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Abstract—We give a polynomial time deterministic
approximation algorithm (an FPTAS) for counting the
number of ¢-colorings of a graph of maximum de-
gree A, provided only that ¢ > 2A. This substantially
improves on previous deterministic algorithms for this
problem, the best of which requires ¢ > 2.58A, and
matches the natural bound for randomized algorithms
obtained by a straightforward application of Markov
chain Monte Carlo. In the case when the graph is also
triangle-free, we show that our algorithm applies under
the weaker condition ¢ > oA+ 3, where a ~ 1.764 and
B = B(«a) are absolute constants. Our result applies
more generally to list colorings, and to the partition
function of the anti-ferromagnetic Potts model.

The core of our argument is the establishment of
a region in the complex plane in which the Potts
model partition function (a classical graph polynomial)
has no zeros. This result, which substantially sharpens
previous work on the same problem, is of independent
interest. Our algorithms follow immediately from zero-
freeness via the “polynomial interpolation" method of
Barvinok. Interestingly, our method for identifying the
zero-free region leverages probabilistic and combinato-
rial ideas that have been used in the analysis of Markov
chains.

Keywords-Approximate counting; Graph coloring;
Potts model; Partition function; Stability theory; De-
randomization;

I. INTRODUCTION
A. Background and related work

Counting colorings of a bounded degree graph is
a benchmark problem in approximate counting, due
both to its importance in combinatorics and statistical
physics, as well as to the fact that it has repeatedly chal-
lenged existing algorithmic techniques and stimulated
the development of new ones.

Given a finite graph G = (V,E) of maximum
degree A, and a positive integer g, the goal is to count
the number of (proper) vertex colorings of G with ¢
colors. It is well known [7] that a greedy coloring
exists if ¢ > A + 1. While counting colorings exactly
is #P-complete, a long-standing conjecture asserts
that approximately counting colorings is possible in
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polynomial time provided ¢ > A + 1. It is known
that when ¢ < A, even approximate counting is NP-
hard [17].

This question has led to numerous algorithmic
developments over the past 25 years. The first approach
was via Markov chain Monte Carlo (MCMC), based on
the fact that approximate counting can be reduced
to sampling a coloring (almost) uniformly at random.
Sampling can be achieved by simulating a natural local
Markov chain (or Glauber dynamics) that randomly flips
colors on vertices: provided the chain is rapidly mixing,
this leads to an efficient algorithm (a fully polynomial
randomized approximation scheme, or FPRAS).

Jerrum’s 1995 result [29] that the Glauber dynamics
is rapidly mixing for ¢ > 2A + 1 gave the first
non-trivial randomized approximation algorithm for
colorings and led to a plethora of follow-up work on
MCMC (see, e.g., [11,12,15,21,23-25,36,43] and [16]
for a survey), focusing on reducing the constant 2 in
front of A. The best constant known for general graphs
remains essentially ', obtained by Vigoda [43] using
a more sophisticated Markov chain, though this was
very recently reduced to 16—1 — ¢ for a very small ¢
by Chen et al. [9]. The constant can be substantially
improved if additional restrictions are placed on the
graph: e.g., Dyer et al. [12] achieve roughly ¢ > 1.49A
provided the girth is at least 6 and the degree is a large
enough constant, while Hayes and Vigoda improve
this to ¢ > (1 + ¢)A for girth at least 11 and degree
A = Q(logn), where n is the number of vertices.

A significant recent development in approximate
counting is the emergence of deterministic approxi-
mation algorithms that in some cases match, or even
improve upon, the best known MCMC algorithms.!

In this case, the notion of an FPRAS is replaced by that of a
fully polynomial time approximation scheme, or FPTAS. An FPTAS
for g-colorings of graphs of maximum degree at most A is an
algorithm that given the graph G and an error parameter § on the
input, produces a (1 &+ §)-factor multiplicative approximation to the
number of g-colorings of G in time poly(|G|,1/d) (the degree of
the polynomial is allowed to depend upon the constants g and A).



These algorithms have made use of one of two main
techniques: decay of correlations, which exploits decreas-
ing influence of the spins (colors) on distant vertices on
the spin at a given vertex; and polynomial interpolation,
which uses the absence of zeros of the partition
function in a suitable region of the complex plane.
Early examples of the decay of correlations approach
include [1,5,45], while for early examples of the polyno-
mial interpolation method, we refer to the monograph
of Barvinok [2] (see also, e.g., [3,13,22,26,28,33,37] for
more recent examples). Unfortunately, however, in the
case of colorings on general bounded degree graphs,
these techniques have so far lagged well behind the
MCMC algorithms mentioned above. One obstacle to
getting correlation decay to work is the lack of a higher-
dimensional analog of Weitz’s beautiful algorithmic
framework [45], which allows correlation decay to
be fully exploited via strong spatial mixing in the
case of spin systems with just two spins (as opposed
to the ¢ colors present in coloring). For polynomial
interpolation, the obstacle has been a lack of precise
information about the location of the zeros of associated
partition functions (see below for a definition of the
partition function in the context of colorings).

So far, the best algorithmic condition for colorings
obtained via correlation decay is ¢ > 2.58A + 1,
due to Lu and Yin [35], and this remains the best
available condition for any deterministic algorithm. This
improved on an earlier bound of roughly ¢ > 2.78A
(proved only for triangle-free graphs), due to Gamarnik
and Katz [18]. For the special case A = 3, Lu et al. [34]
give a correlation decay algorithm for counting 4-
colorings. Furthermore, Gamarnik, Katz and Misra [19]
establish the related property of “strong spatial mixing"
under the weaker condition ¢ > oA + § for any
constant @ > a*, where a* ~ 1.7633 is the unique
solution to ze~'/* =1 and 3 is a constant depending
on ¢, and under the assumption that G is triangle-free
(see also [20,21] for similar results on restricted classes
of graphs). However, as discussed in [19], this strong
spatial mixing result unfortunately does not lead to a
deterministic algorithm.?

The newer technique of polynomial interpolation,
pioneered by Barvinok [2], has also recently been
brought to bear on counting colorings. In a recent paper,
Bencs et al. [6] use this technique to derive a FPTAS

2The strong spatial mixing condition does imply fast mixing of
the Glauber dynamics, and hence an FPRAS, but only when the
graph family being considered is “amenable”, i.e., if the size of the
{-neighborhood of any vertex does not grow exponentially in ¢. This
restriction is satisfied by regular lattices, but fails, e.g., for random
regular graphs.

for counting colorings provided ¢ > eA + 1. This result
is of independent interest because it uses a different
algorithmic approach, and because it establishes a new
zero-free region for the associated partition function
in the complex plane (see below), but it is weaker than
those obtained via correlation decay.

In this paper, we push the polynomial interpolation
method further and obtain a FPTAS for counting
colorings under the condition ¢ > 2A:

Theorem I.1. Fix positive integers ¢ and A such that
q > 2A. Then there exists a fully polynomial time
deterministic approximation scheme (FPTAS) for counting
g-colorings in any graph of maximum degree A.

This is the first deterministic algorithm (of any
kind) that for all A matches the “natural” bound
for MCMC, first obtained by Jerrum [29]. Indeed,
q > 2A + 1 remains the best bound known for rapid
mixing of the basic Glauber dynamics that does not
require either additional assumptions on the graph or a
spectral comparison with another Markov chain: all the
improvements mentioned above require either lower
bounds on the girth and/or maximum degree, or (in
the case of Vigoda’s result [43]) analysis of a more
sophisticated Markov chain. This is for good reason,
since the bound ¢ > 2A + 1 coincides with the closely
related Dobrushin uniqueness condition from statistical
physics [40], which in turn is closely related [44] to
the path coupling method of Bubley and Dyer [8] that
provides the simplest currently known proof of the
g > 2A 4 1 bound for the Glauber dynamics.

We therefore view our result as a promising starting
point for deterministic coloring algorithms to finally
compete with their randomized counterparts. In fact, as
discussed later in section I-C, our technique is capable
of directly harnessing strong spatial mixing arguments
used in the analysis of Markov chains for certain classes
of graphs. As an example, we can exploit such an
argument of Gamarnik, Katz and Misra [19] to improve
the bound on ¢ in Theorem I.1 when the graph is
triangle-free, for all but small values of A. (Recall that
a* ~ 1.7633 is the unique positive solution of the
equation ze~ /% = 1))

Theorem 1.2. For every o > «*, there exists a § = ()
such that the following is true. For all integers q and A
such that ¢ > oA+, there exists a fully polynomial time
deterministic approximation scheme (FPTAS) for counting
g-colorings in any triangle-free graph of maximum
degree A.

We mention also that our technique applies without
further effort to the more general setting of list



colorings, where each vertex has a list of allowed colors
of size ¢, under the same conditions as above on gq.
Indeed, our proofs are written to handle this more
general situation.

In the next subsection we describe our algorithm in
more detail.

B. Our approach

Let G = (V, E) be an n-vertex graph of maximum
degree A, and [g] :={1,...,q} a set of colors. Define
the polynomial

Zo(w) = Y wlllwwlePiotw=o@l ()
o:V—lq]

Here o ranges over arbitrary (not necessarily proper)
assignments of colors to vertices, and each such coloring
has a weight w™(), where m(c) is the number of
monochromatic edges in o. Note that the number of
proper g-colorings of G is just Z5(0).

The polynomial Z¢(w) is the partition function of
the Potts model of statistical physics, and implicitly
defines a probability distribution on colorings o accord-
ing to their weights in (1). The parameter w measures
the strength of nearest-neighbor interactions. The
value w = 1 corresponds to the trivial setting where
there is no constraint on the colors of neighboring
vertices, while w = 0 imposes the hard constraint
that no neighboring vertices receive the same color.
For intermediate values w € [0, 1], neighbors with the
same color are penalized by a factor of w. Theorems I.1
and 1.2 are in fact special cases of the following more
general theorem.

Theorem L.3. Suppose that the hypotheses of either The-
orem 1.1 or Theorem L2 are satisfied, and fix w € [0, 1].
Then there exists an FPTAS for the partition function

Z(;(w).

Theorem 1.3 of course subsumes Theorems 1.1 and 1.2,
but the extension to other values of w is of independent
interest as the computation of partition functions is
a very active area of study in statistical physics and
combinatorics.

To prove Theorem 1.3, we view Zg(w) as a polyno-
mial in the complex variable w and identify a region
in the complex plane in which Z¢(w) is guaranteed to
have no zeros. Specifically, we will show that this holds
for the open simply connected set Do C C obtained
by augmenting the real interval [0, 1] with a ball of
radius 7A around each point, where 7a is a (small)
constant depending only on A.

Theorem 1.4. Fix a positive integer A. Then there exists
a 1A > 0 and a region Da of the above form containing
the interval [0, 1] such that the following is true. For any
graph G of maximum degree A and integer q satisfying
the hypotheses of either Theorem L1 or Theorem I2,
Zg(w) # 0 when w € Da.

We remark that this theorem is also of independent
interest, as the location of zeros of partition functions
has a long and noble history going back to the Lee-Yang
theorem of the 1950s [30,46]. In the case of the Potts
model, Sokal [41,42] proved (in the language of the
Tutte polynomial) that the partition function has no
zeros in w in the entire unit disk centered at 0, under
the strong condition ¢ > 7.964A; the constant was
later improved to 6.907 by Fernandez and Procacci [14]
(see also [27]).> Much more recently, the work of Bencs
et al. [6] referred to above gives a zero-free region
analogous to that in Theorem .4 above, but under
the stronger condition g > eA + 1. We note also that
Barvinok and Soberdn [4] (see also [2] for an improved
version) established a zero-free region in a disk centered
at w=1.

Theorem 14 immediately gives our algorithmic
result, Theorem 1.3, by appealing to the recent al-
gorithmic paradigm of Barvinok [2]. The paradigm
(see Lemma 2.2.3 of [2]) states that, for a partition
function Z of degree m, if one can identify a simply
connected, zero-free region D for Z in the complex
plane that contains a 7-neighborhood of the interval
[0, 1], and a point on that interval where the evaluation
of Z is easy (in our setting this is the point w = 1), then
using the first O (e®1/7) log(m/e) ) coefficients of Z,
one can obtain a 1 &+ ¢ multiplicative approximation
of Z(x) at any point = € D. Barvinok’s framework is
based on exploiting the fact that the zero-freeness of
Z in D is equivalent to log Z being analytic in D, and
then using a carefully chosen transformation to deform
D into a disk (with the easy point at the center) in
order to perform a convergent Taylor expansion. The
coefficients of Z are used to compute the coefficients
of this Taylor expansion.

Barvinok’s framework in general leads to a quasi-
polynomial time algorithm as the computation of the
O(e®/7) log(m/e) ) terms of the expansion may take

for the

partition functions considered here. However, additional
insights provided by Patel and Regts [37] (see, e.g., the
proof of Theorem 6.2 in [37]) show how to reduce this

. . . e/ logm
quasiploynomial time O ((m /€)

3The results in these papers are in terms of the Tutte polynomial,
and in fact extend to complex values of gq.



e®1/™ 1og A ) for many

computation time to O((m/ €)
models on bounded degree graphs of degree at most
A, including the Potts model with a bounded number
of colors at each vertex. Hence we obtain an FPTAS.
This (by now standard) reduction is the same path as
that followed by Bencs et al. [6, Corollary 1.2]; for
completeness, we provide a sketch in section II-C. We
note that for each fixed A and ¢ the running time
of our final algorithm is polynomial in n (the size
of GG) and e 1 as required for an FPTAS. However, as
is typical of deterministic algorithms for approximate
counting, the exponent in the polynomial depends on A
(through the quantity 7o in Theorem 1.4, which in
the case where all lists are subsets of [g], is inverse
polynomial in g).

We end this introduction by sketching our approach
to proving Theorem 1.4, which is the main contribution
of the paper.

C. Technical overview

The starting point of our proof is a simple geometric
observation, versions of which have been used before
for constructing inductive proofs of zero-freeness of
partition functions (see, e.g., [2,6]). Fix a vertex v
in the graph G. Given w € C, and a color k € [q],
let ng)(w) denote the restricted partition function in
which one only includes those colorings ¢ in which
o(v) = k. Then, since Zg(w) = > 4e(y Zék)(w), the
zero-freeness of Zg will follow if the angles between
the complex numbers Zk) (w), viewed as vectors in
R2, are all small, and provided that at least one of the
Zl(,k) is non-zero. (In fact, this condition on angles can
be relaxed for those Z.*) (w) that are sufficiently small
in magnitude, and this flexibility is important when
w is a complex number close to 0.) Therefore, one is
naturally led to consider so-called marginal ratios:

(4)
REDw) = 2,
Zi" (w)
(In the g-coloring problem, this ratio is 1 by symmetry.
However, in our recursive approach, we have to handle
the more general list-coloring problem, in which the
ratio becomes non-trivial.)

We then require that for any two colors ¢,j for
which Z{*) (w) is large enough in magnitude, the ratio
R(é:z)) (w) is a complex number with small argument.
This is what we prove inductively in sections IV and V.

The broad contours of our approach as outlined
so far are quite similar to some recent work [2,6].
However, it is at the crucial step of how the marginal
ratios are analyzed that we depart from these previous

results. Instead of attacking the restricted partition
functions or the marginal ratios directly for given
w € C, as in these previous works, we crucially exploit
the fact that for any w € [0, 1] close to the given w,
these quantities have natural probabilistic interpreta-
tions, and hence can be much better understood via
probabilistic and combinatorial methods. For instance,
when @ € [0, 1], the marginal ratio Rg:i;) (w) is in fact
a ratio of the marginal probabilities Prg 4[o(v) = 1]
and Prg glo(v) = j], under the natural probability
distribution on colorings ¢. In fact, our analysis cleanly
breaks into two separate parts:

1) First, understand the behavior of true marginal
probabilities of the form Prg ;[0 (v) = ] for @ €
[0, 1]. This is carried out in section IIL

2) Seqond, argue that, for complex w ~ w, the ratios
Rng}) (w) remain well-behaved. This is carried out
separately for the two cases when w is close to O
(in section IV) and when w is bounded away from
0 but still in the vicinity of [0,1] (in section V).

A key point in our technical analysis is the notion
of “niceness” of vertices, which stipulates that the
marginal probability Prg glo(v) =i < m
where degq(v) is the degree of v in G (see Defini-
tion II1.1). Note that this condition refers only to real
non-negative w, and hence is amenable to analysis via
standard combinatorial tools. Indeed, our proofs that
the conditions on ¢ and A in Theorems .1 and .2 imply
this niceness condition are very similar to probabilistic
arguments used by Gamarnik et al. [19] to establish the
property of “strong spatial mixing” (in the special case
W = 0). We emphasize that this is the only place in our
analysis where the lower bounds on g are used. One can
therefore expect that combinatorial and probabilistic
ideas used in the analysis of strong spatial mixing and
the Glauber dynamics with smaller number of colors
in special classes of graphs can be combined with our
analysis to obtain deterministic algorithms for those
settings, as we have demonstrated in the case of [19].

The above ideas are sufficient to understand the real-
valued case (part 1 above). For the complex case in
part 2, we start from a recurrence for the marginal
ratios R(éz)) that is a generalization (to the case
w # 0) of a similar recurrence used by Gamarnik
et al. [19] (see Lemma II.4). The inductive proofs in
sections IV and V use this recurrence to show that,
if w € [0,1] is close to w € C, then all the relevant
Rg:fj)(w) remain close to Rg:z)) (w) throughout. The
actual induction, especially in the case when w is close
to 0, requires a delicate choice of induction hypotheses
(see Lemmas IV.2 and V.3). The key technical idea is



to use the “niceness” property of vertices established
in part 1 to argue that the two recurrences (real and
complex) remain close at every step of the induction.
This in turn depends upon a careful application of
the mean value theorem, separately to the real and
imaginary parts (see Lemma IL5), of a function f, that
arises in the analysis of the recurrence (see Lemma IL.6).

D. Comparison with correlation-decay based algorithms

We conclude this overview with a brief discussion of
how we are able to obtain a better bound on the number
of colors than in correlation decay algorithms, such
as [18,35] cited earlier. In these algorithms, one first
uses recurrences similar to the one mentioned above
to compute the marginal probabilities, and then appeals
to self-reducibility to compute the partition function.
Of course, expanding the full tree of computations
generated by the recurrence will in general give an
exponential time (but exact) algorithm. The core of the
analysis of these algorithms is to show that even if
this tree of computations is only expanded to depth
about O(log(n/e)), and the recurrence at that point
is initialized with arbitrary values, the computation
still converges to an c-approximation of the true
value. However, the requirement that the analysis
be able to deal with arbitrary initializations implies
that one cannot directly use properties of the actual
probability distribution (e.g., the “niceness” property
alluded to above); indeed, this issue is also pointed
out by Gamarnik et al. [19]. In contrast, our analysis
does not truncate the recurrence, and thus only has to
handle initializations that make sense in the context of
the graph being considered. Moreover, the exponential
size of the recursion tree is no longer a barrier since,
in contrast to correlation decay algorithms, we are
using the tree only as a tool to establish zero-freeness;
the algorithm itself follows from Barvinok’s polynomial
interpolation paradigm. Our approach suggests that this
paradigm can be viewed as a method for using (complex-
valued generalizations of) strong spatial mixing results
to obtain deterministic algorithms.

We note also that our results in this paper are
part of a wider program exploring the connections
between correlation decay and zero-freeness of partition
functions; see, e.g., [32,38,39]. Further discussion of
these connections, along with applications to other
models, including the Ising model and the hard-core
model, can be found in the full version of this paper
and in the first author’s PhD thesis [31].

II. PRELIMINARIES

A. Colorings and the Potts model

Throughout, we assume that the graphs that we
consider are augmented with a list of colors for every
vertex. Formally, a graph is a triple G = (V, E, L),
where V is the vertex set, E is the edge set, and L :
V — 2N specifies a list of colors for every vertex.
The partition function as defined in the introduction
generalizes naturally to this setting: the sum is now
over all those colorings o which satisfy o(v) € L(v).

We also allow graphs to contain pinned vertices: a
vertex v is said to be pinned to a color c if only those
colorings of G are allowed in which v has color c.
Suppose that a vertex v of degree d, in a graph G is
pinned to a color ¢, and consider the graph G’ obtained
by replacing v with d,, copies of itself, each of which is
pinned to ¢ and connected to exactly one of the original
neighbors of v in G. It is clear that Zg/ (w) = Zg(w)
for all w. We will therefore assume that all pinned
vertices in our graphs G have degree exactly one. The
size of graph, denoted as |G|, is defined to be the
number of unpinned vertices. It is worth noting that
the above operation of duplicating pinned vertices does
not change the size of the graph.

Let G be a graph and v an unpinned vertex in G. A
color c in the list of v is said to be good for v if for every
pinned neighbor u of v is pinned to a color different
from c. The set of good colors for a vertex v in graph
G is denoted I'; ,,. We sometimes omit the graph G
and write I', when G is clear from the context. A color
c that is not in I',, is called bad for v. Further, given
a graph G with possibly pinned vertices, we say that
the graph is unconflicted if no two neighboring vertices
in G are pinned to the same color. Note that since all
pinned vertices have degree exactly one, each conflicted
graph is the vertex-disjoint union of an unconflicted
graph and a collection of disjoint, conflicted edges.

We will assume throughout that all unconflicted
graphs G we consider have at least one proper coloring:
this will be guaranteed in our applications since we will
always have |L(u)| > degq(u) + 1 for every unpinned
vertex u in G.

Definition II.1. For a graph G, a vertex v and a color
i € L(v), the restricted partition function Zg)v(w) is
the partition function restricted to colorings in which
the vertex v receives color <.

Definition II.2. Let w be a formal variable. For any G,
a vertex v and colors 4, j € L(v), we define the marginal
z5), (@)
2d), )

ratio of color ¢ to color j as Rg’i) (w) :== . Sim-



ilarly we also define formally the corresponding pseudo

)
Za (UJ) N

marginal probability as Pg . [c(v) =1i] :=

Remark 1. Note that when a numerical value w €
C is substituted in place of w in the above formal
definition, R(G’j )( ) is numerically well-defined as long
as Zg)v( ) # 0, and Pg w[c(v) = i] is numerically
well-defined as long as Zg(w) # 0. In the proof of the
main theorem in sections IV and V, we will ensure that
the above definitions are numerically instantiated only
in cases where the corresponding conditions for such
an instantiation to be well-defined, as stated above, are
satisfied. For instance, when w € [0, 1], this is the case
for the first definition when either (i) w # 0; or (ii)
w = 0, but G is unconflicted and j € I'g,,; while for
the second definition, this is the case when either (i)
w # 0; or (i) w = 0, but G is unconflicted.

Remark 2. Note also that when w € [0,1],
the pseudo probabilities, if well-defined, are actual
marginal probabilities. In this case, we will also
write Pg [c(v) = 1] as Prg [c(v) = 4]. For arbitrary
complex w, this interpretation as probabilities is of
course not valid (since Pg,[c(v) =i] can be non-
real), but provided that Zg(w) # 0 it is still true that
Cierin Powle®) =i = 75w Cier Zou(w) =
gg(x) = 1. We also note that if v is pinned to color
k, then Pg [c(v) =] is 1 when k = ¢ and 0 when

ke i.

Notation. For the case w = 0 we will some-
times shorten the notations Pgolc(v) =1i] and
Prgole(v) = i] to Pgle(v) = i) and Prglc(v) = 1] re-
spectively.

). Given a graph
s Vdeg (u) D€ the
neighbors of u. We define G;Z’j ) (the vertex u will be
understood from the context) to be the graph obtained
from G as follows:

Definition II.3 (The graphs GS,J’)
G and a vertex u in G, let vy, --

o first we replace vertex u with uy, -, Ugeg, (u)>
and connect u; to vy, us to vy, and so on;

o next we pin vertices uq,--- ,ug—1 to color %, and
vertices Ug41,"* , Udeg,, (u) to color j;

o finally we remove the vertex uy.

Note that the graph G,(Cw ) has one fewer unpinned
vertex than G. Moreover, u1, - - - , Ugeg,, (u) are of degree
1, so this construction maintains the property that
pinned vertices have degree 1.

We now derive a recurrence relation between the
marginal ratios of the graph G and pseudo marginal

probabilities of the graphs Gg’j ). This is an extension to
the Potts model of a similar recurrence relation derived
by Gamarnik, Katz and Misra [19] for the special case
of colorings (that is, w = 0).

Lemma II.4. Let w be a formal variable. For a graph
G, a vertex u and colors i, j € L(u), we have

degg(u) 1 _ ~. i —

R = 17 L2 Papoletu) =1

. i L= Poes lelor) =4
where we define v := 1 — w. In particular, when a

numerical value w € C is substituted in place of w,
the above recurrence is valid as long as the quantities
Z 6 (w) and 1= Pgay  fc(vg) =j] for 1 <k <
deg(u) are all non-zero.

Proof: Let t := degq(u). For 0 < k <t, let Hy, be the
graph obtained from G as follows:

o first we replace vertex u with uj,--- ,u;, and
connect u; to vy, us to vs, and so on;
o we then pin vertices uq,--- ,u; to color i, and

vertices g1, , Ut to color j.

Note that Hj, is the same as G (1.9) , except that the last

step of the construction of G, ) | is skipped, i.e, the

vertex uy is not removed, and, further, uy, is pinned to

color 7. We can now write

(@) t

@iy ZeuW)  Zh, (W) Zp, (w
R w) =~ = -z

Z (w) Zh,(w) ZHk . (

G,u

Next, for 1 < k <t let Y, := ZG(i,,j)(CU) and Yk(i) =
. k
Z(lgi ;) (w). We observe that
Gk vk

P

GSf‘j),w (&

=1 Vi — (1 —w)
ﬁ 1— v 'PGS,,-)’W[C(U]C) = Z]
e L P le(or) = 4]

where v = 1 — w. The claim about the validity of the
recurrence on numerical substitution then follows from
the conditions outlined in Definition II.2. [ ]



B. Complex analysis

In this subsection we collect some tools and obser-
vations from complex analysis. Throughout this paper,
we use ¢ to denote the imaginary unit v/—1, in order
to avoid confusion with the symbol “/” used for other
purposes. For a complex number z = a + (b with
a,b € R, we denote its real part a as Rz, its imaginary
part b as Sz, its length Va? + b? as |z|, and, when

z # 0, its argument sinfl(l—lz’l) € (—m, 7| as argz.

We also generalize the notation [z,y] used for closed
real intervals to the case when z,y € C, and use it to
denote the closed straight line segment joining = and
Y.

We start with a consequence of the mean value
theorem for complex functions, specifically tailored to
our application. Let D be any domain in C with the
following properties.

e Forany z € D, Rz € D.

e For any 21,29 € D, there exists a point zg € D
such that one of the numbers z; — zg, 20 — 2o has
zero real part while the other has zero imaginary
part.

o If 21,29 € D are such that either &z = Szy or
Rz1 = RNz, then the segment |21, 25] lies in D.

We remark that a rectangular region symmetric about
the real axis will satisfy all the above properties.

Lemma II.5 (Mean value theorem for complex
functions). Let f be a holomorphic function on a
domain D as above, such that for z € D, Sf(z) has the
same sign as z. Suppose further that there exist positive
constants p; and pr such that

o forall z€ D, |Sf'(2)| < pr;

e forall ze€ D, Rf'(z) € [0, pr].
Then for any z1,22 € D, there exists C,, ., € [0, pg|
such that

(R(f(z1) = f(22)) =

021,22' %(zl - 22)|
< pr-|S(z1 — 22) |,

and furthermore,

S(f(21) = f(22))]
|S(21 — 22)], when (Sz1) - (Sz2) < 0;
=7 max{|Sz1 |, [Sz2| }, otherwise.

Proof: We write f = u + v, where u,v : D — R are
seen as differentiable functions from R? to R satisfying
the Cauchy-Riemann equations

w10 — 01 g (01— (1,0)

This implies in particular that Rf'(z) = u19(z2) =
v®D(2) and Sf'(2) = v (2) = —u(OD(2).

Let zp be a point in D such that R(z2 — 29) = 0
and (21 — 2z9) = 0 (by the conditions imposed on D,
such a zg exists, possibly after interchanging z; and z3).
Now we have

R(f(21) — f(22))
= U(Zl) - U(ZO) + U(ZO) - U’(ZQ)
— u(l,O) (Z/) . §R(21 — Zo) + U(ZO) - U(ZQ),

where 2z’ is a point lying on the segment [zo, 1],
obtained by applying the standard mean value theorem
to the function v along this segment (note that the
segment is parallel to the real axis). On the other hand,
since the segment [z, 2| is parallel to the imaginary
axis, we apply the standard mean value theorem to
the real valued function v to get (after recalling that
‘u(o*l)(z)‘ =[S f(2)] < pr for all z € D)

[u(z0) — u(22)| < pr|S(z2 — 20)| = pr[S(22 — 21)] -

This proves the first part, once we set C,, ,, =
uM0)(2') = Rf'(2'), which must lie in [0, pr] since
2" e D.

For the second part, we note that since Sf(z) =0
when Sz = 0, we have for z € D,

Sf(z) = S(f(2) = f(R2)) = v(z) — v(Rz)

= 0O (). Sz,

where 2z’ is a point lying on the segment [z, Rz],
obtained by applying the standard mean value theorem
to the function v along this segment (note that the
segment is parallel to the imaginary axis).

Since v(O1)(2") = u(:0)(2) € [0, pg] for all 2’ € D,
there exist a,b € [0, pg| such that

IS(f(21) = f(22))] = [aS21 — bSz2]
so that we get
S (f(21) = f(22))] = aSz1 — bS]

< (21 = 22)|, when (J21) - (Sz2) < 0;
- max{|Sz ]|, |Sze| }, otherwise.

|
We will apply the above lemma to the function

fu(z) == —In(1 — ke®), (2)

which, as we shall see later, will play a central role
in our proofs. (We note that here, and also later in
the paper, we use In to denote the principal branch
of the complex logarithm; i.e., if z = ret? with r > 0



and § € (—m,7), then Inz = Inr + 10.) Below we
verify that such an application is valid, and record the
consequences.

Lemma I1.6. Consider the domain D given by
D :={z|Rz € (—o00,—() and |Sz| < T},
where T < 1/2 and { are positive real numbers such
that 72 + e~ < 1. Suppose r € [0,1] and consider the
function f, as defined in eq. (2). Then,
1) The function f, and the domain D satisfy the

hypotheses of Lemma IL5, if pr and p; in the

statement of the theorem are taken to be 15—

and ﬁ, respectively.

2) Ife > 0 and k' are such that |v' — k| < € and

(14 €) < €, then for any z € D,
[ (2) = Fule)] € 7

Proof: Note first that the domain D is rectangular
and symmetric about the real axis, so it satisfies the
properties listed before Lemma II.5. We also note that
since k < 1, f.(z) is well defined when Rz < 0, and
maps real numbers in D to real numbers. Further, a
direct calculation shows that S f,(2) = — arg(l — ke?)
has the same sign as sin(3z) when Rz < 0 (since
k € [0,1]). Since |Sz| < 7 < 7, we see therefore that
S fx(2) has the same sign as Sz, and hence f; satisfies
the hypothesis of Lemma IL5.

Note that f’(z) = —£¢_. A direct calculation then

1—ke?"

z 2 _z|2
shows that Rf.(z) = % and Sf.(2) =
s3I’ Now, for z € D, arge®| < 7, so that

1—re?|2"
§|Rez 2‘ le*| cosarge® > |e*| (1 — 72). Thus, we see
that kRe* — k2|e*]® > rkle?| (1-72—kle?|) >
kle*| (1= 7% — ke ). Since k € [0,1] and T2+~ ¢ <
1 by assumption, we therefore have Rf/(z) > 0.
Further Rf1(2) < Ifi(2)] = iy < 75

[1—ke?| — 1—kl|e?]

% since Kk € [0,1]. Together, these show that
for z € D, so that the claimed

-
RfL(2) € ‘La —
choice of the parameter pr in Lemma IL5 is justified.
Similarly, for the imaginary part, we have |3f.(z)| =

Kk|Se?|
[1—ke=|?’

Since € [0, 1], this justifies the choice of the parameter
PI-

We now turn to the second item of the observation.

The derivative of f,(z) with respect to x is %,
which for x within distance ¢ (satisfying (1 + €) < €%)
of kK and z € D has length at most ﬁ Thus,
the standard mean value theorem applied along the
segment [k, k'] (which is of length at most ¢) yields
the claim. [ |

which in turn is at most ﬁ for z € D.

We will also need the following simple geometric
lemma, versions of which have been used in the work
of Barvinok [2] and also Bencs et al. [6].

Lemma IL7. Let 21,22,...,2, be complex num-
bers such that the angle between any two non-zero
zi is at most « € [0,7m/2). Then |> 1 z| >

cos(ar/2) 3oizy |zl

Proof: Fix a non-zero z;, and without loss of generality
let z; and zy be the non-zero elements giving the
maximum and minimum values, respectively, of the
quantity arg(z;/z;), as z; varies over all the non-zero
elements (breaking ties arbitrarily). Consider the ray z
bisecting the angle between z; and z,. Then, by the
assumption, the angle made by z and any of the non-
zero z; is at most /2, so that the projection of z; on
z is of length at least |z;| cos(/2) and is in the same
direction as z. Thus, denoting by S’ the projection of
S =>"" % on z we have

IS| > |5 > Z|zi|cos(oz/2).

i=1

C. Sketch of the algorithm

In this subsection we outline how to apply Barvinok’s
algorithmic paradigm to translate our zero-freeness
result (Theorem 1.4) into the FPTAS claimed in Theo-
rem 1.3. Let G be a graph with n vertices and m edges
and maximum degree A. Recall that our goal is to obtain
a 1 £ ¢ approximation of the Potts model partition
function Zg(w) at any point w € [0,1]. Note that
Zq is a polynomial of degree m, and that computing
Zg at w = 1 is trivial since Zg(1) = ¢". Recall also
that Theorem 1.4 ensures that Z4 has no zeros in the
region Dp of width 7a around the real interval [0, 1].
For technical convenience we will actually work with
a slightly smaller zero-free region consisting of the
rectangle

Dy ={weC:—7h <Rw < 1+7h; |Sw| < 1A},

where 75 = 7a/v/2. Note that D)\ C Da so D)y is
also zero-free. In the rest of this section, we drop the
subscript A from these quantities.

Now let f(z) be a complex polynomial of degree d
for which f(0) is easy to evaluate, and suppose we
wish to approximate f(1). Barvinok’s basic paradigm [2,
Section 2.2] achieves this under the assumption that f
has no zeros in the open disk B(0,1+40) of radius 1+§
centered at 0: the approximation simply consists of the
first k = O(% log(%)) terms of the Taylor expansion of



log f around 0. (Note that this expansion is absolutely
convergent within B(0,1 + &) by the zero-freeness
of f.) These terms can in turn be expressed as linear
combinations of the first k coefficients of f itself. We
now sketch how to reduce our computation of Zg(w)
to this situation.

First, for any fixed w € [0, 1], define the polynomial
g(2) := Zg(z(w — 1) 4+ 1). Note that g(0) = Zg(1) is
trivial, while g(1) = Zg(w) is the value we are trying
to compute. Moreover, plainly g(z) # 0 for all z € D'.
Next, define a polynomial ¢ : C — C that maps the
disk B(0,1+0) into the rectangle D', so that ¢(0) = 0
and ¢(1) = 1; Barvinok [2, Lemma 2.2.3] gives an
explicit construction of such a polynomial, with degree
N = exp(©(771)) and with § = exp(—O(771)). Now
we have reduced the computation of Zg(w) to that of
f(1), where f(z) := g(¢(2)) is a polynomial of degree
deg(g) - deg(¢) = mN that is non-zero on the disk
B(0,1+0), so the framework of the previous paragraph
applies. Note that the number of terms required in the
Taylor expansion of log f is k = O(}log(™¥)) =
exp(O(7~1)) log(22).

Naive computation of these k terms requires time
n®®) | which yields only a quasi-polynomial algorithm
since k contains a factor of logn. This complexity
comes from the need to enumerate all colorings of
subgraphs induced by up to k edges. However, a
technique of Patel and Regts [37], based on New-
ton’s identities and an observation of Csikvari and
Frenkel [10], can be used to reduce this computation to
an enumeration over subgraphs induced by connected
sets of edges (see [37, Section 6] for details). Since G
has bounded degree, this reduces the complexity to
AOR) = (n8)log(4) exp(O(7™") For any fixed A this
is polynomial in (n/e), thus satisfying the requirement
of a FPTAS.

Note that the degree of the polynomial is exponential
in 771; since 77! in turn is exponential in A (see the
discussion following the proof of Theorem L4), the
degree of the polynomial is doubly exponential in A.
The same discussion explains how this can be improved
to singly exponential for the case of uniformly large
list sizes.

III. PROPERTIES OF THE REAL-VALUED
RECURRENCE

In this section we prove some basic properties of
the real-valued recurrence established in Lemma II.4,
that is, in the case where w € [0, 1] is real (and hence,
v=1-w € [0,1]).

We remark that in all graphs G appearing in our
analysis, we will be able to assume that for any

unpinned vertex v in G, |L(u)| > degq(u) + 1. Thus,
Z(w) # 0 whenever either (i) w € (0, 1]; or (i) w = 0,
but G is unconflicted. As discussed in the previous
section, this implies that the marginal ratios and the
pseudo marginal probabilities are well-defined, and,
further, the latter are actual probabilities. Moreover, if
G is not connected, and G’ is th‘el connected component
containing u, then we have R(éi) (w) = Rg}{i(w) and
Pawle(u) =i = Pgrwle(u) = i]. Thus without loss
of generality, we will only consider connected graphs
in this section.

We now formally state the conditions on the list
sizes under which our main theorem holds.

Condition 1 (Large lists). The graph G satisfies at
least one of the following two conditions.
1) |L(v)| > max{2,2 - degq(v)} for each unpinned
vertex v in G.
2) The graph G is triangle-free and further, for each
vertex v of G,

|L(v)| = o - degg(v) + 5,

where « is any fixed constant larger than the
unique positive solution a* of the equation ze 7 =
1 and B = fB(a) > 2« is a constant chosen so that
- eié(H%) > 1. We note that o* lies in the
interval [1.763,1.764], and § as chosen above is
at least 7/2.

Remark 3. Note that the condition |L(v)| > 2 imposed
in item 1 above is without loss of generality, since any
vertex with |L(v)| = 1 can be removed from G after
removing the unique color in its list from the lists of its

neighbors, without changing the number of colorings
of G.

As stated in the introduction, an important element
of our analysis is going to be the fact that under
Condition 1, one can show that certain vertices are
“nice” in the sense of the following definition. We
emphasize that Condition 1 is ancillary to our main
technical development: any condition under which the
probability bounds imposed in the following definition
can be proved (as is done in Lemma III.2 below) will
be sufficient for the analysis.

Definition III.1. Given a graph G and an unpinned
vertex u in G, let d be the number of unpinned
neighbors of u. We say the vertex u is nice in G
if for any w € [0,1] and any color i € L(u),
Prgwle(u) =14 < d—_b.

Remark 4. We adopt the convention that if G is a
conflicted graph (so that it has no proper colorings) and



w = 0, then Prg 4, [c(u) = i] = 0 for every color ¢ and
every unpinned vertex w in G. This is just to simplify
the presentation in this section by avoiding the need
to explicitly exclude this case from the lemmas below.
In the proof of our main result in sections IV and V,
we will never consider conflicted graphs in a situation
where w could be 0, so that this convention will then
be rendered moot.

Lemma IIL2. If G satisfies Condition 1 then for any
vertex u in G, and any unpinned neighbor vy, of u, we
have that vy, is nice in Gg’j).

We prove this lemma separately for each of the two
cases in Condition 1.

A. Analysis for item 1 of Condition 1

Lemma IIL.3. Let G be a graph that satisfies item 1 of
Condition 1. Then for any unpinned vertex u in G, and
any unpinned neighbor vy, of u, we have that vy, is nice
in Gg’j).

Proof: For ease of notation, we denote Gg’] ) by H
and vy, by v. Since G satisfies item 1 of Condition 1,
and degy (v) = degg(vr) — 1 (since the neighbor u
of vg in G is dropped in the construction of H =
G\"7), we have |Ly(v)| = |La(vg)| > 2degg(vi) >
2 - degy(v) +2.

Consider any valid coloring? ¢’ of the neighbors of
vin H. For k € Ly (v), let nj, denote the number of
neighbors of v that are colored k in ¢’. Then for any
w € [0,1] and 7 € Ly (v),

w™
DLy (o) W
1
<
" |La(v)| - degg(v)’

since at most degy (v) of the n; can be positive. Note
in particular that if ¢ is not a good color for v in H, then
the probability is 0. Since this holds for any coloring
o', we have Pry ,[c(v) = z] < m. Now,
let d be the number of unpinned neighbors of v in H.
Noting that degy (v) > d, and recalling the observation
above that |Ly(v)| > 2degy (v) + 2, we thus have

Pry c(v) =ilo'] =

PI‘Gg)j),w[C(Uk) =] = Prywlc(v) =1]
< ! < 1
~ | Lu(v)| — degy(v) T d+2°

Thus vy, is nice in G;j’j). [ ]

“Here, we say that a coloring o is valid if the color o assigns
to any vertex v is from L(v), and further, in case w = 0, no two
neighbors are assigned the same color by o.
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B. Analysis for item 2 of Condition 1

Notice that if G satisfies item 2 of Condition 1, then
so does G,(;’j ). Thus in order to show that v;, is nice in
GS’J ), it suffices to show the following more general
fact.

Lemma IIL.4. Let G be any graph that satisfies item 2
of Condition 1, and let u be any unpinned vertex in G,
then w is nice in G.

The proof of this lemma is almost identical to
arguments that appear in the work of Gamarnik, Katz
and Misra [19] on strong spatial mixing; we include a
proof here for completeness.

Proof: We show first that Prg [c(u) =i] < % when-
ever Lg(u) > dege(u) + B; this will be required later
in the proof. To do so, we repeat the arguments in
the proof of Lemma IIL.3 to see that Prg [c(u) = i] <
T =deza (@) L(u)‘jieg @ The claimed bound then follows since
G

|L(u)| — degg(u) = B.

Next we show that the upper bound of d—_b,
d is the number of unpinned neighbors of u in G,
holds conditioned on every coloring of the neighbors
of the (unpinned) neighbors of u, by following a similar
path as in [19]. Consider any valid coloring® ¢’ of the
vertices at distance two from wu. Since G is triangle
free, we claim that conditional on ¢’ there is a tree
T of depth 2 rooted at u, with all the leaves pinned
according to ¢’, such that

where

(3)

To see this, notice that once we condition on the
coloring of the vertices at distance 2 from u, the
distribution of the color at u becomes independent
of the distribution of colors of vertices at distance 3
or more. Further, because of triangle freeness, no two
neighbors of u have an edge between them, and hence
any cycle in the distance-2 neighborhood, if one exists,
must go through at least one pinned vertex. We then
observe that such a cycle can be broken by replacing
any pinned vertex v’ in it with deg(v’) copies, one for
each of its neighbor: as discussed earlier, this operation
cannot change the partition function or probabilities.
This operation therefore ensures that every pinned
vertex in the resulting graph is now a leaf of a tree T’
of depth 2 rooted at u. Further, in 7', the root u has
d unpinned children, and all vertices at depth 2 are
pinned according to o”.

Prg wlc(u) = i|o’] = Prr,lc(u) =1].

Here, we say that a coloring o is valid if the color o assign to any
vertex v is from L(v), and further, in case w = 0, no two neighbors
are assigned the same color by o.



Let vy, - - -, vq be the d unpinned neighbors of u in T,
and let T1, - - - , Ty be the subtrees rooted at v, --- ,vq
respectively. For each k € L (u), let ny be the number
of neighbors of u that are pinned to color k. Then
by Lemma I1.4,

n, 1Td )
W Ty (L= 7 P ulefv) = 31)

) d N
whi - [ (=7 P wle(vr) =1])
Define ty; := v - Prp, w[c(vr) = j], and note that from
the calculation at the beginning of the proof, we have
0 <ty < % < % < 1/2. Note also that t;; = 0 if
j & L(vg). Thus, we have

dot=v D

)

(w) =

Prr, wle(vr) =j] <y < L

Jely JETWNL(vk)
(4)
Therefore,
Pry wle(u) = i !
T,w = = ~
ZjGL(v) Rgz,’v) (w)
ni d
w [Ty (1= )
B ]
2 jern(w) W TTimy (1 —tiy)
1
%)

< y :
ZjeFu Hk:l(l - tkj)

where, in the last inequality we use that n; = 0 when
j is good for w in G, and also that w € [0, 1].

Since Prg . [c(u) = i|o’] Pry le(u) =14, it
remains to lower bound the denominator term
> jer, szl(l — ti;). We begin by recalling the fol-
lowing standard consequence of the Taylor expansion

of In(1 — z) around 0: when 0 <z < % <1, and 8 is
such that (1 —1/8)? > 1/2,
22
In(1 —x) Z—x—m
> —x —a?
> —(1 + 1) x. (6)
B

Note that the condition required of 3 is satisfied since
B > 2a > 7/2, as stipulated in item 2 of Condition 1.
Since 0 < #3; <1 /B, we therefore obtain, for every

jeTy,
g) ™
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For convenience of notation, we denote |T',| by ¢,,. Note
that since |L(u)| > adeg(u)+ 3, and u has deg(u) —d
pinned neighbors, we have
qu > |L(u)| = (deg(u) — d)
> [L(u)| — a(deg(u) — d)
> ad+ f, (8)

where in the second inequality we use o > 1. Now, by
the AM-GM inequality, we get

d
ST = tky)

JET, k=1
d I
> Qu H H(l - tkrj)
JET, k=1
d
141
> qu €Xp _1+UB, Z Z trj | , using eq. (7)
Qu k=1j€T,
d(14+1/8)
> _ .
> (ad+ B) exp< od i B ) by egs. (4) and (8)

> (d+2)a- exp(—(ltyl/ﬁ)> , using 8 > 2a

> (d+2),

where the last line uses the stipulation in item 2 of
Condition 1 that « and (3 satisfy a-exp —M> > 1.

From eqs. (3) and (5) we therefore get
1
< —.
T d+2
Since this holds for any conditioning ¢’ of the colors

of the neighbors of the neighbors of u in G, we then
have

@

Prg w(c(u) = i|o’]

1

Prg wlc(u) = 1] < i1
which concludes the proof.
|

The proof of Lemma III.2 is immediate from Lem-
mas I11.3 and I11.4.
Proof of Lemma II1.2: If G satisfies item 1 of Condition 1
then we apply Lemma IIL3. If G satisfies item 2 of
Condition 1 then we apply Lemma IIL.4 after noting
that if G satisfies item 2 of Condition 1, then so does
Gg’j), and further that, as assumed in the hypothesis
of Lemma II1.2, vy, is unpinned in Gg’j ). [ |

We conclude this section by noting that, the niceness
condition can be strengthened in the case when all the
list sizes are uniformly large (e.g., as in the case of
g-colorings).



Remark 5. In Condition 1, if we replace the degree
of a vertex by the maximum degree A (e.g., in item 1
of the condition, if we assume |L(v)| > 2A, instead of
2deg(v), for each v), then for every vertex v in the
graph G, it holds that Prg ,[c(v) = i] < min {5%,1}.

To see this, notice that the same calculation as in the
proof of Lemma IIL.3 above gives Prg ., [c(v) =] <
|L(U;|7A < (a*1§A+ﬁ < w=na < 3%. We will refer
to this stronger condition on list sizes (which holds, in
particular, in the case of g-colorings), as the uniformly
large list size condition.

IV. ZERO-FREE REGION FOR SMALL |w)|

As explained in the introduction, all our algorithmic
results follow from Theorem 1.4, which establishes
a zero-free region for the partition function Zg(w)
around the interval [0, 1] in the complex plane. We
split the proof of Theorem 1.4 into two parts: in this
section, we establish the existence of a zero-free disk
around the endpoint w = 0 (see Theorem IV.1): this is
the most delicate case because w = 0 corresponds to
proper colorings. Then in section V (see Theorem V.1)
we derive a zero-free region around the remainder of
the interval, using a similar but less delicate approach.
Taken together, Theorems IV.1 and V.1 immediately
imply Theorem 1.4, so this will conclude our analysis.

Theorem IV.1. Fix a positive integer A. There exists a
Uy = Uy (A) such that the following is true. Let G be a
graph of maximum degree A satisfying Condition 1, and
having no pinned vertices. Then, Zg(w) # 0 for any w
satisfying |w| < vy,

In the proof, we will encounter several constants

which we now fix. Given the degree bound A > 1, we
define

0.01
ER ‘= ——

0.01
p

0.01
Er- F (9)

A2’ g1 =
We will then see that the quantity v,, in the statement
of the theorem can be chosen to be 0.2¢,,/2%. (In
fact, we will show that if one has the slightly stronger
assumption of uniformly large list sizes considered in
Remark 5, then v,, can be chosen to be &,,/(300A)).

Throughout the rest of this section, we fix A to be
the maximum degree of the graphs, and let €,,,¢1,€R
be as above.

We now briefly outline our strategy for the proof.
Recall that, for a vertex u and colors 7, j, the marginal

o ) (w
ratio is given by Rgz) (w) = ;G”E ; When G is an
G u\W

and &, :=

unconflicted graph, R(éju)(O) is always a well-defined

non-negative real number. Intuitively, we would like
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to show that Rg:i)(w) R~ Rg:f} (0), independent of the
size of G, when w € C is close to 0. Given such
an approximation one can use a simple geometric
argument (see Consequence IV.3) to conclude that the
partition function does not vanish for such w. In order
to prove the above approximate equality inductively
for a given graph G, we take an approach that exploits
the properties of the “real” case (i.e., of Rg:i) (0)) and
then uses the notion of “niceness” of certain vertices
described earlier to control the accumulation of errors.
To this end, we will prove the following lemma via
induction on the number of unpinned vertices in G.
Theorem IV.1 will follow almost immediately from the
lemma; see the end of this section for the details.

Lemma IV.2. Let G be an unconflicted graph of
maximum degree A\ satisfying Condition 1, and u be any
unpinned vertex in G. Then, the following are true (with
Ew, €1, and €1 as defined in eq. (9)):

1) Forie Dy, ‘Zg?u(w)‘ > 0.
2) Fori,j € Iy, if u has all neighbors pinned, then
R (w) = Rg2)(0) = L.
3) Fori,j € I'y, ifu has d > 1 unpinned neighbors,
then
LR REY (w) - R1n REY
P ‘ n Ry, (w) —Rin R, (0)‘ < eR.
4) For any i,j € Ty, if u has d > 1 unpinned
neighbors, we have % |S1n Rgi) (w)‘ <eq.
5) Foranyi &1y, j €Ty, then ‘Rgf} (w)’ < éw.

We will refer to items 1 to 5 as “items of the induction
hypothesis”. The rest of this section is devoted to the
proof of this lemma via induction on the number of
unpinned vertices in G.

We begin by verifying that the induction hypothesis
holds in the base case when w is the only unpinned
vertex in an unconflicted graph G. In this case, items 3
and 4 are vacuously true since u has no unpinned
neighbors. Since all neighbors of u in G are pinned,
the fact that all pinned vertices have degree at most
one implies that G can be decomposed into two disjoint
components GG; and Ga, where (G consists of u and
its pinned neighbors, while G2 consists of a disjoint
union of unconflicted edges (since G is unconflicted).
Now, since G and G5 are disjoint components, we
have Zg)u(w) =Zg,(w) =1forall i € T'g, and all
w € C. This proves items 1 and 2. Similarly, when
i & gy, we have Zg)u(w) = w™, where n; > 1 is
the number of neighbors of u pinned to color . This
gives
"< Ews

|RED )| < o



since |w| < g, < 1, and proves item 5.

We now derive some consequences of the above
induction hypothesis that will be helpful in carrying
out the induction. Throughout, we assume that G is
an unconflicted graph satisfying Condition 1.

Consequence IV.3. If |L(u)| > deg,(u) + 1 then

|Z6(w)| = 0.9 min \zg}vm)\ > 0.

Proof: Note that Zg(w) = > icr Zg?u(w). From
item 4, we see that the angle between the complex
numbers Zg,)u(w) and Zg)u(w), when i,j € T,
is at most de;. Applying Lemma IL7 to the terms
corresponding to the good colors and item 5 to the
terms corresponding to the bad colors, we then have

)> Zéf?u<w>\

i€L(u)

d
> (|Fu| cos % — |L(u) \ Ty 5w> lrrel%n

D))

)

d
> (cos;I—degG(u)-gw> mln‘Z( )’7

where we use the fact that |L(u)\T,| < degea(u)
and |L(u)| > degg(u) + 1 in the last inequality.
Since de; < 0.01 and &, < 0.01/A, we then have
‘ZzEL(u) Z((;l)u( )‘ > 0.9min;er, Gf,v(w) , which
in turn is positive from item 1. |

Consequence IV.4. The pseudo-probabilities approxi-
mate the real probabilities in the following sense:

1) for any i € Ty, |Pawlc(u) = i]| < 1.2e,,.

) forany j el

’ng‘ 9 I Pole(u) = ]
<der 4 2Aey,
and,
PG w[ ( ) .7]
%1 'PG[(H‘ < d€R+d51+2A€wa

where d is the number of unpinned neighbors of u in G.

Proof: For part (1), by Consequence IV.3 we have
|28, (w)
| Za(w))|

128, (w)|

28, w)|

Pawle(u) = i]| =

< 1.2¢y,,

0.9 minjer,
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where the last inequality follows from induction hy-
pothesis item 5.

For part (2), by items 2 to 4 of the induction
hypothesis, there exist complex numbers &; (for all
i € T'y) satisfying |R¢;| < deg and |J¢;| < der such
that

1

z8),(0) Z,(w)
=t Y
= ZG,u(O) i€ L(u)\I'y ZGu(w)
=A =B

Next we show that A ~ 51— and B is negligible.
. . Pgle(u)=7] )
From item 5 of the induction hypothesis we have

Pale(u) = j] - |B| < Acy. (10)
Z(') (0)
Now, note that Zzel““ Z(J) © = Pc[c(lu):j]' Further,
when ey < 0.1/A, we also have®
Rebi € (e* R _ %2, ed”"') , and |arg e%i| < dej.
(11)

The above will therefore be true also for any convex
combination of the e%. Noting that Pg[c(u) = j]- A is
just such a convex combination (as the coefficients of
the €% are non-negative reals summing to 1), we have
Pgle(u) = j] - RA € (e79r — d%e2, er),  (12)
|arg(Pgle(u) = j]- A) | < ds;.  (13)

Together, eqgs. (10), (12) and (13) imply that if C' :=

% then (using the values of er, ey, and 6“,)

RC € (e_dER — d?*e? — Acy, eder 4 Asw) , and
argC € (—dey — 2Aey,,de; + 2Aey,) .

Thus, since e5,ep are small enough and &,
0.01 min{es,er}, we have

<

|RInC| < deg + deg + 2Ae,,, and
ISInC| < dep + 2A¢gy,.

®Here, we also use the elementary facts that if z is a complex
number satisfying ®z = r and |Sz| = 0 < 0.1 then |arge®| =
|Sz] = 0, and " > Re® = e"cosf = exp(r + Incosh) >
exp(r —02) > e" —e"02. Hence if r < 0, we have Re® > e” — 62,

"Here, for the second inclusion, we use the following elementary
computation. Let z,s be complex numbers such that ®z = r €
[0.9,1.1], Jarg z] = 6 < 0.1 and |s| < 0.1. Then, we have R(z +

s) > r — |s| and |S(z 4+ s)| < r0 + |s|. Thus, |arg(z + s)| <
[S(z+s)| 0+|s| 146
Rl S rope = 0+ sl 5y <0421l



Here we use the elementary fact that for z € C,
RInz = In|z| and Flnz = argz. Further, for z
satisfying Rz = r € [0.9,1.1] and |argz| = 6 < 0.1,
we also have InT < Rlnz < Inr+Insecd < Inr + 62.
|

In the next consequence, we show that the error
contracts during the induction. We first set up some
notation. For a graph G, a vertex u, and a color ¢ € Iy,
we let ag)u(w) = InPg wlc(u) = i]. We also recall
that v := 1 — w, and the definition of the function

fy(z) == —In(1 — ve®) from eq. (2).

Consequence IV.5. There exists a positive constant
n € [0.9,1) so that the following is true. Let d be the
number of unpinned neighbors of u. Assume further that
w is nice in G. Then, for any colors i, j € 'y, there exists

a real constant ¢ = cg,; € [0, Wln] such that

L (0, () = Fi(a, (0))
—c- §R(a Lu(w) — a(i)u(O))‘ <ertew; (14)
(4) (4)

(3£, (02, () = 3, (0], ()|
< i (der + 4Aey,) + 2e4; (15)
[, (a9, )| < ﬁln (g + 40ey) + £u. (16)

Proof: Since w is nice in G, the bound Pg o[c(u) = k] <
ﬁ (for any k € Ig,) applies. Combin-
ing them with Consequence IV.4 we see that
ag L (W), aé)u(O) ag)u(w) ag)u(O) lie in a domain D
as described in Lemma IL6 (Wlth the parameter x
therein set to 1), with the parameters ¢ and 7 in that

observation chosen as

¢ =1In(d+2) — deg — de; — 2Ag,,, and .

T =der + 2Ac,,. (7)
Here, for the bound on (, we use the fact that for
Jj € T'gu Pagle(u) =j] < d%_Q, which is due to u
being nice in G.

The bounds on ¢,,,¢; and eg now imply es > (d+
2)(1—2%2) > d+ 1.94, and also that 7 < 0.02/A.
Thus, the conditions required on ¢ and 7 in Lemma IL.6
(ie. that 7 < 1/2 and 72 4+ e7¢ < 1) are satisfied.
Further, pr and p; as set in the observation satisfy
pr < ﬁ, where 77 can be taken to be 0.94, and
pr < 3ejg.

Using Lemma IL5 followed by the value of ¢,,, and
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noting that a( ) ,(0) is a real number, we then have

[Rf1(afl), () = (a2, (0))
—c- %(a(é?u(w) - a(é)u(O)) ‘
< pr[3 (0, (w) = o, )]

< 3eq(dey +2A¢,,) < 4de? < ¢y, (18)

for an appropriate positive ¢ < 1/(d + 7). This is
almost eq. (14), whose difference will be handled later.
Similarly, applying Lemma IL5 to the imaginary part

we have

Shlad, @) = Sfiad), ()]
< pRr - max {'%(ag)u(w) - ag)u(w))) )
[Sal), (w)|, [3al), ()|} @9

where, as noted above, pp < P +n Now, note that the
first term in the above maximum is less than de; by
item 4 of the induction hypothesis, while the other
two terms are at most de; + 2A¢e,, from item 2 of
Consequence IV.4. This is almost the bound in eq. (15),
whose difference will be handled later.

To prove the bound in eq. (16), we first apply the
imaginary part of Lemma IL5 along with the fact that
Sag?u(O) =0 to get

)

f G’Gu

0| = |31 w@) - fila
SPR" ‘\f(a(c)u( ))‘

1
T’]](dEI + Aaw).

&.(0)

< (20)

Finally, we use item 2 of Lemma IL6 (with the
parameter ' therein set to 7) to conclude the proofs
of egs. (14) to (16) . To this end, we note that ~y satisfies
|y — 1] < u, so that the condition (1 + &,) < €¢
required for item 2 to apply is satisfied. Thus we see
that for any z € D,

1£3(2) = f1(2)] < €w,

so that the quantities |8?f7(a Z)u( ) —Rf1 (a ) u(w))|,
340G, (w) = Shlag, W) I\ffw(ac)u(w))
Sfi(ad), ()], and S £, (@), (w)) — $f1(a), (w))]
are all at most &,. The desired bounds of egs. (14)
to (16) now follow from the triangle inequality and the
bounds in eqgs. (18) to (20) . [ ]
We set up some further notation for the next
consequence. For a color i € L(u) \ T, we let

S




bg)u(w) = Pgwlc(u) =i). We then consider the
function g, (z) := —In(1 — yx).

Consequence IV.6. For every color i ¢ T,

9, (0, ()] < 220

Proof: Item 1 of Consequence IV.4 implies that
bg)u(w)‘ < 1.2¢,,. Thus, recalling that |y — 1] < &,

(b3, (w))|

we get that for all ¢, < 0.01,
In(1 = b, (w))

Inductive proof of Lemma V.2

We are now ready to see the induction step in
the proof of Lemma IV.2; recall that the base case
was already established following the statement of
the lemma. Let G’ be any unconflicted graph which
satisfies Condition 1 and had at least two unpinned
vertices (the base case when |G| = 1 was already
handled above). We first prove induction item 1 for
any vertex u € G. Consider the graph G’ obtained
from G by pinning vertex u to color 7. Note that by the
definition of the pinning operation, Zg?u(w) = Zg(w),
and when i € T'¢,,, the graph G’ is also unconflicted
and satisfies Condition 1, and has one fewer unpinned
vertex than G. Thus, from Consequence IV.3 of the
induction hypothesis applied to G’, we have that
128, w)| = 1Ze ()] > 0

We now consider item 2. When all neighbors of «
in G are pinned, the fact that all pinned vertices have
degree at most one implies that G can be decomposed
into two disjoint components GG; and G2, where G
consists of u and its pinned neighbors, while G5 is
also unconflicted (when G is unconflicted) and has
one fewer unpinned vertex than G. Now, since G
and G are disjoint components, we have ng L(x)
Za,(z) for all k € ', and all « € C. Further, from
Consequence 1V.3 of the induction hypothesis applied
to G2, we also have that Zg, (w) and Z¢,(0) are both
non-zero. It therefore follows that when 7,j € I'g u,
R (w) = RG1)(0) = 1.

We now consider items 3 and 4. Recall that
by Lemma II.4, we have

dega(u) 1 — VP64
k )
1—-~P

< 2ep. [ |

R (w) = (1)

Pt G
For simplicity we write Gy, := ij’j). Note that when
i,j € gy, and G is unconflicted, so are the Gy.
Further, each G, has exactly one fewer unpinned vertex
than G, so that the induction hypothesis applies to each
Gy Note also that when ¢,j € I'g,,,, we can restrict
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the product above to the d unpinned neighbors of
u, since for such i, j, the contribution of the factor
corresponding to a pinned neighbor is 1, irrespective of
the value of w. Without loss of generality, we relabel
these unpinned neighbors as vy, va,. .., v4.

Now, as before, for s € I'g, ., we define
SZ,W(w) = InPg, wlc(vg) = s]; while for ¢ €
L(vi) \ Ty, v, we let b(Gk o (W) = Pay wle(vg) =]

For a graph G, a vertex u and a color s, we let Beg.u(s)
be the set of those neighbors of w for which s is
a bad color in G \ {u}. For simplicity we will also
write B(s) := Bg(s) when it is clear from the
context. As before, we have v = 1 — w, f,(x)
—1In(1 —~e”), gy(x) = —In(1 — yx). From the above
recurrence, we then have:

(fv( Gk,vk( )) fv( Gk,vk(w)))
f'y(a

~In g (w)

>

v €B(H)NB())

>

vk €B(i)NB(j)

()

Gr,vk

+ (w)

(w)

)
)
()
)

(4)
Gk,vk kavk

wO—m@ (w))):

(22)

Note that the same recurrence also applies when w is
replaced by 0 (and hence by 1), except in that case
the last three sums are 0 (as, when 4 is bad for vy, in
Gy, we have bglﬂ/k (0) := Prg, [c(vg) =] = O):

) - 1(agl),.,))

(0))

~InR¢)(0)
Z (f1 (a

v €B())NB(H)
(1)
fl (aGIwUk

DY

vk €B(1)NB(J)

>

vaB(i)ﬂB(j)

(@

G,vk

(4

Gi,vk

(23)

fi(ad) ., ).

Further, by Consequence IV.6 of the induction hypoth-
esis applied to the graph G}, at a vertex v, € B (z§ (re-

spectively, v, € B(j)) we see that ‘gW (bglvk (w) ‘ <



bgi,vk (w)) < 2¢y). Thus, ap-
plying the triangle inequality to the real part of the

difference of the two recurrences, we get

2e. (respectively, g,y(

‘9%1 RUD(0) — In REY (w )‘§2A€w—|—max{

{ (R (@l (@) = 1 (@l ()
( |
|
|

max
v €B(H)NB(F)

3

Iy (a(G,z,vk (w)> h (aGk,vk ) )

)
2
Rf (al) ., ) = (0l )|}
Ry (a8) o)) = 11 (o), )]} }-

(24)

max
vr €B()NB())

max
v €B()NB(i)

In what follows, we let v, be the vertex that
maximizes the above expression, and dj, be the number
of unpinned neighbors of vy in Gj. Before proceeding
with the analysis, we note that the graphs G} are
unconflicted and satisfy Condition 1, and further that
vy is nice in Gy, (this last fact follows from Lemma III.2
and the fact that G satisfies Condition 1). Thus, the
preconditions of Consequence IV.5 apply to the vertex
vk in graph Gj. We now proceed with the analysis.

We first consider v, € B(i) N B(j). Note that this
implies that ¢ € I'g, ,,. Thus, the conditions of Conse-
quence IV.5 of the induction hypothesis instantiated on

G, apply to vy, with color i, and we thus have from
eq. (14) that

‘%fv(ack o (W )) f1 (aGk Uk(()))‘
Ral)  (w) —

G,k —aqy

_— 0 ) +er+ €w,
< )+

where dj, is the number of unpinned neighbors of
v and i € [0.9,1) is as in the statement of Con-
sequence IV.5. Applying item 2 of Consequence IV.4
(which, again, is applicable because i € I'g, 4,), wWe

L%Q(Gi o (W) @ (0)’ <di(egp+er)+

then have —ag, v,
at
()]

2A¢e,,, so t

‘%fv( Gk,vk(w)) fl( o

G v

er + 2e5 + 3Ag,,. (25)

k
T dip+n

By interchanging the roles of ¢ and j in the above
argument, we see that, for v, € B(j) N B(7)

%7, (a) (@) = £i(al),,, )]

dy,
er + 2e5 + 3Ag,,.
dr +1 R !

< (26)
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We now consider v, € B(i) N B(j). Note that both ¢
and j are good for vy in Gy, so that

(R (0], () = 11 (a2, () )

= (R (a8, (@) = £i(al).,, () )]
< oA (%fw (agk)vk (w)) - hf (a&)vk (0)> )

3"

ag,, vy,

(R (08, (@) = £ (0, @) )]

Now, for any color s € I'g, ., , Consequence IV.5 of the
induction hypothesis instantiated on Gj, and applied
to v and s shows that there exists a Cs = Cs 4., €
[0,1/(dr + n)] such that

(0))

‘%fv( Gkvk(w)) fl(
(O))‘ <er+ey. (27)

(s)
Substituting this in the previous display shows that

~Agy, vy
(R, (a8 o, (@) = £1 (a8, @)
~ (%, (all) ., 2.,.0))|

() = £i(a

(s)

ag,, vy,

Gr,vg
(i') (i")
= "J’IélI?g(k - (maGk Vg (w) - aGkﬂJk (O))
_C (%ag;)’vk (w) - agk)vk (0))‘ + 2e1 + 2e4
=2er+2e,+ max |CyRE — CHRES |
i, j €l ay vy,
= 25[ + 2€w + Cs%gs — Ct%é-lh (28)
where & := ag)k’vk (w) — a(cl;)k v, (0) for I € T'g, 4, and

s and t are given by

t := argmin Cy¥RE;y.

!
€lqy vy,

s:= argmax CyRE;  and

V'€DG, v,
We now have the following two cases:
Case 1: (RE;) - (RE;) < 0. Recall that Cy, C; are non-
negative and lie in [0,1/(dy + n)]. Thus, in this case,
we must have RE; > 0 and RE; < 0, so that
CS%ES - Ctg%gt C §R€s + Ct |§R£t|
< %fs + |§R§t| _ ‘%gs - %§t|
T di+m dp +1n

. (29)

Now, note that
%gs - %gt
Pawle(vy) = §]
= Rlp YL/ 7]
" Polelor) = 5]
PGk,w[c(Uk) = 5] _
Pey,wle(ve) =1
= §R1nRg£}k( ) — In RS

Gi,vk

—RIn
=RIn

0).



Note that all the logarithms in the above are well
defined from Consequence IV.4 of the induction hypoth-
esis applied to G and vy, (as s,t € T'g, 4, ). Further,
from items 2 and 3 of the induction hypothesis, the last
term is at most diepr in absolute value. Substituting
this in eq. (29), we get

dy,

) ; — < .
Cnga CtéRgt =4 +?75R

(30)

This concludes the analysis of Case 1.

Case 2: R for i’ € T, ,, all have the same sign.
Suppose first that R,y > 0 for all i’ € T'g, 4. Then,
we have

%fs dk
T dp+n T dip+n

0 S Cs%é.s *CﬁRgt +5I+4A5w;

(31)
where the last inequality follows from item 2 of
Consequence 1V.4 of the induction hypothesis applied
to (G}, at vertex vy with color s, which states that
|REs| < di(er+er) +4Ag,,. Similarly, when R¢;r <0
for all ' € T'g, .,, we have

0< Csmfs - Ctmgt = Ot|§R§t| - 09‘%€€|
|RE4|
T dp+n
di-er
< 4Ae,, (32
< dk+n+51+ € (32)

where the last inequality follows from item 2 of
Consequence IV.4 of the induction hypothesis applied
to Gy at vertex v, with color ¢, which states that
|RE| < di(er + e1) + 4Ae,,. This concludes the
analysis of Case 2.

Now, substituting eqs. (30) to (32) into eq. (28), we

get
() - (e, (0)) )

|(#£, (., 6

G,k

(%1, () o) = £ (). @)
< T cnter 50 )

Substituting eqs. (25), (26) and (33) into eq. (24), we
get
7 (w) = I RE7(0)

+ 3er + 7TAey, < €g,

1 i,
7[R RY
< G er
S0t
where the last 1nequahty follows since nep > (A +
1)(3e; + 7TAey,) (recalling that 0 < dp < A and

n € [0.9,1)). This verifies item 3 of the induction
hypothesis.
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For item 4, we consider the imaginary part of eq. (22).
As in the derivation of eq. (24), we use the fact that
the induction hypothesis applied to the graph Gy
at the vertex v, € B(i) (respectively, vy € B(j))

implies that ‘ Gy (b(c;i . (w)) ‘

(bgk o (W )) < 2¢4,). This yields

S ‘sm R (w)| < 28, + max {

S (), () -
(®

97, (a) ., ()

3 (a8 ()|

Again, let vy be the vertex that maximizes the above
expression, and dj be the number of unpinned neigh-
bors of vy, in Gj. We first consider v, € B(i) N B(j).
Applying eq. (15) of Consequence IV.5 of the induction
hypothesis to the graph Gy, at vertex v, with colors

1, € g, v, gives
()]

9f, (., () =
er +6Ae,,.

< 2, (respectively,

max___
v €B(1)NB(J)

b

(w))

(4)
Sty (al).,,

max
v €B(I)NB())

)

max (34)

v €B(5)NB(3)

(4)
Sty (al).,,

d
<—— (35)
di +1n
Now consider v, € B(i)NB(j). For this case, eq. (16) of
Consequence IV.5 of the induction hypothesis applied
to G}, at vertex v with color ¢ € I'g, ,, gives
<

(w))‘ T di+m

Similarly, for vy, € B(j) N B(i), eq. (16) of Conse-
quence IV.5 of the induction hypothesis applied to G,
at vertex vy, with color j € I'g, ., gives

‘%f’y (a‘gz Vg

Substituting egs. (35) to (37) into eq. (34) we have

‘%fﬂy (agl Vi

er +5Ac,. (36

<

(w)) ‘ dkdi —er+ 50z,

(37)

dy,

< er + 8Aeg, < ey,
k+n

‘glnR”)(w)’

where the last inequality holds since ne; > 8(A +
1)Aey, (recalling that 0 < d, < A and 5 € [0.9,1)).
This completes the proof of item 4 of the induction
hypothesis.

Finally, we prove item 5. Since ¢ ¢ I',,, there exist
n; > 0 neighbors of u that are pinned to color 7. Let
H be the graph obtained by removing these neighbors
of u from G. Then, H is an unconflicted graph with
the same number of unpinned vertices as G which also



satisfies 4, j € Iy ,,; we can therefore apply the already
proved items 1 to 3 to H to conclude that

’R%’j)(w)’ < ’Rg’j)(())‘ eder (38)
Now, since %,j € I'g,, we can apply the recurrence
of Lemma I1.4 in the same way as in the derivation of
eq. (21) above to get

N degu(w) 1 —P s [c(vg) =1
R (1) = Hy —w . (39
Hu (w) H 1—=P,un, lc(vr) = j] 9
k=1 Hw

where, for the reasons described in the discussion
following eq. (21), the product can be restricted to un-
pinned neighbors of w in H. Renaming these unpinned
neighbors as vy, v, ..., vy, we then have

d =
H k) =1])

1y 0 =3

where, as before, Hy, := H,gi’j). Now, since G satisfies
Condition 1, so does H. Thus, for 1 < k < d, vy is
nice in Hj, (Lemma II1.2), and hence, Py, [c(vr) = j] <
Fi) +2 for 1 < k < d, where di > 0 is the number of
unplnned neighbors of vy in Hy. We then have

d
k=1
d

:1

1 — PHk [C(
1 — ,PHk [C(

0< R (0 (40)

(1 — Pu,e(vr)
(1 = Pr, [e(vr)

-1I

k=1

0< Ri”(0) =

kor2<2A
dp +1 —

<

dk +2

(As an aside, we note that one could get a better bound
under the slightly stronger assumption of uniformly
large list sizes considered in Remark 5. Under the
conditions of that remark, we have Py, [c(v) = j] <
min { 3 A,l} so that the above upper bound can be
improved to R(L’J)( 0) <e* for A >1)

Combining the estimate with eq. (38), we get
R%’])(w) < 5-2% since deg < 1/2. Now note that
since j € I'g 4,

Z3) (w) =w Z}y) (w), and ZE) (w) = Z}) (w),
so that ’R ’J) )’ = |w|™ R%’ju)( )‘ <528 |Jw|™.
The latter is at most €,, whenever |w| < 0.2¢,,/22.
This proves item 5, and also completes the inductive
proof of Lemma IV.2. (Note also that using the stronger
upper bound above under the condition of uniformly
large list sizes, we can in fact relax the requirement
further to |w| < &,/(300A).) O

We conclude this section by using Lemma IV.2 to
prove Theorem IV.1.
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Proof of Theorem IV.1: Let G be a graph satisfying
Condition 1. Since G has no pinned vertices, G is
unconflicted. Let u be an unpinned vertex in G. By
Consequence IV.3 of the induction hypothesis (which
we proved in Lemma IV.2), we then have Z,,(G) # 0
provided v,, < 0.2¢,,/24.

Furthermore, as discussed above, under a slightly
stronger assumption of uniformly large list sizes con-
sidered in Remark 5, v, can be chosen to be €,,/(300A).

|

V. ZERO-FREE REGION AROUND THE INTERVAL
(0,1]

In this section, we consider the case of w close
to [0,1] but bounded away from 0. In particular,
we prove the following theorem, which complements
Theorem IV.1.

Theorem V.1. Fix a positive integer A and let v, =
vy (A) be as in Theorem IV.1. Then, for any w satisfying

Rw € [Vw/2,1 412 /8] and |Sw| < v2 /8,
(41)
and any graph G satisfying Condition 1, we have

Zg(w) # 0.

(Here, we recall that as described in the discussion
following Theorem IV.1, v, can be chosen to be
€w/(300A) when the uniformly large list size condition
of Remark 5 is satisfied. However, as in that theorem,
in the case of general list coloring, one chooses
Vi = 0.28,,/28))

For w as in eq. (41), we define w to be the point on
the interval [0, 1] which is closest to w. Thus

_ {?Rw
W=
1

We also define, in analogy with the last section, v :=
1 —w and 4 := 1 — w. We record a few properties of
these quantities in the following observation.

when Rw € [v,,/2,1];
when Rw € (1,1 + v2/8].

Observation V.2. With w,~,w and 7 as above, we
have

1) 0<q, [y <1

2) | lnw—Inw| < vy

Proof: We have 7 € [0,1 — v,,/2], Ry € [-12/8,1 —
Vi /2] and |Sy| < v2 /8. Since v, < 0.01, these bounds
taken together imply item 1. We also have 0 < @ <
|w| <@ +v2 /4 and @ > v,,/2. Thus
2 > v
4w ) — 2

Il

— §1n<1+
w

0<R(Inw—Inw)=1In



Similarly, S(lnw — Inw) = Slnw = argw, so that

ISw| vy,
Mo e
Rw 4
Together, the above two bounds imply item 2. [ |
In analogous fashion to the proof of Theorem IV.1,
we would like to show that Rgi)(w) ~ Rgi)(w)
independent of the size of G. (Note that for positive w,
R(é»])

|S(Inw — Inw)| < |argw| <

2/ (w) is a well defined positive real number for any
graph.) To this end, we will prove the following analog
of Lemma IV.2 for any graph G satisfying Condition 1
and any vertex v in G, via an induction on the number
of unpinned vertices in G. The induction is very similar
in structure to that used in the proof of Lemma IV.2,
except that the fact that w has strictly positive real
part allows us to simplify several aspects of the proof.
In particular, we do not need to consider good and bad
colors separately, and do not require the underlying
graphs to be unconflicted.

As in the previous section, we assume that all graphs
in this section have maximum degree at most A > 1,
and define the quantities €,,, €, €7 in terms of A using
eq. (9).

Lemma V.3. Let G be a graph of maximum degree A
satisfying Condition 1 and let u be any unpinned vertex
in G. Then, the following are true (here, €,,,€1,cR are
as defined in eq. (9)):
1) Fori € L(u), ]zg‘}u(w)\ > 0.
2) Fori,j € L(u), ifu has all neighbors pinned, then
[In RY) (w) — In RE) ()] < eq.
3) Fori,j € L(u), ifu has d > 1 unpinned neighbors,
then
LRI RED (1) — RIn RED (3
g ' n Ry (w) nRey (w)’ < egR.
4) For any i,j € L(u), if uw has d > 1 unpinned
neighbors, then % ’31n R(éi) (w)‘ <er.

We will refer to items 1 to 4 as “items of the induction
hypothesis”™. The rest of this section is devoted to the
proof of this lemma via an induction on the number
of unpinned vertices in G.

We begin by verifying that the induction hypothesis
holds in the base case when w is the only unpinned
vertex in a graph G. In this case, items 3 and 4 are
vacuously true since v has no unpinned neighbors.
Since all neighbors of v in G are pinned, the fact that
all pinned vertices have degree at most one implies that
G can be decomposed into two disjoint components
G and G4, where Gy consists of u and its pinned
neighbors, while G5 consists of a disjoint union of
edges with pinned end-points. Let m be the number of
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conflicted edges on G, and let ny denote the number
of neighbors of w pinned to color k. We then have
Z3) (2) = @™ Zg, (x) = ™™ for all z € C. This
already proves item 1 since w, W # 0. Item 2 follows
via the following computation (which uses item 2 of
Observation V.2):

| In R (w) — In RYD ()| = |ni —ny| - [ Inw — In @]
< Al/w < Ew-

We now derive some consequences of the above
induction hypothesis that will be helpful in carrying
out the induction.

Consequence V4. If |L(u)| > 1, then | Zg(w)| > 0.

Proof: Note that Zg(w) = > ,cr Zg)u(w) From
item 4, we see that the angle between the complex
numbers Zg)u(w) and Zg’)u(w), for all 4,5 € L(u), is

at most de;. Applying Lemma I1.7 we then have

' d )
‘ Z Zg)u(w)‘ > |L(u)]| cos %1 }g%n ’Zg)u(w)‘
i€L(u) w
. i)
> 0.9 min |27, (w)],

when |L(u)| > 1 and de; < 0.01. This last quantity is
positive from item 1. [ |

Consequence V.5. Forallep,er,€,, small enough such
that e; < eg and €, < 0.01ey, the pseudo-probabilities
approximate the real probabilities in the following sense:
for any j € L(u),

PGw[C(U)J’]‘ .
31 ) | = 1S InPg _
o B =] 1Pl =l
<der 4+ 2Aey;
‘%IHW‘ < dep+dep + 2Ae,
Pe,wlc(u) = j]

where d is the number of unpinned neighbors of v in G.

Proof: Using items 2 to 4 of the induction hypothesis,
there exist complex numbers &; (for all ¢ € T',)
satisfying |R¢;| < der + €y and |S¢;| < deg + ey
such that

Po.sle(u) = j 26
, =Pai = .
Pewle(u) = 7] Gooleu) = J] iELZ(u) Zg,)u(w)
= Pe.ale(u) = ] e
< Z() Z3) (@)
(42)



Zg, (@) _ 1
i€L(u) Zg7),L(1I’) — Pa,elc(u)=j]’
that the sum above is a convex combination of the
exp(&;). From the bounds on the real and imaginary
parts of the &; quoted above, by a calculation similar to

that in eq. (11), we also have (when e7,¢,, < 0.01/A)

Rebi € (e_deR_E“’ — (deg + €4)?, ed€R+5“’), and

< d€] + Ew-

Now, note that ) so

| arg e’

The above will therefore be true also for any convex
combination of the €%, in particular the one in eq. (42).

We therefore have, for €' ;= Lg-alc(W=i]
PG w[c(u) j]
RC € (emdonew

larg C| < der + €.

— (der + Ew)27 ed5R+5w)

)

Now recall that for |#| < 7/4, we have —02? <
Incosf < —92/2. Thus, using the values of €,,¢;
and e, we have

|RInC| < deg + dey + 2Aey,, and

SInC| < der + €.

As before we define a(é?u(w) = InPg wlc(u) =1,
and recall the definition of the function f,(z) :=
—In(1 —~e®).

Consequence V.6. There exists a positive constant 1 €
[0.9,1) so that the following is true. Let d be the number
of unpinned neighbors of u. Assume further that the
vertex u is nice in G. Then, for any colors i,j € L(u),

there exist a real constant ¢ = cg i € [0, ﬁ] such
that
Rf (ol (i)
Flag, (w)) = f5(ag., ()
—c- %(acu( )—aGu )‘ +ew;  (43)
94, (), () = 3, (af u(w»]
1
< (deg 4 4Aey) + 2. 44
=d+n (der Ew) € (44)
Proof: Since w is nice in G, the bound Pg g[c(u) = k] <
ﬁ (for any k € L(u)) applies. Combin-
ing them with Consequence V.5 we see that

ag)u(w) a(é)u(w) a(é)u(w) ag)u( ) lie in a domain D

as described in Lemma IL6, with the parameters ¢ and
7 in that lemma chosen as

¢ =In(d+2) — deg — de; — 2A¢ey,, and
T =der + 2Ae,,.

Here, for the bound on (, we use the fact that for
k € L(u), PQ@[ ( )—k] <

d+2, since wu is nice in
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G. As in the proof of Consequence IV.5, we use the
values of €,,, €1, € to verify that the condition 7 < 1/2
and 72 + e ¢ < 1 are satisfied, so that item 1 of
Lemma IL.6 applies (with the parameter ~ therein set to
7) and further that pr and p; as set there satisfy pp <
ﬁ and p; < 3¢y, with n = 0.94. Using Lemma IL5
followed by the bound on ¢, we then have

Rfs (0, (w) = 5, (@)
—c- %(ag)u( ) —a? (@ ))\ < 3er(der + 20ey)

< 4d51 <er, (45)

for an appropriate positive ¢ < 1/(d + 7). This is
almost eq. (43), whose difference will be handled later.

Similarly, applying Lemma IL5 to the imaginary part
we have

3(£5(08, (@) = S5 (w)))|
< pr - max {'%(aé)u(w) — ag?u(w))
[Sag, )] |Sad, ()]}, o)

where, as noted above, pp < ﬁ. Now, note that the
first term in the above maximum is less than de; + &,
by items 2 and 4 of the induction hypothesis, while
the other two are at most de; + 2A¢,, from item 2 of
Consequence V.5.

Finally, we use item 2 of Lemma IL.6 with the

)

)

parameter ' therein set to 7. To this end, we note
that |y — 4| < &4, and that with the fixed values of
Ew, €R, and e7, the condition (1+¢,,) < €S is satisfied,
so that the item applies. Using the item, we then see
that for any z € D,

1£1(2) = f5(2)] < ew

Thus, the quantities |§Rf7(aG L)) —

18£8 () — Sf5a8, )], SF,(0), (w)) —

Sf3(ad), (w))], and [3£, (D), (w)) — S3(ad), (w)|
are all at most ¢,. The desired bounds now follow
from the triangle inequality and the bounds in egs. (45)
and (46). [ |

Rf5(agy, (w)]
(4)

Inductive proof of Lemma V.3

We are now ready to see the inductive proof of
Lemma V.3; recall that the base case was already
established following the statement of the lemma. Let
G be any graph which satisfies Condition 1 and had
at least two unpinned vertices (the base case when
|G| = 1 was already handled above). We first prove
induction item 1 for any vertex u in G. Consider the



graph G’ obtained from G by pinning vertex u to color
1. Note that by the definition of the pinning operation,
7§ (w) = Zer (w). Further, the graph G also satisfies
Condition 1, and has one fewer unpinned vertex than G.
Thus, from Consequence V.4 of the induction hypothesis

applied to G’, we have that ‘ZG u( ‘ = |Zg (w)| > 0.

We now consider item 2. When all neighbors of «
in G are pinned, the fact that all pinned vertices have
degree at most one implies that G' can be decomposed
into two disjoint components G; and G2, where G
consists of v and its pinned neighbors, while G5 has
one fewer unpinned vertex than G. Let nj be the
number of neighbors of u pinned to color k. Now,
since G; and G2 are disjoint components, we have
Z& (@) = a™Zg,(x) for all k € L(u) and all
x € C. Further, from Consequence V.4 of the induction
hypothesis applied to G, we also have that Zg, (w)
and Z¢, () are both non-zero. It therefore follows that

|0 RED) (w) — I RED (@) = [n; — ny| - | Inw — In )|
S AV'IU < 611}'

We now consider items 3 and 4. Recall that
by Lemma I1.4, we have

dezc ) (1= 3Py, le(o) =1])

(3,9
RG u (w) = :
k=1 (1 - ’Y’PGSJ)M[C(W) = J )

)

As before, for simplicity we write G, := G,(;’] ). Note
that each Gy, has exactly one fewer unpinned vertex
than G, so that the induction hypothesis applies to each
G, Without loss of generality, we relabel the unpinned
neighbors of u as vy, vg,...,v4. Let ny be the number
of neighbors of w pinned to color k. Recalling that
1 —~ = w, we can then simplify the above recurrence
to

L =7Pgaa, (k)zi])

1 (1=7Pgin ,lev k):j]).

&) ) :

s]. From the above recurrence, we

Now, as before, for s € L(vg) we define a

InPg, wlc(vg) =
then have,

—In R(éi) (w) = (n; —nj)Inw

5 (£ (a6 @) = £, (el o, (w) ). @)
k=1
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Note that the same recurrence also applies when w is
replaced by @ (and hence ~ by 7):

- ng;g)( &) = (n; — n;) Ina
+ Z (fv (“Gk,m )) - f5 (a (u?)) )

(Recall that since Rw,w > 0, Inw and In @ are well
defined).

()

Gr,vg

n; —nj| < A, and
the fact that Av,, < e, we have

[n; —nj| - [Inw — In@| < e,.
Applying the triangle inequality to the real part of the
difference of the two recurrences, we therefore get

1 i 09) [~
< R0 RE) (w) — n RES) ()

< cut s {| (R (060 00) = 15 o
(R (08).0, (@) = f5(al) (@) )

In what follows, we let v, be the vertex that
maximizes the above expression, and dj, be the number
of unpinned neighbors of v; in Gj. Before proceeding
with the analysis, we note that the graphs G}, satisfy
Condition 1, and further that vy is nice in Gy (the
latter fact follows from Lemma III.2 and the fact
that G has Condition 1). Thus, the preconditions of
Consequence V.6 applies to the vertex vy in graph Gy,
We now proceed with the analysis.

We begin by noting that

(R (08, () = 15 (0ld) ., (@) )
~ (0, (a,, (v >) ~ f2(agl.., (m)) )|
o e (§Rfv( A, o, (0 )) f»y< ag,, vk(ﬁ))))
(R (08, @) = £5(ad), (@) )|

On the other hand, for any color s € L(vg), Conse-
quence V.6 of the induction hypothesis instantiated on
Gy and applied to v, and s shows that there exists a
Cs = Cs,v,61, €[0,1/(d + )] such that

(@

Gg,vk

)

} . 48)

<

‘%fv (a(csi v (W )) f5 (aGk o (u”;))
_Cs(éRa(C?Z,vk (w) — a(Gfi vk( ))‘ <eéer+ew.



Substituting this in the previous display shows that

(R, (a8, (@) = £5 (e, (@) )
— (R (0], () = £5(a8) @) )|

@) @) -
<, max | Cr(Rag, v, (W) = aG, ., ()
— Cp(Rad, (w) = g, (@))] + 261 + 2,
= 2e5 + 264 + max |Ci/§R§i/ — Oj/%fj/| ,
i!,j' € L(vy)
=2er + 264 + CS%ES - Ctétha (49)
where & := ag)k)vk (w)— a(Gl) o, (@) forl € U, 4, and

s and t are given by

s :=argmax CyREy  and

i €L(vi)

t := argmin Cyy RE;.
i'€L(vy)

We now have the following two cases:

Case 1: (RE;) - (R€;) < 0. Recall that C, C; are non-
negative and lie in [0,1/(d) + n)]. Thus, in this case,
we must have R&; > 0 and RE; < 0, so that

CséRfs - CtéRgt = ng%gs + Ct ‘%§t|
S §R€s + |3?§t| _ |§R£s - §R526| ) (50)
di, +1n di +n
Now, note that
%gs - %ft
PGk w[c(vk) = 8] PGk w[C('Uk) = t]
= Rl %k — Rn Ok
Y Poalcw) =5 Po,alcvr) =1
P, wle(vr) = $] P, wlc(vr) = ¢
= Rl Ok — Rn Ok
P wlelur) =1 Pa,ale(or) =1
=RIn RS, (w) - RS, ().

Note that all the logarithms in the above are well de-
fined from Consequence V.5 of the induction hypothesis
applied to G, and vy. Further, from items 2 and 3 of the
induction hypothesis, the last term is at most dxeg+£4
in absolute value. Substituting this in eq. (50), we get

ng%fs - Otg%gt S d (51)

k
ER t+ Ew-
n

This concludes the analysis of Case 1.

Case 2: R for i/ € L(vy) all have the same sign.
Suppose first that R¢;; > 0 for all i’ € L(vy). Then,
we have

§R€S
dp +n

di - €Rr

0 < Cs%é-s d +

- <

+51+4A5w,

(52)
where the last inequality follows from the second in-
equality in Consequence V.5 of the induction hypothesis
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applied to G, at vertex vy with color s, which states
that |R¢s| < dik(er + €5) + 4Ae,,. Similarly, when
RE» <0 for all ¢/ € T, ,, we have

0< CséRfs - Otg%ft = Ct|%€t| - CS|§R§S|
|

er +er +4Aey,, (53)

< %

T dp+n
where the last inequality follows from the second in-
equality in Consequence V.5 of the induction hypothesis
applied to G, at vertex vy, with color ¢, which states
that |R¢;| < di(er + 1) + 4Aey,. This concludes the
analysis of Case 2.

Now, substituting eqgs. (51) to (53) into eq. (49), we

get
(R (0l () = 15 (ald)., (w)) )
=~ (Rf (0l (@) = £5(ad) L, (@) )]

dy,
< er + 3er + 5Ae,. (54
S Gy tR TR (54)
Substituting eq. (54) into eq. (48), we get
‘&eln RE2) (w) = n REZ) ()|
er+3er+ 7Aey, <egr, (55)

T dp+n
where the last inequality holds since neg > (A +
1)(3er + 7Aey,) (recalling that 0 < dp < A and
n € [0.9,1)). This verifies item 3 of the induction
hypothesis.
Finally, to prove item 4, we consider the imaginary

part of eq. (47). We first note that
In; —njl - [Shhw| <Allnw — Ind| < Ay, < gy,

We then have
‘\slnR(m (w )’ < cut

98 (al) @) = S5, (ad) L, )] 56)

Again, let vy be the vertex that maximizes the above
expression, and dj be the number of unpinned neigh-
bors of v, in G. Applying eq. (44) of Consequence V.6
of the induction hypothesis to the graph G, at vertex
v, with colors 4,5 € L(vy) gives

()]

98, (o, (@) = 91, (ad)
g1 + 6Ae,,.
n

max
1<k<d

dy,

(57)



Substituting eq. (57) into eq. (56) we then have

1 i
Z[SIRE (w)| <

i er +8Aey, < ey,
kTN
where the last inequality holds since ne; > 8(A +
1)Ag,, (recalling that 0 < dj, < A and 7 € [0.9,1)).
This proves item 4, and also completes the inductive
proof of Lemma V.3. O
We now use Lemma V.3 to prove Theorem V.1.
Proof of Theorem V.1: Let G be any graph of maximum
degree A satisfying Condition 1. If G has no unpinned
vertices, then Zg(w) = 1 and there is nothing to
prove. Otherwise, let u be an unpinned vertex in G. By
Consequence V.4 of the induction hypothesis (which
we proved in Lemma V.3), we then have Z,,(G) # 0
for w as in the statement of the theorem. [ |
The proof of Theorem 1.4 is now immediate.
Proof of Theorem 14: Let the quantity v, = 14,(A) be
as in the statements of Theorems IV.1 and V.1. Fix the
maximum degree A, and suppose that w satisfies

— 12 /8 <Rw <1+1v2/8 and |Sw| < v2 /8. (58)

Let G be a graph of maximum degree A satisfying
Condition 1. When w satisfying eq. (58) is such that
Rw < 1y,/2, we have |w| < vy, so that Zg(w) #
0 by Theorem IV.1, while when such a w satisfies
Rw > vy, /2, we have Zg(w) # 0 from Theorem V.1. It
therefore follows that Zg(w) # 0 for all w satisfying
eq. (58), and thus the quantity 7A in the statement of
Theorem 1.4 can be taken to be v2 /8. |

We conclude with a brief discussion of the depen-
dence of 7oA on A. We saw above that 7o can be
taken to be v,,(A)?/8, so it is sufficient to consider
the dependence of v, = v,(A) on A. Let ¢ = 107°.
As stated in the discussion following eq. (9), v,, can
be chosen to be 0.2¢/(22 A7) for the case of general
list colorings, or ¢/(300A%) with the assumption
of uniformly large list sizes (which, we recall from
Remark 5, is satisfied in the case of uniform g-colorings).
We have not tried to optimize these bounds, and it is
conceivable that a more careful accounting of constants
in our proofs can improve the value of the constant ¢
by a few orders of magnitude.
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