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Abstract

We present Accel, a novel semantic video segmentation
system that achieves high accuracy at low inference cost
by combining the predictions of two network branches: (1)
a reference branch that extracts high-detail features on a
reference keyframe, and warps these features forward us-
ing frame-to-frame optical flow estimates, and (2) an up-
date branch that computes features of adjustable quality on
the current frame, performing a temporal update at each
video frame. The modularity of the update branch, where
feature subnetworks of varying layer depth can be inserted
(e.g. ResNet-18 to ResNet-101), enables operation over
a new, state-of-the-art accuracy-throughput trade-off spec-
trum. Over this curve, Accel models achieve both higher
accuracy and faster inference times than the closest com-
parable single-frame segmentation networks. In general,
Accel significantly outperforms previous work on efficient
semantic video segmentation, correcting warping-related
error that compounds on datasets with complex dynamics.
Accel is end-to-end trainable and highly modular: the ref-
erence network, the optical flow network, and the update
network can each be selected independently, depending on
application requirements, and then jointly fine-tuned. The
result is a robust, general system for fast, high-accuracy se-
mantic segmentation on video.

1. Introduction

Semantic segmentation is an intensive computer vision
task that involves generating class predictions for each pixel
in an image, where classes range from foreground objects
such as “person” and “vehicle” to background entities such
as “building” and “sky”. When applied to frames in high
resolution video, this task becomes yet more expensive,
as the high spatial dimensionality of the output is further
scaled by the video’s temporal frame rate (e.g. 30 frames
per second). By treating video as a collection of uncor-
related still images, contemporary approaches to seman-
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Figure 1. Accel is a fast, high-accuracy, end-to-end trainable video
recognition system that combines two network branches: 1) a ref-
erence branch that computes a score map on high-detail features
warped from the last visited keyframe, and 2) a cheap update
branch that corrects this prediction based on features of adjustable
quality (e.g. ResNet-18 to -101) computed on the current frame.

tic video segmentation incur this full computational cost,
achieving inference throughput of less than 1.5 frames per
second (fps) on a 30 fps video feed [5, 8, 41]. Moreover, by
ignoring temporal context, frame-by-frame approaches fail
to realize the potential for improved accuracy offered by the
availability of preceding frames in a scene.

Prior work has proposed feature reuse and feature warp-
ing as means to reduce computation on video. In particular,
exploiting the observation that higher-level representations
evolve more slowly than raw pixels in a video [32], these
approaches relegate feature extraction, the most expensive
component of most video recognition architectures [44],
to select keyframes, and project these features forward via
naive copying or warping based on optical flow. While fea-
ture warping does enable some speedup [44], its efficacy is



constrained by video dynamics. Fast scene evolution neces-
sitates frequent feature re-computation, and feature warp-
ing in videos with a moving observer (e.g. driving footage),
where the entire scene moves relative to the camera, intro-
duces significant warping error. Warping error compounds
with repeated application of the warping operator.

Our proposed system, Accel (Fig. 1), addresses the chal-
lenges of efficient video segmentation by combining the
predictions of a reference branch, which maintains an incre-
mentally warped representation of the last keyframe, with
the predictions of an update branch, which processes the
current frame, in a convolutional fusion step. Importantly,
this update branch has the ability to serve two purposes:
1) correction and 2) anchoring. When a cheap, shallow up-
date network is used (e.g. ResNet-18), the warped keyframe
features form the more accurate input to the fusion opera-
tor, and the update branch corrects warping-related error
with information from the current frame. When an expen-
sive, deep update network is used (e.g. ResNet-101), the
update branch anchors the network on the features of the
current frame, which is the higher accuracy input, while
the reference branch augments the prediction with context
from preceding frames. These two modes of operation rep-
resent two extremes on the highly competitive accuracy-
throughput trade-off curve Accel unlocks.

We evaluate Accel on Cityscapes and CamVid, the
largest available video segmentation datasets [3, 17, 7],
and demonstrate a full range of accuracy-inference speed
modalities. Our reference network, which we operate on
keyframes, is an implementation of the DeepLab segmen-
tation architecture [5] based on ResNet-101. Our chosen
update networks range from the fast ResNet-18 (in Accel-
18) to the accurate ResNet-101 (in Accel-101). On the high
throughput side, the cheapest version of Accel, Accel-18,
is both faster and more accurate than the closest compa-
rable DeepLab model. On the high accuracy side, Accel-
101 is more accurate than the best available single-frame
model, DeepLab-101. As a set, the ensemble of Accel mod-
els achieve significantly higher accuracy than previous work
on the problem at every keyframe interval. Taken togther,
these results form a new state-of-the-art on the task of effi-
cient semantic video segmentation.

2. Related Work
2.0.1 Image Semantic Segmentation

Semantic video segmentation is a recent offshoot of the
study of semantic image segmentation, a problem of long-
standing interest in computer vision. The classical approach
to image segmentation was to propagate information about
pixel assignments through a graphical model [14, 33, 18],
a costly technique that scaled poorly to complex image
datasets [23]. Most recent research follows the lead of Long

et al. in the use of fully convolutional networks (FCNs) to
segment images [26]. Recent work has augmented the FCN
model with explicit encoder-decoder architectures [2, 25],
dilated convolutions [40, 41], and post-processing CRFs
[4, 5], achieving higher accuracy on larger, more realistic
datasets [3, 10, 7].

2.0.2 Video Semantic Segmentation

Unlike video object segmentation, where a vast literature
exists on using motion and temporal cues to track and
segment objects across frames [30, 15, 28, 37], the video
semantic segmentation task, which calls for a pixel-level
labeling of the entire frame, is less studied. The rise
of applications in autonomous control and video analy-
sis, along with increased concern about the acute compu-
tational cost of naive frame-by-frame approaches, however,
have sparked significant interest in the problem of efficient
video segmentation. Recent papers have proposed selec-
tive re-execution of feature extraction layers [32], optical
flow-based feature warping [44], and LSTM-based, fixed-
budget keyframe selection policies [27] as means to achieve
speedup on video. Of the three, the optical flow-based ap-
proach [44] is the strongest contender, achieving greater
cost savings and higher accuracy than both the first ap-
proach, which naively copies features, and the third, which
is offline and has yet to demonstrate strong quantitative re-
sults. Despite its relative strength, however, flow-based
warping [44] introduces compounding error in the interme-
diate representation, and fails to incorporate other forms of
temporal change (e.g. new objects, occlusions). As a result,
significant accuracy degradation is observed at moderate to
high keyframe intervals, restricting its achievable speedup.
To address these problems, new work has proposed adap-
tive feature propagation, partial feature updating, and adap-
tive keyframe selection as schemes to optimally schedule
and propagate computation on video [43, 24, 39]. These
techniques have the drawback of complexity, requiring the
network to learn auxiliary representations to decide: (1)
whether to recompute features for a region or frame, and
(2) how to propagate features in a spatially-variant manner.
Moreover, they do not fundamentally address the problem
of mounting warping error, instead optimizing the operation
of [44]. In contrast, in Accel, we resolve the challenges by
proposing a simple network augmentation: a second branch
that cheaply processes each video frame, and corrects accu-
mulated temporal error in the reference representation.

2.0.3 Network Fusion

Feature and network fusion have been extensively explored
in other contexts. A body of work, beginning with [34]
and extending to [13, 11, 12], studies spatial and tempo-
ral two-stream fusion for video action recognition. In the



two-stream model, softmax scores of two network branches,
one which operates on single RGB frames (spatial stream)
and another on multi-frame optical flow fields (temporal
stream), are fused to discern actions from still video frames.
Variants of this approach have been subsequently applied
to video classification [22, 38] and video object segmenta-
tion [20, 36], among other tasks. Unlike spatio-temporal fu-
sion, which attempts to jointly deduce scene structure from
RGB frames and motion for video-level tasks, the Accel fu-
sion network uses keyframe context and optical flow as a
means to conserve computation and boost accuracy in in-
tensive frame and pixel-level prediction tasks, such as seg-
mentation. In Accel, both branches process representations
of single frames, and motion (optical flow) is used implic-
itly in the model to update a latent reference representation.
Together, these design choices make Accel robust and con-
figurable. The fact that network components are indepen-
dent, with clear interfaces, allows the entire system to be
operated at multiple performance modalities, via choice of
update network (e.g. ResNet-x), motion input (e.g. optical
flow, H.264 block motion [19]), and keyframe interval.

3. Approach
3.1. Problem Statement

Given a video I composed of frames {I1,Is,...IT},
we wish to compute the segmentation of each frame:
{51, 83, ...S7}. We have at our disposal a single-frame seg-
mentation network N that can segment any still frame in
the video: N(I;) = S;. This network is accurate, but slow.
Since IV only takes single images as input, it cannot exploit
the temporal continuity of video; the best we can do is to
run N on every frame I; € I sequentially.

Instead, we would like to develop a video segmentation
network N’ that takes as input a frame I;, and potentially
additional context (e.g. nearby frames, features, or seg-
mentations), and renders S/. Our goals are two-fold: (1)
{S!} should be ar least as accurate as {S;}, and (2) run-
ning N’ ({I;}) should be faster than running N ({1, }).

3.2. Operation Model

Our base single-frame semantic segmentation architec-
ture N consists of three functional components: (1) a fea-
ture subnetwork Ny.,; that takes as input an RGB image
I; € RY™3xhxw and returns an intermediate representa-
tion f; € RIX2048x15X15 (2) a task subnetwork Ny
that takes as input the intermediate representation f; and re-
turns a semantic segmentation score map s; € R XCxhxw,
where C' is the number of labeled classes in the dataset,
and (3) an output block P that converts s; to normalized
probabilities p; € [0, 1]1** X% and then segmentations
Si c R1X1Xh><w.

This division follows a common pattern in image and

video recognition architectures [44]. The feature network,
Nyeat, 1s largely identical across different recognition tasks
(object detection, instance segmentation, semantic segmen-
tation), and is obtained by discarding the final k-way clas-
sification layer in a standard image classification network
(e.g. ResNet-101), and decreasing the stride length in the
first block of the conv5 layer from 2 to 1 to obtain higher-
resolution feature maps (spatial dimension % X g instead
of % X ;)*’—2). The task network, Ni,si, for semantic seg-
mentation includes three blocks: (1) a feature projection
block, which consists of a 1 x 1 convolution, plus a non-
linear activation (ReLU), and reduces the feature channel
dimension from 2048 to 1024, (2) a scoring layer, which
consists of a single 1 x 1 convolution, and further reduces
the channel dimension from 1024 to the C' semantic classes,
and (3) an upsampling block, which consists of a deconvo-
lutional layer and a cropping layer, and upsamples the pre-
dicted scores from % X {g to the spatial dimensionality of
the input image, h x w. Finally, output block P consists of
a softmax layer, followed by an argmax layer.

Exploiting the observation that features can be reused
across frames to reduce computation [32, 44], we now adopt
the following operation model on video. Nyeq¢, which
is deep and expensive, is executed only on select, desig-
nated keyframes. Keyframes are selected at regular inter-
vals, starting with the first frame in the video. The extracted
keyframe features f; are warped to subsequent frames using
a computed optical flow field, O. Nyysk, which is shallow
and cheap, is executed on every frame. Since computing
optical flow O(I;, I;) on pairs of frames, and warping fea-
tures with the flow field W (f;, O)) — fj, is much cheaper
than computing Nyeq.(I;) [44], this scheme saves signifi-
cant computation on intermediate frames, which form the
vast majority of video frames.

3.3. Accel

In Accel, we introduce a lightweight feature network,
N ngt, on intermediate frames to update score predictions
based on the warped keyframe features, with information
from the current frame. On keyframes, we execute our
original feature network, now denoted as the reference fea-
ture network, N f?eat. In our system, we use ResNet-101 as
N ﬁat, and a range of models, from ResNet-18 to ResNet-
101, as N ][c]wt, depending on specific accuracy-performance
goals. In this section, we discuss a forward pass through this
new architecture, Accel (see Fig. 2).

On keyframes, denoted by index k, we execute the full
reference network P(N/[ , (N fwt (Ix))) to yield a segmen-
tation Sy, and save the intermediate output f, = N ff;at (Ix)
as our cached features f€.

On intermediate frames i, we compute scores s!* and s¥
along both a reference branch and an update branch, re-
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Figure 2. Accel consists of several components: (1) a reference
feature net N fmt executed on keyframes, (2) an update feature
net N }Jeat executed on intermediate frames, (3) an optical flow net
O used for feature warping W, (4) two instantiations of Nigsk
(reference and update), (5) a 1 x 1 conv network fusion layer, and
(6) a final softmax layer.

spectively. On the reference branch, we warp f¢ from the
previous frame I;_; to the current frame I;, and then ex-
ecute N2 . As our warping operation W, we spatially
transform our cached features f¢ with a bilinear interpola-
tion of the optical flow field O(I;_1, I;), as in [44]. On the
update branch, we run the full update network NV. Sym-

bolically, the two branches can be represented as:

st = NE L (W(f¢,0(1;-1, 1)) (1
sy = N (NfLo (1)) )

The score maps s and s¥ represent two views on the
correct class labels for the pixels in the current frame.
These predictions are now merged in a 1 X 1 convolu-
tional fusion step, which we refer to as score fusion (SF).
sft and sV are stacked along the channel dimension, yield-
ing an input s§tacked ¢ RIX2Cxhxw  Applying a 1 x 1
convolutional layer with dimensions C' x 2C' x 1 x 1 to
sstacked yields an output s; € R'*C*hXw_ Notationally,
s; = SF(sstacked) = SF([sF, sV]). Finally, applying the
output block P to s; yields the segmentation S; of frame I;.

Note that while the layer definitions of N ,and N erat

ea
differ in general, N/t , and NY , are architecturally equiv-
alent, albeit independent instantiations (i.e. they don’t share
weights). This makes Accel highly modular. Since the task
network N, i has a fixed interface, Accel can accept any
feature network N ]yeat that outputs representations f; with
the appropriate dimensionality.

3.4. Training

Accel can be trained end-to-end on sparsely annotated
sequences of video frames. The entire network consists of

the score fusion layer, along with three independently train-
able components, N, NV and O, which we now discuss.

For our reference network N and update network NV,
we use a high-accuracy variant [8] of the DeepLab architec-
ture [5]. DeepLab is a canonical architecture for semantic
segmentation [8, 2, 25, 40], and a DeepLab implementation
has consistently ranked first in the Pascal VOC segmenta-

tion challenge [1]. Nfi,, and N, are first trained on Im-

ageNet; N% and NV are then individually fine-tuned on a
semantic segmentation dataset, such as Cityscapes [7]. In
Accel, we fix N fﬁwt as ResNet-101. We then build an en-
semble of models, based on a range of update feature net-
works N}]eat: ResNet-18, -34, -50, and -101. This forms
a full spectrum of accuracy-throughput modalities, from a
lightweight, competitive Accel based on ResNet-18, to a
slow, extremely accurate Accel based on ResNet-101. For
the third and last independently trainable component, the
optical flow network O, we use the “Simple” architecture
from the FlowNet project [9]. This network is pre-trained
on the synthetic Flying Chairs dataset, and then jointly fine-
tuned on the semantic segmentation task with N2,

To train Accel, we initialize with weights from these
three pre-trained models. In each mini-batch, we select a
frame I;. When training at keyframe interval n, we se-
lect frame I;_(,_1) from the associated video snippet, and
mark it as the corresponding keyframe I, for frame I;. In
a forward pass, we execute Accel’s reference branch on
frame I}, and execute the update branch and fusion step on
each subsequent intermediate frame until I;. A pixel-level,
cross-entropy loss [26] is computed on the predicted seg-
mentation S; and the ground-truth label for frame /. In the
backward pass, gradients are backpropagated through time
through the score fusion operator, the reference and update
branches, and the warping operator, which is parameter-free
but fully differentiable. Note that the purpose of joint train-
ing is to learn weights for the score fusion (SF) operator,
and to optimize other weights (i.e. Nt}ZS i, and NtUas i) for the
end-to-end task.

3.5. Design Choices

Recent work has explored adaptive keyframe scheduling,
where keyframes are selected based on varying video dy-
namics and feature quality [43, 24, 39]. Here both rapid
scene change and declining feature quality can trigger fea-
ture recomputation. In practice, we find these techniques
introduce significant complexity, without yielding a com-
mensurate gain in accuracy. Note that keyframe scheduling
is an optimization that is orthogonal to network design, and
therefore compatible with Accel.

We also note that other segmentation architectures exist
that cannot be as easily divided into an expensive [V ¢¢q+ and
a cheap N.4sr. These include the highly accurate pyramid
spatial pooling networks (PSPNet, NetWarp) [42, 16], sym-



metric encoder-decoder style architectures (U-Net) [31],
and the parameter efficient, fully-convolutional DenseNets
(FC-DensetNet) [21]. Each, however, posses a design fea-
ture which make them unsuitable for the problem of video
semantic segmentation. PSPNet and NetWarp are exceed-
ingly slow, at over 3.0 seconds per frame on Cityscapes
(more than four times slower than DeepLab-101) [16]. U-
Net was built for the precise segmentation of biomedical
structures, where training data is extremely sparse, and op-
timizes for this domain. Finally, FC-DenseNet, which uti-
lizes dense feed-forward connections between every pair of
layers to learn representations more effectively, has yet to
demonstrate strong quantitative results on large datasets.

4. Experiments
4.1. Setup

We evaluate Accel on Cityscapes [7] and CamVid [3],
the largest available datasets for complex urban scene un-
derstanding and the standard benchmarks for semantic
video segmentation [5, 8, 41]. Cityscapes consists of 30-
frame snippets of street scenes from 50 European cities,
recorded at a frame rate of 17 frames per second (fps). Indi-
vidual frames are 2048 x 1024 pixels in size. The train, vali-
dation, and test sets consist of 2975, 500, and 1525 snippets
each, with ground truth labels provided for the 20™ frame in
each snippet in the train and validation set. The Cambridge-
Driving Labeled Video Database (CamVid) consists of over
10 minutes of footage captured at 30 fps. Frames are 960
by 720 pixels in size, and ground-truth labels are provided
for every 30" frame. We use the standard train-test split
of [35], which divides CamVid into three train and two test
sequences, containing 367 and 233 frames, respectively.

To evaluate accuracy, we use the mean intersection-over
union (mloU) metric, standard for semantic segmentation
[10]. mloU is defined as the average achieved intersection-
over-union value, or Jaccard index, over all valid semantic
classes in the dataset. To evaluate performance, we report
average inference time in seconds per frame (s/frame) over
the entire dataset. Note that this is the inverse of throughput
(frames per second).

We train Accel as described in Section: Approach on
Cityscapes and CamVid. We perform 50 epochs of joint
training at a learning rate of 5-10~% in two phases. In phase
one, all weights except SF are frozen. In phase two, after
40 epochs, all remaining weights are unfrozen. We train a
reference implementation of [44] by jointly fine-tuning the
same implementations of N% and O. At inference time,
we select an operational keyframe interval ¢, and in each
snippet, choose keyframes such that the distance to the la-
beled frame rotates uniformly through [0, ¢ — 1]. This sam-
pling procedure simulates evaluation on a densely labeled
video dataset, where % frames fall at each keyframe offset
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Figure 3. Accuracy vs. inference time on Cityscapes. Compar-
ing four variants of Accel (A-x) to single-frame DeepLab mod-
els (DL-x) and various other related work (RW). All results at
keyframe interval 5. Data from Table 1.

between 0 and 7 — 1. Here we follow the example of previ-
ous work [44].

Finally, Accel is implemented in the MXNet frame-
work [6]. All experiments are run on Tesla K80 GPUs, at
keyframe interval 5, unless otherwise stated. Our imple-
mentation of Accel is open-source on GitHub.

4.2. Results
4.2.1 Baselines

To generate our baseline accuracy-throughput curve, we run
single-frame DeepLab [5] models based on ResNet-18, -34,
-50, and -101 on the Cityscapes and CamVid test data. For
both DeepLab and Accel, we use a variant of the ResNet
architecture called Deformable ResNet, which employs de-
formable convolutions in the last ResNet block (conv5) to
achieve significantly higher accuracy at slightly higher in-
ference cost [8]. We refer to DeepLab models based on
ResNet-z as DeepLab-z, and Accel models based on a
ResNet-z update network as Accel-z.

4.2.2 Accuracy-throughput

Using Accel, we achieve a new, state-of-the-art accuracy-
throughput trade-off curve for semantic video segmentation
(see Figs. 3, 4).

All Accel models, from Accel-18 to Accel-101, allow
operation at high accuracy: above 72 mloU on Cityscapes
and above 66 mloU on CamVid. At the high accuracy
end, Accel-101 is by far the most accurate model, achiev-
ing higher mloU than the best available DeepLab model,
DeepLab-101. At the high throughput end, Accel-18 is
both faster and more accurate than the closest compara-
ble single-frame model, DeepLab-50. Notably, Accel-18 is
over 40% cheaper than DeepLab-101, at only 2-3% lower
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Figure 4. Accuracy vs. inference time on CamVid. All results at
keyframe interval 5. Data from Table 2. (CC and DVSN do not
evaluate on CamVid; GRFP does not report timing results.)

mloU. As arule, each Accel-x model is more accurate than
its single-frame counterpart, DeepLab-z, for all x.

Together, the four Accel models form an operational
Pareto curve that clearly supersedes the Pareto curve de-
fined by the four single-frame DeepLab models (Figs. 3,
4). Accel also visibly outperforms related work, including
Clockwork Convnets [32], Deep Feature Flow [44], Gated
Recurrent Flow Propagation [29], and Dynamic Video Seg-
mentation Network [39] (see Table 1). Though DFF offers
a strong accuracy-throughput trade-off, due to its fixed ar-
chitecture, it is not a contender in the high accuracy regime.
In the next section, we compare more closely to DFF.

4.2.3 Keyframe intervals

In this section, we extend our evaluation to a range of
keyframe intervals from 1 to 10. Keyframe interval 1 cor-
responds to running the reference network N? on every
frame. As a result, Deep Feature Flow (DFF) [44] and the
Accel variants report the same accuracy at this setting (see
Fig. 5). At keyframe intervals above 1, we find that even
the cheapest version of Accel, Accel-18, consistently of-
fers higher accuracy than DFF. In particular, over keyframe
interval 8, a wide accuracy gap emerges, as DFF’s accu-
racy approaches 60 mIoU while all Accel models maintain
roughly between 70 and 75 mloU (Fig. 5).

This gap is an illustration of the compounding warping
error that builds in DFF, but is corrected in Accel with the
advent of the update branch. The trade-off is that Accel
models are slower on intermediate frames: in addition to the
inference cost of O and N[t _, | which is also paid by DFF,

Accel models also incur the cost of NV, which is low when
N7, is ResNet-18 and higher when N, is ResNet-101.

Table 1. Accuracy and inference times on Cityscapes for four
single-frame DeepLab models (DL-x), four variants of Accel (A-
x), and various related work. Table ordered by accuracy. All infer-
ence time standard deviations less than 0.01. Each Accel-x model
is more accurate than its single-frame counterpart, DeepLab-z, for
all z. Data plotted in Fig. 3.

Model Acc. (mloU, %)  Time (s/frame)
DL-18 57.7 0.22
DL-34 62.8 0.33
CC (Shel. 2016) 67.7 0.14
DFF (Zhu 2017) 68.7 0.25
GRFP (Nils. 2018) 69.4 0.47
DL-50 70.1 0.51
DVSN (Xu 2018) 70.3 0.12
A-18 72.1 0.44
A-34 72.4 0.53
A-50 74.2 0.67
DL-101 75.2 0.74
A-101 75.5 0.87

Table 2. Accuracy and inference times on CamVid. Table ordered
by accuracy. Data plotted in Fig. 4.

Model Acc. (mIoU, %)  Time (s/frame)
DL-18 58.1 0.105
DL-34 60.0 0.123
DL-50 65.5 0.185
DFF (Zhu 2017) 66.0 0.102
A-18 66.7 0.170
A-34 67.0 0.205
A-50 67.7 0.239
DL-101 68.6 0.287
A-101 69.3 0.320

4.2.4 Ablation study

We now present a simple ablation study that isolates the
contributions of the reference network N’ and the up-
date network NV to the accuracy of Accel (see Table 3).
Disabling NV corresponds to using only the optical flow-
warped representations from the previous keyframe. Since
all versions of Accel share the same N, this results in the
same accuracy for all models (row 1). Disabling the refer-
ence network N’ corresponds to running only the single-
frame update networks, DeepLab-18, -34, -50, or -101, on
all frames (row 2). Disabling neither yields our original
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Figure 5. Accuracy vs. keyframe interval on Cityscapes for op-

tical flow-based warping alone (DFF) and four variants of Accel.
All five schemes use ResNet-101 in N ?,

models (row 3). Notice the effect of the network fusion:
each unmodified Accel model is more accurate than either
of its component subnetworks. Moreover, Accel-18 ob-
serves a 6.8 point accuracy boost over N via the use of
an update network NV that is cheaper and much less accu-
rate than N%. This confirms the powerful synergistic effect
of combining two contrasting sets of representations: one
that is high-detail but dated, and one that is lower resolution
but temporally current.

Table 3. Ablation study. A breakdown of the accuracy contribu-
tions of N (reference branch) and NV (update branch) to Accel.
Results for keyframe interval ¢ = 5, at the max offset (4) from the
keyframe. Cityscapes dataset.

Model
Setting A-18  A-34 A-50 A-101

NFonly 624 624 624 62.4
NYonly 577 628 70.1 75.2
Accel 69.2 69.7 73.0 75.5

4.2.5 Fusion location

In this section, we evaluate the impact of fusion location
on final network accuracy and performance. Accel, as de-
scribed so far, uses a 1 x 1 convolutional layer to fuse pre-
softmax class scores, but it was also possible to perform this
fusion at an earlier stage. In Table 4, we compare accuracy
values and inference times for two fusion variants: (1) fea-
ture fusion (fusion between N oy and Nyq,p) and (2) score
fusion (fusion between the score upsampling block and the
softmax layer).

As Table 4 indicates, score (late) fusion results in slightly
lower accuracy, but faster inference times. Recall thata 1x 1

Table 4. Fusion location. An evaluation of the impact of network
fusion location on final accuracy values. Model: Accel-18. Re-
sults for keyframe interval ¢ = 5, at the max offset (4) from the
keyframe. Cityscapes dataset.

Metric
Location  Acc. (mloU)  Time (s/frame)
Feature 69.5 0.46
Score 69.2 0.44

convolutional fusion layer is a mapping R!*2¢xhxw
RI*Cxhxw wwhere C is the channel dimensionality of the
input. Feature (early) fusion results in higher accuracy os-
tensibly because it is executed on higher-dimensionality in-
puts, allowing for the discovery of richer channel corre-
spondences (C' is 2048 for ResNet feature maps, versus 19
for scores). Inference times, on the other hand, benefit from
lower channel dimensionality: the fusion operator itself is
cheaper to execute on scores as opposed to features. We use
score fusion in all except the most accurate model (Accel-
101), as in our view, the 5% difference in inference cost
outweighs the more marginal gap in accuracy. Neverthe-
less, the choice between the two schemes is a close one.

Finally, we also experimented with the intermediate
channel dimensionality, C. ResNets-50 and -101 tradition-
ally have channel dimension 2048 after the fifth conv block,
which is why C' = 2048 was our default choice. In our ex-
periments, we found that using smaller values of C, such
as 512 or 1024, resulted in poorer segmentation accuracy,
without noticeably reducing inference times.

4.2.6 Qualitative evaluation

In Figure 6, we compare the qualitative performance of DFF
(Accel NT), DeepLab (Accel NV), and Accel (N 4 NV)
on two sequences of 10 frames (top and bottom).

5. Conclusion

Accel is a fast, high-accuracy video segmentation system
that utilizes the combined predictive power of two network
pathways: (1) a reference branch N¥ that extracts high-
quality features on a reference keyframe, and warps these
features forward using incremental optical flow estimates,
and (2) an update branch NU that processes the current
frame to correct accumulated temporal error in the reference
representation. Comprehensive experiments demonstrate a
full range of accuracy-inference speed modalities, from a
high-throughput version of Accel that is both faster and
more accurate than comparable single-frame models to a
high-accuracy version that exceeds state-of-the-art. The full
ensemble of Accel models consistently outperforms previ-
ous work on the problem at all keyframe intervals, while
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(a) k b k+3 ©k+6 @k+9
Figure 6. Qualitative outputs. Two frame sequences at keyframe interval 10. Column k + ¢ corresponds to the i frame past keyframe
k. First row: input frames. Second row: Accel N branch / DFF [44]. Third row: Accel NU branch / DeepLab-18. Fourth row:
Accel-18. Note how Accel both corrects DFF’s warping-related distortions in row 2, including the obscured pedestrians (top example) and
the distorted vehicles (bottom example), and avoids DeepLab’s misclassifications in row 3 on the van (top) and vegetation patch (bottom).
Column (c) in the bottom example also qualifies as an error case for Accel, as unlike DeepLab, Accel misses the street sign on the right.
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