the concentration
on each particle versus its position; however, in the case of RWPT, par-
ticles must first be binned to construct concentrations (equal length in
1D and equal-area squares in 2D), and the number of bins was chosen in
each case so as to balance between low resolution and noisiness. Lastly,
for simplicity, all dimensioned quantities are unitless.

All numerical simulations were conducted in MATLAB, using a Mac-
Book Pro with a 2.9 GHz Intel Core i5 processor and 8 GB of RAM.
The code used to generate the results in this section is available at
http://doi.org/10.5281/zenodo.3706926 (Schmidt, 2020).

4.1. 1D Results

We begin with the simplest case of a 1D domain with two subdo-
mains, as described in Sections 3.2.1 and 3.2.2, and we hold D, = 5.0
constant while we test 3 values of D, ranging from half the magnitude
of D; to two orders of magnitude smaller. In the simulations, we em-
ploy 5000 particles for the MTPT simulations and 1 million particles in
the RWPT simulations (grouped into 100 bins for plotting). We choose
a timestep of length At = 102 with a total simulation time T = 6.

We first examine what occurs when we apply the original MTPT
method that our proposed algorithm is based upon (i.e., using (7) as
the weighting function in (9)) (Benson and Bolster, 2016; Schmidt et al.,
2018; Benson et al., 2020). These results are shown in Fig. 3, and we see
that the original MT algorithm holds up for a small magnitude differ-
ence in the diffusion coefficient, as when (D,, D,) = (5,2.5). However,
when the disparity becomes larger, the accuracy deteriorates, and the
MTPT solution is quite poor for (D, D,) = (5,0.05), as compared to the
analytical solution and the RWPT results. The results of applying our
new MT algorithm (i.e., the semi-analytical solution given in (28) used
within Algorithm (2)) are depicted in Fig. 4. Comparing MTPT results
both to the analytical solution, given in (17), and the RWPT results, we
see very close agreement between all solutions, indicating that our pro-
posed approach is successful here and that we may move on to more
complicated cases.

The next experiment we conduct focuses on a 1D problem with three
subdomains, Q;, Q,, and Q3, with their own respective diffusion coef-
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Fig. 3. Results for a 1D purely-diffusive simu-
lation for two subdomains with diffusion coef-
ficients D; and D, (shown for 3 different values
of D,). The MTPT method employs the orig-
inal MTPT algorithm on which we base our
work (Benson and Bolster, 2016; Schmidt et al.,
2018; Benson et al., 2020), as compared to the
predictor-corrector RWPT method of LaBolle
et al. (2000) and the analytical solution given
in Section 3.2.1. RW particles are grouped into
100 bins for plotting. Results are shown for
a simulation with 5000 MT particles, 10° RW
particles, At = 1072, and total simulation time
T = 6. All dimensioned quantities are unitless.
Note that the original MTPT algorithm per-
forms quite poorly when there is a large dis-
parity between D; and D,.
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ficients, representing diffusion in, for example, a layered system. We
hold D, = 5.0 and D; = 0.05, so as to span two orders of magnitude, and
we test three values of D, € {2.5, 1.0, 0.5} in the central subdomain.
In the simulations, we employ 5000 particles for the MTPT simulations
and 1 million particles in the RWPT simulations (grouped into 100 bins
for plotting), and we choose a timestep of length Ar = 102 with a total
simulation time of T' = 6. The results of this experiment are displayed in
Fig. 5. Because this problem has no simple analytical solution, we take
the RWPT results as our baseline case and find very close agreement of
the MTPT results with the baseline.

4.2. 2D results

Moving to 2D, we first consider the case of 2 subdomains split along
the line x =y, corresponding to the semi-analytical solution given in
(31). For these simulations, we hold D, = 5.0 and test D, € {2.5, 1.0,
0.5}. In the simulations, we employ 10201 particles for the MTPT sim-
ulations (101 x 101 equally-spaced particles, with the number chosen
so as to capture the integer-valued source location) and 10 million par-
ticles in the RWPT simulations (grouped into 6400 bins for plotting)
and choose a timestep of length At = 10! with a total simulation time
of T = 6. The results of this experiment are shown in Figs. 6 and 7. In
Fig. 6, we see good visual agreement of the MTPT solutions to the RWPT
baseline, and this is verified by plotting the constant-concentration con-

T Fig. 4. Results for a 1D purely-diffusive sim-
ulation for two subdomains with diffusion
coefficients D; and D, (shown for 3 differ-
ent values of D,). The MTPT method em-
ploys the semi-analytical solution given in
(28) using Algorithm 2, as compared to the
predictor-corrector RWPT method of LaBolle
D, = 2.50 | etal (2000) and the analytical solution given
D, = 0.50 in Section 3.2.1. RW particles are grouped into
100 bins for plotting. Results are shown for
a simulation with 5000 MT particles, 106 RW
particles, At = 1072, and total simulation time
T = 6. All dimensioned quantities are unitless.

tours on the same axes in Fig. 7 where the match is seen to be nearly
exact, aside from the slight noise induced by the randomness in the
RWPT simulation.

The next problem we consider is the 2D example of 4 subdomains
split along the lines x =y, and y=y,, corresponding to the semi-
analytical solution given in (33). For these simulations, the four cases
we consider, in terms of choices for D;, i = 1,...,4, are: (1) 4 different
values for D;, spanning an order of magnitude; and 3 equal values for
D; and one value that is an order of magnitude smaller, with (2) source
location in a subdomain laterally adjacent to the small value of D;, (3)
source location in the subdomain containing the small value value of
D;, and (4) source location in a subdomain diagonally adjacent to the
small value of D;. Of these four cases, case (4) is the least interesting,
as the majority of solute remains in the three subdomains with large D;,
so we do not depict results of this simulation, though they were always
favorable. In the simulations, we employ 40,401 particles for the MTPT
simulations (201 x 201 equally-spaced particles) and 10 million par-
ticles in the RWPT simulations (grouped into 6400 bins for plotting),
and we choose a timestep of length Ar = 10~! for the MTPT simulations
and At = 1072 for the RWPT simulations (this was required to generate
smooth enough results for comparison), with a total simulation time of
T=3.

The results of this experiment are shown in Figs. 8 and 9. In Fig. 8,
we see favorable visual agreement of the MTPT solutions to the RWPT
baseline, and this is confirmed by the overlaid constant-concentration
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Fig. 5. Results for a 1D purely-diffusive sim-
ulation for three subdomains with diffusion
coefficients D;, D,, and D; (shown for 3 dif-
ferent values of D,). The MTPT method em-
ploys the semi-analytical solution given in
(28) using Algorithm 2, as compared to the
predictor-corrector RWPT method of LaBolle
et al. (2000). RW particles are grouped into
100 bins for plotting. Results are shown for
a simulation with 5000 MT particles, 106 RW
particles, At = 1072, and total simulation time
T = 6. All dimensioned quantities are unitless.
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Fig. 6. Concentration heatmap (magnitude given by the color bar on the righthand side) with constant-concentration contours (white curves) depicting results of a
2D simulation for two subdomains with diffusion coefficients D, and D, (shown for 3 different values of D,). The MTPT method employs the semi-analytical solution
given in (31) using Algorithm 2, as compared to the predictor-corrector RWPT method of LaBolle et al. (2000). RW particles are grouped into 6400 bins for plotting.
Results are shown for a simulation with 10201 MT particles, 107 RW particles, At = 10~!, and total simulation time T = 6. All dimensioned quantities are unitless.

contour plots depicted in Fig. 9. We note that in the 2D experiments, we

only consider a single order or magnitude difference between diffusion

coefficients. This was in favor of fast run times, as the required num-
ber of particles for a MTPT simulation is dictated by the inter-particle
spacing, which must be on the order of ¢ := V2DAt, where D is the
smallest diffusion coefficient in the system. However, there are no the-
oretical barriers to considering larger disparities in D(x).

4.3. Speed and accuracy

Here, we address two measures of algorithmic performance for our
proposed MTPT method for discontinuous D(x). First, as to speed, run
times for the MTPT method are consistently lower than those for cor-
responding RWPT solutions. For example, to generate the 1D, 2 subdo-
main results discussed in Section 4.1 and depicted in Fig. 4, the MTPT

simulations run approximately 4.5 times faster than the RWPT simu-
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Fig. 7. Constant-concentration contours comparing results depicting results of a 2D simulation for two subdomains with diffusion coefficients D, and D, (shown
for 3 different values of D,). The MTPT method employs the semi-analytical solution given in (31) using Algorithm 2, as compared to the predictor-corrector RWPT
method of LaBolle et al. (2000). RW particles are grouped into 6400 bins for plotting. Results are shown for a simulation with 10201 MT particles, 107 RW particles,

At = 107", and total simulation time T = 6. All dimensioned quantities are unitless.
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Fig. 8. Concentration heatmap (magnitude given by the color bar on the righthand side) with constant-concentration contours (white curves) depicting results of
a 2D simulation for four subdomains with diffusion coefficients D,, D,, D3, and D,. The MTPT method employs the semi-analytical solution given in (33) using
Algorithm 2, as compared to the predictor-corrector RWPT method of LaBolle et al. (2000). RW particles are grouped into 10201 bins for plotting. Results are shown
for a simulation with 40401 MT particles, 107 RW particles, A = 1072, and total simulation time 7 = 3. All dimensioned quantities are unitless.

lations to which the solutions are compared. For the 2D, 4 subdomain
case, discussed in Section 4.2 and depicted in Figs. 6 and 9, the MTPT
simulations run approximately 1.5 times faster than the RWPT simu-
lations. This speedup for MTPT can primarily be attributed to the fact
that mass-transfer interactions only occur among nearest-neighbors, and
this allows for speedup via sparse linear algebra. Note, however, that
these run time comparisons are for reference only, as both algorithms
can be optimized in various ways, and that was not the goal of this
work.

As to accuracy, we perform a convergence analysis for the proposed
MTPT algorithm to see how error is affected by the level of discretiza-
tion; i.e., refinements in time step length, At, or increase in particle num-
ber, N. This convergence analysis considers the 1D, 2 subdomain case,
and we compute error in comparison to the analytical solution given
in Section 3.2.1. For each convergence analysis we employ all of the
same parameters as were used to generate the results in Section 4.1 and
depicted in Fig. 4, varying only At or N in successive refinements. The
results for a convergence analysis in terms of At are depicted in Fig. 10,
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Fig. 9. Constant-concentration contours comparing results depicting results of a 2D simulation for four subdomains with diffusion coefficients D;, D,, D5, and D,.
The MTPT method employs the semi-analytical solution given in (33) using Algorithm 2, as compared to the predictor-corrector RWPT method of LaBolle et al.
(2000). RW particles are grouped into 10201 bins for plotting. Results are shown for a simulation with 40401 MT particles, 107 RW particles, At = 1072, and total
simulation time T = 3. All dimensioned quantities are unitless.
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Fig. 10. Convergence analysis in terms of time step length, At, for the MTPT Algorithm 2 employing the semi-analytical solution given in (33). These results are for
the 1D, 2 subdomain problem for which we have an analytical solution (see Section 4.1 and Fig. 4). Each plot corresponds to a single value for D,. Error is computed
in terms of the #2 and #* norms and best-fit reference lines are shown to demonstrate the experimental order of convergence. O(At'/?) convergence appears most
clearly in the #® norm.
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Fig. 11. Convergence analysis in terms of particle number, N, for the MTPT Algorithm 2 employing the semi-analytical solution given in (33). These results are for
the 1D, 2 subdomain problem for which we have an analytical solution (see Section 4.1 and Fig. 4). Each plot corresponds to a single value for D,. Error is computed
in terms of the root-mean-squared error (RMSE) and £ norms. Depending on the value of D, being considered, rapid convergence is seen with increasing N, until
leveling off at a minimal level.
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and therein we plot error, in terms of the #* and #2 norms, as a function
of At for each of the three values of D, we consider in Section 4.1 (Fig. 4).
For each of the error curves we also plot a reference O(Ar?) line of
best fit to obtain the order of convergence, p, and we see the general
trend of what appears to be p = 1/2 order of convergence, and this is
demonstrated most clearly in the #* norm. The results for a conver-
gence analysis in terms of N are depicted in Fig. 11, and therein we plot
error, in terms of the #® norm and root-mean-squared error (RMSE),
as a function of N for each of the three values of D, we consider in
Section 4.1 (Fig. 4). We note that we employ RMSE here, as opposed
to the #2 norm, to normalize for varying vector-length. In this case, we
see a period of rapid convergence with increasing N, before error levels
off to a minimal level that is controlled by the time discretization, and
this is the expected behavior that is commonly seen in MTPT methods
(Schmidt et al., 2018; 2019a).

5. Conclusions

Discontinuous diffusion coefficients arise naturally within simula-
tions of transport through heterogeneous porous media, but accurately
modeling diffusion across these interfaces has remained an outstanding
problem for MTPT algorithms. Here, we have generalized MTPT algo-
rithms to addresses this deficiency, including for multi-dimensional sys-
tems. This is a significant advance both from a numerical perspective
and in terms of improving the realism of such simulations. Addition-
ally, these results serve to eliminate one of the few remaining barriers
that limit the capabilities of Lagrangian methods in comparison to their
Eulerian counterparts.

In particular, within the current work, we have:

1. generalized the MT algorithm to incorporate non-symmetric mass-
transfer kernels;

2. presented an MT algorithm that employs a relatively simple 1D an-
alytic solution to the discontinuous D(x) problem;

3. derived a semi-analytical solution to the discontinuous D(x) prob-
lem that is straightforward to generalize to higher dimensions and
complicated subdomain interfaces;

4. presented an MT algorithm that incorporates this semi-analytical so-
lution;

5. applied this updated MTPT algorithm to a variety of test cases, in-
cluding a 2D problem that corresponds to a standard velocity grid
with order-of-magnitude differences in D(x);

6. attained favorable results of this application of the new MTPT algo-
rithm.

Additionally, while not considered in this work, it would be a sim-
ple matter to handle moving subdomain interfaces with this algorithm.
This is because particle interactions occur pairwise, and to make the
relevant mass-transfer, the only required information is each particle’s
mass, position, and local diffusion coefficient, which are easy enough
to establish within a timestep, no matter the current orientation of a
subdomain boundary.

Open questions remain in this direction, however. For instance, what
would be the effect of running a hybrid version of MTPT including dif-
fusive random walks in the algorithm, and how would it affect the accu-
racy of solutions? Or, how might the solution be generalized to subdo-
mains that possess more complicated geometry; for example, boundaries
that are not right angles, such as on a triangulated grid, or boundaries
that are not straight lines at all (e.g. Sole-Mari et al., 2019a). Addition-
ally, we have only considered the scalar, or isotropic, D(x) case because
it is common in the MTPT literature to simulate large-scale, anisotropic
spreading by random walks and the micro-scale, isotropic mixing pro-
cess by mass transfers (Schmidt et al., 2018; Benson et al., 2019a).

In summary, we have extended the capabilities of MTPT methods to
solve the problem of discontinuous diffusion coefficients, thus adding
flexibility to a tool that already is able to: model arbitrarily complex
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reactions, including fluid-solid interactions; separately simulate macro-
scale spreading and micro-scale mixing; capture arbitrarily fine resolu-
tion in mixing and concentration gradients; and achieve nearly linear
speedup when parallelized.
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