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Abstract—This paper studies a class of neighborhood con-
straints to characterize and repair erroneous entity informa-
tion in multi-relational graph data. (1) We propose a class
of constraints called star functional dependencies (StarFDs).
Unlike conventional integrity constraints, a StarFD enforces
value dependencies conditioned by entities and their relevant
neighbors, which are identified by a star pattern that incorporates
conjunctive regular path queries. StarFDs achieve a balance
between expressiveness and complexity: the validation of StarFDs
is tractable, and the satisfiability and implication of StarFDs are
NP-complete and coNP-complete, respectively. (2) Given a set of
StarFDs Σ and a graph G, the entity repair problem is to compute
a minimum repair of G by enforcing Σ with the smallest amount
of changes. Although this problem is NP-complete and hard to
approximate, we show it is feasible to compute repairs in large
graphs. Our approach (a) discriminately detects and resolves
errors with optimal, approximable and cost-bounded solutions
whenever possible, and (b) incurs a time cost determined by
Σ and the size of inconsistencies, for all cases. Using real world
data, we show that StarFD-based techniques effectively identify
and repair errors. We also show that our repairing algorithms
benefit other tasks such as fact checking.

Index Terms—data cleaning, knowledge graphs.

I. INTRODUCTION

Real-world graph data is often “dirty” [12], [26], [35]. A

major class of errors in the ubiquitous attributed, multire-

lational graphs refer to incorrect attribute values and types

pivoted at the entities (nodes). As observed in [34], 23.22%
(resp. 25.14%) of 700 sampled triples from diverse classes

are caused by incorrect attribute values (resp. wrong types).

The need for repairing erroneous entity information is evident

in graph search [33], knowledge base completion [25], and

provenance [31]. Although integrity constraints such as func-

tional dependencies are extended to capture inconsistencies

in labeled graphs [16], the research on repairing erroneous

entities in multirelational graphs is still in its infancy.

Unlike data cleaning based on integrity constraints [9],

repairing erroneous attribute values of entities in a multire-

lational graph G is more involved. (1) It may require the

checking of violations of value constraints among the attributes

of the nodes that are “semantically” associated with each other.

Such semantic association may not necessarily be explicitly

encoded as direct edges (due to e.g., incompleteness), but paths

summarized by regular expressions [3], [6]. (2) Repairing

process by updating attribute values requires the detection of

new violations via such semantic association.

� �
�

Fig. 1: Capturing erroneous attributes with regular expressions

Consider the following examples.

Example 1: [Capturing errors with regular expressions]

Fig. 1 illustrates a fraction of a knowledge base G1 about

athletes. Each node may carry a type (e.g., football

players) and a set of attributes (e.g., name) with values (e.g.,

“Van Persie”). An athlete has associated career information

such as the clubs they play for (e.g., “Arsenal F.C.”), their

coaches (e.g., “A. Wenger”), stadiums (e.g., “Emirates”)

and training facilities (e.g., “ATC”). There are two errors

about facts of “Van Persie”: the city of the stadium “Emirates”

and the city of the training facility “Aon” are marked as

‘Bristol’ and ‘Leeds’, respectively.

Such errors can be identified and corrected by the following

constraint posed on the neighborhood of football players: “if

a stadium and a facility relevant to the same football player

from Premier League are owned by the same company, then

they should locate at the same city.” Here the relevant stadiums

and facilities of a football player in G1 are (1) not explicitly

encoded by direct neighbors of football players, and (2) may

connect to a football player via paths with different labels.

Such semantic correlation is identified by a pattern P1 with

two regular expressions below:

• R1 = (playsFor · operates) ∪ (coachedBy · worksAt)

• R2 = (playsFor · operates) ∪ (teammate≤1 · trainsAt)

Given football player “Van Persie”, R1 specifies stadiums

relevant to him as those “either operated by his club, or those

where his coach works at”. Similarly, R2 identifies his relevant

facilities as those “operated by his club, or those where he or
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at most one of his teammate trains at”. Given the correct

location “ATC” (resp. “Old Trafford”), the city ‘Bristol’ of

stadium “Emirates” (resp. ‘Leeds’ of facility “Aon”) should

be corrected as ‘London’ (resp. ‘Manchester’).

Another example from academic networks (e.g., Mathe-

matics Genealogy) suggests that a researcher’s area can be

determined by checking value constraints from his academic

genealogy (G2 in Fig. 1). A researcher “M. Franklin” has

a wrong area ‘Robotics’. This can be detected by enforcing the

following constraint: “a researcher should have a consistent

area with (1) an area his thesis is in or his close coauthors

(within 1 hop) have, and (2) the area is also shared by his

close advisors (within 2 hops). The constraint is specified by

pattern P2 with regular expressions R3 and R4, and identifies

a correct domain “DBMS” for the entity “M. Franklin”. �

These examples suggest the need to condition the integrity

and value constraints with semantic associations. Such seman-

tic associations from e.g., “career” or “academic genealogy”

can be characterized as multirelational regular paths [3], [6].

While desirable, repairing the errors captured by violations

of such constraints is nontrivial.

Example 2: [Repairing under constraints with regular ex-

pressions] The semantic association specifying relevant stadi-

ums and facilities can be expressed by a tree pattern P1 shown

in Fig. 1. One solution is to update the city of “Emirates” from

‘Bristol’ to ‘London’, and update the city of entity “Aon” from

‘Leeds’ to ‘Manchester’. Another solution updates the city

‘London’ of “ATC” to ‘Bristol’, and the city ‘Manchester’ of

“Old Trafford” to ‘Leeds’, and the owner company ‘AHP’ to

e.g., ‘BCFC. Ltd’ for both “ATC” and “Emirates”. One may

prefer the first repair that makes fewer changes to the attribute

values, given that the second repair may modify values that

are highly confident to be correct or incur larger editing cost.

Moreover, new inconsistencies may be introduced due to the

modification of the node attributes. �

The above examples call for constraint models that can

incorporate semantic associations captured by regular expres-

sions to detect erroneous entities in multirelational graphs, as

well as effective repairing algorithms.

Contribution. This paper studies feasible constraints and

algorithms to repair entity information in large graphs.

(1) We propose star functional dependencies (StarFDs), a

class of neighborhood constraints to detect erroneous attribute

values of entities in multirelational graphs (Section II). A

StarFD incorporates a star pattern that encodes a class of con-

junctive regular path queries to locate semantically associated

neighbors of entities, and enforces value constraints over these

entities. StarFDs achieve a balance between expressiveness

and computational cost for error detection: the validation

problem is tractable for StarFDs. We present an algorithm

to detect errors with StarFDs. In addition, we show that (1)

the satisfiability problem of StarFDs is NP-complete; and (2)

the implication problem is coNP-complete.

(2) We approach minimum cost repairs to correct errors

(Section III). We introduce a cost model for repairs, and

formulate an entity repair problem under StarFDs. Given a

graph G and a set of StarFDs Σ, it is to compute a new

graph G′ that satisfies the StarFDs Σ and incurs a minimum

editing cost. Although the validation of StarFDs is tractable,

the entity repair under StarFDs is NP-complete, and is hard to

approximate. Despite the hardness, we show that entity repair

is within reach in practice for large G.

(3) We introduce an entity repairing framework (Section IV

and V). The framework partitions the inconsistencies to com-

ponents that can be independently repaired, and discriminately

computes optimal, approximate and cost-bounded solutions for

each component respectively whenever possible, by detecting

corresponding conditions that ensure the existence of such

repairs. All these algorithms incur a time cost determined only

by the size of constraints |Σ|, and a bounded neighborhood of

erroneous entities. These ensure practical applications of our

repairing algorithms.

(4) We experimentally verify the effectiveness and efficiency

of our graph repairing algorithms, using real-world graphs

from diverse categories (Section VI). We find that erroneous

entities can be efficiently captured and repaired by enforcing

StarFDs. For example, for Yago with 4.4 million edges, it

takes up to 1.6 seconds to identify erroneous entities, and

4.4 seconds to compute repairs respectively, even for top

frequent types such as Person. The repairs in turn improve

the effectiveness of knowledge base completion [25], [27],

where correct neighborhood information plays a critical role.

Related Work. We categorize the related work as follows.

Graph data dependencies. Integrity constraints and data de-

pendencies such as functional dependencies (FDs) have been

extended to detect inconsistencies in graphs [16]. These

constraints incorporate subgraph isomorphism to identify the

fraction of graphs the value constraints that should hold.

For example, a graph functional dependency (GFD) ϕ with

subgraph pattern Q enforces value constraints on node at-

tributes identified by Q via subgraph isomorphism [16]. Note

that semantic associations that help identify attribute errors

may not be easily captured by strict subgraph isomorphism.

Moreover, error detection using e.g.,GFDs is already coNP-

complete [16] (where an error is defined as a subgraph iso-

morphism), making repairing framework inherently expensive.

StarFDs incorporate regular expressions to capture semantic

associations for feasible error detection. It permits tractable

error detection processes, striking a balance between expres-

siveness and repairing cost. Repairing algorithms are also not

addressed in these work.

Constraint-based Repairing. Computing (optimal) repairs has

been studied to satisfy given FDs [7], [20] and its variants [9].

These methods repair relational data by minimally modifying

tuples. NADEEF [10] compiles constraints into logic operators

and uses MAX-SAT solvers to minimize the editing cost. It
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repairs RDF tuples by recasting graphs to relational encoding

and enforces conventional constraints, instead of capturing and

repairing errors characterized by semantic associated entities

specified via multirelational paths.

Repairing XML data [17], [29] conforms to XML schema

with minimum cost. [17] assigns the nodes in XML subtrees

with reliability values (true or false) and updates unreliable

content of elements. [29] constructs a conflict hypergraph

to encode violations, where each node is a value and each

hyperedge is formed by a set of values violating a FD. It

then resolves the violations by value modifications. Graph

repairing has been recently studied under constraints defined

by subgraph isomorphism [8], [15]. GRRs [8] compute graph

repairs by enforcing changes that are explicitly encoded by two

subgraph patterns. GQRs [15] assumes reliable ground truth,

and deduces a certain fix of graphs. Vertex label repairs [28]

apply constraints that state which labels are allowed for a node,

and focuses on computing a minimum relabeling of nodes to

satisfy the label constraints.

Our work differs from prior work in the following. (1) In

contrast to schema-level XML repairing [17], [29], we focus

on repairing instance-level errors in general multirelational

graph data. (2) We develop algorithms that repair erroneous

attribute values enforced by StarFDs via regular path queries,

beyond updating node labels [28]. (3) StarFDs do not require

strong constraints that encode topological change as in [8]. Our

repairing framework computes repairing process under mini-

mum editing cost model by enforcing StarFDs. This is also

very different from [15] that refers to reliable ground truth.

We provide algorithms with guarantees on repairing quality in

terms of graph editing cost and constraint satisfiability. These

are not addressed by prior work.

II. NEIGHBORHOOD CONSTRAINTS

A. Star Constraints: A characterization

Graphs. We consider directed, attributed graphs G =

(V,E, L, fA), where V is a set of nodes and E ⊆ V × V
is a set of edges. Each node v ∈ V (resp. edge e ∈ E) has a

label L(v) (resp. L(e)) from a finite alphabet τ . For each node

v ∈ V , a function fA assigns a tuple fA(v) to v, which is a

sequence of attribute-value pairs {(v.A1, a1), . . . (v.An, an)},

where (v.Ai, ai) (i ∈ [1, n]) represents that the node attribute

v.Ai has a constant value ai. The active domain of G, denoted

as adom(G), is a finite set of values of v.A in G, with v
ranging over V and A ranging over all attributes of v.

In practice, the label L(v) (resp. L(e)) may encode the

type (e.g., football player in G1, Fig. 1) of an entity v
(resp. relation name of edge e (e.g., coachedBy)); and the

function fA specifies its properties (e.g., v.league = ‘EPL’), as

seen in property graphs [2], knowledge bases [12] and social

networks [21]. We shall also use the following notations. (1)

A path ρ in G is a sequence of edges e1 = (v1, v2), e2 =

(v2, v3), . . ., en = (vn, vn+1). The length of ρ refers to the

number of edges in the sequence. (2) The label of ρ (denoted

as L(ρ)) is the concatenation of all the edge labels following

the sequence, i.e., L(ρ) = L(e1) · L(e2) · · ·L(en).

We next introduce a class of star patterns to characterize

semantically associated neighbors of an entity.

Star patterns. A star pattern P (uo) = (VP , EP , LP , fR) is

a single rooted two-level tree with a set of pattern nodes VP

(resp. pattern edges EP ). (1) VP consists of a center uo, and

a set of leaf nodes VP \ {uo}. Each node u ∈ VP has a label

LP (u). (2) For each leaf node ui in VP and each edge ep =

(uo, ui), the function fR assigns a regular expression fR(ep)
defined by a fragment of regular expressions below:

R ::= l|l≤k|R ·R|R ∪R

where l is either an edge label from an alphabet τ , or a

wildcard ’ ’ that stands for any label in τ . l≤k denotes the

concatenation of no more than k occurrences of label l (k
is an integer and k ≥ 1). R · R (resp. R ∪ R) denotes the

concatenation (resp. disjunction) of regular expressions. We

denote the language defined by the expression R as L(R),
i.e., all the strings that can be parsed by R.

Star matches. We use the following notations. (1) A node v
in G is a candidate of a pattern node u in P (uo), denoted as

v ∼ u, if L(v) = LP (u). A pair of nodes (vo, v) in G is a

candidate of a pattern edge ep = (uo, u), denoted as (vo, v) ∼
ep, if vo ∼ uo (resp. v ∼ u), and there exists a path ρ from

vo to v, such that L(ρ) ∈ L(fR(ep)). (2) The matches of the

center uo, denoted as P (uo, G), contains all the candidates vo
of uo, such that for every edge ep ∈ EP , there exists a node

v such that (vo, v) ∼ ep.

A star match at a match vo of uo (vo ∈ P (uo, G)), denoted

as P (G, vo), refers to the maximum set {(vo, v)| (vo, v) ∼
ep, ep ∈ EP }. Moreover, given a pattern node u in P (uo), the

matches of u at vo, denoted as P (u,G, vo), refers to the node

set {v|(vo, v) ∼ (uo, u), (vo, v) ∈ P (G, vo)}. The match set

of a star pattern P (uo) in G, denoted as P (G), refers to the

set of all the star matches, i.e., P (G) =
⋃

vo∈P (uo,G) P (G, vo).

Intuitively, star matches identify the matches of the “center”

entity uo along with their semantically associated neighbors.

Such association is captured by regular path queries [3], [6].

Example 3: Fig. 1 illustrates a star pattern P1 (resp. P2)

centered at football player (resp. researcher). P1

specifies relevant stadium and facility of each entity

that matches football player, via paths that satisfy

R1 and R2, respectively. The table below illustrates relevant

entities specified by P1.

notation match set

P1(uo, G1) {vo}
P1(G1, vo) {(vo, v1), (vo, v2), (vo, v3), (vo, v4)}

P1(u1, G1, vo) {v1, v4}
P1(u2, G1, vo) {v2, v3}

P1(G1) {(vo, v1), (vo, v2), (vo, v3), (vo, v4)}

Similarly, the matches of P2 specify relevant researchers

(e.g., “A. Halevy” (v9)) and domains (e.g., “DBMS” (v8))

for a specified researcher (e.g., “M. Franklin” (v′o)). �
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Remarks. We do not require the paths that match ep ∈ EP to

be simple paths. This is to avoid excluding relevant entities

reachable by cycles, which are commonly found in e.g.,

social communities with mutual relations [24]. We also do not

include Kleene stars to exclude “weak” semantic association

and irrelevant entities via arbitrarily long paths [36], which

may have little contribution to identify erroneous attributes.

We now introduce star functional dependencies, incorporat-

ing star patterns and value constraints.

Star constraints. A star functional dependency (StarFD) is

in the form of

ϕ = (P (uo), X → Y, μ)

where (1) P (uo) is a star pattern with a center uo; (2) μ is a

function to assign a unique variable xu to each node u ∈ VP ;

and (3) X and Y are two sets of literals defined over the

set of variables assigned by μ. Each literal can be either (a)

a constant literal xu.A = a, where a is a constant, or (b) a

variable literal xu.A = xu′ .A′, where A and A′ may refer to a

node attribute or specifically the label of u and u′, respectively.

When A refers to a node label, xu.A refers to L(u).

We simply denote xu as u and denote (P (uo), X → Y, μ)
as (P (uo), X → Y ) when the context is clear.

Semantics. We first characterize the satisfiability of literals.

Given a star match P (G, vo) and a literal l, we say P (G, vo)
satisfies l, denoted as P (G, vo) |= l, if the following holds:

• If l is a constant literal u.A = c, then for every match v
in P (u,G, vo), v.A = c;

• If l is a variable literal u.A = u′.A′, then for every match

v ∈ P (u,G, vo), there exists a match v′ ∈ P (u′, G, vo),
such that v.A = v′.A′, or vice versa.

We say P (G, vo) satisfies X , denoted as P (G, vo) |= X , if (1)

P (G, vo) �= ∅, and (2) P (G, vo) |= l for every literal l ∈ X .

P (G, vo) |= Y is defined similarly.

Given a graph G and a StarFD ϕ = (P (uo), X → Y ), we

say G satisfies ϕ, denoted as G |= ϕ, if for every star match

P (G, vo) centered at a node vo ∈ P (uo, G), if P (G, vo) |=
X , then P (G, vo) |= Y . In other words, ϕ enforces value

constraints Y on the attributes of nodes that are semantically

associated to a match vo of uo and satisfy condition X .

A graph G satisfies a set of StarFDs Σ, denoted as G |= Σ,

if G |= ϕ for every ϕ ∈ Σ. It is consistent w.r.t. Σ if G |= Σ.

Example 4: The constraint that uses star pattern P1 (Fig. 1)

to identify location errors can be expressed by a StarFD

ϕ1 = (P1(uo), X1 → Y1), where X1 contains two literals

l1: uo.league = ‘EPL’ and l2: u1.owner = u2.owner, and Y1

contains a single literal u1.city = u2.city. Similarly, a StarFD

ϕ2 = (P2(uo), X2 → Y2) captures errors in research domains

in G2, where X2 contains a literal l′1: u′
1.area = u′

2.area, and

Y2 contains a literal l′2: u′
0.area = u′

2.area.

One can verify the following. (1) As vo.league = ‘EPL’,

and v1.owner = v2.owner (resp. v3.owner = v4.owner),

P (G, vo) |= X1. (2) As there does not exist a match v′ in

symbols notations

G a graph G = (V,E, L, fA)
P (uo) a star pattern with a center node uo

P (uo, G) the matches of center node uo of P in graph G

P (G, vo) a star match at a match vo of center uo

P (u,G, vo) the matches of u in P (G, vo) at node vo
ϕ, Σ StarFD ϕ = (P (uo), X → Y ); Σ is a set of StarFDs

(P (G, vo), ϕ)
a consistent (resp. inconsistent) pair

if P (G, vo) |= ϕ (resp. P (G, vo) �|= ϕ)

I(ϕ,G) (resp. I(Σ, G)) inconsistencies under a StarFD ϕ (resp. Σ)

Table I: Notations

P1(u2, G, vo), such that v1.city = v′.city, P1(G1, vo) �|= Y1.

Thus, P1(G1, vo) �|= ϕ. Similarly, P2(G2, v
′
o) �|= ϕ2. �

We consider nontrivial StarFDs in a normal form that (a) Y
contains a single literal, (b) X �= ∅, and Y �∈ X . Our results

can be easily extended to lift these assumptions (see [1]).

Inconsistencies. We now characterize errors in terms of

violations of StarFDs. Given graph G and a StarFD ϕ =

(P (uo), X → Y ), an inconsistency is a pair I = (P (G, vo), ϕ),
such that P (G, vo) is a star match at node vo, P (G, vo) |= X
and P (G, vo) �|= Y . That is, (1) if Y is a constant literal

u.A = c, then there exists no match v ∈ P (u,G, vo) such

that v.A = c; or (2) if Y is a variable literal u.A = u′.A,

then there exists a match v ∈ P (u,G, vo) such that no

match v′ ∈ P (u′, G, vo) satisfies v.A = v′.A′, or vice versa.

Otherwise, (P (G, vo), ϕ) is a consistent pair. For example,

given StarFD ϕ1 and star match P1(G1, vo) at node vo in

G1 (Example 4), (P1(G1, vo), ϕ1) is an inconsistent pair.

Similarly, (P2(G2, v
′
o), ϕ2) is an inconsistent pair.

The inconsistencies under ϕ, denoted as I(ϕ,G), refer

to the set of all the inconsistent pairs (P (G, vo), ϕ) in G.

The inconsistencies under StarFDs Σ are similarly defined as

I(Σ, G) =
⋃

ϕ∈Σ I(ϕ,G).

The main notations of this paper are summarized in Table I.

B. Fundamental Problems

We next study three fundamental problems for StarFDs. The

validation analysis identifies inconsistencies under StarFDs to

be repaired. The satisfiability analysis helps us decide whether

a repair exists under StarFDs. The implication analysis reduces

redundant constraints that can be already implied.

Validation. Given a set of StarFDs Σ and a graph G, the

validation problem for StarFDs is to decide whether G |= Σ.

A validation algorithm of StarFDs can be easily extended to

a procedure that computes all inconsistencies that violate Σ,

which is a first step for computing repairs.

We have good news for StarFDs.

Theorem 1: StarFDs validation is in PTIME. �

As a constructive proof of Theorem 1, we present an

algorithm errorDetect to compute I(Σ, G). Given Σ and graph

G, errorDetect performs two steps. (1) For each StarFD ϕ =

(P (uo), X → Y ), errorDetect initializes and evaluates a con-

junctive regular path query Q(uo) =
∧n

i=1 Qi(uo). For each

edge epi
= (uo, ui) ∈ EP (i ∈ [1, n]), it initializes a regular

path query Qi that returns all the node pairs (vo, v) ∼ ei
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in G. It then invokes a procedure StarMatch to compute

the set of star matches P (G). The procedure StarMatch

follows regular path query evaluation [33] to construct a query

automata and perform consecutive regular reachability tests

guided by the automata (see details in [1]). For P (uo) with

n pattern edges, the matches of uo is computed as P (uo, G)
=

⋂n
i=1 Pi(uo, G). For each star match P (G, vo), it checks

whether P (G, vo) |= X and P (G, vo) �|= Y . If so, it adds

(P (G, vo), ϕ) to I(Σ, G).

The algorithm errorDetect correctly computes (at

most card(Σ)|V | star matches and inconsistencies, in

O(card(Σ)|V |+ |V |(|V |+ |E|)) time. Here card(Σ) refers to

the number of StarFDs in Σ. errorDetect validates whether

G |= Σ, by testing if I(Σ, G) = ∅. Theorem 1 thus follows.

Satisfiability. Given a set Σ of StarFDs, a graph G is a model

of Σ, if (1) G |= Σ, and (2) for each StarFD (P (uo), X → Y ),
P (G) �= ∅. The satisfiability problem of StarFDs is to decide

whether there exists a model of a given set of StarFDs Σ.

Our first result shows that the satisfiability of StarFDs,

unlike its counterpart for GFDs (coNP-hard), is still in NP.

Theorem 2: StarFDs satisfiability is NP-complete. �

Proof sketch: We develop an NP algorithm that guesses

a small model G for Σ, and check whether G |= Σ, in

polynomial time. To see the lower bound, we construct a

reduction from the satisfiability problem of conditional func-

tional dependencies, which is shown to be NP-hard [13]. We

provide the detailed proof in [1]. �

Implication. Given a set of StarFDs Σ and a StarFD ϕ, the

implication problem is to decide whether Σ implies ϕ, denoted

as Σ |= ϕ, i.e., for every graph G, if G |= Σ, then G |= ϕ.

Theorem 3: StarFDs implication is coNP-complete. �

Proof sketch: We show that deciding Σ �|= ϕ is NP-complete.

For the upper bound, we present an NP algorithm that guesses

a mapping h from each edge e′R in a StarFD ϕ′ ∈ Σ to an

edge eR in ϕ such that e′R and eR preserve node labels, and

preserve equivalent regular languages. For the lower bound,

we construct a reduction from the non-equivalence problem

of two regular expressions without Kleene star, which is NP-

complete (cf. [19]). The detailed proof is in [1]. �

Remarks. We consider StarFDs-based error detection as a

more efficient option but also compatible with graph functional

dependencies (GFDs) [16]. (1) StarFDs capture semantically

associated entities with regular path queries. This supports

more flexible error identification via indirect connections with

heterogeneous edges. (2) Error detection using GFDs is coNP-

hard [16], and the inconsistencies defined by subgraph isomor-

phisms may “overlap” and specify the same erroneous entities

for a single GFD. StarFDs identifies at most card(Σ)|V |
inconsistencies in polynomial time. The star matches can

further be inspected under GFDs and other constraints. We

defer StarFDs with general patterns to future work.

III. ENTITY REPAIRING

We now formalize entity repairing under StarFDs.

Repairs. Given a set of StarFDs Σ and a graph G such that

G �|= Σ, a repair is a graph G′ = G⊕O, such that G′ |= Σ, i.e.,

I(Σ, G′) = ∅. Here O refers to a set of single updates applied

to (⊕) G . Each single update (or simply “update”) o ∈ O is

a triple (v.A, a, c), where v is a node in G, (v.A, a) ∈ fA(v),
i.e., a is the value of the node attribute v.A in G, and c is a

constant (c �= a) that replaces a.

We characterize repairs with two practical specifications.

Coping with incomplete graphs. The real value of a node

attribute v.A may not be already seen in G due to incomplete-

ness [25], [27] or new constant enforced by StarFDs. Follow-

ing conventional data cleaning that uses “marked nulls” [18],

we allow an update o = (v.A, a, c) to set value c as either (1)

a constant c ∈ adom, where adom is the union of adom(G)
(Section II-A) and the set of constants appeared in the literals

from Σ, or (2) a variable vc from an infinite set V , which

stands for a constant not in adom, encoding a “missing value”.

A repair G′ with variables vc allows the suggestion of

(cheap) consistent graphs under Σ; the variables can be later

inferred via e.g., graph completion, as suggested by [25].

Partial repairs. A partial repair of G w.r.t. inconsistencies

I, denoted as G′I , is a graph where for each inconsistency

I = (P (G, vo), ϕ) ∈ I, P (G′I , vo) |= ϕ. We shall use

partial repairs to capture the dynamic process of our repair

algorithms. Clearly, a partial repair G′I is a repair under Σ
when I = I(Σ, G).

We consider updates to attribute and type values only, and

defer the study of more complex cases that involve edge ma-

nipulation (e.g., edge insertions and deletions) in future work

due to their impact to both topology and value constraints.

Minimum Repairs. To measure the quality of repairs, we

approach minimum repairs, a common method to suggest

repairs by minimally modifying the original database [20]. We

introduce a cost model for repairs.

Consider a repair G′ = G⊕O under Σ. For each node v in

G, let v′ be its updated counterpart in G′. Given an attribute

A, the value distance between v and v′ w.r.t. A is defined as

dist(v.A, v′.A) =

{
dist(a, c, v.A) c ∈ adom

1 c = vc, vc ∈ V

where dist(a, c, v.A) is a function that computes a normalized

distance between constants a and c by update o = (v.A, a, c).

The function dist(a, c, v.A) can be Levenshtein dis-

tance [11], semantic distance [36] or Euclidean distance [30],

measuring distance for strings, class labels or numerical val-

ues, respectively. The distance can also be weighted by e.g.,

confidence of correctness of value a. A higher score indicates

a larger cost of a being replaced.

The distance between two nodes v and v′ is defined as

dist(v, v′) =
∑

A∈fA(v)

dist(v.A, v′.A)
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The repair cost of G′ = G ⊕ O, simply denoted as c(O), is

naturally defined as the total editing cost of all node tuples

that are updated by O. It is computed as

c(O) =
∑
v∈V

dist(v, v′)

Example 5: Consider the inconsistency (P1(G1, vo), ϕ1) in

Example 4. One repair may apply O1 = {o1, o2} to G1,

where o1 = (v4.city, ‘Bristol’, ‘London’) and o2 = (v2.city,

‘Leeds’, ‘Manchester’). Another repair aplies O2 = {o3},

where o3 = (vo.league, ‘EPL’, vc), and vc is a “marked null”

variable. Assume dist(‘Bristol’,‘London’, v4.city) is 0.2, and

dist(‘Leeds’, ‘Manchester’, v2.city) is 0.3, then c(O1) = 0.5.

The update o3 has the highest cost 1.0, due to e.g., higher

confidence that ‘EPL’ is correct, or due to a large editing cost.

Thus O1 is preferred due to smaller total repair cost. �

We state the minimum entity repair problem as follows:

• Input: a graph G, a finite set of StarFDs Σ.

• Output: a repair G′ = G⊕O under Σ (or equivalently, a

set of updates O), such that c(O) ≤ c(O′) for any other

repair G⊕O′ of G obtained by O′ under Σ.

The decision version of this problem is to decide whether

there exists a repair G′ with a cost c(O) ≤ B, for a cost

budget B. Despite that error detection is tractable, computing

optimal repairs is nontrivial.

Theorem 4: Given a graph G and a set of StarFDs Σ, the

entity repair problem is (1) NP-complete for the decision ver-

sion, and (2) APX-hard, even when Σ involves only constant

literals or only variable literals. �

The hardness can be shown by a reduction from the min-

imum dominating set problem, which is inapproximable for

c log(n) for some constant c > 0 and input size n [5]. We

present the detailed proof in [1].

Remarks. We do not simply exclude “marked nulls” or

updates that violate X literals from possible repairs. Such

repairs subsume a condition table defined on repaired entities,

following constraint-based repairing [9], [18], [20]. The pos-

sible updates can be suggested to users for further refinement.

Nevertheless, one can penalize undesired updates with cost

functions e.g., setting the cost of “null” updates to 1.0. Our

repair framework (Section IV) can be readily extended to

produce “not null” or ‘’enforce Y literals only” repairs [18].

IV. COMPUTING MINIMUM REPAIRS

A major challenge of entity repairing is to cope with new

inconsistencies during the repairing process. We introduce a

feasible repairing framework, denoted as StarRepair. Given

a graph G and a set of StarFDs Σ, StarRepair computes a

set of updates O to induce a repair G′ = G ⊕ O. It adopts a

dichotomous approach, to (1) detect and cope with cases that

admit optimal and approximate repairs, and (2) resolve the

rest inconsistencies by cost-bounded repairs. For all cases, it

incurs a time cost determined by the size of Σ and bounded

hop of star matches.

Algorithm StarRepair

Input: Graph G, a set of StarFDs Σ.
Output: A repair G′ of G under Σ.

1. set O := ∅; set (I(Σ, G),G) := errorDetect(G,Σ);
2. set PI := partition(I(Σ, G));
3. for each CC I in PI do

4. set UI := genUpdate(I);
5. if isIsolated(I,G) then

6. if isHyperStar(I,UI) then
/* computing optimal repairs */

7. O := O ∪ optRepair(I,UI);
else /* computing approximable repairs */

8. O := O ∪ apxRepair(I,UI);
9. induce non-isolated CCs I from PI ;

/* compute bounded repairs for remaining CCs */
10. O := O ∪ boundedRepair(I,G) for each non-isolated I;
11. return G′ := G⊕O.

Fig. 2: Algorithm StarRepair: a dichotomous approach

A. A general framework

We start with an auxiliary structure called interaction graphs

to encode the dynamic repairing process.

Interaction Graph. We say pairs (P (G, vo), ϕ) (where ϕ
= (P (uo), X → Y )) and (P ′(G, v′o), ϕ

′) (where ϕ′ =

(P ′(uo), X
′ → Y ′)) are connected at node attribute v.A, if

there exists a node v with attribute A in G, such that (a) v
is a match of a node u (resp. u′) in P (uo) (resp. P ′(uo)),
and (b) u.A (resp. u′.A′) appears in X ∪ Y (resp. X ′ ∪ Y ′).

Otherwise, they are disconnected.

An interaction graph G contains the following: (1) each

node in G is either a consistent pair or an inconsistency

(P (G, vo), ϕ), and (2) there exists an edge between two

connected pairs that also carries all node attributes v.A the

pairs are connected at. A connected component (CC) in G
is a set of inconsistencies I from G, such that (1) any two

inconsistencies in I are connected via a path of connected

inconsistencies in I, and (2) no inconsistency in I is connected

to another inconsistency not in I.

We say a CC I is isolated, if for every inconsistency

(P (G, vo), ϕ) ∈ I, each consistent pair (P ′(G, v′o), ϕ
′) in G

connected with (P (G, vo), ϕ) at any node attribute v.A, one

of the following cases holds:

Case consistent pair (P ′(G, v′

o
), ϕ′) place of v.A in X′ ∪ Y ′ of ϕ′

(1) P ′(G, v′

o
) |= X′ ∧ P ′(G, v′

o
) |= Y ′, v.A appears in X′ but not in Y ′

(2) P ′(G, v′

o
) �|= X′ ∧ P ′(G, v′

o
) |= Y ′, v.A appears in either X′ or Y ′

(3) P ′(G, v′

o
) �|= X′ ∧ P ′(G, v′

o
) �|= Y ′, v.A appears in Y ′ but not in X′

The above condition characterizes a set of inconsistencies

that do not introduce new inconsistencies when repaired.

Outline. Algorithm StarRepair (Fig. 2) uses a set I(Σ, G)
to track the inconsistencies in G under StarFDs Σ, and it

computes repairs by processing each CC in G independently.

(1) It invokes procedure errorDetect to compute I(Σ, G) and

construct G (line 1), and invokes a procedure partition to split

I(Σ, G) to a set PI of CCs (line 2). It ensures that the repairs

for each CC can be independently computed (to be discussed).
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(2) For each CC I ∈ PI , it invokes procedure genUpdate to

generate a set of atomic updates UI (to be discussed). If I is

isolated (line 5), it computes approximate repairs by procedure

apxRepair (line 8). A special case that bears optimal repairs

(line 6; to be discussed) is verified and processed by procedure

optRepair (line 7). This repeats until all CCs are processed.

(3) For the remaining CCs that are not isolated, it invokes

procedure boundedRepair (line 9-10) to compute a valid repair

with repair cost as small as possible. StarRepair then returns

G′ by applying O (line 11).

We next introduce two procedures partition and genUpdate,

followed by their properties that ensure repair quality.

Procedure partition. We partition I(Σ, G) to a set of CCs

PI = {I1, . . . , In}. This can be performed by a traversal in

G, which has at most O(card(Σ)|V |) nodes (pairs), and can

be readily constructed by procedure errorDetect (line 1).

Example 6: Consider graph G1 in Fig. 1. Let v5.residence

= ‘London’, v5.nationality = ‘UK’, v5.league = ‘EPL’, and

there is a node v6 “Strasbourg” with label city in ‘France’

(not shown), where “A. Wenger” (v5) was born in. Consider

two StarFDs below. (1) StarFD ϕ3 = (P3(u3), X3 → Y3)
states that “if a coach uo from league ‘EPL’ works at a

stadium u1, then uo.residence = u1.city.” (2) StarFD ϕ4 =

(P4(u4), X4 → Y4) states that “if a coach uo was born in a

city u1 in ‘France’, then uo.nationality = ‘France’.” Procedure

errorDetect identifies the following inconsistencies I(Σ, G).
CCs pair star match

CC1

I1 = (P1(G1, vo), ϕ1) {(vo, v1), (vo, v2), (vo, v3), (vo, v4)}
I2 = (P3(G1, v5), ϕ3) {(v5, v4)}

CC2 I3 = (P4(G1, v5), ϕ4) {(v5, v6)}

I(Σ, G) is then partitioned into CC1 and CC2, since I1 and

I2 are connected at v3.city, but neither connects to I3. �

Atomic updates. Given an inconsistency I = (P (G, vo), ϕ), for

a literal l ∈ X ∪ Y of ϕ, an atomic update w.r.t. literal l is

a set of single updates, denoted as ol, such that G ⊕ ol is a

partial repair of G w.r.t. I , obtained by “enforcing” Y (if l is

the literal in Y ) or minimally “violating” l ∈ X for P (G, vo).
We define the set UI = {ol : l ∈ X ∪ Y }.

Procedure genUpdate (line 4). Given a CC I, genUpdate

computes a set of atomic updates UI =
⋃

I∈I UI . This is to

prepare a “pool” of updates to repair CC I . It computes UI

by processing each inconsistency I = (P (G, vo), ϕ) ∈ I and

each literal l in X ∪ Y of ϕ with the following cases.

(1) l is a constant literal u.A = c. (a) If l ∈ Y , it enforces l by

adding ol = {(v.A, a, c) : v ∈ P (u,G, vo) and a �= c} to UI .

(b) Otherwise (l ∈ X), for each v ∈ P (u,G, vo), it adds ol

= {(v.A, a, vc)} to UI , where vc ∈ V is the variable “marked

null”. Each such ol leads to violation of X if applied.

(2) l is a variable literal u.A = u′.A′. (a) If l ∈ Y , it finds

the nodes v in P (u,G, vo) that has no node in P (u′, G, vo)
to satisfy l. For each such node v, it adds (v.A, a, v′.A′) to

ol, and finally adds ol to UI , where v′ ranges over the nodes

in P (u′, G, vo). (b) Otherwise (l ∈ X), it finds all the pairs

(v, v′) such that v ∈ P (u,G, vo), v
′ ∈ P (u′, G, vo) and v.A =

v′.A′. It creates violations of l by adding ol = {(v.A, a, vc)}
and o′l = {(v′.A′, a′, v′c)} to UI , where vc and v′c are two

distinct variables not seen in UI .

(3) In addition, for each I = (P (G, vo), ϕ) in I and each ol

in UI , genUpdate verifies if ol is also an atomic update to

I ′, for each inconsistency I ′ = (P ′(G, v′o), ϕ
′) in I that are

connected to I in G. If so, it adds ol to UI′

. This captures a

case that one atomic update repairs multiple inconsistencies.

Procedure isIsolated (line 5). isIsolated verifies whether a

given CC is isolated. For each inconsistency I ∈ I, it iterates

consistent pairs (P ′(G, v′o), ϕ
′) that are connected to I in G,

and for all node attributes v.A they are connected at, it verifies

the three cases by the definition of isolated CCs. The above

process is in polynomial time in the size of G.

Performance guarantees. We show properties of partition

and genUpdate that ensure quality guarantees of repairs.

A partial repair GI = G⊕OI is an α-approximate partial

repair (α ≥ 1), if c(OI) ≤ α · c(OI∗), where OI∗ is the

partial repair of I with minimum cost.

Lemma 1: If all the CCs Ii processed by StarRepair are

isolated CCs, and GIi = G⊕O
i

is an α-approximate partial

repair w.r.t. Ii, then G′ = G⊕
⋃

i∈[1,n] Oi
is an α-approximate

repair of G under Σ. �

Proof sketch: For each isolated CC, a partial repair can

be obtained by applying a set of atomic updates without

introducing new inconsistencies, ensured by the conditions that

prevent changing any consistent pair to inconsistency via node

attributes they connect at. As such, the union of α-approximate

partial repairs for isolated CCs is a partial repair under Σ that

preserves the approximation ratio α. �

Lemma 2: Given CC I, (1) for any inconsistency I ∈ I,

G′I = G ⊕ ol for any atomic update ol ∈ UI generated by

genUpdate is a partial repair of G w.r.t. I; and (2) for any

partial repair G′I = G ⊕ OI , there exists a set of atomic

updates U ′I ⊆ UI , such that
⋃

ol∈U ′I ol ⊆ OI . �

We present the proof of Lemma 2 in [1]. It suffices to

consider only UI to repair each CC I. Let |Σ| =
∑

ϕ∈Σ |ϕ|
be an “encoding” size of Σ, where |ϕ| is the total size of

star pattern (including regular expressions) and the size of

literals. The size of UI is bounded by O(|I||Σ||adom|) by

genUpdate, and can be generated in O(|I||Σ||adom|) time.

The above analysis ensures partial repairs of isolated CCs can

provide repairs of G with quality guarantees (lines 5-8).

B. Approximating Optimal Repairs

We show the optimal partial repairs of I can be efficiently

approximated for isolated I.

Theorem 5: There exists an |Σ|2|I|-approximation to com-

pute a partial repair for an isolated CC I in O(|I||Σ|2 +
|I|(|I||Σ|2 + |I||Σ|)) time. �
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Procedure apxRepair(I,UI)

1. integer i := 1; H1 := constructHyper(I,UI);
2. while Hi := (UI

i , Ei) and Ei �= ∅ do

3. γi := min{ ci(o
l)

degi(o
l)|

} over all ol ∈ UI
i and deg

i
(ol) > 0;

4. Oi := {ol : ol ∈ UI
i and ci(o

l) = γidegi(o
l)};

5. Oi := resolveConflict(Oi);
6. UI

i+1 := refine(UI
i , Ei, Oi);

7. Ei+1 := Ei \ {e : e is covered by Oi};

8. for each ol ∈ UI
i+1 do

9. ci+1(o
l) := ci(o

l)− γidegi(o
l);

10. Hi+1 := (UI
i+1, Ei+1); i := i+ 1;

11. Set U ′I :=
⋃

i

1 Oi; return OI :=
⋃

ol∈U′I ol;

Fig. 3: Procedure apxRepair

We next introduce procedure apxRepair, as a constructive

proof for Theorem 5. Our main idea is to build a hypergraph to

capture the dependencies among the atomic updates over I,

and compute repairs by approximating a minimum weighted

constrained vertex cover of the hypergraph.

Weighted hypergraph. Given an isolated CC I and a set of

atomic updates UI , apxRepair constructs a hypergraph H =

(UI , E), where each node ol ∈ UI is an atomic update with

a weight c(ol), and each hyperedge in E is the set UI for an

inconsistency I ∈ I. We say a set of atomic updates U ′I ⊆ UI

is a vertex cover, if U ′I ∩UI �= ∅ for each hyperedge UI ∈ E
(i.e., U ′I is a vertex cover of H).

Forbidden pairs. To ensure that a vertex cover U ′I corresponds

to a valid partial repair, apxRepair introduces a special class of

forbidden edges E¬, where each forbidden edge e¬ encodes

a forbidden pair (ol, o′l) that are mutually exclusive in a valid

repair, i.e., only one of ol or o′l can coexist in U ′I should

it encode a partial repair. More specifically, a pair of updates

(ol, o′l) is a forbidden pair if

(1) There are two single updates (v.A, a, c) ∈ ol and

(v.A, a, c′) ∈ o′l, and c �= c′; or

(2) There exists an inconsistency I ∈ I such that (a)

{ol, o′l} ⊆ UI ∩U ′I , and (b) I remains to be an inconsistency

in G⊕ (ol ∪ o′l).

The first case aims to forbid that two updates change a same

v.A to different values. The second case prevents unresolved

inconsistencies after the two updates are applied.

A set of atomic updates U ′I is a constrained vertex cover

if it is a vertex cover of H and contains no forbidden pair. We

present a sufficient and necessary condition to characterize

partial repairs with U ′I .

Lemma 3: Given an isolated CC I , a graph G ⊕ OI is a

partial repair if and only if there exists a set of atomic updates

U ′I , such that
⋃

ol∈U ′I ol ⊆ OI , and U ′I is a constrained

vertex cover of the hypergraph H. �

We present the detailed proof in [1]. Given Lemma 3,

procedure apxRepair (illustrated in Fig. 3) approximates the

minimum constrained vertex cover U ′I of hypergraph H. It

(1) extends layering technique [32] to H, which decomposes

atomic update cost c(ol) by factorizing it with the number

of hyperedges that ol can “cover”, and dynamically selects

promising atomic updates over multiple layers (subgraphs) of

H, and (2) integrates conflict resolving in each layer to enforce

the constraints.

Procedure apxRepair (line 8 of StarRepair). Given an isolated

CC I and the set of atomic updates UI , apxRepair initializes a

hypergraph H1 = (UI
1 , E1) (Fig. 3, line 1) by constructHyper

(layer 1). It then performs two major steps at each layer i.

Updates selection (lines 3-5). apxRepair computes a set of

atomic updates Oi at Hi. For each atomic update ol, it

computes a degree-weighted cost γ = ci(o
l)

deg
i
(ol)

, where degi(o
l)

is the total number of hyperedges UI “covered” by ol, i.e.,

ol ∈ UI (line 3). It then sets Oi of layer i as the atomic

updates with smallest degree-weighted cost (line 4).

It next refines Oi by resolving forbidden pairs using a

procedure resolveConflict (line 5). For each forbidden pair

(ol, o′l) included in Oi, it removes the one with a larger

c(ol), and removes all the forbidden edges adjacent to ol. This

process repeats until Oi induces no forbidden edge.

Layer construction (lines 6-10). apxRepair then refines Hi to

Hi+1 as follows. (1) It removes unpromising updates from

UI
i by procedure refine(·) (line 6), which dynamically detects

forbidden pairs given the selected updates in Oi, and removes

updates in the following order: (a) resolve forbidden pairs that

have one node in Oi; (b) remove atomic updates in Oi, and

(c) remove atomic updates with deg(ol) = 0. (2) It removes all

hyperedges covered by Oi (line 7). Moreover, it updates the

degree weighted cost for all the refined updates (lines 8-9).

Hi+1 is constructed accordingly (line 10).

The above process repeats until all the hyperedges of H are

covered (line 2). The vertex cover is U ′I =
⋃i

1 Oi, and the set

of updates OI is computed as the union of all selected atomic

updates
⋃

ol∈U ′I ol at each layer i and is returned (line 11).

Example 7: Continue with Example 6 and consider I1
and I2 of CC1. Fig. 4 illustrates an initial hypergraph H1,

which contains two hyperedges UI1 = {ol1, o
l
2, o

l
3} and UI2 =

{ol1, o
l
4, o

l
5, o

l
6}. Atomic updates are shown as below.

atomic updates UI costs

ol
1

= {(v4.city, ‘Bristol’, ‘London’), (v1.city, ‘Manchester’, ‘London’), c(ol
1
) = 1.6

(v2.city, ‘Leeds’, ‘London’ )}

ol
2

= {(v4.city, ‘Bristol’, ‘Leeds’), (v3.city, ‘London’, ‘Manchester’ )} c(ol
2
) = 1.2

ol
3

= {(v0.league, ‘EPL’, vc)} c(ol
3
) = 1.0

ol
4

= {(v4.city, ‘Bristol’, ‘London’) c(ol
4
) = 0.4

ol
5

= {(v5.residence, ‘London’, ‘Bristol’)} c(ol
5
) = 0.6

ol
6

= {(v5.league, ‘EPL’, vc)} c(ol
6
) = 1.0

apxRepair selects ol4 first, which has the minimum degree-

weighted cost γ = 0.4/1. This leads to forbidden pairs

(ol4, o
l
2), which changes v4.city to different values (‘Leeds’),

and (ol4, o
l
5), which leaves I2 unresolved. Hence, ol2 and ol5 are

removed by resolveConflict. Procedure refine then refines H1

as follows. (1) Remove hyperedge UI2 , which is covered by

ol4; (2) removes zero degree nodes ol6; (3) updates costs: c(ol1)
= 1.6 - 0.4·1.0 = 1.2, and similarly c(ol3) = 0.6,; and (4) builds

H2 = (U2, E2), where has one hyperedge UI1 = {ol1, o
l
3} with

updated costs. I1 is then repaired by selecting ol3 in H2. This

yields a repair by applying ol3 ∪ ol4 with total cost 1.4. If ol1
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Fig. 4: Approximating optimal repairs (apxRepair, Example 7)

is changed to {(v4.city, ‘Bristol’, ‘London’), (v2.city, ‘Leeds’,

‘Manchester’) with cost c(ol1) = 0.6, apxRepair first selects

o1 with degree-weighted cost 0.6/2 and both UI1 and UI2 are

covered, and the procedure stops after one iteration. �

Approximation. Algorithm apxRepair correctly computes a

constrained vertex cover U ′I of H ensured by resolveConflict

and refine. Given Lemma 3, G⊕OI , where OI =
⋃

ol∈U ′I ol

is a partial repair of G w.r.t. the isolated CC I.

Let OI∗ (obtained by UI∗), be the updates that revise

G to the optimal repair w.r.t. Σ, U ′I∗ be the set of atomic

updates induced from the optimal constrained vertex cover

for H, and i = t when apxRepair terminates. Define cost

c(UI) =
∑

ol∈UI c(ol). (1) We show c(U ′I) ≤ |UI |c(U ′I∗).

Note that c(ol) =
∑t

i=1 γdegi(o
l) if ol ∈ U ′I ; and c(ol) ≥∑t

i=1 γidegi(o
l) if ol �∈ U ′I . For each layer i, U ′I ∩ UI

i

(resp. U ′I∗ ∩ UI
i ) is a vertex cover of Hi. On the one

hand, c(U ′I) =
∑t

i=1

∑
ol∈U ′I∩UI

i

γidegi(o
l) ≤

∑t
i=1∑

ol∈UI

i

γidegi(o
l) ≤ |UI |

∑t
i=1 γi|Ei|. On the other hand,

c(U ′I∗) ≥
∑t

i=1

∑
ol∈U ′I∗∩UI

i

γidegi(o
l) ≥

∑t
i=1 γi|Ei|.

Hence, c(U ′I) ≤ |UI |c(U ′I∗). (2) As OI =
⋃

ol∈U ′I ol,
c(OI∗) ≤ c(OI) ≤ c(U ′I). For hypergraph H, c(U ′I∗) ≤
c(UI∗) ≤ |I|c(OI∗). The second inequality holds because

given a single update o, it can be repeatedly applied by at

most |UI ||I| atomic updates. Putting these together, c(OI∗) ≤
c(OI) ≤ c(U ′I) ≤ |UI |2|I|c(OI∗). As |UI | is bounded by

|Σ|, The algorithm is a |Σ|2|I|-approximation.

Complexity. apxRepair takes O(|I||Σ|2) time to construct

H1. There is at most |I| iterations. In each iteration, it

takes O(|I||Σ|2) time to select updates, and O(|I||Σ|) time

to resolve forbidden pairs. The total time cost is thus in

O(|I||Σ|2 + |I|(|I||Σ|2 + |I||Σ|)).

We present special cases for which apxRepair achieves

better approximation ratio in [1] e.g., 2|Σ|2.

Tractable Optimal Repairing. We also present a case when

computing an optimal repair becomes tractable.

Hyperstar Updates. For an isolated CC I , we say its atomic

updates UI is a hyperstar [23], if for every two inconsistencies

I and I ′ in I, UI ∩ UI′

equals to the same fixed Oc.

Theorem 6: There exists an algorithm that computes the

optimal partial repair in O(|I||Σ|) time for an isolated CC I,

when its atomic updates UI is a hyperstar. �

Procedure optRepair (line 7 of StarRepair). Given an isolated

CC I and its atomic updates UI as a hyperstar, optRepair

first computes the center (common subset) Oc of UI . It then

compares two sets of atomic updates, both lead to partial

repairs: (1) a singleton {ol∗}, where ol∗ has the minimum

Fig. 5: Heuristic repair (boundedRepair)

cost in center Oc; and (2) a set of atomic updates UI∗, which

selects a least-cost atomic update olI from each set UI \ Oc

over all I ∈ I. It returns the partial repair with a smaller cost.

Analysis. The optimality guarantee can be shown by contra-

diction. optRepair takes in total O(|I||Σ|) time. Note that it

takes O(|I||Σ|) time to determine whether UI is a hyperstar.

Theorem 6 thus follows. We present detailed analysis in [1].

These approximable and optimal cases are quite common:

our experiments verify that up to 64% (resp. 14%) of detected

inconsistencies bear approximable (resp. optimal) repairs over

real multirelational graphs (see Exp-2, Section VI).

V. COST-BOUNDED REPAIRING

We next introduce an algorithm to compute repairs for non-

isolated CC. Our idea is to iteratively repair CCs that connect

to fewest consistent pairs (thus are less likely to introduce new

inconsistencies) as “isolated” ones, and incrementally update

interaction graph G with new inconsistencies.

Algorithm. Procedure boundedRepair (also invoked by al-

gorithm StarRepair, line 10). maintains (a) a set of current

consistent pairs C, and (b) a tunable repair budget B (set as

|I| by default), under the intuition that the largest expected

cost is |I| (by e.g., simply repairing with “marked nulls” with

cost 1.0). It iteratively performs the following. (1) Induces

a maximal set of connected inconsistencies I ′ ⊆ I that has

the fewest adjacent consistent pairs in G. (2) Computes an

approximate (resp. optimal) partial repair for I ′ by invoking

genUpdate and apxRepair (resp. optRepair), treating I ′ as

an “isolated” CC. (3) Invokes a procedure incErrorDetect to

incrementally detect new matches and inconsistencies in the

consistent pairs that are neighbors of I in G (illustrated in

Fig. 5), and updates B, G and I accordingly. It terminates

when B is consumed.

Incremental error detection. The procedure incErrorDetect

incrementalizes its counterpart errorDetect (Section II-B) to

detect new matches and inconsistencies. An index is con-

structed by performing random walks in G and extracting

sub-expressions that best summarize the paths. incErrorDetect

then decomposes regular path queries to sub-expressions and

inquires the index. The incremental error detection is quite

effective: it improves the efficiency of errorDetect by 3.4 times

(Section VI). We present the details in [1].

The algorithm boundedRepair guarantees to terminate with

the following invariant for each atomic update ol: (1) if a v.A
appeared in ol is already repaired to “marked null”, it skips

ol; or (2) ol is applied no more than k times, for a tunable

parameter k or B is consumed (see details in [1]).
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VI. EXPERIMENTS

Using real-world graphs, we experimentally verify the effi-

ciency and effectiveness of StarFD-based repairing.

Experiment settings. We used the following settings.

Datasets. We use four real-life graphs: (1) Yago1, a knowledge

graph derived from the Web, (2) Yelp2, a business review

graph with nodes as local services (e.g., restaurants, plumbers,

etc) and edges such as “likes”. (3) DBP3, a knowledge base

extracted from Wikipedia, and (4) IMDb4, a movie database

with nodes such as films and actors, and relationships such as

“directedBy”. The datasets are summarized below.

Dataset |V | |E| # node labels # edge labels avg. |fA(v)|
Yago 2.1M 4.0M 2273 33 3
Yelp 1.5M 1.6M 42 20 5
DBP 2.2M 7.4M 73 584 4
IMDb 5.9M 3.2M 158K 2 3

Error generation. Following the “silver standard” [27] as-

sumption, we consider our datasets as cleaned graphs. Fol-

lowing error generation benchmark [4], we injected errors to

each original graph G as follows. (1) We sample p1% of

the nodes in G, and for each node v, sample p2% of its

attribute to inject error. The error rate p is computed as the

fraction of the polluted node attributes to the total number of

distinct node attribute v.A in G. (2) For each sampled node

attribute v.A, we randomly injected one of the three types of

errors [4]: (1) misspells, which randomly select and replace

up to 3 characters of the string value of v.A; (2) inaccuracy,

which selects another value in the active domain adom(A) of

attribute A (values of A in G), and (3) out-of-domain, which

assigns a constant not in adom(A).

StarFD generation. We implemented an algorithm StarGen,

to generate StarFDs from clean graphs. It selected top-k1
frequent node labels (e.g. k1 = 200 in Yago) as L(uo), and

identified their candidates P (uo, G). Starting with a candidate

node, StarGen sampled its neighbors up to a certain hop (e.g.

3 in Yago) to generate top-k2 frequent paths (e.g. k2 = 5 in

Yago). The top-k2 frequent paths were converted to regular

expressions. Each star pattern was formed by a combination

of regular expressions with a center node uo. For each star

pattern, StarGen searched the (equivalent) attribute values or

node labels to generate constant and variable literals and

aggregated dependencies X → Y by the combination of

literals. This yields a StarFD for uo. We discover StarFDs

to cover all the polluted attributes (treated as training data),

and manually verified each StarFD to ensure its correctness.

We defer the discovery of StarFDs as future work.

Metric. Denote the attributes involved in inconsistencies as err,

the attributes updated by a repair algorithm as errr, and the

set of correctly repaired attributes as errt, which contain those

attributes reconstructed to the truth values and do not consider

1https://mpi-inf.mpg.de/yago
2https://www.kaggle.com/yelp-dataset
3https://wiki.dbpedia.org
4https://www.imdb.com/interfaces

“marked nulls”. We report the accuracy of the repair algorithm

as (1) precision Prec. = |errt|
|errr|

, and (2) recall Rec. = |errt|
|err| .

Algorithms. We implemented the following algorithms in Java.

(1) StarRepair is the algorithm in Fig. 2 with optimized error

detection incErrorDetect; (2) to evaluate the effectiveness of

optimization, we implemented biBFSRepair, which applied

bidirectional search to evaluate regular queries [14] without

using incErrorDetect; and (3) SubIsoRepair transforms the

StarFDs in Σ to a set of GFDs Σ′, and follows StarRepair

but uses Σ′ as input constraints. For example, the StarFD ϕ2

in Example 4 is converted to 6 GFDs by SubIsoRepair. To un-

derstand the impact of repairing budget, we also implemented

an algorithm StarRepair-x%, a budgeted variant of StarRepair

that uses up to x% (x > 0) of the total repair cost as a budget.

All the algorithms measure the cost of an update o =

(v.A, a, c) with semantic distance [36], Levenshtein [11],

numerical distance [30] normalized by domain range, and

constant 1.0, when A refers to a label, a string attribute,

a numerical attribute, and the case that c is out of domain

(c /∈ adom(A)), respectively.

We conducted our experiments on Linux with Intel 2.33GHz

CPUs and 256GB memory. Each experiment was run 5 times

and the average results were reported.

Exp-1: Efficiency. As shown in Fig. 6(a), it is feasible to

repair errors in large graphs under StarFDs. On average,

StarRepair outperforms biBFSRepair and SubIsoRepair, by

3.4 times and 7.1 times, respectively. It takes on average 7
seconds for StarRepair to achieve minimum repair. StarRepair

also incurs much less cost on error detection compared with

SubIsoRepair. For example, StarMatch takes 2.3 (resp. 2.7)

seconds to identify errors over Yago (resp. Yelp), and is 10
(resp. 41) times faster than the error detection of SubIsoRepair

that performs subgraph enumeration.

We next evaluate the impact of the following factors with

default values summarized below. We use the total number of

candidates of center nodes uo, denoted as C(uo, G), instead

of the graph size, as the time cost of entity repairing is more

sensitive to C(uo, G).
Factor Yago Yelp DBP IMDb

# of candidates C(uo, G) 320K 80K 350K 210K

# of StarFDs 60 60 30 18
error rate p 0.2 0.2 0.24 0.1

budget rate x% 100% 100% 100% 100%

Varying C(uo, G). Fig. 6(b) reports the impact of C(uo, G)
over Yago. (1) While all algorithms take longer time as

more candidates are provided, they are quite feasible over

large graphs. For example, it takes up to 4.82 seconds for

StarRepair to repair entities with 400K candidates over Yago.

(2) StarRepair is the least sensitive to C(uo, G) due to

optimized error (re-)detection, while SubIsoRepair is the most

sensitive due to subgraph isomorphism test and enumeration.

Varying # of StarFDs. Varying the number of StarFDs from

10 to 60 over Yago, Fig. 6(c) shows that all algorithms take

longer time with more StarFDs due to more matches and

repairs. StarRepair is the least sensitive one due to its sub-

query optimization.

238

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on June 30,2020 at 05:16:38 UTC from IEEE Xplore.  Restrictions apply. 



1

10

100

1000

YAGO Yelp DBP IMDb

T
im

e 
(s

ec
on

ds
)

StarRepair
biBFSRepair

SubIsoRepair

(a) Overview of efficiency

 0

 5

 10

 15

 20

80K 160K 240K 320K 400K

T
im

e 
(s

ec
on

ds
)

StarRepair
biBFSRepair
SubIsoRepair

(b) Varying C(uo, G) (Yago)

 0

 5

 10

 15

 20

 25

 30

 10  20  30  40  50  60

T
im

e 
(s

ec
on

ds
)

StarRepair
biBFSRepair
SubIsoRepair

(c) Varying # of StarFDs (Yago)

0

5

10

15

20

25

0.05 0.10 0.15 0.20 0.25

T
im

e 
(s

ec
on

ds
)

StarRepair
StarRepair-20%

biBFSRepair
SubIsoRepair

(d) Varying p and x% (Yago)

Fig. 6: Efficiency of entity repairing

Varying p and x%. Fixing other parameters as default, we

varied the error ratio p from 0.05 to 0.25 over Yago. and

tested StarRepair-20% with 20% budget. Fig. 6(d) verifies

that all three algorithms take longer time when more attribute

values are polluted, due to more inconsistencies to be detected

and repaired. StarRepair is the least sensitive to error rate

p and is on average 2 and 5 times faster than biBFSRepair

and SubIsoRepair, respectively. We observe the error detection

cost of all the algorithms takes more fraction in the total time

for larger p, while the sub-query optimization of StarRepair

reduces cost significantly. For example, the matching time

takes on average 20%, 57%, and 71% of the total time

for StarRepair, biBFSRepair, and SubIsoRepair, respectively.

StarRepair-20% improves StarRepair on average 1.8 times

due to the cost-bounded repairing.

The results over other datasets are consistent with our

observation. We report more results in [1].

Exp-2: Effectiveness. Using the same settings in Exp-1, we

report the effectiveness of StarRepair and SubIsoRepair. We

omit the results of biBFSRepair as it has the same accuracy

as StarRepair. An overview of accuracy is reported as below.

Yago Yelp DBP IMDb

Algo. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

StarRepair 0.99 0.82 0.84 0.97 0.92 0.80 0.96 0.98
SubIsoRepair 0.94 0.72 0.82 0.82 0.67 0.65 0.87 0.97

It verifies that StarRepair outperforms SubIsoRepair by gain-

ing 9% more in precision and 14% more in recall on average.

We found that SubIsoRepair can have (redundant and over-

lapped) matches returned by subgraph isomorphism, making

“marked nulls” vc easier to be selected due to smaller degree-

weighted cost. StarRepair is quite accurate over all datasets

(Prec. = 93% and Rec. = 90% on average).

Varying C(uo, G). Fig. 7(a) and 7(b) shows the precision

(resp. recall) of StarRepair is 82% (resp. 81%) on average

and outperforms SubIsoRepair in all number of candidates,

which indicates that our method is stable with data size.

Varying p and x%. Fig. 7(c) and 7(d) show the impact of

error rate p and budget ratio x%. The result shows both

precision and recall decrease with larger p, as more errors are

introduced by larger p. We observe the recall of StarRepair-

20% (resp. StarRepair-10%) is on average 7% (resp. 15%)

lower than StarRepair, because some errors remain unrepaired

due to early termination. StarRepair-20% (StarRepair-10%)

has precision (not shown) close to StarRepair (within 3%).
We also observe that the repairing quality benefits from

more StarFDs (not shown). We report more details in [1].
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Fig. 7: Effectiveness of entity repairing (Yago)

Error distribution. We also evaluate the impact of the type

of errors to StarRepair. For the three types of errors, we

generate one type as major errors (70%) and the other two

as minor errors (15%). When the major errors are inaccuracy,

Yago Yelp DBP IMDb

Injected Errors Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

misspells 0.98 0.92 0.88 0.97 0.92 0.81 0.96 0.92
inaccuracy 0.94 0.80 0.83 0.92 0.90 0.79 0.91 0.91

out-of-domain 0.99 0.93 0.91 0.98 0.94 0.81 0.94 0.99

StarRepair has on average 6% lower precision and 4% lower

recall, compared with misspells and out-of-domain errors. We

found that the exact “true” value of inaccurate attributes is

relatively more difficult to be recovered exactly by choosing

repairs with the smallest editing cost. For misspells and out-

of-domain errors, the editing costs are closer to either 0 or

1, respectively. This makes StarRepair be easier to prioritize

updates precisely via cost models and guarantees optimality.

We also observe that isolated CCs (for apxRepair and

optRepair) are quite common. For example, among all de-

tected inconsistencies, 37%, 78%, and 54% (resp. 5%, 14%
and 5%) are isolated CCs (resp. permit optimal repairs) over

Yago, Yelp and IMDb, respectively (see details in [1]).

Exp-3: Case Study. Fig. 8 illustrates how StarFDs can be used

to repair errors and benefit tasks such as fact checking [27].

(1) A StarFD ϕ5 = (P5(uo), X5 → Y5) posed on DBP states

that “if a school uo in U.S.A is located in a city u5 by itself

or through its building, or it has a campus in the suburb
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of the city, the school’s county should be same as the city’s

county.” ϕ5 corrects 14 such errors in DBP. The county of

British International School of Houston is wrongly associated

to “United States” and is repaired to ‘Harris’ by ϕ5. Such

repair further benefits fact checking [22], [27], which predicts

the missing links. A fact checking rule [22] states “if a school

uo owns a campus u1, which is locatedIn the city u2, and if

uo.county equals to u1.county, then there is likely a link <uo,

isLocatedIn, u2>.” This rule can only be applied when the

county of BISH is repaired by ϕ5, which in turn identifies a

missing link <BISH, isLocatedIn, Houston> in G5.

(2) A second StarFD ϕ6 = (P6(uo), X6 → Y6) posed on Yago

states that “If a person uo is a politician or president of U.S.A.

and married to person u7, then the child of u7 is also the

child of uo.” This constraint detects and repairs more than

100 errors. We illustrate one such repair in Fig. 8.

VII. CONCLUSIONS

We have proposed a class of constraints StarFDs, to identify

errors with star-structured regular path patterns. We established

the complexity of its fundamental problems e.g., validation and

satisfiability. We introduced a dichotomous repairing frame-

work to resolve erroneous attribute values using StarFDs. Our

experimental results have verified the effectiveness of StarFD

techniques. One topic in future is to investigate StarFDs with

general patterns and edge updates. Another topic is to discover

and infer StarFDs in large graphs, and to learn high-quality

and informative StarFDs with user feedback.
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