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Summary

Metagenomics sequencing is routinely applied to quantify bacterial abundances in microbiome
studies, where bacterial composition is estimated based on the sequencing read counts. Due to
limited sequencing depth and DNA dropouts, many rare bacterial taxa might not be captured
in the final sequencing reads, which results in many zero counts. Naive composition estimation
using count normalization leads to many zero proportions, which tend to result in inaccurate
estimates of bacterial abundance and diversity. This paper takes a multisample approach to esti-
mation of bacterial abundances in order to borrow information across samples and across species.
Empirical results from real datasets suggest that the composition matrix over multiple samples
is approximately low rank, which motivates a regularized maximum likelihood estimation with
a nuclear norm penalty. An efficient optimization algorithm using the generalized accelerated
proximal gradient and Euclidean projection onto simplex space is developed. Theoretical upper
bounds and the minimax lower bounds of the estimation errors, measured by the Kullback–
Leibler divergence and the Frobenius norm, are established. Simulation studies demonstrate that
the proposed estimator outperforms the naive estimators. The method is applied to an analysis of
a human gut microbiome dataset.

Some key words: Microbiome; Nuclear norm penalty; Poisson-multinomial distribution; Proximal gradient descent.

1. Introduction

The human microbiome is the totality of all microbes at different body sites, whose contribution
to human health and disease has increasingly been recognized. Recent studies have demonstrated
that the microbiome composition varies across individuals due to different health and environ-
mental conditions (Human Microbiome Project Consortium, 2012), and may be associated with
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76 Y. Cao, A. Zhang AND H. Li

complex diseases such as obesity, atherosclerosis and Crohn’s disease (Turnbaugh et al., 2009;
Koeth et al., 2013; Lewis et al., 2015). With the development of next-generation sequencing
technologies, the human microbiome can be quantified by using direct DNA sequencing of either
marker genes or the whole metagenomes. After aligning the sequence reads to the reference
microbial genomes, one obtains counts of sequencing reads that can be assigned to a set of
bacterial taxa observed in the samples. Such count data provide information about the relative
abundance of different bacteria in different samples.

In order to account for the large variability in the total number of reads obtained, the sequencing
count data are often normalized into a relative measure of abundance of the taxa observed. Such
relative abundances provide information about the bacterial composition. However, due to limited
sequencing depth, undersampling and DNA dropouts, some rare microbial taxa might not be
captured in the metagenomic sequencing, which results in zero read counts assigned to these
taxa. Naive estimation of taxon composition using count normalization leads to excessive zeros,
especially for rare taxa. Such a naive estimate can be inaccurate and leads to a suboptimal estimate
of taxa diversity. It also causes difficulty in downstream data analysis for compositional data.
These zero counts are regarded as rounded zeros, which are not truly zeros, but rather represent
observed values due to undersampling or dropouts.

Since the pioneering work of Aitchison (2003), several techniques have been proposed to deal
with such rounded zeros (Martín-Fernández et al., 2011) in count data. One approach is to estimate
nonzero compositions through a Bayesian-multiplicative model (Martín-Fernández et al., 2014)
from the counts. Such a Bayesian method involves a Dirichlet prior distribution as the conjugate
prior distribution of a multinomial distribution and a multiplicative modification of the nonzero
counts. In fact, the Bayesian-multiplicative method is essentially equivalent to nonparametric
imputation, where the zero-replacement values were determined by the parameterizations of
the prior distribution. In compositional data analysis, these zero-replacement values are usually
chosen as half of the minimum nonzero values. For more details, see Aitchison (2003), Lin et al.
(2014), Shi et al. (2016) and Cao et al. (2018a, 2018b). In addition, Cai et al. (2019) recently
studied the detection of differential microbial community networks by discretizing the data into
a binary Markov random field based on a prespecified abundance threshold.

This paper addresses the problem of estimating microbial composition in positive simplex
space from a high-dimensional sparse count table. The observed counts are assumed to follow
a Poisson-multinomial model, where (i) the total number of read counts for each individual is a
Poisson random variable; (ii) given the total count for each individual, the stratified read counts
over different taxa follow a multinomial distribution with the underlying parameters given by a
positive composition.

If the compositions across different individuals are combined into a matrix, an approximately
low-rank structure on this matrix is indicated by recent observations on the co-occurrence pattern
(Faust et al., 2012) and various symbiotic relationships in microbial communities (Woyke et al.,
2006; Horner-Devine et al., 2007; Chaffron et al., 2010).

Motivated by the nuclear norm minimization used in the noisy matrix completion problem
(Negahban & Wainwright, 2012; Klopp et al., 2015), this paper solves the problem of composition
estimation using a nuclear norm regularized maximum likelihood approach. However, it should
be emphasized that our approach is very different from the matrix completion problem because
the missing mechanism and data generation models are different. The observed zero counts
are the result of undersampling or dropouts, rather than the random missingness assumed in
the matrix completion literature. Besides, the sparse counts are assumed to be generated from a
Poisson-multinomial model, and the focus of this paper is to estimate the underlying composition,
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Composition estimation 77

rather than to recover the zero counts. In this framework, the asymptotic upper and minimax lower
bounds of the resulting regularized estimator are obtained. Simulations show that the estimator
recovers the low-rank composition matrix accurately. Although the observed composition can be
seen as the true composition plus noise, and the problem can be roughly framed as a version of
matrix denoising, the classic methods in the literature such as singular value thresholding (Candès
et al., 2013; Donoho & Gavish, 2014) may not be suitable here due to the heteroscedasticity of
different observations in the Poisson-multinomial data.

Our work can be seen as a variant of low-rank Poisson matrix recovery. Salmon et al. (2014)
studied nonlocal principal component analysis for Poisson matrix data. A two-step procedure was
proposed: after achieving a warm start via regular singular value decomposition, the iterative New-
ton steps were applied until convergence. Soni & Haupt (2014) considered the Poisson denoising
problem with sparse and structured dictionary models.A constrained maximum likelihood method
was proposed and the �2 risk upper bound was developed using complexity-penalized maximum
likelihood analyses. Cao & Xie (2016) introduced penalized and constrained likelihood methods
for Poisson matrix recovery and Poisson matrix completion, respectively. Theoretical guarantees
were developed, including near-matching minimax-optimal bounds for Frobenius norm loss in
Poisson matrix completion. However, these results are not directly applicable to our problem. In
microbiome 16S rRNA sequencing data analysis, our goal is to estimate the microbial composi-
tion rather than their absolute values for each individual. In addition, the hidden sparse dictionary
structure imposed by Soni & Haupt (2014) is not likely to hold in our applications. The zero
counts in our problem are due to undersampling, which is different from the missing entries in
Poisson matrix completion (Cao & Xie, 2016). Theoretically, our proposed penalized nuclear
norm minimization estimator is convex and is proved to achieve near-optimal rates of estimation
risks in both Kullback–Leibler divergence and the Frobenius norm.

2. A Poisson-multinomial model for microbiome count data

For any integer n > 0, we write [n] = {1, . . . , n} and denote ei(n) as the canonical basis in R
n

with the ith entry as one and the others as zero. We refer to any u ∈ R
p as a composition vector

if u � 0 and
∑p

i=1 ui = 1. For any two composition vectors u, v ∈ R
p, the Kullback–Leibler

divergence is defined as DKL(u, v) = ∑p
i=1 ui log(ui/vi). For two composition matrices X ∗ and X̂

with each row being a composition vector, let D(X ∗, X̂ ) denote the sum of the Kullback–Leibler
divergence between rows of X ∗ and X̂ ,

D(X ∗, X̂ ) =
n∑

i=1

DKL(X ∗
i , X̂i) =

n∑
i=1

p∑
j=1

X ∗
ij log(X ∗

ij /X̂ij). (1)

A common amplicon-based sequencing method used to identify and compare bacteria present
within a given sample is 16S ribosomal RNA, rRNA, sequencing. In such studies, the sequencing
reads are mapped to a set of p known bacterial taxa and the resulting data are summarized as a count
matrix W ∈ R

n×p, where Wij, the (i,j)th entry of W represents the observed read count of taxon j in
individual i. For the ith individual, the total count of all taxa, Ni, is determined by the sequencing
depth and DNA materials that are modelled as a Poisson random variable as Ni ∼ Po(νi), where
νi is an unknown positive parameter. Given Ni, it is natural to model the stratified count data
over p taxa as a multinomial distribution. Therefore, the proposed Poisson-multinomial model
for count-compositional data can be written as
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78 Y. Cao, A. Zhang AND H. Li

Ni ∼ Po(νi), i ∈ [n],

fX ∗
i
(Wi1, . . . , Wip | Ni) = Ni!∏p

j=1 Wij!
p∏

j=1

X ∗
ij

Wij , i ∈ [n].

Here, X ∗ = (X ∗
ij ) ∈ R

n×p is the unknown taxon composition matrix lying in the positive simplex
space S = {X ∈ R

n×p | X 1p = 1n, X > 0}, where 1p is the p-vector of 1s.
Our goal is to estimate X ∗ based on W . One might attempt to consider the maximum likelihood

estimate X̂ mle. Conditioning on a fixed number of total count N and ignoring the terms that do
not depend on X ∗, the negative loglikelihood of the observations is given as

LN
(
X ∗) = −N−1

n∑
i=1

p∑
j=1

Wij log X ∗
ij , (2)

where N = ∑n
i=1 Ni = ∑n

i=1
∑p

j=1 Wij is the total number of observed counts, which follows

Po(
∑n

i=1 νi). Without further constraints, minimizing (2) leads to X̂ mle, which is the naive count
normalization:

X̂ mle
ij = Wij/

p∑
k=1

Wik , i ∈ [n], j ∈ [p]. (3)

Due to dropouts in sample preparation or N not being sufficiently large, X̂ mle often contains
a large number of zeros. In microbiome studies these zero counts are treated as rounded zeros,
which means that their corresponding compositions are below the detection lower limit. However,
the zero counts yield zero estimates of these compositions and cause difficulty in downstream
log-ratio-based compositional data analysis (Aitchison, 2003; Lin et al., 2014; Shi et al., 2016;
Cao et al., 2018b).

To overcome this difficulty, replacing the zero counts by a below-detection value through either
the Bayesian-multiplicative model (Martín-Fernández et al., 2014) or nonparametric imputation
(Martín-Fernández et al., 2003) is commonly seen in the literature. These two methods are
essentially equivalent, and are widely used in compositional data analysis by replacing the zero
counts by 0.5 in the data (Aitchison, 2003; Lin et al., 2014; Shi et al., 2016):

X̂ zr ∈ R
n×p, X̂ zr

ij = (
Wij ∨ 0.5

)
/

p∑
l=1

(Wil ∨ 0.5).

However, the pseudo-count 0.5 is chosen arbitrarily and the downstream analysis might be highly
sensitive to this value.

On the other hand, under the Poisson-multinomial model, Wij = EWij + (Wij − EWij) =
νiX ∗

ij + (Wij − EWij), where {νiX ∗
ij }n,p

i,j=1 is a low-rank matrix and (Wij − EWij) can be regarded
as the noise. Thus, estimating W can be seen as a version of matrix denoising. Singular value
thresholding (Donoho & Gavish, 2014; Gavish & Donoho, 2014; Chatterjee, 2015) provides an
alternative method for composition estimation. Such an estimator X̂ svt is given as
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Composition estimation 79

X̂ svt ∈ R
n×p, X̂ svt

ij =
(

Ŵij ∨ 0.5
)

/

p∑
l=1

(Ŵil ∨ 0.5), (4)

where W = ∑
k σkukvT

k is the singular value decomposition and

Ŵ =
∑

k

I{σk�λ} · σkukvT
k . (5)

However, this singular value thresholding method may not be suitable for our Poisson-
multinomial model for the following reasons. First, the Poisson distribution is heteroscedastic
according to the values of the means, but X̂ svt is most efficient for homoscedastic noisy data; see,
e.g., Donoho & Gavish (2014). Second, since there is no guarantee of positivity in the singular
value decomposition, Ŵ in (5) may contain a large number of negative values. Third, singular
value thresholding does not guarantee correct normalization in the sense that the row sums of
X̂ svt are typically not 1. More comparisons and discussions are given in § 5.

3. Regularized estimation of the compositional matrix and algorithm

3.1. Regularized estimation of the compositional matrix

In order to improve the composition estimate, the approximate low-rank structure of the compo-
sitional matrix X ∗ is explored. The co-occurrence patterns (Faust et al., 2012), various symbiotic
relationships in microbial communities (Woyke et al., 2006; Horner-Devine et al., 2007; Chaffron
et al., 2010) and samples in similar microbial communities are expected to lead to an approxi-
mately low-rank structure of the composition matrix in the sense that the singular values of X ∗
decay to zero at a fast rate. Such a low-rank structure is further investigated in our real data ana-
lysis in § 6, showing empirical evidence for the low-rank compositional matrix. This motivates us
to propose a nuclear norm regularized maximum likelihood approach to estimate the composition
matrix:

X̂ = arg min
X ∈S(αX , βX )

LN (X ) + λ‖X ‖∗,

S(αX , βX ) = {
X ∈ R

n×p | X 1p = 1n, αX /p � Xij � βX /p, for any (i, j) ∈ [n] × [p]},
(6)

where λ > 0 and S(αX , βX ) is a bounded simplex space with tuning parameters 0 < αX � βX .
The constrained elementwise lower bound, Xij � αX /p, guarantees the positive sign of the
estimator. The elementwise upper bound constraint, Xij � βX /p, is only needed for theoretical
analysis.

The proposed estimator (6) is essentially a regularized nuclear norm minimization, which can
be solved by either semidefinite programming via an interior-point semidefinite programming
solver (Liu & Vandenberghe, 2009; Recht et al., 2010) or a first-order method via templates for
first-order conic solvers (Becker et al., 2011). However, the interior-point semidefinite program-
ming solver computes the nuclear norm via a less efficient eigenvalue decomposition, which
does not scale well with large n and p. Templates for first-order conic solvers, on the other hand,
often result in oscillations or overshoots along the trajectory of the iterations (Su et al., 2016). To
achieve a stable and efficient optimization for (6) in the high-dimensional setting, we propose an
algorithm based on the generalized accelerated proximal gradient method and Nesterov’s scheme
(Su et al., 2016).
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3.2. Generalized accelerated proximal gradient method

We introduce an optimization algorithm for (6) based on Nesterov’s generalized accelerated
scheme, which follows the formulation of Beck & Teboulle (2009) and the spirit of Su et al.
(2016). First, based on the count matrix W , we initialize X0 and Y0 as

X0, Y0 ∈ R
n×p, where (X0)ij = (Y0)ij = Wij/

p∑
l=1

Wil .

Then X0, Y0 are essentially the row-wise normalization of W . Next, we update Xk and Yk as

Xk = arg min
X ∈S(αX , βX )

2−1Lk‖X − Yk−1 + L−1
k �LN (Yk−1) ‖2

F + λ‖X ‖∗, (7)

Yk = Xk + (k + ρ − 1)−1(k − 1) (Xk − Xk−1),

until convergence or a maximum number of iterations is reached. Here, �LN is the gradient
function of LN (X ):

�LN (X ) ∈ R
n×p, with {�LN (X )}ij = −(NXij)

−1Wij,

where we treat possible 0/0 as zero and Lk is the reciprocal of the step size in the kth iteration,
which can be chosen by the following line search strategy. Denote

FL(X , Y ) = LN (X ) − LN (Y ) − 〈X − Y , �LN (Y )〉 − 2−1L‖X − Y‖2
F

as the error of approximating LN (X ) by a second-order Taylor expansion with the second-order
coefficient set to L. In the kth iteration, we start with the integer nk = 1 and let Lk = γ nk Lk−1
for some scale parameter γ > 1, then repeatedly increase nk = 1, 2, . . . until FLk (Xk , Yk−1) � 0.
In the optimization literature (k − 1)/(k + ρ − 1) and ρ are, respectively, referred to as the
momentum term and the friction parameter. We follow the suggestions by Su et al. (2016) and
set a high friction rate of ρ � 9/2.

Optimization (7) is the proximal mapping of the nuclear norm function, and it can be solved
by singular value thresholding (Cai et al., 2010),

Xk = 
S(αX , βX )

[
D

λL−1
k

{
Yk−1 − L−1

k �LN (Yk−1)
}]

.

Here, 
S(αX , βX ) (X ) is the Euclidean projection of X onto the positive simplex space S(αX , βX ),
and we postpone a detailed discussion until § 3.3. Provided that X = U�V T is the singular value
decomposition, Dτ , the soft-thresholding operator, is defined as

Dτ (X ) = UDτ (�) V T, Dτ {�) = diag {(σi − τ) ∧ 0} .

3.3. Euclidean projection onto the simplex space

The final step of the algorithm involves Euclidean projection onto the simplex space S(αX , βX ),
a key step in the proposed generalized accelerated proximal gradient method. An efficient algo-
rithm, summarized as Algorithm 1, is used to perform such a projection onto compositional
space.
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Algorithm 1. Euclidean projection onto compositional space with upper lower bounds.

Input: To-be-projected vector x ∈ R
p; simplex constraint parameters αX and βX .

Output: x̂ = 
S(αX , βX )(x).
Calculate v = {xi − αX /p, xi − βX /p}p

i=1 ∈ R
2p, and sort it as v(1) � · · · � v(2p).

For 1 � j � 2p, calculate

dj =
p∑

i=1

{
(xi − v(j)) ∧ (βX /p)

} ∨ (αX /p) − 1.

Naturally dj is a decreasing sequence from nonnegative values to nonpositive values. Find
1 � j∗ � 2p − 1 such that dj∗ � 0 and dj∗+1 � 0.
Calculate the final estimator x̂i as follows:

x̂i =

⎧⎪⎨
⎪⎩

βX /p xi − v(j∗) > βX /p,
αX /p xi − v(j∗) � αX /p,

xi − vj∗ − d∗
j∣∣{i|αX /p�xi−v(j∗)�βX /p

}∣∣ αX /p � xi − v(j∗) � βX /p.

Return x̂

Proposition 1 provides theoretical guarantees for the performance of Algorithm 1. The central
idea of the proof of Proposition 1, see the Supplementary Material, lies in the Karush–Kuhn–
Tucker conditions for the optimization problem (8).

Proposition 1. Recall


S(αX , βX )(x) = arg min
x̂

‖x̂ − x‖2
2 subject to

p∑
i=1

x̂i = 1, αX /p � x̂i � βX /p. (8)

Then x̂ calculated from Algorithm 1 exactly equals 
S(αX , βX )(x).

3.4. Selection of the tuning parameters

We propose a variation of K-fold cross validation to select the tuning parameters λ and αX .
We set βX = p to remove the elementwise upper bound constraint.

Let W be the observed count matrix and T1, T2 be two sets of grids of positive values. We first
randomly split the rows of W into two groups of sizes n1 ∼ (K − 1)n/K and n2 ∼ n/K for a total
of L times. For the lth split, denote by Il , I c

l ⊆ [n] the row index sets of the two groups, respectively.
For each i ∈ I c

l , we further randomly select a subset Ji, l ⊆ [p] with cardinality p1 ∼ p(K −1)/K .
For the lth split, the training set is defined as 
l = {(i, j) : (i, j) ∈ Il × [p] or i ∈ I c

l , j ∈ Ji, l} ⊆
[n] × [p], which contains both complete and incomplete rows of [n] × [p]. Denote by W
l the
training matrix W with all entries in 
c

l being set to zero. Next, for each (λ, αX ) ∈ T1 × T2,
we apply the proposed estimator to W
l with tuning parameters (λ, αX ) and obtain the estimates
X̂ (l)(λ, αX ) (l = 1, . . . , L). We use the Kullback–Leibler divergence defined in (1) to evaluate
the prediction error on the rows of I c

l ,

R̂(λ, αX ) =
I∑

l=1

∑
i∈I c

l

DKL

{
X̂ mle

i· , X̂ (l)
i· (λ, αX )

}
,
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where X̂ mle is the maximum likelihood estimator defined in (3). We choose

(λ∗, α∗
X ) = arg min

λ∈T1, αX ∈T2

R̂(λ, αX )

as the final tuning parameters and obtain the final estimate X̂ based on the full dataset. The
performance of this tuning parameter selection procedure is verified through numerical studies
on both simulated and real datasets in § 5 and § 6.

4. Theoretical properties

4.1. Theoretical property under the low-rank matrix assumption

We investigate the theoretical properties of X̂ proposed in § 3; in particular, the upper bounds
of the estimation accuracy for the whole composition matrix are provided in Theorems 1 and 3,
and the lower bound results are given in Theorem 2. These results establish the optimal recovery
rate over a certain class of low-rank composition matrices. Additionally, we study the diversity
index estimation and present the upper bound results in Corollary 1.

Let Ri = νi/
∑n

j=1 νj for i ∈ [n], which quantifies the proportion of the total count for the

ith subject. We establish the upper bound for X̂ in the Frobenius norm error and the average
Kullback–Leibler divergence. The following theorem gives an upper bound result over a class of
bounded low-rank composition matrices:

B0(r, αX , βX ) = {X ∈ S(αX , βX ) | rank(X ) � r},
where S(αX , βX ) is the set of bounded composition matrices defined in (6).

Theorem 1. Assume there exist constants αR, βR, αX and βX such that, for any i ∈ [n],
αR/n � Ri � βR/n. Suppose X ∗ ∈ B0(r, αX , βX ). Conditioning on fixed N , suppose that
N � (n + p) log(n + p) and the tuning parameter is selected as

λ = δ

{
βR

α2
X

p(n ∨ p) log(n + p)

nN

}1/2

(9)

with some constant δ � 7. Then, there exist constants C1(αX , αR, βX , βR) and C2(αX , αR, βX , βR)

that only depend on αX , αR, βX and βR such that X̂ in (6) satisfies

p

n

∥∥X̂ − X ∗∥∥2
F � C1(αX , αR, βX , βR)

(n + p)r log(n + p)

N
, (10)

1

n
D(X ∗, X̂ ) � C2(αX , αR, βX , βR)

(n + p)r log(n + p)

N
(11)

with probability at least 1−3(n+p)−1. In particular, C1(αX , αR, βX , βR) and C2(αX , αR, βX , βR)

satisfy

C1(αX , αR, βX , βR) = Cβ4
X (βX ∨ βR)/(α2

Rα4
X ),

C2(αX , αR, βX , βR) =
{

Cβ2
X (βX ∨ βR)/(α2

Rα3
X ) if N < 6(n + p)2 log(n + p)/(αX αR);

Cβ5
X βR/(α2

Rα6
X ) if N � 6(n + p)2 log(n + p)/(αX αR),
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where C > 0 is a uniform constant that does not depend on X ∗, r, N , p, n, αX , αR, βX or βR.

Remark 1. In contrast to its population counterpart ν := ∑n
i=1 νi, the total count N is an

observable value, we therefore choose to present the results of Theorem 1 conditioning on the
fixed number N . If one replaces all N by ν in the conditions and conclusions of this theorem, the
unconditional results hold similarly.

Remark 2. The coefficient p/n in the Frobenius norm error in (10) is used to calibrate the rate
effect from S (αX , βX ). For any X ∗ and X̂ ∈ S (αX , βX ), ‖X̂ − X ∗‖2

F � n(βX − αX )/p.

Remark 3. For technical purposes, we have imposed the entrywise upper and lower bounds of
αX , βX , αR and βR in Theorem 1. These conditions are mainly for regularizing the gradient of the
likelihood function LN and facilitate the follow-up analysis; in particular, see (S28) and the proof
of Theorem 1 in the Supplementary Material. In fact, the entrywise upper and lower bounds appear
widely in theoretical works for a wide range of Poisson inverse problems, especially for ones with
minimax optimality. Examples include, but are not limited to, Poisson sparse regression (Li &
Raskutti, 2018, Assumption 2.1; Jiang et al., 2015, Assumption 2.1), Poisson matrix completion
(Cao & Xie, 2016, Equation (10)) and the point autoregressive model (Hall et al., 2017, Definition
of As on p. 4).

Conditioning on the fixed N , the count matrix W follows a multinomial distribution:
(Wij, 1 � i � n, 1 � j � p) ∼ Mu{N , (RiX ∗

ij , 1 � i � n, 1 � j � p)}, where Ri = νi/
∑n

j=1 νj

represents the row probability and the composition X ∗
ij represents the column probability. Defin-

ing a probability matrix by the Hadamard, or entrywise, product 
 = (R1T
p) ◦ X ∗, we rewrite

W = ∑N
k=1 Ek , where Ek are independent and identically distributed copies of a Bernoulli ran-

dom matrix E that satisfies pr{E = ei(n)eT
j (p)} = 
ij and the total count N represents the

number of copies. This product-type sampling distribution 
 is widely used in the matrix com-
pletion literature (Negahban & Wainwright, 2012; Lafond et al., 2014; Klopp et al., 2014, 2015).
A key step in the proof of Theorem 1 is to bound the weighted Kullback–Leibler divergence∑n

i=1
∑p

j=1 RiX ∗
ij log(X ∗

ij /X̂ij). We apply a peeling scheme by partitioning the set of all possible

values of X̂ , and then derive estimation loss upper bounds for each of these subsets based on con-
centration inequalities, including the matrix Bernstein inequality (Lemma S6) and an empirical
process version of Hoeffding’s inequality (Bühlmann & Van De Geer, 2011, Theorem 14.2).
The techniques are related to recent work on matrix completion (Negahban & Wainwright,
2012), although our problem set-up, method and sampling procedure are all distinct from matrix
completion.

Theorem 2 on the minimax lower bounds shows that the upper bound in Theorem 1 is nearly
rate optimal.

Theorem 2. Conditioning on fixed N , if 2 � r � p/2, there exist constants C1 and C2 which
only depend on αX , βX , αR and βR such that

inf
X̂

sup
X ∗∈B0(r, αX , βX )
αR/n�Ri�βR/n

p

n
E

(∥∥X̂ − X ∗∥∥2
F

)
� C1

(n + p)r

N
,

inf
X̂

sup
X ∗∈B0(r, αX , βX )
αR/n�Ri�βR/n

1

n
E
{
D(X ∗, X̂ )

}
� C2

(n + p)r

N
.
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4.2. Theoretical property under the approximate low-rank matrix assumption

We consider the following class of approximately low-rank composition matrices with singular
values of X ∗ belonging to an �q ball,

Bq
(
ρq, αX , βX

) =
{

X ∈ S(αX , βX )
∣∣ n∧p∑

i=1

|σi (X )|q � ρq

}
,

where 0 � q � 1. In particular, if q = 0 the �0 ball B0 (ρ0, αX , βX ) corresponds to the set of
bounded composition matrices with rank at most ρ0. In general, we have the following upper
bound result.

Theorem 3. Assume there exist constants αR and βR such that, for any i ∈ [n], αR/n �
Ri � βR/n. The tuning parameter is selected by (9). Conditioning on fixed N , if N � (n +
p) log(n + p) and N = O

{
ρqpq/2(n + p)2+q/2 log(n + p)/nq/2

}
, then for any composition X ∗ ∈

Bq
(
ρq, αX , βX

)
the estimator X̂ in (6) satisfies

p

n
E

{
‖X̂ − X ∗‖2

F

}
� C1

ρqpq/2

nq/2

{
(n + p) log(n + p)

N

}1−q/2

, (12)

1

n
E
{

D(X ∗, X̂ )
}

� C2
ρqpq/2

nq/2

{
(n + p) log(n + p)

N

}1−q/2

. (13)

Remark 4. The rates of convergence of (13) and (12) reduce to the exact low-rank case when
q = 0 and ρ0 = r.

4.3. Estimation of the diversity index

Various microbial diversity measures are often used to quantify the composition of microbial
communities; see, e.g., Haegeman et al. (2013). Given X ∈ R

n×p representing p-taxa compo-
sitions across n individuals, two widely used measurements of microbial community diversity
include Shannon’s index, Hsh(Xi) = − ∑p

j=1 Xij log Xij, 1 � i � n, and Simpson’s index,

Hsp(Xi) = ∑p
j=1 X 2

ij , 1 � i � n, where {Hsh(Xi)}n
i=1 and {Hsp(Xi)}n

i=1 are n-dimensional vectors,
each component measuring the richness and evenness of the microbial community in an individ-
ual. A higher value of Shannon’s index, or a lower value of Simpson’s index, reflects a more even
distribution among different taxa.

We estimate various diversity indices by plugging the proposed estimator X̂ into the indices
defined above. The following corollary provides the upper bounds of the mean squared errors of
these estimators when X ∗ ∈ Bq

(
ρq, αX , βX

)
.

Corollary 1. Assume that the assumptions in Theorem 3 hold and that the tuning parameter
is selected by (9). For any constants 0 < αX < 1 < βX and X ∗ ∈ Bq

(
ρq, αX , βX

)
, there exist

constants C1 and C2 that do not depend on n, N , p or r such that the estimate X̂ in (6) satisfies

1

n

n∑
i=1

E
{
Hsh(X̂i) − Hsh(X

∗
i )

}2 � C1
ρq(log p)2pq/2

nq/2

{
(n + p) log(n + p)

N

}1−q/2

, (14)

1

n

n∑
i=1

E
{
Hsp(X̂i) − Hsp(X

∗
i )

}2 � C2
ρq

p2−q/2nq/2

{
(n + p) log(n + p)

N

}1−q/2

. (15)
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Table 1. Means of various performance measures for X̂ , X̂ zr and X̂ svt in the low-rank model
over 100 replications

p = 50 p = 100 p = 200
γ X̂ X̂ zr X̂ svt X̂ X̂ zr X̂ svt X̂ X̂ zr X̂ svt

Squared Frobenius norm error
(×10−2

)
1 40.70 95.01 84.33 26.74 68.65 55.20 19.00 48.98 36.24
2 35.08 87.79 75.11 26.49 63.29 48.97 18.38 44.63 30.10
3 35.37 80.91 67.98 27.77 56.80 42.22 18.99 40.62 25.72
4 37.09 74.25 61.75 24.65 53.11 37.44 18.24 36.87 22.92
5 36.47 67.76 55.81 25.22 49.20 34.03 18.22 34.26 20.54

Average Kullback–Leibler divergence
(×10−2

)
1 4.31 19.04 16.03 3.77 19.68 14.16 3.82 20.02 12.73
2 3.25 18.65 14.73 3.78 19.15 12.47 3.53 18.90 9.87
3 3.33 16.47 12.36 4.04 16.56 9.80 3.82 16.59 7.31
4 3.62 14.41 10.45 3.27 14.59 7.71 3.51 14.39 5.85
5 3.58 12.36 8.69 3.40 12.77 6.42 3.54 12.57 4.69

Shannon index mean squared errors
(×10−3

)
1 3.92 19.90 13.50 3.25 19.82 8.88 3.00 18.63 6.35
2 2.21 23.31 12.52 4.19 18.34 5.99 2.25 21.67 4.24
3 2.66 18.96 8.78 3.56 16.91 4.07 2.54 17.84 2.18
4 2.83 14.72 6.03 2.31 14.65 2.67 2.00 14.41 1.43
5 2.60 11.78 4.58 2.20 12.46 1.95 2.12 11.60 0.89

Simpson index mean squared errors
(×10−6

)
1 5.93 55.73 35.62 1.21 14.27 5.71 0.28 3.45 0.94
2 3.25 51.24 25.20 1.50 11.70 3.57 0.21 3.10 0.47
3 3.94 40.86 17.77 1.35 9.12 2.01 0.23 2.40 0.24
4 4.12 31.49 12.31 0.82 7.87 1.31 0.18 1.81 0.15
5 3.68 23.85 8.96 0.77 6.36 0.89 0.19 1.45 0.10

X̂ , proposed estimator; X̂ zr , zero-replacement estimator; X̂ svt, singular value thresholding estimator.

In addition, results for the exact low-rank case correspond to q = 0 and ρ0 = r.

Remark 5. Jiao et al. (2017) considered the maximum likelihood estimation of functionals,
particularly Shannon’s and Simpson’s indices, for discrete distributions.According to their results,
if Ri ∈ [αR/n, βR/n] for any i ∈ [n], conditioning on fixed N , we can derive the following rate
of convergence for X̂ mle:

1

n

n∑
i=1

E
{
Hsh(X̂

mle
i ) − Hsh(X

∗
i )

}2 � n2p2

N 2 + n(log p)2

N
, (16)

1

n

n∑
i=1

E
{
Hsp(X̂

mle
i ) − Hsp(X

∗
i )

}2 � n

N
. (17)

Wu & Yang (2016) studied the minimax-optimal estimation of Shannon’s index. They showed
that a best polynomial approximation estimator X̂ bpa achieves the following sharper rate than the
maximum likelihood estimator:

1

n

n∑
i=1

E
{
Hsh(X̂

bpa − X̂ ∗)
}2 � n2p2

N 2(log p)2 + n(log p)2

N
.
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Table 2. Means of various performance measures for X̂ and X̂ zr in the full-rank model over
100 replications

p = 50 p = 100 p = 200
γ X̂ X̂ zr X̂ X̂ zr X̂ X̂ zr

Squared Frobenius norm error
(×10−2

)
1 26.60 94.74 14.91 65.64 10.42 46.65
2 25.60 87.48 14.35 62.72 9.82 44.13
3 25.09 80.43 13.24 57.11 9.47 40.50
4 24.12 73.73 12.64 52.58 8.79 37.15
5 23.59 67.64 12.41 49.11 8.65 34.73

Average Kullback–Leibler divergence
(×10−2

)
1 1.82 18.67 1.14 18.04 1.11 18.17
2 1.71 18.46 1.07 19.51 0.99 19.20
3 1.66 16.58 0.90 17.03 0.91 16.71
4 1.52 14.44 0.82 14.97 0.78 14.99
5 1.43 12.66 0.78 13.09 0.76 13.23

Shannon index mean squared errors
(×10−3

)
1 0.66 29.13 0.15 31.15 0.12 31.04
2 0.55 27.22 0.16 31.35 0.13 29.97
3 0.80 21.03 0.17 23.89 0.14 23.66
4 0.65 17.20 0.15 19.20 0.08 19.22
5 0.47 14.49 0.13 15.90 0.08 16.00

Simpson index mean squared errors
(×10−6

)
1 1.02 71.18 0.06 17.77 0.01 4.43
2 0.83 56.82 0.06 15.40 0.01 3.70
3 1.14 42.53 0.06 11.31 0.01 2.88
4 0.96 33.12 0.06 8.72 0.01 2.17
5 0.58 25.82 0.05 7.21 0.01 1.78

X̂ , proposed estimator; X̂ zr , zero-replacement estimator.

Compared with diversity estimation via X̂ mle or X̂ bpa, our proposed diversity estimator achieves
a sharper bound in the estimation error when the number of total counts increases at a small rate.
In particular, when n = p = d and rank (X ∗) = r, the rate of convergence of both Shannon’s
and Simpson’s index provided by Corollary 1 is sharper than (16) and (17), respectively, if the
number of total counts increases under a certain rate: N = O

{
d2r log d ∨ d3r−1(log d)−5

}
,

which is close to the required condition in Corollary 1.

5. Simulation studies

We now evaluate the numerical performances of the proposed estimator X̂ under various
settings. Since the Poisson-multinomial model is equivalent to the multinomial model when the
total count is fixed, the count matrix W is generated as follows. Let U ∈ R

n×r be the absolute
values of an independent and identically distributed standard normal matrix. In order to simulate
correlated compositional data arising from metagenomics, let V = V1 + V2 ∈ R

p×r , where

(V1)ij =
⎧⎨
⎩

1 i = j,
1 i =| j with probability 0.3,
0 i =| j with probability 0.7;

(V2)ij ∼ N (0, 10−3).
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Fig. 1. Scatterplot comparing true composition and estimated composition in the full-rank model with p = 200 for
different sequencing depths. (a) and (c): the proposed estimator X̂ . (b) and (d): zero-replacement estimator. Top: γ = 1.

Bottom: γ = 5. Line: y = x.

The true composition matrix is generated as X ∗
ij = Zij/

∑p
k=1 Zik , where Z = UV T. Since this

procedure may produce nonpositive values in X ∗ by a small chance, this is repeated until a
positive matrix X ∗ is generated. In order to account for the heterogeneity of the total count
across different samples, we generate Ri = Pi/

∑n
k=1 Pk with Pi ∼ Un[1, 10] for each individual

i ∈ [n]. Based on Ri and X ∗, the read counts W are generated from the multinomial model, i.e.,
W ∗

i ∼ Mu(Ni; X ∗
i ), where Ni = γ npRi, γ = 1, 2, 3, 4, 5. The sample size and the number of taxa

are set as n = 100, p ∈ {50, 100, 200} and r = 20, low-rank model, or r = n ∧ p, the full-rank
model. These parameters are chosen to mimic the data dimensions of typical microbiome studies.

The proposed nuclear norm regularized maximum likelihood estimator X̂ is applied to recover
X ∗. The simulations are repeated 100 times, and the tuning parameters (λ, αX ) are selected based
on the data-driven procedure. The estimation performances are evaluated by the means of average
loss in squared Frobenius norm ‖X̂ −X ∗‖2

F, average Kullback–Leibler divergence n−1 D(X ∗, X̂ )

and the mean squared errors for the estimates of Shannon’s and Simpson’s indices. The results are
compared with the standard zero-replacement estimator X̂ , in both exact low-rank and full-rank
models, and the singular value thresholding estimator X̂ svt in (4), only in the exact low-rank
model due to the difficulties in selecting r.

The results are summarized in Tables 1 and 2 for the low-rank and full-rank compositional
matrix, respectively. The proposed estimator X̂ outperforms the zero-replacement estimator X̂ zr

and singular value thresholding estimator X̂ svt in almost all the settings. In particular, the diversity
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Fig. 2. Analysis of the gut microbiome dataset. (a)–(c): Proportion of zero count versus the total reads count for each
individual, indicating that many observed zeros are due to undersampling. (d): Decay of singular values dii based on
the singular value decomposition of X̂ mle = UDV T, indicating the low-rank structure of the compositional matrix.

index estimates based on the proposed estimator uniformly outperform other methods by a large
margin. These results are consistent across different model dimensions even when X ∗ is full rank.
In addition, the difference between the loss of X̂ and X̂ zr becomes more significant for smaller
γ , i.e., when the number of total read counts is small. Therefore, our method enjoys greater
improvement than the traditional methods, especially when the sequencing depth is limited.

To further compare the resulting estimates, Fig. 1 shows a scatterplot comparing the true
composition matrix X ∗ and the estimated composition matrix X̂ for a randomly chosen simulated
dataset in the low-rank setting with p = 200, and γ = 1 and γ = 5, respectively. Although X̂ is
slightly biased due to the nuclear norm penalty in the estimation, it still greatly outperforms the
commonly used zero-replacement estimator X̂ zr. Estimates from singular value thresholding are
not compared since it can result in negative estimates.

6. Gut microbiome data analysis

The gut microbiome plays an important role in regulating metabolic functions and influences
human health and disease (Human Microbiome Project Consortium, 2012).We apply the proposed
method to the cross-sectional study of diet and stool microbiome composition (Wu et al., 2011).
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Fig. 3. Boxplots of the estimated compositions for the genera corresponding to nonzero observations (red) and
zero observations (blue) in the gut microbiome dataset. Top panel: The proposed estimator X̂ . Bottom panel: The

zero-replacement estimator X̂ zr .

In this study, DNA from stool samples of 98 healthy volunteers was analysed by 454/Roche
pyrosequencing of 16S rRNA gene segments and yielded an average of 9265 reads per sample,
with a standard deviation of 386, which led to identification of 3068 operational taxonomic units
and 87 bacterial genera that were presented in at least one sample. Figures 2(a)–(c) show the
proportion of zero counts versus total number of sequencing reads for each sample. It is clear that
the samples with a smaller number of read counts often produced more zeros in the genus counts,
indicating that many observed zeros are likely due to undersampling. It is therefore reasonable to
assume that the true compositions of these rare genera are positive. Figure 2(d) shows the decay
of singular values of X̂ mle, indicating an approximate low-rank composition matrix.

The proposed regularized maximum likelihood estimator X̂ is applied to the count matrix
of these p = 87 bacterial genera over n = 98 samples. As a comparison, the traditional
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Fig. 4. Analysis of the gut microbiome dataset. (a) The estimated compositions X̂ for genera corresponding to zero
observations (
c) versus the sequencing depth. (b) Logarithm of the estimated Shannon index from regularized

estimator X̂ versus zero-replacement estimator X̂ zr , where each dot represents one sample.

zero-replacement estimator X̂ zr is also calculated and compared. To compare the results, define

 = {(i, j) ∈ [n] × [p] | Wij > 0} and 
c as the support and the zero count indices set of W ,
respectively. The top panel of Fig. 3 shows boxplots of the estimated compositions X̂ excluding
three common genera Bacteroides, Blautia and Roseburia that have been observed in all individ-
uals. For X̂ , the observed nonzero compositions have an effect on estimating the compositions
of the genera that were observed as zeros. The estimated compositions of X̂ in 
c tend to shrink
towards those in 
. In contrast, the zero-replacement estimator X̂ zr, see the bottom panel of
Fig. 3, provides almost the same estimates for all samples/taxa in 
c, and {Wij}(i, j)∈
, i.e., the
nonzero counts, have little effect on {X̂ zr

ij }(i, j)∈
c .

Furthermore, as shown in Fig. 4(a), {X̂ij}(i, j)∈
c tends to decrease as the total number of counts
for each individual, i.e., Ni, increases. This is reasonable, as the zero counts are more likely to
correspond to the very rare taxa when the sequencing gets deeper. However, in contrast to the
simple zero-replacement estimates, sequencing depth is not the only factor that determines the
compositions of the taxa with zero counts. The compositional data observed in samples with
nonzero counts also contribute to the final estimates.

Figure 4(b) shows the estimates of Shannon’s index for each individual using the proposed
estimator X̂ versus the index based on the zero-replacement estimator X̂ zr, indicating that X̂ zr

produces a uniformly smaller Shannon index than X̂ . This is mainly due to the fact that X̂ zr

replaces all nonpositive counts with the small value 0.5, which yields an uneven distribution
between taxa in 
 and 
c, resulting in lower diversity among all taxa and a smaller Shannon
index.
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