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A tale of two explanations: Enhancing human trust  
by explaining robot behavior
Mark Edmonds1*†, Feng Gao2*, Hangxin Liu1*, Xu Xie2*, Siyuan Qi1, Brandon Rothrock3, 
Yixin Zhu2†, Ying Nian Wu2, Hongjing Lu2,4, Song-Chun Zhu1,2†

The ability to provide comprehensive explanations of chosen actions is a hallmark of intelligence. Lack of this 
ability impedes the general acceptance of AI and robot systems in critical tasks. This paper examines what forms 
of explanations best foster human trust in machines and proposes a framework in which explanations are generated 
from both functional and mechanistic perspectives. The robot system learns from human demonstrations to open 
medicine bottles using (i) an embodied haptic prediction model to extract knowledge from sensory feedback, 
(ii) a stochastic grammar model induced to capture the compositional structure of a multistep task, and (iii) an improved 
Earley parsing algorithm to jointly leverage both the haptic and grammar models. The robot system not only 
shows the ability to learn from human demonstrators but also succeeds in opening new, unseen bottles. Using 
different forms of explanations generated by the robot system, we conducted a psychological experiment to exam-
ine what forms of explanations best foster human trust in the robot. We found that comprehensive and real-time 
visualizations of the robot’s internal decisions were more effective in promoting human trust than explanations 
based on summary text descriptions. In addition, forms of explanation that are best suited to foster trust do not 
necessarily correspond to the model components contributing to the best task performance. This divergence 
shows a need for the robotics community to integrate model components to enhance both task execution and 
human trust in machines.

INTRODUCTION
Centuries ago, Aristotle stated that “we do not have knowledge of a 
thing until we have grasped its why, that is to say, its cause” (1). 
A hallmark of humans as social animals is the ability to answer this 
“why” question by providing comprehensive explanations of the 
behavior of themselves and others. The drive to seek explanations is 
deeply rooted in human cognition. Preschool-age children tend to 
attribute functions to all kinds of objects—clocks, lions, clouds, and 
trees—as explanations of the activity that these objects were apparently 
designed to perform (2, 3). The strong human preference and in-
trinsic motivation for explanation are likely due to its central role in 
promoting mutual understanding, which fosters trust between agents 
and thereby enables sophisticated collaboration (4, 5).

However, a strong human desire for explanations has not been 
sufficiently recognized by modern artificial intelligence (AI) systems, 
in which most methods primarily focus on task performance (6). 
Consequently, robot systems are still in their infancy in developing 
the ability to explain their own behavior when confronting noisy 
sensory inputs and executing complex multistep decision processes. 
Planner-based robot systems can generally provide an interpretable 
account for their actions to humans [e.g., by Markov decision pro-
cesses (7, 8), HTN (9), or STRIPS (10)], but these planners struggle 
to explain how their symbolic-level knowledge is derived from 
low-level sensory inputs. In contrast, robots equipped with deep 
neural networks (DNNs) (11) have demonstrated impressive per-
formance in certain specific tasks due to their powerful ability to 
handle low-level noisy sensory inputs (12, 13). However, DNN-based 

methods have well-known limitations, notably including a lack of 
interpretability of the knowledge representation (14–16). Some re-
cent DNN work addressed this issue using saliency maps (17, 18) 
or modularized components (19, 20). These data-driven approaches 
have demonstrated strong capabilities of handling noisy real-time 
sensory inputs, distilling the raw input to predict the effect and 
determine the next action. However, little work has been done to 
develop the synergy between the classic symbolic AI and the recent 
development of DNNs to empower machines with the ability to 
provide comprehensive explanations of their behavior.

To fill in this gap, the present project aims to disentangle ex-
plainability from task performance, measuring each separately to 
gauge the advantages and limitations of two major families of 
representations—symbolic representations and data-driven repre-
sentations—in both task performance and fostering human trust. 
The goals are to explore (i) what constitutes a good performer for a 
complex robot manipulation task? (ii) How can we construct an effective 
explainer to explain robot behavior and foster human trust?

To answer these questions, this paper develops an integrated 
framework consisting of a symbolic action planner using a stochastic 
grammar as the planner-based representation and a haptic prediction 
model based on neural networks to form the data-driven represent
ation. We examined this integrated framework in a robot system 
using a contact-rich manipulation task of opening medicine bottles 
with various safety lock mechanisms. From the performer’s per-
spective, this task is a challenging learning problem involving sub-
tle manipulations, because it requires a robot to push or squeeze 
the bottle in various places to unlock the cap. At the same time, 
the task is also challenging for explanation, because visual in-
formation alone from a human demonstrator is insufficient to 
provide an effective explanation. Rather, the contact forces be-
tween the agent and the bottle provide the hidden “key” to 
unlock the bottle, and these forces cannot be observed directly 
from visual input.
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To constitute a good performer, the robot system proposed here 
cooperatively combined multiple sources of information for high 
performance, enabling synergy between a high-level symbolic action 
planner and a low-level haptic prediction model based on sensory 
inputs. A stochastic grammar model was learned from human demon-
strations and served as a symbolic representation capturing the 
compositional nature and long-term constraints of a task (21). A 
haptic prediction model was trained using sensory information provided 
by human demonstrations (i.e., imposed forces and observed human 
poses) to acquire knowledge of the task. The symbolic planner and 
haptic model were combined in a principled manner using an 
improved generalized Earley parser (GEP) (22), which predicts the 
next robot action by integrating the high-level symbolic planner with 
the low-level haptic model. The learning from demonstration frame-
work presented here shares a similar spirit of our previous work (23) 
but with a new haptic model and a more principled manner, namely, 
the GEP, to integrate the haptic and grammar models. Computational 
experiments demonstrate a strong performance improvement over 
the symbolic planner or the haptic model alone.

To construct an effective explainer, the proposed approach draws 
from major types of explanations in human learning and reasoning 
that may constitute representations to foster trust by promoting 
mutual understanding between agents. Previous studies have suggested 
that humans generate explanations from functional perspectives that 
describe the effects or goals of actions and from mechanistic per-
spectives that focus on behavior as a process (24). The haptic pre-
diction model is able to provide a functional explanation by visualizing 
the essential haptic signals (i.e., effects of the previous action) to 
determine the next action. The symbolic action planner is capable 
of providing a mechanistic explanation by visualizing multiple planning 
steps (instead of just one) to describe the process of the task. The pro-
posed robot system provides both functional and mechanistic expla-
nations using the haptic model and the symbolic planner, respectively.

To examine how well robot-generated explanations foster human 
trust, we conducted human experiments to assess whether explana-
tions provided by the robot system can foster trust in human users, 
and if so, what forms of explanation are the most effective in enhancing 
human trust in machines. Here, we refer to the cognitive component 
of “trust” (25) based on rationality. Cognitive trust is especially im-
portant in forming trust within secondary groups (such as human-
machine relations) (26) compared with the emotional component 
typically more important in primary group relations (such as family 
and close friends). Our psychological experiment focuses on cognitive 
trust, stressing on a belief or an evaluation with “good rational reasons,” 
because this is the crucial ingredient of human-machine trust built 
on specific beliefs and goals with attention to evaluations and ex-
pectations (27). Specifically, human participants were asked to report 
qualitative trust ratings after observing robot action sequences along 
with different forms of explanations for the robot’s internal decision-
making as it solved a manipulation task. Then, participants observed 
similar but new robot executions without access to explanations and 
were asked to predict how the robot system is likely to behave across time.

These empirical findings shed light on the importance of learn-
ing human-centric models that make the robot system explainable, 
trustworthy, and predictable to human users. Our results show that 
forms of explanation that are best suited to foster trust do not nec-
essarily correspond to those components contributing to the best 
task performance. This divergence shows a need for the robotics com-
munity to adopt model components that are more likely to foster 

human trust and integrate these components with other model 
components enabling high task performance.

RESULTS
Figure 1 illustrates the overall procedures, wherein the proposed 
integration framework, the GEP (22), efficiently combines a symbolic 
action planner and a data-driven haptic model to achieve high task 
performance and effective explanation. To this end, we first describe 
the procedure and data collection of human demonstrations, followed 
by the learning approaches. Next, we provide quantitative results as 
the success rate of the robot system in performing the task and assess 
the contributions from different modules of the system in task per-
formance. We end the section with an analysis of human experiments 
with different types of explanations generated from the learned 
models, showing how human qualitative trust and prediction accu-
racy are influenced by various forms of explanations.

Robot learning
To learn from human demonstrations, our robot system used an 
efficient encoding and representation of both haptic inputs and 
symbolic semantics of the manipulation task. The specific task, 
opening medicine bottles, requires inferring both the hand pose and 
the forces imposed on the bottle; agents must understand and enact 
the correct sequence of pose and force manipulations to succeed 
based on both the learned knowledge from human demonstrations 
and the real-time haptic sensory input.

We used a tactile glove with force sensors (28) to capture both the 
poses and the forces involved in human demonstrations in opening 
medicine bottles that require a visually latent interaction between 
the hand and the cap, e.g., pushing as indicated in Fig. 1A. A total of 
64 human demonstrations, collected in (23), of opening three dif-
ferent medicine bottles served as the training data. These three bottles 
have different locking mechanisms: no safety lock mechanism, a 
push-twist locking mechanism, and a pinch-twist locking mechanism. 
To test the generalization ability of the robot system, we conducted 
a generalization experiment with new scenarios different from 
training data, either a new bottle (see “Robot results” section) or a bottle 
with a modified cap with significantly different haptic signals (fig. S1). 
The locking mechanisms of the bottles in the generalization ex-
periment were similar but not identical (in terms of size, shape, and 
haptic signals) to the bottles used in human demonstrations. The 
haptic signals for the generalization bottles were significantly dif-
ferent from bottles used in testing, posing challenges in transferring 
the learned knowledge to novel unseen cases.
Embodied haptic model
Using human demonstrations, the robot learned a manipulation 
strategy based on the observed poses and forces exerted by human 
demonstrators. One challenge in learning manipulation policies from 
human demonstration involves different embodiments between robots 
and human demonstrators. A human hand has five fingers, whereas 
a robot gripper may only have two or three fingers; each embodiment 
exerts different sensory patterns even when performing the very same 
manipulation. Hence, the embodied haptic model for the robot system 
cannot simply duplicate human poses and forces exerted by human 
hands; instead, a robot should imitate the actions with the goal to 
produce the same end effect in manipulating the medicine bottle 
(e.g,, imposing a certain force on the cap). The critical approach in 
our model is to use embodied prediction, i.e., let the robot imagine 
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its current haptic state as a human demonstrator and predict what 
action the demonstrator would have executed under similar cir-
cumstances in the next time step.

Figure 2 illustrates the force patterns exerted by a robot and a 
human demonstrator. As shown in Fig. 2 (A and C), due to the dif-
ferences between a robot gripper and a human hand, the haptic 
sensing data from robots and humans show very different patterns 
from each other in terms of dimensionality and duration within 
each segmented action (illustrated by the colored segments).

To address the cross-embodiment problem, we trained a haptic 
model in a similar approach as in (23) to predict which action the 
robot should take next based on perceived human and robot forces 
and poses. The present haptic model learned a prediction model in 
a three-step process: (i) learning an autoencoder that constructs a 
low-dimensional embedding of human demonstrations containing 
poses and forces, as shown in Fig. 2B; (ii) training an embodiment 
mapping to map robot states to equivalent human embeddings, 
thereby allowing the robot to imagine itself as a human demonstrator 
to produce the same force, achieving functional equivalence to generate 
the same end effect as the human demonstrator (this embodiment 
mapping is trained in a supervised fashion, using labeled equivalent 
robot and human states); and (iii) training a next action predictor 
based on the human embeddings and the current action. This action 
predictor is also trained in a supervised fashion, using segmented 
human demonstrations (see the “Embodied haptic model details” 
section in Materials and Methods for additional training details).

The robot predicts the next action based on the mapped human 
embedding using a multi-class classifier (see details in the “Model 

learning details” section in Materials and Methods). We denote this 
prediction process as our haptic model. Intuitively, the embodied 
haptic predictions endow the robot with the ability to ask itself: “If I 
imagine myself as the human demonstrator, which action would the 
human have taken next based on the poses and forces exerted by 
their hand?” Hence, the resulting haptic model provides a functional 
explanation regarding the forces exerted by the robot’s actions.
Symbolic action planner
Opening medicine bottles is a challenging multistep manipulation, 
because one may need to push on the cap to unlock it (visually 
unobservable), twist it, and then pull it open. A symbolic representa-
tion is advantageous to capture the necessary long-term constraints 
of the task. From labeled action sequences of human demonstrations, 
we induce a temporal And-Or graph (T-AOG), a probabilistic 
graphical model describing a stochastic, hierarchical, and composi-
tional context-free grammar (29), wherein an And-node encodes a 
decomposition of the graph into subgraphs, an Or-node reflects a 
switch among multiple alternate subconfigurations, and the terminal 
nodes consist of a set of action primitives (such as push, twist, and 
pull). A corpus of sentences (i.e., action sequences in our case) is fed 
to the grammar induction algorithm presented in (21), and the 
grammar is induced by greedily generating And-Or fragments 
according to the data likelihood; the fragments represent composi-
tional substructures that are combined to form a complete grammar. 
In our case, the grammar was learned from segmented and labeled 
human demonstrations. The resulting grammar offers a compact 
symbolic representation of the task and captures the hierarchical 
structure of the task, including different action sequences for different 

Human Demonstration

Collect human 
manipulation data 

A

Performance & Explainability

E How well does model perform?

F How well does model explain?

Robot Explanation: 
The key actions are pushing the cap three times and twisting the 
cap three times

Action choices:
1. Approach
2. Pull
3. Push
4. Grasp

5. Ungroup
6. Twist
7. Move
8. Pinch

Approach > Grasp > Push > Twist > Ungrasp > Move > Grasp 
> Push > Twist > Ungrasp > Move > Grasp > Push > Pull

Action sequence

Learning & Action Planning

B Learning symbolic representation

C Learning haptic representation

D Action planning using GEP

Fig. 1. Overview of demonstration, learning, evaluation, and explainability. By observing human demonstrations, the robot learns, performs, and explains using 
both a symbolic representation and a haptic representation. (A) Fine-grained human manipulation data were collected using a tactile glove. On the basis of the human 
demonstrations, the model learns (B) symbolic representations by inducing a grammar model that encodes long-term task structure to generate mechanistic explana-
tions and (C) embodied haptic representations using an autoencoder to bridge the human and robot sensory input in a common space, providing a functional explana-
tion of robot action. These two components are integrated using (D) the GEP for action planning. These processes complement each other in both (E) improving robot 
performance and (F) generating effective explanations that foster human trust.
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bottles, as well as different action sequences for the same bottle. 
Examples of the T-AOG learning progress are shown in Fig. 3. The 
nodes connected by red edges in Fig. 3C indicate a parse graph sampled 
from the grammar, and its terminal nodes compose an action sequence 
for robot execution.

On the basis of the action sequences observed in human demon-
strations, the induced grammar can be used to parse and predict 
robot action sequences that are likely to the successful opening of 
the medicine bottle, assuming each robot action corresponds to 
an equivalent human action. The induced grammar can be parsed to 
generate new, unseen, and valid action sequences for solving similar 
tasks (e.g., opening different medicine bottles), and thus, the grammar 
can be used with symbolic planning methods, such as the Earley 
parser (22). We denote the process of planning actions using a parser 
and the action grammar as the symbolic planner. Hence, the sym-
bolic planner endows the robot with the ability to ask itself from a 

mechanistic perspective: “On the basis of what I have done thus far 
and what I observed the human do, which actions are likely to open 
the bottle at the end of the sequence?”
Integration of symbolic planner and haptic model
To integrate the long-term task structure induced by the symbolic 
planner and the manipulation strategy learned from haptic signals, we 
sought to combine the symbolic action planner and embodied haptic 
model using the GEP (22). The GEP is a grammar parser that works 
on a sequence of sensory data; it combines any context-free grammar 
model with probabilistic beliefs over possible labels (grammar 
terminals) of sensory data. The output of the GEP is the optimal 
segmentation and label sentence of the raw sensory data; a label sentence 
is optimal when its probability is maximized according to the grammar 
priors and the input belief over labels while being grammatically correct. 
The core idea of the GEP is to efficiently search in the language space 
defined by the grammar to find the optimal label sentence.

To adopt the GEP for a robot system, we modified the GEP pre-
sented in (22) for online planning. The grammar for the GEP remains 
the same grammar used in the symbolic planner; however, the GEP’s 
probabilistic beliefs come from the softmax distribution from the 
haptic model. During the action planning process, a stochastic dis-
tribution of action labels predicted by the haptic model is fed into 
the GEP at every time step. The GEP aggregates the entire symbolic 
planning history with the current haptic prediction and outputs the 
best parse to plan the most likely next action. Materials and Methods 
introduces more details about the algorithm. Intuitively, such an integra-
tion of the symbolic planner and haptic model enables the robot to ask 
itself: “On the basis of the human demonstration, the poses and forces 
I perceive right now, and the action sequence I have executed thus far, 
which action has the highest likelihood of opening the bottle?”
Robot results
Figure 4 (A and B) shows the success rate of the robot opening the 
three medicine bottles used in human demonstrations and two 
new, unseen medicine bottles (see more generalization results in 
text S1). The two generalization bottles’ locking mechanisms are 
similar (but not identical) to the ones used in human demonstrations, 
but the low-level haptic signals are significantly different, posing 
challenges in transferring the learned knowledge to novel unseen 
cases. To assess model performance, the robot attempted to open 
each bottle 31 times. In the testing experiments, bottle 1 is a regular 
bottle without a locking mechanism, bottle 2 has a push-twist locking 
mechanism, and bottle 3 requires pinching specific points on the lid 
to unlock. In the generalization experiments, bottle 4 also does not 
have a locking mechanism, and bottle 5 has a push-twist locking 
mechanism but with different shape, size, and haptic signals com-
pared with the ones in the human demonstrations. For both the 
testing and generalization experiments, the robot’s task performance 
measured by the success rates decreased as the bottle’s locking 
mechanism became more complex, as expected.

To quantitatively compare the difference between the model com-
ponents, we conducted ablative experiments on robot task perform
ance using only the symbolic planner and only the haptic model 
(see Fig. 4). The haptic model and symbolic planner vary in their 
relative individual performance, but the combined planner using the 
GEP yields the best performance for all cases. Hence, integrating both 
the long-term task structure provided by the symbolic planner and 
the real-time sensory information provided by the haptic model 
yields the best robot performance. The symbolic planner provides 
long-term action planning and ensures that the robot executes an 

A

B

C

Fig. 2. Illustration of learning embodied haptic representation and action 
prediction model. An example of the force information in (A) the human state, 
collected by the tactile glove (with 26 dimensions of force data), and force information 
in (C) the robot state, recorded from the force sensors in the robot’s end effector 
(with three dimensions of force data). The background colors indicate different action 
segments. For equivalent actions, the human and the robot may take different 
amounts of time to execute, resulting in different action segment lengths. (B) Embodied 
haptic representation and action prediction model. The autoencoder (yellow back-
ground) takes a human state, reduces its dimensionality to produce a human em-
bedding, and uses the reconstruction to verify that the human embedding maintains 
the essential information of the human state. The embodiment mapping network 
(purple background) takes in a robot state and maps to an equivalent human em-
bedding. The action prediction network (light blue background) takes the human 
embedding and the current action and predicts what action to take next. Thus, the 
robot imagines itself as a human based on its own haptic signals and predicts what 
action to take next.
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action sequence capturing the high-level structure of the task. How-
ever, models that solely rely on these symbolic structures are brittle 
to adjust to perturbations of haptic signals, especially when the task 
relies more on the haptics as the complexity increases. On the other 
hand, models that rely purely on haptic signals are unable to impose 
multistep task constraints and thus may fail to infer a correct sequence 
of actions based on the execution history. Our results confirm that 
by combining these modalities together, the robot achieves the 
highest task performance.

Given that multiple modalities are involved in the GEP’s perform
ance, it is crucial to assess the contributions from different model 
components. We ran the 2 test to determine whether different 
models (GEP, symbolic, and haptic) are statistically different in their 
ability to open five bottles (three bottles used in human demonstra-
tions and two new bottles used in the generalization task). The robot 
performed the manipulation task 31 times per medicine bottle. 
With the significance level of 0.05, the results show that the perform
ance of the GEP model is significantly better than both symbolic 
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Terminal Node
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Fig. 3. An example of action grammar induced from human demonstrations. Green nodes represent And-nodes, and blue nodes represent Or-nodes. Probabilities 
along edges emanating from Or-nodes indicate the parsing probabilities of taking each branch. Grammar model induced from (A) 5 demonstrations, (B) 36 demonstra-
tions, and (C) 64 demonstrations. The grammar model in (C) also shows a parse graph highlighted in red, where red numbers indicate temporal ordering of actions.

A B

Fig. 4. Robot task performance on different bottles with various locking mechanisms using the symbolic planner, haptic model, and the GEP that integrates 
both. (A) Testing performance on bottles observed in human demonstrations. Bottle 1 does not have a locking mechanism, bottle 2 uses a push-twist locking mechanism, 
and bottle 3 uses a pinch-twist locking mechanism. (B) Generalization performance on new, unseen bottles. Bottle 4 does not have a locking mechanism, and bottle 5 
uses a push-twist locking mechanism. The bottles used in generalization have similar locking mechanisms but evoke significantly different haptic feedback (see text S1). 
Regardless of testing on demonstration or unseen bottles, the best performance is achieved by the GEP that combines the symbolic planner and haptic model.
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model [2(1) = 10.0916, P = 0.0015] and haptic model [2(1) = 13.0106, 
P < 0.001]. Performance does not show a difference between the 
symbolic model and the haptic model, 2(1) = 0.1263, P = 0.7232. 
These results suggest that both haptic model and symbolic planner 
contribute to good task performance; when the two processes were 
integrated with the GEP, the success rate of the robot for opening 
medicine bottles was improved compared with the performance by 
the single-module models based on either the haptic model or the 
symbolic planner.

Explanation generation
The haptic model and symbolic planner are capable of providing 
explanations to humans about robot behavior in real time. Mecha-
nistic explanations can be generated by the symbolic planner in the 
form of action sequences because they represent the process of 
opening a medicine bottle. Functional explanations can be provided 
by a visualization of the internal robot gripper state (effects) used in 
the haptic model. It is worth noting that these models are capable of 
providing such explanations but are not the only means of producing 
them. Alternative action planners and haptic models could produce 
similar explanations, as long as the robot systems are able to learn 
the corresponding representations for haptic prediction and task 
structure. Figure 5 shows the explanation panels over an action 

sequence. These visualizations are shown in real time, providing 
direct temporal links between explanation and execution.

Human experiment
Experimental design
The human experiment aims to examine whether providing expla-
nations generated from the robot’s internal decisions fosters human 
trust to machines and what forms of explanation are the most effective 
in enhancing human trust. We conducted a psychological study with 
150 participants; each was randomly assigned to one of five groups. 
Our experimental setup consisted of two phases: familiarization and 
prediction. During familiarization, all groups viewed the RGB video, 
and some groups were also provided with an explanation panel. 
During the second phase of the prediction task, all groups only 
observed RGB videos.

The five groups consist of the baseline no-explanation group, 
symbolic explanation group, haptic explanation group, GEP expla-
nation group, and text explanation group. For the baseline no-
explanation group, participants only viewed RGB videos recorded 
from a robot attempting to open a medicine bottle, as shown in 
Fig. 6A. For the other four groups, participants viewed the same 
RGB video of robot executions and simultaneously were presented 
with different explanatory panels on the right side of the screen. 

A B C D

Fig. 5. Explanations generated by the symbolic planner and the haptic model. (A) Symbolic (mechanistic) and haptic (functional) explanations at a0 of the robot ac-
tion sequence. (B to D) Explanations at times a2, a8, and a9, respectively, where ai refers to the ith action. Note that the red on the robot gripper’s palm indicates a large 
magnitude of force applied by the gripper, and green indicates no force; other values are interpolated. These explanations are provided in real time as the robot executes.
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Specifically, the symbolic group viewed the symbolic action planner 
illustrating the robot’s real-time inner decision-making, as shown 
in Fig. 6B. The haptic group viewed the real-time haptic visualization 
panel, as shown in Fig. 6C. The GEP group viewed the combined 
explanatory panel, including the real-time robot’s symbolic planning 
and an illustration of haptic signals from the robot’s manipulator, 
namely, both Fig. 6, B and C. The text explanation group was pro-
vided a text description that summarizes why the robot succeeded 
or failed to open the medicine bottle at the end of the video, as shown 
in Fig. 6D (see a summary in Fig. 6E for the five experimental groups).

During the familiarization phase, participants were provided two 
demonstrations of robot executions, with one successful execution 
of opening a medicine bottle and one failed execution without 
opening the same bottle. The presentation order of the two demon-
strations was counterbalanced across participants. After observing 
robot executions with explanation panels, participants were first 
asked to provide a trust rating for the question: “To what extent do 
you trust/believe this robot has the ability to open a medicine bottle, 
on a scale between 0 and 100?” The question was adopted from the 
questionnaire of measuring human trust in automated systems (30). 
This question also clearly included the goal of the system, to open a 
medicine bottle, to enhance the reliability in trust measures (27). 
Hence, the rating provided a direct qualitative measure of human 
trust to the robot’s ability to open medicine bottles.

In addition, we designed the second measure to assess the quan-
titative aspects of trust. We adopted the definition by Castelfranchi 
and Falcone (27) that quantitative trust is based on the quantitative 

dimensions of its cognitive constituents. Specifically, the greater the 
human’s belief in the machine’s competence and performance, the 
greater the human trust in machines. In the prediction phase, we 
asked participants to predict the robot’s next action in a new execution 
with the same task of opening the same medicine bottle. Participants 
viewed different segments of actions performed by the robot and were 
asked to answer the prediction question over time. For this measure, 
participants in all five groups only observed RGB videos of robot 
execution during the prediction phase; no group had access to any 
explanatory panel after the familiarization phase. The prediction 
accuracy was computed as the quantitative measure of trust, with the 
presumption that, as the robot behavior is more predictable to 
humans, greater prediction accuracy indicates higher degrees of trust.
Human study results
Figure 7A shows human trust ratings from the five different groups. 
The analysis of variance (ANOVA) reveals a significant main effect 
of groups (F4,145 = 2.848; P = 0.026) with the significance level of 0.05. 
This result suggests that providing explanations about robot behavior 
in different forms affects the degree of human trust to the robot 
system. Furthermore, we found that the GEP group with both sym-
bolic and haptic explanation panels yields the highest trust rating, 
with a significantly better rating than the baseline group in which 
explanations are not provided [independent-samples t test, t(58) = 2.421; 
P = 0.019]. The GEP group showed a greater trust rating than the 
text group in which a summary description was provided to explain 
the robot behavior [t(58) = 2.352; P = 0.022], indicating that detailed 
explanations of robot’s internal decisions over time is much more 

A B

C

E

D

Fig. 6. Illustration of visual stimuli used in human experiment. All five groups observed the RGB video recorded from robot executions but differed by the access to 
various explanation panels. (A) RGB video recorded from robot executions. (B) Symbolic explanation panel. (C) Haptic explanation panel. (D) Text explanation panel. 
(E) Summary of which explanation panels were presented to each group.
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effective in fostering human trust than a summary text description 
to explain robot behavior. In addition, trust ratings in the symbolic 
group were also higher than ratings in the baseline group [t(58) = 2.269; 
P = 0.027] and higher than ratings in the text explanation group 
[t(58) = 2.222; P = 0.030], suggesting that symbolic explanations play an 
important role in fostering human trust of the robot system. However, 
the trust ratings in the haptic explanation group were not significantly 
different from the baseline group, implying that explanations only based 
on haptic signals are not effective ways to gain human trust despite the 
explanations also being provided in real time. No other significant group 
differences were observed between any other pairing of the groups.

The second trust measure based on prediction accuracy yielded 
similar results. All groups provided action predictions above the 
chance-level performance of 0.125 (as there are eight actions to 
choose from), showing that humans are able to predict the robot’s 
behavior after only a couple of observations of a robot performing a 
task. The ANOVA analysis shows a significant main effect of groups 
(F4,145 = 3.123; P = 0.017), revealing the impact of provided explana-
tions on the accuracy of predicting the robot’s actions. As shown in 
Fig. 7B, participants in the GEP group yielded significantly higher 
prediction accuracy than those in the baseline group [t(58) = 3.285; 
P = 0.002]. Prediction accuracy of the symbolic group also yielded 
better performance than the baseline group [t(58) = 2.99; P = 0.004]. 
We found that the text group shows higher prediction accuracy than 
the baseline group [t(58) = 2.144; P = 0.036]. This result is likely due to 
the summary text description providing a loose description of the 
robot’s action plan; such a description decouples the explanation from the 
temporal execution of the robot. The prediction accuracy data did not 
reveal any other significant group differences among other pairs of groups.

In general, humans appear to need real-time, symbolic explanations 
of the robot’s internal decisions for performed action sequences to 
establish trust in machines performing multistep complex tasks. 
Summary text explanations and explanations only based on haptic 
signals are not effective ways to gain human trust, and the GEP and 
symbolic group foster similar degrees of human trust to the robot 
system according to both measures of trust.

DISCUSSION
In terms of performance, our results demonstrate that a robot sys-
tem can learn to solve challenging tasks from a small number of 

human demonstrations of opening three medicine bottles. This success 
in learning from small data is primarily supported by learning multiple 
models for joint inference of task structure and sensory predictions. 
We found that neither purely symbolic planning nor a haptic model 
is as successful as an integrated model including both processes.

Our model results also suggest that the relative contributions from 
individual modules, namely, the symbolic planner and haptic pre-
dictions, can be influenced by the complexity of the manipulation 
task. For example, in testing scenarios, for bottle 1 with no safety 
locking mechanism, the symbolic planner slightly outperformed the 
haptic model. Conversely, to open bottle 3 that has complex locking 
mechanisms, the haptic model outperformed the symbolic planner 
because haptic signals provide critical information for the pinch action 
needed to unlock the safety cap. For generalization scenarios with 
new medicine bottles that were not seen in human demonstrations, 
the symbolic planner maintained a similar performance compared 
with equivalent bottles in the testing scenarios, whereas the haptic 
model performance decreased significantly. We also note that the 
symbolic planner performance decreased faster as complexity 
increased, indicating that pure symbolic planners are more brittle 
to circumstances that require additional haptic sensing. Furthermore, 
as bottle complexity increased, model performance benefitted more 
from integrating symbolic planner and haptic signals. This trend 
suggests that more complex tasks require the optimal combination 
of multiple models to produce effective action sequences.

In terms of explainability, we found that reasonable explanations 
generated by the robot system are important for fostering human trust 
in machines. Our experiments show that human users place more 
trust in a robot system that has the ability to provide explanations 
using symbolic planning. An intriguing finding from these experi-
ments is that providing explanations in the form of a summarized 
text description of robot behavior is not an effective way to foster 
human trust. The symbolic explanation panel and text summary 
panel both provided critical descriptions of the robot’s behavior at 
the abstract level, explaining why a robot succeeded or failed the task. 
However, the explanations provided by the two panels differed in their 
degree of detail and temporal presentation. The text explanation 
provided a loose description of the important actions that the robot 
executes after the robot finished the sequence. In contrast, the symbolic 
explanation included in the GEP’s panel provided human participants 
with real-time visualizations of the robot’s internal planning process 

BA

Fig. 7. Human results for trust ratings and prediction accuracy. (A) Qualitative measures of trust: average trust ratings for the five groups. (B) Average prediction ac-
curacy for the five groups. The error bars indicate the 95% confidence interval. Across both measures, the GEP performs the best. For qualitative trust, the text group 
performs most similarly to the baseline group. For a tabular summary of the data, see table S1.
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at each step. This mode of explanation enables the visualization of 
task structure for every action executed during the sequence and likely 
evokes a sense that the robot actively makes rational decisions.

However, it is not the case that a detailed explanation is always 
the best approach to foster human trust. A functional explanation 
of real-time haptic signals is not very effective in gaining human 
trust in this particular task. Information at the haptic level may be 
excessively tedious and may not yield a sense of rational agency that 
allows the robot to gain human trust. To establish human trust in 
machines and enable humans to predict robot behaviors, it appears 
that an effective explanation should provide a symbolic interpretation 
and maintain a tight temporal coupling between the explanation 
and the robot’s immediate behavior.

Taking together both performance and explanation, we found that 
the relative contributions of different model components for generating 
explanations may differ from their contributions to maximizing robot 
performance. For task performance, the haptic model plays an 
important role for the robot to successfully open a medicine bottle 
with high complexity. However, the major contribution to gain 
human trust is made by real-time mechanistic explanations provided 
by the symbolic planner. Hence, model components that foster the 
most trust do not necessarily correspond to those components con-
tributing to the best task performance. This divergence is possible 
because there is no requirement that components responsible for 
generating better explanations are the same components contributing 
to task performance; they are optimizing different goals. This diver-
gence also implies that the robotics community should adopt 
model components that gain human trust while also integrating 
these components with high-performance components to maximize 
both human trust and successful execution. Robots endowed with 
explainable models offer an important step toward integrating robots 
into daily life and work.

MATERIALS AND METHODS
Embodied haptic model details
The embodied haptic model leverages low-level haptic signals 
obtained from the robot’s manipulator to make action predictions 
based on the human poses and forces collected with the tactile glove. 
This embodied haptic sensing allows the robot to reason about (i) 
its own haptic feedback by imagining itself as a human demon-
strator and (ii) what a human would have done under similar poses 
and forces. The critical challenge here is to learn a mapping be-
tween equivalent robot and human states, which is difficult due to 
the different embodiments. From the perspective of generalization, 
manually designed embodiment mappings are not desirable. To learn 
from human demonstrations on arbitrary robot embodiments, 
we propose an embodied haptic model general enough to learn be-
tween an arbitrary robot embodiment and a human demonstrator.

The embodied haptic model consists of three major com-
ponents: (i) an autoencoder to encode the human demonstration in 
a low-dimensional subspace (we refer to the reduced embedding 
as the human embedding); (ii) an embodiment mapping that maps 
robot states onto a corresponding human embedding, providing 
the robot with the ability to imagine itself as a human demonstrator; 
and (iii) an action predictor that takes a human embedding and the 
current action executing as the input and predicts the next action 
to execute, trained using the action labels from human demonstra-
tions. Figure 2B shows the embodied haptic network architecture. 

Using this network architecture, the robot infers what action a human 
was likely to execute on the basis of this inferred human state. This 
embodied action prediction model picks the next action according to

	​​ a​ t+1​​  ∼  p(⋅∣​f​ t​​, ​a​ t​​)​	 (1)

where at + 1 is the next action, ft is the robot’s current haptic sensing, 
and at is the current action.

The autoencoder network takes an 80-dimensional vector from 
the human demonstration (26 for the force sensors and 54 for the 
poses of each link in the human hand) and uses the post-condition 
vector, i.e., the average of last N frames (we choose N = 2 to mini-
mize the variance), of each action in the demonstration as input 
(see the autoencoder portion of Fig. 2B). This input is then reduced 
to an eight-dimensional human embedding. Given a human demon-
stration, the autoencoder enables the dimensionality reduction to 
an eight-dimensional representation.

The embodiment mapping maps from the robot’s four-dimensional 
post-condition vector, i.e., the average of the last N frames (differ-
ent from human post-condition due to a faster sample rate on 
the robot gripper compared with the tactile glove; we chose N = 10), 
to an imagined human embedding (see the embodiment mapping 
portion of Fig. 2B). This mapping allows the robot to imagine its current 
haptic state as an equivalent low-dimensional human embedding. 
The robot’s four-dimensional post-condition vector consists of 
the gripper position (one dimension) and the forces applied by the 
gripper (three dimensions). The embodiment mapping network uses 
a 256-dimensional latent representation, and this latent representation 
is then mapped to the eight-dimensional human embedding.

To train the embodiment mapping network, the robot first exe-
cutes a series of supervised actions where, if the action produces the 
correct final state of the action, the robot post-condition vector is 
saved as input for network training. Next, human demonstrations 
of equivalent actions are fed through the autoencoder to produce a 
set of human embeddings. These human embeddings are considered 
as the ground-truth target outputs for the embodiment mapping 
network, regardless of the current reconstruction accuracy of the 
autoencoder network. Then, the robot execution data are fed into 
the embodiment mapping network, producing an imagined human 
embodiment. The embodiment mapping network optimizes to 
reduce the loss between its output from the robot post-condition 
input and the target output.

For the action predictor, the 8-dimensional human embedding and 
the 10-dimensional current action are mapped to a 128-dimensional 
latent representation, and the latent representation is then mapped 
to a final 10-dimensional action probability vector (i.e., the next 
action) (see action prediction portion of Fig. 2B). This network 
is trained using human demonstration data, where a demonstra-
tion is fed through the autoencoder to produce a human embed-
ding, and that human embedding and the one-hot vector of the 
current action execution are fed as the input to the prediction 
network; the ground truth is the next action executed in the 
human demonstration.

The network in Fig. 2B is trained in an end-to-end fashion with 
three different loss functions in a two-step process: (i) a forward 
pass through the autoencoder to update the human embedding zh. 
After computing the error Lreconstruct between the reconstruction ​​s​ h​ ′ ​​ 
and the ground-truth human data sh, we back-propagate the gradient 
and optimize the autoencoder
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	​​ L​ reconstruct​​(​s​ h​ ′ ​,  ​s​ h​​ ) = ​ 1 ─ 2 ​ ​(​s​ h​ ′ ​ − ​s​ h​​)​​ 2​​	 (2)

(ii) A forward pass through the embodiment mapping and the ac-
tion prediction network. The embodiment mapping is trained by 
minimizing the difference Lmapping between the embodied robot 
embedding zr and target human embedding zh; the target human 
embedding zh is acquired through a forward pass through the auto-
encoder using a human demonstration post-condition of the same 
action label, sh. We compute the cross-entropy loss Lprediction of the 
predicted action label a′ and the ground-truth action label a to op-
timize this forward pass

	​​

​L​ planning​​(​a ′ ​, a)

​ 

= ​L​ mapping​​ +  ⋅ ​L​ prediction​​

​   ​L​ mapping​​​  = ​ 1 ─ 2 ​ ​(​z​ r​​ − ​z​ h​​)​​ 2​​   

​L​ prediction​​

​ 

= H(p(​a ′ ​ ) , q(a ) )

  ​​	 (3)

where H is the cross entropy, p is the model prediction distribution, 
q is the ground-truth distribution, and  is the balancing parameter 
between the two losses (see text S2.2 for detailed parameters and 
network architecture).

A similar embodied haptic model was presented in (23) but with 
two separate loss functions, which is more difficult to train com-
pared with the single loss function presented here. A clear limitation 
of the haptic model is the lack of long-term action planning. To 
address this problem, we discuss the symbolic task planner below 
and then discuss how we integrated the haptic model with the sym-
bolic planner to jointly find the optimal action.

Symbolic planner details
To encode the long-term temporal structure of the task, we en-
dow a symbolic action planner that encodes semantic knowledge of 
the task execution sequence. The symbolic planner uses stochastic 
context-free grammars to represent tasks, where the terminal nodes 
(words) are actions and sentences are action sequences. Given an 
action grammar, the planner finds the optimal action to execute next 
on the basis of the action history, analogous to predicting the next 
word given a partial sentence.

The action grammar is induced using labeled human demon-
strations, and we assume that the robot has an equivalent action for 
each human action. Each demonstration forms a sentence, xi, and 
the collection of sentences from a corpus, xi ∈ X. The segmented 
demonstrations are used to induce a stochastic context-free grammar 
using the method presented in (21). This method pursues T-AOG 
fragments to maximize the likelihood of the grammar producing the 
given corpus. The objective function is the posterior probability of 
the grammar given the training data X

	​ p(G∣X) ∝ p(G) p(X∣G) = ​ 1 ─ Z ​ ​e​​ −‖G‖​​ ∏ 
​x​ i​​∈X

​​​p(​x​ i​​∣G)​	 (4)

where G is the grammar, xi = (a1, a2,…, am) ∈ X represents a valid 
sequence of actions with length m from the demonstrator,  is a 
constant, ‖G‖ is the size of the grammar, and Z is the normalizing 
factor. Figure 3 shows examples of induced grammars of actions.

During the symbolic planning process, this grammar is used to com-
pute which action is the most likely to open the bottle based on the action 
sequence executed thus far and the space of possible future actions. A 
pure symbolic planner picks the optimal action based on the grammar prior

	​​ a​t+1​ *  ​  = ​ arg max​ 
​a​ t+1​​

​  ​ p(​a​ t+1​​ ∣​a​ 0:t​​, G)​	 (5)

where at + 1 is the next action and a0:t is the action sequence exe-
cuted thus far. This grammar prior can be obtained by a division of 
two grammar prefix probabilities: ​p(​a​ t+1​​∣​a​ 0:t​​, G) =  ​p(​a​ 0:t+1​​∣G) _ p(​a​ 0:t​​∣G)  ​​, where the 

grammar prefix probability p(a0:t ∣G) measures the probability that 
a0:t occurs as a prefix of an action sequence generated by the action 
grammar G. On the basis of a classic parsing algorithm—the Earley 
parser (31)—and dynamic programming, the grammar prefix prob-
ability can be obtained efficiently by the Earley-Stolcke parsing algo-
rithm (32). An example of pure symbolic planning is shown in fig. S4.

However, due to the fixed structure and probabilities encoded in 
the grammar, always choosing the action sequence with the highest 
grammar prior is problematic because it provides no flexibility. An 
alternative pure symbolic planner picks the next action to execute 
by sampling from the grammar prior

	​​ a​ t+1​​  ∼  p(⋅ ∣​a​ 0:t​​,G)​	 (6)

In this way, the symbolic planner samples different grammatically 
correct action sequences and increases the adaptability of the symbolic 
planner. In the experiments, we choose to sample action sequences 
from the grammar prior.

In contrast to the haptic model, this symbolic planner lacks the adapt-
ability to real-time sensor data. However, this planner encodes long-term 
temporal constraints that are missing from the haptic model, because 
only grammatically correct sentences have nonzero probabilities. The 
GEP adopted in this paper naturally combines the benefits of both 
the haptic model and the symbolic planner (see the next section).

GEP details
The robot imitates the human demonstrator by combining the symbolic 
planner and the haptic model. The integrated model finds the next optimal 
action considering both the action grammar G and the haptic input ft

	​​ a​t+1​ *  ​  = ​ arg max​ 
​a​ t+1​​

​  ​ p(​a​ t+1​​∣​a​ 0:t​​, ​f​ t​​, G)​	 (7)

Conceptually, this can be thought of as a posterior probability that 
considers both the grammar prior and the haptic signal likelihood. 
The next optimal action is computed by an improved GEP (22); GEP 
is an extension of the classic Earley parser (31). In the present work, 
we further extend the original GEP to make it applicable to multi-
sensory inputs and provide explanation in real time for robot systems, 
instead of for offline video processing (see details in text S4.1.3).

The computational process of GEP is to find the optimal label 
sentence according to both a grammar and a classifier output of 
probabilities of labels for each time step. In our case, the labels are 
actions, and the classifier output is given by the haptic model. Optimality 
here means maximizing the joint probability of the action sequence 
according to the grammar prior and haptic model output while being 
grammatically correct.

The core idea of the algorithm is to directly and efficiently search 
for the optimal label sentence in the language defined by the grammar. 
The grammar constrains the search space to ensure that the sentence 
is always grammatically correct. Specifically, a heuristic search is 
performed on the prefix tree expanded according to the grammar, 
where the path from the root to a node represents a partial sentence 
(prefix of an action sequence).
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GEP is a grammar parser, capable of combining the symbolic 
planner with low-level sensory input (haptic signals in this paper). 
The search process in the GEP starts from the root node of the prefix 
tree, which is an empty terminal symbol indicating that no terminals 
are parsed. The search terminates when it reaches a leaf node. In the 
prefix tree, all leaf nodes are parsing terminals e that represent the 
end of parse, and all non-leaf nodes represent terminal symbols 
(i.e., actions). The probability of expanding a non-leaf node is the 
prefix probability, i.e., how likely is the current path being the prefix 
of the action sequence. The probability of reaching a leaf node 
(parsing terminal e) is the parsing probability, i.e., how likely is the 
current path to the last non-leaf node being the executed actions and 
the next action. In other words, the parsing probability measures the 
probability that the last non-leaf node in the path will be the next 
action to execute. It is important to note that this prefix probability 
is computed on the basis of both the grammar prior and the haptic 
prediction; in contrast, in the pure symbolic planner, the prefix prob-
ability is computed on the basis of only the grammar prior. An ex-
ample of the computed prefix and parsing probabilities and output 
of GEP is given by Fig. 8, and the search process is illustrated in fig. 
S5. For an algorithmic description of this process, see algorithm S1.

The original GEP is designed for offline video processing. Here, 
we made modifications to enable online planning for a robotic task. 
The major difference between parsing and planning is the uncertainty 
about past actions: There is uncertainty about observed actions during 
parsing. However, during planning, there is no uncertainty about 
executed actions—the robot directly chooses which actions to execute, 
thereby removing any ambiguity regarding which action was executed 
at a previous time step. Hence, we need to prune the impossible 
parsing results after executing each action; each time after executing 
an action, we change the probability vector of that action to a one-hot 
vector. This modification effectively prunes the action sequences 
that contain the impossible actions executed thus far by the robot.

Tactile glove
For manipulation tasks that require reasoning about latent forces, 
demonstrations that contain solely visual information (e.g., RGB 
videos) are insufficient for learning. Using a glove-based system to 
capture hand-related data has long been proposed; however, it remains 
an active research topic due to the high articulation and degrees of 
freedom of a human hand. Conventionally, a network of inertial mea-
surement units (IMUs) measures finger poses, but capturing haptic 
signals is challenging due to hand deformation and a scarcity of force 
sensing hardware. Here, we used the tactile glove developed in (28). 
The glove used IMUs to obtain the relative poses of finger phalanges 
with respect to the wrist and developed a customized force sensor 
using a soft piezoresistive material (Velostat) whose resistance changes 
under pressure (see more hardware details in text S2.3).

Robot platform
We evaluate the learned model on a dual-armed seven-DoF Baxter 
robot mounted on a DataSpeed mobility base. The robot was equipped 
with a ReFlex TakkTile gripper on the right wrist and a Robotiq S85 
parallel gripper on the left. The grippers have minimal haptic sensing 
capability; they can only determine whether or not the gripper is in 
contact with an object. Therefore, further force data on the robot were 
obtained from the 6 degrees-of-freedom (DOF) force and torque sen-
sors located in Baxter’s wrists. In addition, a Kinect One sensor was used 
for object pose estimation and tracking. The entire system ran on Robot 
Operating System, and the arm motion was planned by MoveIt!

Human experiment details and demographics
Human participants were recruited from the University of California, 
Los Angeles (UCLA) Department of Psychology subject pool and 
were compensated with course credit for their participation. A 
total of 163 students were recruited, each randomly assigned to one 
of the five experimental groups. Thirteen participants were removed 

A

B

C

Fig. 8. An example of the GEP. (A) A classifier is applied to a six-frame signal and outputs a probability matrix as the input. (B) Table of the cached probabilities of the 
algorithm. For all expanded action sequences, it records the parsing probabilities at each time step and prefix probabilities. (C) Grammar prefix tree with the classifier 
likelihood. The GEP expands a grammar prefix tree and searches in this tree. It finds the best action sequence when it hits the parsing terminal e. It finally outputs the best 
label “grasp, pinch, pull” with a probability of 0.033. The probabilities of children nodes do not sum to 1 because grammatically incorrect nodes are eliminated from the 
search and the probabilities are not renormalized (22).
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from the analysis for failing to understand the haptic display panel 
by not passing a recognition task. Hence, the analysis included 
150 participants (mean age of 20.7). The symbolic and haptic explana-
tion panels were generated as described in the “Explanation generation” 
section. The text explanation was generated by the authors based on 
the robot’s action plan to provide an alternate text summary of robot 
behavior. Although such text descriptions were not directly yielded 
by the model, they could be generated by modern natural language 
generation methods.

The human experiment included two phases: familiarization and 
prediction. In the familiarization phase, participants viewed two 
videos showing a robot interacting with a medicine bottle, with one 
successful attempt of opening the bottle and a failure attempt without 
opening the bottle. In addition to the RGB videos showing the 
robot’s executions, different groups viewed the different forms of 
explanation panels. At the end of familiarization, participants were 
asked to assess how well they trusted/believed that the robot had the 
ability to open the medicine bottle (see text S2.5 and fig. S7 for the 
illustration of the trust rating question).

Next, the prediction phase presented all groups with only RGB 
videos of a successful robot execution; no group had access to any 
explanatory panels. Specifically, participants viewed videos segmented 
by the robot’s actions; for segment i, videos start from the beginning 
of the robot execution up to the ith action. For each segment, participants 
were asked to predict what action the robot would execute next (see text 
S2.5 and fig. S8 for an illustration of the action prediction question).

Regardless of group assignment, all RGB videos were the same 
across all groups; i.e., we showed the same RGB video for all groups 
with varying explanation panels. This experimental design isolates 
potential effects of execution variations in different robot execution 
models presented in the “Robot learning” section; we only sought to 
evaluate how well explanation panels foster qualitative trust, en-
hance prediction accuracy, and keep robot execution performance 
constant across groups to remove potential confounding.

For both qualitative trust and prediction accuracy, the null 
hypothesis is that the explanation panels foster equivalent levels of 
trust and yield the same prediction accuracy across different groups, 
and therefore, no difference in trust or prediction accuracy would 
be observed. The test is a two-tailed independent samples t test to 
compare performance from two groups of participants, because we 
used between-subjects design in the study, with a commonly used 
significance level  = 0.05, assuming t-distribution, and the rejection 
region is P < 0.05.

SUPPLEMENTARY MATERIALS
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Fig. S4. An example of action grammars and grammar prefix trees used for parsing.
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