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Abstract—We demonstrate Kronos, a framework and system
that automatically extracts highly dynamic knowledge for com-
plex event analysis in Cyber-Physical systems. Kronos captures
events with anomaly-based event model, and integrates various
events by correlating with their temporal associations in real-
time, from heterogeneous, continuous cyber-physical measure-
ment data streams. It maintains a lightweight highly dynamic
knowledge base, enabled by online, window-based ensemble
learning and incremental association analysis for event detection
and linkage, respectively. These algorithms incur time costs deter-
mined by available memory, independent of the size of streams.
Exploiting the highly dynamic knowledge, Kronos supports a
rich set of stream event analytical queries including event search
(keywords and query-by-example), provenance queries (“which
measurements or features are responsible for detected events?”),
and root cause analysis. We demonstrate how the GUI of Kronos
interacts with users to support both continuous and ad-hoc
queries online and enables situational awareness in Cyber-power
systems, communication, and traffic networks.

I. INTRODUCTION

Event-driven operational decision making in cyber-physical

systems (CPS) such as smart grids [10], cloud services [4],

and sensor networks requires real-time detection of complex

events. These events are often jointly characterized by multiple

richly attributed signals (anomalies), their spatio-temporal cor-

relations, and additional contextual and environmental factors.

A missing capacity in current data stream processing system

is to support automatic extraction, integration and search for

context-rich events with semantic knowledge from heteroge-

neous sensor data streams. This remains to be a main barrier

for effective interpretation and transformation of event analysis

to actionable knowledge in various CPS workforce.

Example 1: On September 8, 2011, a system disturbance

occurred in Arizona, leading to cascading outages that affected

2.7M people in Arizona and Southern California for around

12 hours. The loss of a single transmission line initiated the

event but was not the only cause of this huge blackout [2].

Phasor Measurement Units (PMUs) were introduced to power

grids with the ability to capture time-coherent measurements

across a geographically distributed area. PMUs are able to

measure voltage and current, frequency, and change rate of

frequency ranging from 10-60 samples per second [10]. These

Fig. 1. Highly dynamic knowledge representation of a power outage as a
chain of four cyber-power anomalies.

synchronized and real-time measurements is a step toward

situational awareness. The precise and timely estimation of

the fault location can avoid time-consuming and manual

examination and restoration.

Fig. 1 shows a faction of regions that were affected by

the 2011 blackout as well as sensors e.g., PMUs, meters

and weather data that captured various spatio-temporal in-

formation. It also shows a fraction of the knowledge graph

extracted from physical events occurred in this outage. The

nodes are events and edges are either event properties (in

black) or causality relationships among events (in blue). The

graph shows tripping off a 500 kilo-Voltage transmission line

at North Gila led to Phase difference in Hassayampa that

caused two transformers overload at two other locations. �
Despite that primitive indicators of the above power outage,

events can be captured by anomaly detection [1] in e.g., PMU

measurement data streams, a holistic detection of the entire

multi-phase, multi-layer events requires dynamic linking of

multiple anomalies modeled by e.g., knowledge graphs as

complex event model [9]. The need to integrate highly dy-

namic knowledge from data streams for holistic event analysis

is evident in various applications.

Real-time knowledge inference for event detection is also

evident in the following scenarios. 1) Traffic flow management

and accident prevention requires fast detection of transporta-

tion events and their spatio-temporal interactions from traffic

data streams [5]. 2) To increase the revenue and guarantee

the service level agreements (SLAs) in cloud-based services,

events that violate SLAs, their cascading effects and associ-

ated environmental factors should be recognized in time. 3)

Malicious activities coincide with each other to form multi-
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phase power cyberattacks, such as masked attacks [7] that uses

DDoS as decoy to distract defense efforts from true intrusion.

Deriving cyber-physical events and their temporal associations

as highly dynamic knowledge suggest useful defense and

enable root-cause analysis in complex systems.

Kronos. Kronos is a light-weight knowledge extractor for

anomaly-based complex event analysis in data streams. It has

the following unique features that differ from current systems.

Lightweight & Flexible Event Model. Kronos serves as a gen-

eral event model to support fast extraction of highly dynamic

knowledge. It does not make assumption on the underlying

streaming data and can be utilized in various anomaly-based

event models. It adopts (a) a class of lightweight, primitive

“star-shaped” entity model, which can be easily synthesized

to more complex events, and (b) an ensemble-based event

detection that supports the “plug-in” base detectors registered

by users. This enables Kronos to (1) describe various complex

events using primitive entities as building blocks, (2) adapt

to extract user-defined events by allowing users to register

anomaly detectors without additional manual effort.

Online Knowledge Extraction. Kronos uses a package of

window-based anomaly detection and link inference algo-

rithms to maintain the dynamic knowledge graph. The algo-

rithms are optimized with incremental mining, multi-threading

and sampling techniques to ensure the performance under

tunable response time and memory constraints.

Online Event Analytical Queries. Kronos supports various an-

alytical queries including keyword search [8] to only ex-

plore interesting events based on the users’ requirements,

provenance-queries to find out the root-cause of events [11],

spatio-temporal queries to ask which events occurred in a time

range and a specific region, and example-based queries to find

similar events to the given entities [6].

Visual Exploration. Kronos provides user-friendly panels for

users to configure the analysis session, to easily formulate

queries, to monitor the streaming data, and to validate the

events and relationships by exploring the extracted knowledge.

Below we give an overview of Kronos (Section II), pre-

senting its key enabling techniques including real-time event

extraction (Section II-C), online relation discovery (Sec-

tion II-D), supported query classes (Section II-E), and its archi-

tecture (Section II-F). We will demonstrate each component of

Kronos and show how it supports anomaly analysis of stream-

ing data via an interactive user-interface (Section III). We will

also demonstrate use cases including real-world Cyber-power

event analysis, intrusion detection, and traffic control.

II. SYSTEM OVERVIEW

We start with the knowledge model used by Kronos.

A. Lightweight Knowledge Model

Data streams. Kronos adopts window-based data stream

model and it reads multiple streams S . A measurement data

stream is a pair (S,W ), where data stream S ∈ S is an infinite

Fig. 2. Architecture of Kronos (with workflow embedded).

sequence of tuples {d1, d2, . . .}, and W is a sliding window

that caches the latest |W | tuples in S with tunable size.

Star Events. Kronos adopts a primitive event model called

star event. A star event is a two-level tree P (v) with a root

node v that refers to a single detectable anomaly in data

streams, and a set of leaves as its adjacent property entities.

Each node in P (v) carries a tuple of attribute-value pairs

(e.g., timestamp, type of anomaly, spatiotemporal features).

The lightweight star events serve as atomic units that are

manipulated by Kronos as building blocks for complex events.

Dynamic Knowledge Graph. The highly dynamic event

knowledge in Kronos is represented as an attributed knowledge

graph G = (V,E). Each node v ∈ V (resp. edge e = (v, v′) ∈
E) is a tuple that encodes an entity (resp. a relation tuple

between entities v and v′). There are mainly three types

of nodes: cyber-physical entities (e.g., substations, sensors,

servers, softwares, PMUs), event entities (anomalies, e.g., ‘Trip
off’, ‘Overload’), and environmental entities (e.g., substation,

location, temperature); accordingly, the relations include CPS

topology (among cyber-physical entities), spatiotemporal cor-

relation (among event entities), and environmental relations

(between event and cyber-physical or environmental entities).

Example 2: Fig. 1 illustrates a snapshot of an event knowledge

graph G from multiple measurement data streams S. The

graph G encodes a complex event that consists of four star

events: Trip off, Phase difference, and two Overload anomalies,

with associated location (e.g., ‘North Gila’), anomaly readings

(e.g., ‘500 kV’), and devices (e.g., ‘transmission line’). The

power outage event is revealed by the consecutive occurrence

of the four anomalies as suggested by their spatiotemporal

correlation, suggesting that “Trip off” is a cause of “Phase
difference” which leads to two Overload events. �

B. Workflow of Kronos

Given multiple data streams S, Kronos extracts and main-

tain the knowledge graph Gt at each timestamp t. Kronos
workflow involves two main steps: online event detection and

correlation inference, and an optional step of complex event

synthesizing for specified event topology.
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Online event detection. The online event detection takes as

input a data stream (S,W ) and extracts a set of star events. (1)

It first performs anomaly detection with an online ensemble
learner to detect anomalies from the decisions of a set of

registered base detectors. (2) It then annotates the events with

a set of domain-specific classification rules. Kronos tracks the

relevant measurement and features, and assemble anomlies to

star events. The labeled star events are then stored as building

blocks for more complex events upon analytical queries.

Correlation Inference. Once the significant event entities are

detected, Kronos performs a window-based incremental cor-

relation analysis among the timestmaped star events with

association models such as Granger causality [3], and temporal

association rules learned in dynamic networks [7].

When no prior description of complex events is available,

Kronos induces complex events with top-k strongly correlated

star events by established strength measurement. Users can

specify complex events with prior knowledge by specifying

event analytical queries.

Configuration of Knowledge Extraction. At any time, users

are able to change the source of data streams, tune the

configuration parameters such as thresholds, size of windows

or sample size, and plug in new anomaly models and detectors.

In addition, Kronos maintains a built-in library that bookkeeps

registered query classes including keyword search [8] and

provenance queries [6], and event classifiers that label the

detected events. New query classes, event classifiers, and base

learners can be easily plugged into Kronos.

We next introduce the details of each component.

C. Online Star Event Extraction

Extracting primitive star events is already challenging for

real-world CPS data streams, due to lack of labeled examples,

and the fact that there is “no single winner” (classifier) to

capture all the rich types of anomalies seen in complex events.

Kronos hits two birds with one stone by approaching an online
unsupervised ensemble detection framework [10].

Unsupervised Ensemble of Stream Anomalies. The general

Kronos anomaly ensemble framework exploits a library M of

k registered base anomaly classifier (e.g., DBSCAN, change-

point detection, regression). Given a window W of cached

measurement data, each base classifier M ∈ M computes a

binary vector M(W ), such that M(W )[j] is either 1 (anomaly)

or 0 (normal) for each tuple (feature vector) tj in W , by

computing an anomaly score M [j] of tj (deviation of tj
from the normal behavior) and verify if M [j] is above a

threshold. An unsupervised Maximum Likelihood Estimation

(MLE) learning is invoked to estimate a weighted combination

ŷ of the binary vectors from each base models, specified for

a tuple t in W as

ŷ = sign
k∑

i=1

(Mi(t) · logαi + log βi) (1)

where each base model Mi has two weights: αi =
ψiηi

(1−ψi)(1−ηi)
, and βi =

ψi(1−ψi)
ηi(1−ηi)

, determined by its sensitivity

ψi (resp. specificity ηi) that refers to the fraction of correctly

identified anomalies (resp. normal data) in W . In a nutshell, ŷ
approximates the joint probability of a correct guess [10] by

the weighted combination of M registered in the library.

When no labeled anomalies are available, Kronos initializes

ψ and η by a pseudo ground-truth from majority voting of base

models. This ensures a cold-start without assuming available

training examples, and continuously improves Kronos by

refining ψ and η upon verified anomalies from user feedback.

Kronos supports multi-threaded parallelization where each

base detector can process samples independently.

Event annotation. Kronos adopts a decision tree to incorpo-

rate domain-specific rules to annotate anomalies with specific

type of events (e.g., ‘Overload’, ‘Trip off’). A star event P (v)
is assembled by constructing an event entity v and associating

its CPS and environmental entities (e.g., the sensor which

captures v, critical measures involved in the decision tree).

D. Online Top-K Correlation Inference

Kronos library also incorporates a class of classifiers (e.g.,
lagged correlation, Granger causality [3], and graph temporal

association rules [7]) to decide whether two input star events

are spatio-temporally correlated. To avoid unnecessary pair-

wise checking, Kronos incrementally tracks top-k pairs of star

events from two consecutive windows W and W ′ with strong

correlation, triggered by a new star event P (v) detected in W ′.
Specifically, it performs quick estimation of the upper bound

of the correlation scores specified by the correlation model

between P (v) and previously cached events up to the size of

W , and prunes unpromising pairs given current top-k pairs.

E. Analytical Query Processing

Kronos supports several classes of user-friendly event an-

alytical queries to search the dynamic knowledge graph, as

illustrated in Table I. An event analytical query specifies

search predicates (e.g., keywords, spatiotemporal ranges) and

computes a subgraph of the dynamic knowledge graph induced

by relevant star events, their associated CPS and environment

entities, and their spatiotemporal correlations. Kronos query

engine supports their instances specified as both predefined

continuous queries (for event monitoring) or one-time queries

(for ad-hoc analysis), which are processed by corresponding

online graph search algorithms e.g., [8].

F. Kronos Architecture

Kronos adopts a three-tier architecture depicted in Fig. 2.

(1) The interactive interface layer allows users to visually con-

figure the analyzing process, issue analytical queries, validate

the extracted knowledge and plug in base anomaly classifiers

and correlation models (Section III). (2) The online event

detector includes both incremental ensemble learning and

event annotators that are reading data streams from various

sources. The correlation detector component performs online

correlation inference triggered by newly detected alerts. (3)

The star events and correlations are assembled to update the

underlying RDF Kronos knowledge base.
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Query Model Syntax (Query Template) Query Instance

Spatio-temporal [5]
Top-<k> most recent events occurred
<time criteria> in <location criteria>

Top-10 most recent events occurred
“between Friday and Sunday”

in “Cali. substation” (Continuous)

Facet Search [8]
Top-<k> most recent events that contain

a keyword from <k1, . . . , kn>
100 most recent events that contain
“Phase” or “Overload” (Continuous)

Root-cause [11] Top-<k> events causing the event <P (v)>
5 events causing the event “Phase diff.”

at Hassayampa (One time)

Query-by-example [6]
Top-<k> most similar events

to the event <P (v)>
Top-5 Most similar events to the event

“Transformer Overload at San Diego” (Continuous)

TABLE I
ANALYTICAL QUERY MODELS AND EXAMPLES IN Kronos

Fig. 3. Visual Exploration of Dynamic Event Knowledge

III. DEMONSTRATION

Setup. We demonstrate Kronos with real-world and simulated

data streams to show its application in smart grid resiliency,

Cyber attack detection, and road traffic analysis.(1) Real-time

digital simulator is used for modeling the power system and

Cyber communication protocols. RTDS dataset has in total 20
minutes of measurements from 3 phases of 16 sensors (e.g.,
voltage, current), including 5 minutes of normal operation and

15 minutes of operations with 3 types of injected anomalies

e.g., fault, capacitor, and load switching. (2) IDS records daily

intrusion activities over a Cyber-network and includes seven

families of attacks (e.g., Brute Force SSH, DDoS). Streams

were generated from 41 servers and contain 80 attributes

(e.g., duration, number of packets) from the network flow.

(3) METR-LA, a highway traffic dataset contains information

collected by loop detectors in the highways of Los Angeles.

We select 207 sensors and collect 4 months of data.

Scenarios. We showcase the following scenarios.

Ease of use. We invite the users to experience interactive user-

interface of Kronos (Fig. 3). Accessing the “Configuration”

panel, users are able to select data stream sources and tune

size of windows/samples. Using query panel, users can is-

sue various analytical queries including keyword search [8],

provenance queries, root cause analysis [11], and query-by-

example. The extracted knowledge and topology of the sensor

networks are visualized in entity and geographical map views,

respectively. Detected events and correlation among them are

also updating in the console that shows the source, time, and

label of the entities. Kronos supports interactive knowledge

exploration: users are able to drill down to 1) the specific

sensors to monitor measured values over time in sensor view,

and 2) the detailed properties in event view.

Cyber-power analysis. Cyber attacks are simulated by mali-

cious code-injection in RTDS script to send unwanted “switch

on” commands that increase the load and power usage of

the system. This causes overloading in a transmission line

that increases its temperature and can lead to sagging. As

a defensing mechanism the relays then “trip off” this line.

Losing this part of the network, an overload is then occurred.

Kronos successfully detects overload, power increase, and fault
as a result of sagging and their relationships.

Intrusion detection. Over IDS, we aggregate the network fea-

ture values of 5-minutes intervals and extract 80 snapshots.

As an example, Kronos correctly identifies active upload of

IRC softwares by attackers that led to DDoS attacks, taking

advantage of IRC botnets in the victim host.

We also demonstrate scenarios on METR-LA that detects

sudden traffic jams on a road (e.g., due to an accident) that

propagated to other roads, measured by nearby sensors.
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