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knowledge base, enabled by online, window-based ensemble
learning and incremental association analysis for event detection
and linkage, respectively. These algorithms incur time costs deter-
mined by available memory, independent of the size of streams.
Exploiting the highly dynamic knowledge, Kronos supports a
rich set of stream event analytical queries including event search
(keywords and query-by-example), provenance queries (“which
measurements or features are responsible for detected events?”),
and root cause analysis. We demonstrate how the GUI of Kronos
interacts with users to support both continuous and ad-hoc
queries online and enables situational awareness in Cyber-power
systems, communication, and traffic networks.

I. INTRODUCTION

Event-driven operational decision making in cyber-physical
systems (CPS) such as smart grids [10], cloud services [4],
and sensor networks requires real-time detection of complex
events. These events are often jointly characterized by multiple
richly attributed signals (anomalies), their spatio-temporal cor-
relations, and additional contextual and environmental factors.
A missing capacity in current data stream processing system
is to support automatic extraction, integration and search for
context-rich events with semantic knowledge from heteroge-
neous sensor data streams. This remains to be a main barrier
for effective interpretation and transformation of event analysis
to actionable knowledge in various CPS workforce.

Example 1: On September 8, 2011, a system disturbance
occurred in Arizona, leading to cascading outages that affected
2.7M people in Arizona and Southern California for around
12 hours. The loss of a single transmission line initiated the
event but was not the only cause of this huge blackout [2].
Phasor Measurement Units (PMUs) were introduced to power
grids with the ability to capture time-coherent measurements
across a geographically distributed area. PMUs are able to
measure voltage and current, frequency, and change rate of
frequency ranging from 10-60 samples per second [10]. These
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Fig. 1. Highly dynamic knowledge representation of a power outage as a
chain of four cyber-power anomalies.

synchronized and real-time measurements is a step toward
situational awareness. The precise and timely estimation of
the fault location can avoid time-consuming and manual
examination and restoration.

Fig. 1 shows a faction of regions that were affected by
the 2011 blackout as well as sensors e.g., PMUs, meters
and weather data that captured various spatio-temporal in-
formation. It also shows a fraction of the knowledge graph
extracted from physical events occurred in this outage. The
nodes are events and edges are either event properties (in
black) or causality relationships among events (in blue). The
graph shows tripping off a 500 kilo-Voltage transmission line
at North Gila led to Phase difference in Hassayampa that
caused two transformers overload at two other locations. [J

Despite that primitive indicators of the above power outage,
events can be captured by anomaly detection [1] in e.g., PMU
measurement data streams, a holistic detection of the entire
multi-phase, multi-layer events requires dynamic linking of
multiple anomalies modeled by e.g., knowledge graphs as
complex event model [9]. The need to integrate highly dy-
namic knowledge from data streams for holistic event analysis
is evident in various applications.

Real-time knowledge inference for event detection is also
evident in the following scenarios. 1) Traffic flow management
and accident prevention requires fast detection of transporta-
tion events and their spatio-temporal interactions from traffic
data streams [5]. 2) To increase the revenue and guarantee
the service level agreements (SLAs) in cloud-based services,
events that violate SLAs, their cascading effects and associ-
ated environmental factors should be recognized in time. 3)
Malicious activities coincide with each other to form multi-
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phase power cyberattacks, such as masked attacks [7] that uses
DDoS as decoy to distract defense efforts from true intrusion.
Deriving cyber-physical events and their temporal associations
as highly dynamic knowledge suggest useful defense and
enable root-cause analysis in complex systems.

Kronos. Kronos is a light-weight knowledge extractor for
anomaly-based complex event analysis in data streams. It has
the following unique features that differ from current systems.

Lightweight & Flexible Event Model. Kronos serves as a gen-
eral event model to support fast extraction of highly dynamic
knowledge. It does not make assumption on the underlying
streaming data and can be utilized in various anomaly-based
event models. It adopts (a) a class of lightweight, primitive
“star-shaped” entity model, which can be easily synthesized
to more complex events, and (b) an ensemble-based event
detection that supports the “plug-in” base detectors registered
by users. This enables Kronos to (1) describe various complex
events using primitive entities as building blocks, (2) adapt
to extract user-defined events by allowing users to register
anomaly detectors without additional manual effort.

Online Knowledge Extraction. Kronos uses a package of
window-based anomaly detection and link inference algo-
rithms to maintain the dynamic knowledge graph. The algo-
rithms are optimized with incremental mining, multi-threading
and sampling techniques to ensure the performance under
tunable response time and memory constraints.

Online Event Analytical Queries. Kronos supports various an-
alytical queries including keyword search [8] to only ex-
plore interesting events based on the users’ requirements,
provenance-queries to find out the root-cause of events [11],
spatio-temporal queries to ask which events occurred in a time
range and a specific region, and example-based queries to find
similar events to the given entities [6].

Visual Exploration. Kronos provides user-friendly panels for
users to configure the analysis session, to easily formulate
queries, to monitor the streaming data, and to validate the
events and relationships by exploring the extracted knowledge.

Below we give an overview of Kronos (Section II), pre-
senting its key enabling techniques including real-time event
extraction (Section II-C), online relation discovery (Sec-
tion II-D), supported query classes (Section II-E), and its archi-
tecture (Section II-F). We will demonstrate each component of
Kronos and show how it supports anomaly analysis of stream-
ing data via an interactive user-interface (Section III). We will
also demonstrate use cases including real-world Cyber-power
event analysis, intrusion detection, and traffic control.

II. SYSTEM OVERVIEW
We start with the knowledge model used by Kronos.
A. Lightweight Knowledge Model

Data streams. Kronos adopts window-based data stream
model and it reads multiple streams S. A measurement data
stream is a pair (S, W), where data stream S € S is an infinite
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Fig. 2. Architecture of Kronos (with workflow embedded).

sequence of tuples {dy,ds,...}, and W is a sliding window
that caches the latest || tuples in S with tunable size.

Star Events. Kronos adopts a primitive event model called
star event. A star event is a two-level tree P(v) with a root
node v that refers to a single detectable anomaly in data
streams, and a set of leaves as its adjacent property entities.
Each node in P(v) carries a tuple of attribute-value pairs
(e.g., timestamp, type of anomaly, spatiotemporal features).
The lightweight star events serve as atomic units that are
manipulated by Kronos as building blocks for complex events.

Dynamic Knowledge Graph. The highly dynamic event
knowledge in Kronos is represented as an attributed knowledge
graph G = (V, E). Each node v € V (resp. edge e = (v,v’) €
F) is a tuple that encodes an entity (resp. a relation tuple
between entities v and v’). There are mainly three types
of nodes: cyber-physical entities (e.g., substations, sensors,
servers, softwares, PMUs), event entities (anomalies, e.g., ‘Trip
off’, ‘Overload’), and environmental entities (e.g., substation,
location, temperature); accordingly, the relations include CPS
topology (among cyber-physical entities), spatiotemporal cor-
relation (among event entities), and environmental relations
(between event and cyber-physical or environmental entities).

Example 2: Fig. 1 illustrates a snapshot of an event knowledge
graph G from multiple measurement data streams S. The
graph G encodes a complex event that consists of four star
events: Trip off, Phase difference, and two Overload anomalies,
with associated location (e.g., ‘North Gila’), anomaly readings
(e.g., ‘500 kV’), and devices (e.g., ‘transmission line’). The
power outage event is revealed by the consecutive occurrence
of the four anomalies as suggested by their spatiotemporal
correlation, suggesting that “Trip off” is a cause of “Phase
difference” which leads to two Overload events. ]

B. Workflow of Kronos

Given multiple data streams S, Kronos extracts and main-
tain the knowledge graph G at each timestamp ¢. Kronos
workflow involves two main steps: online event detection and
correlation inference, and an optional step of complex event
synthesizing for specified event topology.
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Online event detection. The online event detection takes as
input a data stream (S, W) and extracts a set of star events. (1)
It first performs anomaly detection with an online ensemble
learner to detect anomalies from the decisions of a set of
registered base detectors. (2) It then annotates the events with
a set of domain-specific classification rules. Kronos tracks the
relevant measurement and features, and assemble anomlies to
star events. The labeled star events are then stored as building
blocks for more complex events upon analytical queries.

Correlation Inference. Once the significant event entities are
detected, Kronos performs a window-based incremental cor-
relation analysis among the timestmaped star events with
association models such as Granger causality [3], and temporal
association rules learned in dynamic networks [7].

When no prior description of complex events is available,
Kronos induces complex events with top-k strongly correlated
star events by established strength measurement. Users can
specify complex events with prior knowledge by specifying
event analytical queries.

Configuration of Knowledge Extraction. At any time, users
are able to change the source of data streams, tune the
configuration parameters such as thresholds, size of windows
or sample size, and plug in new anomaly models and detectors.
In addition, Kronos maintains a built-in library that bookkeeps
registered query classes including keyword search [8] and
provenance queries [6], and event classifiers that label the
detected events. New query classes, event classifiers, and base
learners can be easily plugged into Kronos.

We next introduce the details of each component.

C. Online Star Event Extraction

Extracting primitive star events is already challenging for
real-world CPS data streams, due to lack of labeled examples,
and the fact that there is “no single winner” (classifier) to
capture all the rich types of anomalies seen in complex events.
Kronos hits two birds with one stone by approaching an online
unsupervised ensemble detection framework [10].

Unsupervised Ensemble of Stream Anomalies. The general
Kronos anomaly ensemble framework exploits a library M of
k registered base anomaly classifier (e.g., DBSCAN, change-
point detection, regression). Given a window W of cached
measurement data, each base classifier M € M computes a
binary vector M (W), such that M (W)[j] is either 1 (anomaly)
or 0 (normal) for each tuple (feature vector) t; in W, by
computing an anomaly score M[j] of ¢; (deviation of ¢;
from the normal behavior) and verify if M[j] is above a
threshold. An unsupervised Maximum Likelihood Estimation
(MLE) learning is invoked to estimate a weighted combination
y of the binary vectors from each base models, specified for

atuple t in W as .

4 = sign Z(M’(t) -log a; + log ;) (1)
=1
where each base model M; has two weights: «; =

%, and f3; = %, determined by its sensitivity

1; (resp. specificity 7);) that refers to the fraction of correctly
identified anomalies (resp. normal data) in W. In a nutshell, y
approximates the joint probability of a correct guess [10] by
the weighted combination of M registered in the library.

When no labeled anomalies are available, Kronos initializes
1 and 7 by a pseudo ground-truth from majority voting of base
models. This ensures a cold-start without assuming available
training examples, and continuously improves Kronos by
refining 1 and 1 upon verified anomalies from user feedback.
Kronos supports multi-threaded parallelization where each
base detector can process samples independently.

Event annotation. Kronos adopts a decision tree to incorpo-
rate domain-specific rules to annotate anomalies with specific
type of events (e.g., ‘Overload’, ‘Trip off’). A star event P(v)
is assembled by constructing an event entity v and associating
its CPS and environmental entities (e.g., the sensor which
captures v, critical measures involved in the decision tree).

D. Online Top-K Correlation Inference

Kronos library also incorporates a class of classifiers (e.g.,
lagged correlation, Granger causality [3], and graph temporal
association rules [7]) to decide whether two input star events
are spatio-temporally correlated. To avoid unnecessary pair-
wise checking, Kronos incrementally tracks top-k pairs of star
events from two consecutive windows W and W’ with strong
correlation, triggered by a new star event P(v) detected in WW'.
Specifically, it performs quick estimation of the upper bound
of the correlation scores specified by the correlation model
between P(v) and previously cached events up to the size of
W, and prunes unpromising pairs given current top-k pairs.

E. Analytical Query Processing

Kronos supports several classes of user-friendly event an-
alytical queries to search the dynamic knowledge graph, as
illustrated in Table I. An event analytical query specifies
search predicates (e.g., keywords, spatiotemporal ranges) and
computes a subgraph of the dynamic knowledge graph induced
by relevant star events, their associated CPS and environment
entities, and their spatiotemporal correlations. Kronos query
engine supports their instances specified as both predefined
continuous queries (for event monitoring) or one-time queries
(for ad-hoc analysis), which are processed by corresponding
online graph search algorithms e.g., [8].

F. Kronos Architecture

Kronos adopts a three-tier architecture depicted in Fig. 2.
(1) The interactive interface layer allows users to visually con-
figure the analyzing process, issue analytical queries, validate
the extracted knowledge and plug in base anomaly classifiers
and correlation models (Section III). (2) The online event
detector includes both incremental ensemble learning and
event annotators that are reading data streams from various
sources. The correlation detector component performs online
correlation inference triggered by newly detected alerts. (3)
The star events and correlations are assembled to update the
underlying RDF Kronos knowledge base.
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Query Model

Syntax (Query Template)

Query Instance

Spatio-temporal [5]

Top-<k> most recent events occurred
<time criteria> in <location criteria>

Top-10 most recent events occurred
“between Friday and Sunday”
in “Cali. substation” (Continuous)

Facet Search [8]

Top-<k> most recent events that contain
a keyword from <ki,..., k>

100 most recent events that contain
“Phase” or “Overload” (Continuous)

Root-cause [11]

Top-<k> events causing the event <P(v)>

5 events causing the event “Phase diff.”
at Hassayampa (One time)

Query-by-example [6]

Top-<k> most similar events
to the event <P (v)>

Top-5 Most similar events to the event

“Transformer Overload at San Diego” (Continuous)

TABLE I

ANALYTICAL QUERY MODELS AND EXAMPLES IN Kronos
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Fig. 3. Visual Exploration of Dynamic Event Knowledge

III. DEMONSTRATION

Setup. We demonstrate Kronos with real-world and simulated
data streams to show its application in smart grid resiliency,
Cyber attack detection, and road traffic analysis.(1) Real-time
digital simulator is used for modeling the power system and
Cyber communication protocols. RTDS dataset has in total 20
minutes of measurements from 3 phases of 16 sensors (e.g.,
voltage, current), including 5 minutes of normal operation and
15 minutes of operations with 3 types of injected anomalies
e.g., fault, capacitor, and load switching. (2) IDS records daily
intrusion activities over a Cyber-network and includes seven
families of attacks (e.g., Brute Force SSH, DDoS). Streams
were generated from 41 servers and contain 80 attributes
(e.g., duration, number of packets) from the network flow.
(3) METR-LA, a highway traffic dataset contains information
collected by loop detectors in the highways of Los Angeles.
We select 207 sensors and collect 4 months of data.

Scenarios. We showcase the following scenarios.
Ease of use. We invite the users to experience interactive user-
interface of Kronos (Fig. 3). Accessing the “Configuration”

panel, users are able to select data stream sources and tune
size of windows/samples. Using query panel, users can is-

respectively. Detected events and correlation among them are
also updating in the console that shows the source, time, and
label of the entities. Kronos supports interactive knowledge
exploration: users are able to drill down to 1) the specific
sensors to monitor measured values over time in sensor view,
and 2) the detailed properties in event view.

Cyber-power analysis. Cyber attacks are simulated by mali-
cious code-injection in RTDS script to send unwanted “switch
on” commands that increase the load and power usage of
the system. This causes overloading in a transmission line
that increases its temperature and can lead to sagging. As
a defensing mechanism the relays then “trip off” this line.
Losing this part of the network, an overload is then occurred.
Kronos successfully detects overload, power increase, and fault
as a result of sagging and their relationships.

Intrusion detection. Over IDS, we aggregate the network fea-
ture values of 5-minutes intervals and extract 80 snapshots.
As an example, Kronos correctly identifies active upload of
IRC softwares by attackers that led to DDoS attacks, taking
advantage of IRC botnets in the victim host.

We also demonstrate scenarios on METR-LA that detects
sudden traffic jams on a road (e.g., due to an accident) that
propagated to other roads, measured by nearby sensors.
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