
Efficiently list-edge coloring multigraphs asymptotically optimally

Fotis Iliopoulos ∗

University of California Berkeley
fotis.iliopoulos@berkeley.edu

Alistair Sinclair †

University of California Berkeley
sinclair@berkeley.edu

Abstract
We give polynomial time algorithms for the seminal re-
sults of Kahn [19, 20], who showed that the Goldberg-
Seymour and List-Coloring conjectures for (list-)edge
coloring multigraphs hold asymptotically. Kahn’s argu-
ments are based on the probabilistic method and are non-
constructive. Our key insight is that we can combine so-
phisticated techniques due to Achlioptas, Iliopoulos and
Kolmogorov [2] for the analysis of local search algorithms
with correlation decay properties of the probability spaces
on matchings used by Kahn in order to construct efficient
edge-coloring algorithms.

1 Introduction
In graph edge coloring one is given a (multi)graph G =
(V,E) and the goal is to find an assignment of one of q
colors to each edge e ∈ E so that no pair of adjacent
edges share the same color. The chromatic index, χe(G),
of G is the smallest integer q for which this is possible.
In the more general list-edge coloring problem, a list of
q allowed colors is specified for each edge. A graph is q-
list-edge colorable if it has a list-coloring no matter how
the lists are assigned to each edge. The list chromatic
index, χ`e(G), is the smallest q for which G is q-list-edge
colorable.

Edge coloring is one of the most fundamental and
well-studied coloring problems with various applications
in computer science (e.g., [7, 12, 18, 19, 20, 30, 32, 34,
35, 36, 38]). To give just one representative example, if
edges represent data packets then an edge coloring with
q colors specifies a schedule for exchanging the packets
directly and without node contention. In this paper we
are interested in designing algorithms for efficiently edge
coloring and list-edge coloring multigraphs. To formally
describe our results, we need some notation.

For a multigraph G, let M(G) denote the set of
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matchings of G. A fractional edge coloring is a set
{M1, . . . ,M`} of matchings and corresponding positive
real weights {w1, . . . , w`}, such that the sum of the
weights of the matchings containing each edge is one. I.e.,
∀e ∈ E,

∑
Mi:e∈Mi

wi = 1. A fractional edge coloring is
a fractional edge c-coloring if

∑
M∈M(G) wM = c. The

fractional chromatic index of G, denoted by χ∗e(G), is the
minimum c such that G has a fractional edge c-coloring.

Let ∆ = ∆(G) be the maximum degree of G and de-
fine Γ := maxH⊆V,|H|≥2

|E(H)|
b|H|/2c , where E(H) is the set

of edges of the induced subgraphH . Both of these quanti-
ties are obvious lower bounds for the chromatic index and
it is known [9] that χ∗e(G) = max(∆,Γ). Furthermore,
Padberg and Rao [31] show that the fractional chromatic
index of a multigraph, and indeed an optimal fractional
edge coloring, can be computed in polynomial time.

Goldberg and Seymour independently stated the
now famous conjecture that every multigraph G satis-
fies χe(G) ≤ max (∆ + 1, dχ∗e(G)e). In a seminal pa-
per [19], Kahn showed that the Goldberg-Seymour con-
jecture holds asymptotically:

Theorem 1.1 ([19]). The chromatic index of a multi-
graph G satisfies χe(G) ≤ (1 + o(1))χ∗e(G).

(Here o(1) denotes a term that tends to zero as χe(G) →
∞.) Later Kahn proved the analogous result for list-
edge coloring [20], establishing that the List Coloring
Conjecture, which asserts that χ`e(G) = χe(G) for any
multigraph G, also holds asymptotically:

Theorem 1.2 ([20]). The list chromatic index of a multi-
graph G satisfies χ`e(G) ≤ (1 + o(1))χ∗e(G).

The proofs of Kahn use the probabilistic method and
are not constructive. The main contribution of this paper
is to provide polynomial time algorithms for the above
results, as follows:
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Theorem 1.3. There exists an algorithm that, given a
multigraphG on n vertices, constructs a (1+o(1))χ∗e(G)-
edge coloring of G in expected polynomial time.

Theorem 1.4. There exists an algorithm that, given a
multigraph G on n vertices and an arbitrary list of q =
(1 +o(1))χ∗e(G) colors for each edge, constructs a q-list-
edge coloring of G in expected polynomial time.

Clearly, Theorem 1.4 subsumes Theorem 1.3. More-
over, in a very recent breakthrough [6], Chen, Jing and
Zang proved the (non-asymptotic) Goldberg-Seymour
conjecture without exploiting the arguments of Kahn.
Even before this work, the results of Sanders and
Steurer [34] and Scheide [36] already give deterministic
polynomial time algorithms for edge coloring multigraphs
asymptotically optimally, again without exploiting the ar-
guments of Kahn. Nonetheless, we choose to present the
proof of Theorem 1.3 for three reasons. First and most
importantly, its proof is significantly easier than that of
Theorem 1.4, while it contains many of the key ideas re-
quired for proving Theorem 1.4. Second, our algorithms
and techniques are very different from those of [6, 34, 36].
Finally, as we will see, we will need to show that the algo-
rithm of Theorem 1.3 is commutative, a notion introduced
by Kolmogorov [23]. This fact may be of independent in-
terest since, as shown in [23, 15], commutative algorithms
have several additional nice properties: they are typically
parallelizable, their output distribution has high entropy,
etc.

As a final remark, we note that, to the best of our
knowledge, Theorem 1.4 is the first result to give an
asymptotically optimal polynomial time algorithm for
list-edge coloring multigraphs.

1.1 Technical Overview. The proofs of Theorems 1.1
and 1.2 are based on a very sophisticated variation of what
is known as the semi-random method (also known as the
“naive coloring procedure”), which is the main technical
tool behind some of the strongest graph coloring results,
e.g., [17, 18, 22, 26]. The idea is to gradually color the
graph in iterations, until we reach a point where we can
finish the coloring using a greedy algorithm. In its most
basic form, each iteration consists of the following simple
procedure: assign to each edge a color chosen uniformly
at random; then uncolor any edge which receives the
same color as one of its neighbors. Using the Lovász
Local Lemma (LLL) [10] and concentration inequalities,
one typically shows that, with positive probability, the
resulting partial proper coloring has useful properties that
allow for the continuation of the argument in the next
iteration. For a nice exposition of both the method and

the proofs of Theorems 1.1 and 1.2, the reader is referred
to [27].

The key new ingredient in Kahn’s arguments is the
method of assigning colors to edges. For each color c, we
choose a matching Mc from some hard-core distribution
on M(G) and assign the color c to the edges in Mc.
The idea is that, by assigning each color exclusively to
the edges of one matching, we avoid conflicting color
assignments and the resulting uncolorings.

The existence of such hard-core distributions is guar-
anteed by the characterization of the matching polytope
due to Edmonds [9] and a result by Lee [24] (also shown
independently by Rabinovich et al. [33]). The crucial
fact about them is that they are endowed with very useful
approximate stochastic independence properties, as was
shown by Kahn and Kayll in [21]. In particular, for ev-
ery edge e, conditioning on events that are determined by
edges far enough from e in the graph does not effectively
alter the probability of e being in the matching.

The reason why this property is important is because
it enables the application of a sophisticated version of
what is known as the Lopsided Lovász Local Lemma. Re-
call that the original statement of the LLL asserts, roughly,
that, given a family of “bad” events in a probability space,
if each bad event individually is not very likely and, in ad-
dition, is independent of all but a small number of other
bad events, then the probability of avoiding all bad events
is strictly positive. The Lopsided LLL used by Kahn gen-
eralizes this criterion as follows. For each bad event B,
we fix a positive real number µB and require that con-
ditioning on all but a small number of other bad events
doesn’t make the probability of B larger than µB . Then,
provided the µB are small enough, the conclusion of the
LLL still holds. In other words, one replaces the “proba-
bility of a bad event” in the original LLL statement with
the “boosted” probability of the event, and the notion of
“independence” by the notion of “sufficiently mild nega-
tive correlation”.

Notably, the breakthrough result of Moser and Tar-
dos [28, 29] that made the LLL constructive for the vast
majority of its applications does not apply in this case,
mainly for two reasons. First, the algorithm of Moser and
Tardos applies only when the underlying probability mea-
sure of the LLL application is a product over explicitly
presented variables. Second, it relies on a particular type
of dependency (defined by shared variables). The lack
of an efficient algorithm for Lopsided LLL applications
is the primary obstacle to making the arguments of Kahn
constructive.

Our main technical contribution is the design and
analysis of such algorithms. Towards this goal, we use
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the flaws-actions framework introduced in [1] and further
developed in [2, 3, 4, 15]. In particular, we use the al-
gorithmic LLL criterion for the analysis of stochastic lo-
cal search algorithms developed by Achlioptas, Iliopoulos
and Kolmogorov in [2]. We start by showing that there is
a connection between this criterion and the version of the
Lopsided LLL used by Kahn, in the sense that the former
can be seen as the constructive counterpart of the latter.
However, this observation by itself is not sufficient, since
the result of [2] is a tool for analyzing a given stochas-
tic local search algorithm. Thus, we are still left with the
task of designing the algorithm before using it. Nonethe-
less, this connection provides valuable intuition on how
to realize this task. Moreover, we believe it is of inde-
pendent interest as it provides an explanation for the suc-
cess of various algorithms (such as [25]) inspired by the
techniques of Moser and Tardos, which were not tied to a
known form of the LLL.

To get a feeling for the nature of our algorithms, it
is helpful to have some intuition for the criterion of [2].
There, the input is the algorithm to be analyzed and a
probability measure µ over the state space of the algo-
rithm. The goal of the algorithm is to reach a state that
avoids a family of bad subsets of the space which we call
flaws. It does this by focusing on a flaw that is currently
present at each step, and taking a (possibly randomized)
action to address it. At a high level, the role of the mea-
sure is to gauge how efficiently the algorithm rids the state
of flaws, by quantifying the trade-off between the proba-
bility that a flaw is present at some inner state of the exe-
cution of the algorithm and the number of other flaws each
flaw can possibly introduce when the algorithm addresses
it. In particular, the quality of the convergence criterion
is affected by the compatibility between the measure and
the algorithm.

Roughly, the states of our algorithm will be match-
ings in a multigraph (corresponding to color classes) and
the goal will be to construct matchings that avoid certain
flaws. To that end, our algorithm will locally modify each
flawed matching by (re)sampling matchings in subgraphs
of G according to distributions induced by the hard-core
distributions used in Kahn’s proof. The fact that correla-
tions decay with distance in these distributions allows us
to prove that, while the changes are local, and hence not
many new flaws are introduced at each step, the compati-
bility of our algorithms with these hard-core distributions
is high enough to allow us to successfully apply the crite-
rion of [2].

1.2 Organization of the Paper. In Section 2 we present
the necessary background. In Section 3 we show a useful

connection between the version of the Lopsided LLL
used by Kahn and the algorithmic LLL criterion of [2].
In Section 4 we present the proof of Theorem 1.3. In
Section 5, we sketch the proof of Theorem 1.2 and then
prove Theorem 1.4.

2 Background and Preliminaries
2.1 The Lopsided Lovász Local Lemma. Erdős and
Spencer [11] noted that independence in the LLL can
be replaced by positive correlation, yielding the original
version of what is known as the Lopsided LLL, more
sophisticated versions of which have also been established
in [5, 8]. Below we state the Lopsided LLL in one of its
most powerful forms.

Theorem 2.1 (General Lopsided LLL). Let (Ω, µ) be a
probability space and B = {B1, B2, . . . , Bm} be a set of
m (bad) events. For each i ∈ [m], let L(i) ⊆ [m] \ {i}
be such that µ(Bi |

⋂
j∈S Bj) ≤ bi for every S ⊆

[m] \ (L(i) ∪ {i}). If there exist positive real numbers
{xi}mi=1 such that

(2.1) bi ≤ xi
∏

j∈L(i)

(1− xj) for all i ∈ [m],

then the probability that none of the events in B occurs is
at least

∏m
i=1(1− xi) > 0.

The digraph over [m] induced by the sets L(i), i ∈
[m], is often called a lopsidependency digraph.

2.2 An Algorithmic LLL Criterion. Let Ω be a dis-
crete state space, and let F = {f1, f2, . . . , fm} be a col-
lection of subsets (which we call flaws) of Ω such that⋃
i∈[m] fi = Ω∗. Our goal is to find a state σ ∈ Ω \ Ω∗;

we refer to such states as flawless.
For a state σ, we denote by U(σ) = {j ∈

[m] s.t. fj 3 σ} the set of flaws present in σ. We con-
sider local search algorithms working on Ω which, in each
flawed state σ ∈ Ω∗, choose a flaw fi in U(σ) and ran-
domly move to a nearby state in an effort to fix fi. We
will assume that, for every flaw fi and every state σ ∈ fi,
there is a non-empty set of actions a(i, σ) ⊆ Ω such that
addressing flaw fi in state σ amounts to selecting the next
state τ from a(i, σ) according to some probability distri-
bution ρi(σ, τ). Note that potentially a(i, σ)∩fi 6= ∅, i.e.,
addressing a flaw does not necessarily imply removing it.
We write σ i−→ τ to denote the fact that the algorithm ad-
dresses flaw fi at σ and moves to τ .

Throughout the paper we consider Markovian algo-
rithms that start from a state σ ∈ Ω picked from an ini-
tial distribution θ, and then repeatedly pick a flaw that is
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present in the current state and address it. The algorithm
always terminates when it encounters a flawless state.

Definition 2.2 (Causality). We say that flaw fi causes fj
if there exists a transition σ i−→ τ such that (i) fj 3 τ ; (ii)
either fi = fj or fj 63 σ.

Definition 2.3 (Causality Digraph). Any digraph C =
C(Ω, F ) on [m] that includes every edge i→ j such that
fi causes fj is called a causality digraph. We write Γ(i)
for the set of out-neighbors of i in this graph.

Throughout this paper we consider only algorithms
with the property that fi causes fj if and only if fj causes
fi. We will thus view the causality graph as an undirected
graph. We also write i ∼ j to denote that j ∈ Γ(i) (or
equivalently, i ∈ Γ(j)).

For a given probability measure µ supported on the
state space Ω, and for each flaw fi, we define the charge

γi = max
τ∈Ω

∑
σ∈fi

µ(σ)

µ(τ)
ρi(σ, τ).(2.2)

In Section 3 we give the intuition behind the definition of
charges and also draw a connection with the parameters bi
in Theorem 2.1. We are now ready to state the main result
of [2].

Theorem 2.4. Assume that, at each step, the algorithm
chooses to address the lowest indexed flaw according to
an arbitrary, but fixed, permutation of [m]. If there exist
positive real numbers xi ∈ (0, 1) for 1 ≤ i ≤ m such that

γi ≤ (1− ε)xi
∏
j∈Γ(i)

(1− xj) for every i ∈ [m](2.3)

for some ε ∈ (0, 1), then the algorithm reaches a flawless
object within (T0 + s)/ε steps with probability at least
1− 2−s, where

T0 = log2

(
max
σ∈Ω

θ(σ)

µ(σ)

)
+
∑
j∈[m]

log2

(
1

1− xj

)
.

We also describe another theorem that can be used to
show convergence in a polynomial number of steps, even
when the number of flaws is super-polynomial, assuming
that the algorithm has a nice “commutativity” property
which we describe next.

Definition 2.5. For i ∈ [m], let Ai denote the |Ω| × |Ω|
matrix defined by Ai[σ, σ′] = ρi(σ, σ

′) if σ ∈ fi, and
Ai[σ, σ

′] = 0 otherwise. A Markovian algorithm defined
by matrices Ai, i ∈ [m], is commutative with respect to a
causality relation ∼ if for every i, j ∈ [m] such that i � j
we have AiAj = AjAi.

We note that Definition 2.5 was introduced in [3], as a
generalization of the combinatorial definition of commu-
tativity introduced in [23]. While the latter would suffice
for our purposes, we choose to work with Definition 2.5
due to its compactness.

Theorem 2.6. Let A be a commutative algorithm with
respect to a causality relation ∼. Assume there ex-
ist positive real numbers {xi}i∈[m] in (0, 1) such that
condition (2.3) holds. Assume further that the causal-
ity graph induced by ∼ can be partitioned into n
cliques, with potentially further edges between them.
Setting δ := mini∈[m] xi

∏
j∈Γ(i)(1 − xj), the ex-

pected number of steps performed by A is at most t =

O
(

maxσ∈Ω
θ(σ)
µ(σ) ·

n
ε log n log(1/δ)

ε

)
, and for any param-

eter λ ≥ 1,A terminates within λt resamplings with prob-
ability 1− e−λ.

As shown in [15, Theorem 3.2], the proof of Theo-
rem 2.6 reduces to that of the analogous result of Haue-
pler, Saha and Srinivasan [13] for the Moser-Tardos algo-
rithm, and hence we omit it.

2.3 Hard-Core Distributions on Matchings. A prob-
ability distribution ν on the matchings of a multigraph
G is hard-core if it is obtained by associating to each
edge e a positive real λ(e) (called the activity of e) so
that the probability of any matching M is proportional to∏
e∈M λ(e). Thus, recalling that M(G) denotes the set

of matchings of G, and setting λ(M) =
∏
e∈M λ(e) for

each M ∈M(G), we have

ν(M) =
λ(M)∑

M ′∈M(G) λ(M ′)
.

The characterization of the matching polytope due to
Edmonds [9] and a result of Lee [24] (which was also
shown independently by Rabinovich et al. [33]) imply the
following connection between fractional edge colorings
and hard-core probability distributions on matchings. Be-
fore describing it, we need a definition.

For any probability distribution ν on the matchings of
a multigraph G, we refer to the probability that a partic-
ular edge e is in the random matching as the marginal of
ν at e. We write (νe1 , . . . , νe|E(G)|) for the collection of
marginals of ν at all the edges ei ∈ E(G).

Theorem 2.7 ([24, 33]). There is a hard-core probability
distribution ν with marginals ( 1

c , . . . ,
1
c ) if and only if

there is a fractional c′-edge coloring of G with c′ < c,
i.e., if and only if χ∗e < c.

Kahn and Kayll [21] proved that the probability dis-
tribution promised by Theorem 2.7 is endowed with very
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useful approximate stochastic independence properties.

Definition 2.8. Suppose we choose a random matching
M from some probability distribution. We say that an
event Q is t-distant from a vertex v if Q is completely
determined by the choice of all matching edges at distance
at least t from v. We say that Q is t-distant from an edge
e if it is t-distant from both endpoints of e.

Theorem 2.9 ([21]). For any δ > 0, there exists a
K = K(δ) such that for any multigraphG with fractional
chromatic number c there is a hard-core distribution ν
with marginals ( 1−δ

c , . . . , 1−δ
c ) such that:

(a) for every e ∈ E(G), λ(e) ≤ K
c and hence ∀v ∈

V (G),
∑
e3v λ(e) ≤ K;

(b) for every ε ∈ (0, 1), if we choose a matching M
according to ν then, for any edge e and eventQ which
is t-distant from e,

Pr[e ∈M | Q] ∈ (1± ε) Pr[e ∈M ],

where t = t(ε) = 8(K + 1)2ε−1 + 2.

We conclude this subsection with the result of Jerrum
and Sinclair [16] for sampling from hard-core distribu-
tions on matchings. The algorithm works by simulating
a rapidly mixing Markov chain on matchings, whose sta-
tionary distribution is the desired hard-core distribution ν,
and outputting the final state.

Theorem 2.10 ([16], Corollary 4.3). Let G be a multi-
graph, {λ(e)}e∈E(G) a vector of activities associated
with the edges of G, and ν the corresponding hard-
core distribution. Let n = |V (G)| and define
λ′ = max{maxu,v∈V (G)

∑
e3{u,v} λ(e), 1}. There ex-

ists an algorithm that, for any ε > 0, runs in time
poly(n, λ′, log ε−1) and outputs a matching in G drawn
from a distribution ν′ such that ‖ν − ν′‖TV ≤ ε.

Remark 1. [16] establishes this result for matchings in
(simple) graphs. However, the extension to multigraphs
is immediate: make the graph simple by replacing each
set of multiple edges e1, . . . , e` between a pair of vertices
u, v by a single edge e of activity λ(e) =

∑
i λ(ei); then

use the algorithm to sample a matching from the hard-
core distribution in the resulting simple graph; finally, for
each edge e = {u, v} in this matching, select one of the
corresponding multiple edges ei 3 {u, v}with probability
λ(ei)/

∑
i λ(ei). Note that the running time will depend

polynomially on the maximum activity λ′ in the simple
graph, as claimed.

3 Causality, Lopsidependency and Approximate
Resampling Oracles

In this section we show a connection between Theo-
rem 2.1 and Theorem 2.4. While this section is not essen-
tial to the proof of our main results, it does provide useful
intuition since it implies the following natural approach
to making applications of the Lopsided LLL algorithmic:
we start designing a local search algorithm for address-
ing the flaws that correspond to bad events by considering
the family of probability distributions {ρi(σ, ·)}i∈[m],σ∈fi
whose supports induce a causality graph that coincides
with the lopsidependency graph of the Lopsided LLL ap-
plication of interest. This is typically an automated task.
The key to successful implementation is our ability to
make the way in which the algorithm addresses flaws suf-
ficiently compatible with the underlying probability mea-
sure µ. To make this precise, we first recall an algorithmic
interpretation of the notion of charges defined in (2.2).

As shown in [2], the charge γi captures the compati-
bility between the actions of the algorithm for addressing
flaw fi and the measure µ. To see this, consider the prob-
ability, νi(τ), of ending up in state τ after (i) sampling a
state σ ∈ fi according to µ, and then (ii) addressing fi at
σ. Define the distortion associated with fi as

di := max
τ∈Ω

νi(τ)

µ(τ)
≥ 1,(3.4)

i.e., the maximum possible inflation of a state probability
incurred by addressing fi (relative to its probability under
µ, and averaged over the initiating state σ ∈ fi according
to µ). Now observe from (2.2) that

γi = max
τ∈Ω

1

µ(τ)

∑
σ∈fi

µ(σ)ρi(σ, τ) = di · µ(fi).(3.5)

An algorithm for which di = 1 is called a resampling
oracle [14] for fi, and notice that it perfectly removes the
conditional of the addressed flaw. However, designing
resampling oracles for sophisticated measures can be
impossible by local search. This is because small, but
non-vanishing, correlations can travel arbitrarily far in
Ω. Thus, allowing for some distortion can be very
helpful, especially in cases where correlations decay with
distance.

Theorem 3.1 below shows that Theorem 2.4 is the
algorithmic counterpart of Theorem 2.1.
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Theorem 3.1. Given a family of flaws F = {f1, . . . , fm}
over a state space Ω, an algorithmA with causality graph
C with neighborhoods Γ(·), and a measure µ over Ω, then
for each S ⊆ F \ Γ(i) we have

µ
(
fi |

⋂
j∈S

fj

)
≤ γi,(3.6)

where the γi are the charges of the algorithm as defined
in (2.2).

Proof. Let FS :=
⋂
j∈S fj . Observe that

µ(fi | FS) =
µ(fi ∩ FS)

µ(FS)

=

∑
σ∈fi∩FS µ(σ)

∑
τ∈a(i,σ) ρi(σ, τ)

µ(FS)

=

∑
σ∈fi∩FS µ(σ)

∑
τ∈FS ρi(σ, τ)

µ(FS)
,(3.7)

where the second equality holds because each ρi(σ, ·) is a
probability distribution, and the third by the definition of
causality and the fact that S ⊆ F \ Γ(i). Now notice that
changing the order of summation in (3.7) gives∑

τ∈FS
∑
σ∈fi∩FS µ(σ)ρi(σ, τ)

µ(FS)

=

∑
τ∈FS µ(τ)

∑
σ∈fi∩FS

µ(σ)
µ(τ)ρi(σ, τ)

µ(FS)

≤

∑
τ∈FS µ(τ)

(
maxτ ′∈Ω

∑
σ∈fi

µ(σ)
µ(τ ′)ρi(σ, τ

′)
)

µ(FS)

= γi.

In words, Theorem 3.1 shows that causality graph
C is a lopsidependency graph with respect to measure
µ with bi = γi for all i ∈ [m]. Thus, when designing
an algorithm for an application of Theorem 2.1 using
Theorem 3.1, we have to make sure that the induced
causality graph coincides with the lopsidependency graph,
and that the measure distortion induced when addressing
flaw fi is sufficiently small so that the resulting charge γi
is bounded above by bi.

4 Edge Coloring Multigraphs: Proof of Theorem 1.3
We follow the exposition of the proof of Kahn in [27]. The
key to the proof of Theorem 1.3 is the following lemma.

Lemma 4.1. For all ε > 0, there exists χ0 = χ0(ε)
such that if χ∗e(G) ≥ χ0 then we can find N =

bχ∗e(G)
3
4 c matchings in G whose deletion leaves a multi-

graphG′ with χ∗e(G
′) ≤ χ∗e(G)−(1+ε)−1N in expected

poly(n, ln 1
ε ) time with probability at least 1− 1

nc , for any
constant c > 0.

Using the algorithm of Lemma 4.1 recursively, for
every ε > 0 we can efficiently find an edge coloring of
G using at most (1 + ε)χ∗e + χ0 colors as follows. First,
we compute χ∗e(G) using the algorithm of Padberg and
Rao [31]. If χ∗e ≥ χ0, then we apply Lemma 4.1 to get
a multigraph G′ with χ∗e(G

′) ≤ χ∗e(G) − (1 + ε)−1N .
We can now color G′ recursively using at most (1 +
ε)χ∗e(G

′) + χ0 ≤ (1 + ε)χ∗e(G)−N + χ0 colors. Using
one extra color for each of the N matchings promised
by Lemma 4.1, we can then complete the coloring of G,
proving the claim. In the base case where χ∗e(G) < χ0,
we color G greedily using 2∆ − 1 colors. The fact that
2∆ − 1 ≤ 2χ∗e − 1 < χ∗e + χ0 concludes the proof of
Theorem 1.3 as the number of recursive calls is at most n.

4.1 The Algorithm. Observe that we only need to
prove Lemma 4.1 for ε < 1

10 since, clearly, if it holds
for ε then it holds for all ε′ > ε. So we fix ε ∈ (0, 0.1)
and let c∗ = χ∗e(G) − (1 + ε)−1N . Our goal will be to
delete N matchings from G to get a multigraph G′ which
has fractional chromatic index at most c∗.

The flaws. Let Ω = M(G)N be the set of pos-
sible N -tuples of matchings of G. For a state σ =
(M1, . . . ,MN ) ∈ Ω let Gσ denote the multigraph in-
duced by deleting theN matchingsM1, . . . ,MN fromG.
For a vertex v ∈ V (Gσ) we define dGσ (v) to be the de-
gree of v in Gσ . We now define the following flaws. For
every vertex v ∈ V (G) let

fv =
{
σ ∈ Ω : dGσ (v) > c∗ − ε

4
N
}
.

For every connected subgraphH ofGwith an odd number
of vertices and such that (i) |V (H)| ≤ ∆

(ε/4)N , and (ii)

|E(H)| >
(
|V (H)|−1

2

)
c∗, let

fH = {σ ∈ Ω : H ⊆ Gσ}.

The following lemma states that it suffices to find a
flawless state.

Lemma 4.2 ([19]). Any flawless state σ satisfies
χ∗e(Gσ) ≤ c∗.

Proof. Edmonds’ characterization [9] of the matching
polytope implies that the chromatic index ofGσ is at most
c∗ if
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1. ∀v : dGσ (v) ≤ c∗; and

2. ∀H ⊆ Gσ with an odd number of vertices,

E(H) ≤ |V (H)| − 1

2
c∗.

Now clearly, addressing every flaw of the form fv estab-
lishes condition 1. By summing degrees this also implies
that for every subgraph F with an even number of vertices
|E(F )| ≤

(
|V (F )|

2

)
c∗.

Moreover, any odd subgraph H can be split into a
connected component H ′ with an odd number of vertices,
and a subgraph F with an even number of vertices. Thus,
in the absence of fv flaws, it suffices to prove condition 2
for connected H . Again by summing degrees, we see that
if no fv flaw is present, then condition 2 can fail only
for H with fewer than ∆

(ε/4)N vertices, concluding the
proof.

To describe an efficient algorithm for finding flawless
states we need to (i) determine the initial distribution
of the algorithm and show that is efficiently samplable;
(ii) show how to address each flaw efficiently; (iii) show
that the expected number of steps of the algorithm is
polynomial; and finally (iv) show that we can search for
flaws in polynomial time, so that each step is efficiently
implementable.

The initial distribution. Let δ = ε
4 and apply

Theorem 2.9. Let ν be the promised hard-core probability
distribution, λ = {λ(e)} the vector of activities associated
with it, and K the corresponding constant. Note that
the activities λ(e) defining ν are not readily available.
However, the next lemma says that we can efficiently
compute a set of activities that gives an arbitrarily good
approximation to the desired distribution ν.

Lemma 4.3. For every η > 0, there exists a
poly(n, ln 1

η , ln
1
δ )-time algorithm that computes a set of

edge activities {λ′(e)}e∈E(G) such that the correspond-
ing hard-core distribution ν′ satisfies ‖ν − ν′‖TV ≤ η.

Proof. Lemma 4.3 is a straightforward corollary of the
main results of Singh and Vishnoi [37] and Jerrum and
Sinclair [16]. Briefly, the main result of [37] states that
finding a distribution that approximates ν can be seen
as the solution of a max-entropy distribution estimation
problem which can be efficiently solved given a “general-
ized counting oracle” for ν. The latter oracle is provided
by [16].

For a parameter η > 0 and a distribution p, we
say that we η-approximately sample from p to express

the fact that we sample from a distribution p̃ such that
‖p−p̃‖TV ≤ η. Set η = 1

nβ
, where β is a sufficiently large

constant to be specified later, and let ν′ be the distribution
promised by Lemma 4.3. The initial distribution of our
algorithm, θ, is obtained by η-approximately sampling
N random matchings (independently) from ν′. Observe
that ‖θ − µ‖TV ≤ 2ηN , where µ denotes the probability
distribution over Ω induced by taking N independent
samples from ν.

Addressing flaws. For an integer d > 0 and a
connected subgraph H , let S<d(H) be the set of vertices
within distance strictly less than d of a vertex u ∈ V (H).

We consider the procedure RESAMPLE below which
takes as input a connected subgraph H , a state σ and a
positive integer d ≤ n, and which will be used to address
flaws.

1: procedure RESAMPLE(H,σ, d)
2: Let σ = (M1,M2, . . . ,MN )
3: for i = 1 to N do
4: LetEi,≥d be the set of edges ofMi that do not

belong to the multigraph induced by S<d+1(H)
5: Let Ei,=d be the set of edges of Mi both of

whose endpoints are at distance exactly d from H
6: Let Vi,d be the set of vertices of S<d+1(H)

that belong to edges in Ei,≥d ∪ Ei,=d
7: Let Gi,<d+1 be the multigraph induced by
S<d+1(H) \ Vi,d

8: Let p be the hard-core distribution induced by
{λ′(e)}e∈E(Gi,<d+1).

9: η-approximately sample a matching M from
distribution p

10: Let M ′i = (Mi ∩ Ei,≥d) ∪M . By
definition, M ′i is a matching

11: Output σ′ = (M ′1,M
′
2, . . . ,M

′
N )

Notice that Theorem 2.10 implies that procedure
RESAMPLE (H,σ, d) terminates in poly(n, ln 1

η ) time.
Set t = 8(K + 1)2δ−1 + 2. To address fv, fH in

state σ, we invoke procedures RESAMPLE ({v}, σ, t) and
RESAMPLE (H,σ, t), respectively.

Searching for flaws. Notice that we can compute
c∗ in polynomial time using the algorithm of Padberg
and Rao [31]. Therefore, given a state σ ∈ Ω and c∗,
we can search for flaws of the form fv in polynomial
time. However, the flaws of the form fH are potentially
exponentially many, so a brute-force search does not
suffice for our purposes.

Fortunately, the result of Padberg and Rao essentially
provides a polynomial time oracle for this problem as
well. Recall Edmonds’ characterization used in the proof
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of Lemma 4.2. The constraints over odd subgraphs H
are called matching constraints. Recall further that in the
proof of Lemma 4.2 we showed that, in the absence of fv-
flaws, the only matching constraints that could possibly be
violated correspond to fH flaws. On the other hand, the
oracle of Padberg and Rao, given as input ( 1

c , . . . ,
1
c ) and

a multigraphG, can decide in polynomial time whetherG
has a fractional c-coloring or return a violated matching
constraint. Hence, if our algorithm prioritizes fv flaws
over fH flaws, this oracle can be used to detect the latter
in polynomial time.

4.2 Proof of Lemma 4.1. We are left to show that the
expected number of steps of the algorithm is polyno-
mial and that each step can be executed in polynomial
time. To that end, we will show that both of these state-
ments are true assuming that the initial distribution θ is
µ instead of approximately µ, and that in Lines 8, 9 of
the procedure RESAMPLE(H,σ, d) we perfectly sample
from the hard-core probability distribution induced by ac-
tivities {λ(e)}e∈E(Gi,<d(H)) instead of η-approximately
sampling from p. Observe that, since we will prove that in
this case the expected running time of the ideal algorithm
is polynomial, we can maximally couple the approximate
and ideal distributions, and then take the constant β in the
definition of the approximation parameter η to be suffi-
ciently large. The latter implies that the probability that
the coupling will fail during the execution of the algo-
rithm is negligible (i.e., at most 1

nc ). Since the fractional
chromatic number of a multigraph can be computed in
polynomial time, we can absorb the probability that the
coupling fails into the polynomial expected running time
by executing our algorithm sufficiently many times. That
is, we execute our algorithm for a number of steps that is
twice its expected running time, and if the edge coloring
it produces is not a desirable one, we repeat the process.

For an integer d > 0 and a vertex v, let S∗d(v) be the
set of flaws indexed by a vertex of S<d(v) or a subgraph
H intersecting S<d(v). For each setH for which we have
defined fH we let S∗d(H) =

⋃
v∈V (H) S

∗
d(v). For each

flaw fv we define the causality neighborhood Γ(fv) =
S∗t+2(v), and for each flaw fH we define Γ(fH) =
S∗t+2(H), where t is as defined in the previous subsection.
Notice that this is a valid choice because flaw fv can only
cause flaws in S∗t+1(v) and flaw fH can only cause flaws
in S∗t+1(H). The reason we choose these neighborhoods
to be larger than seemingly necessary is because, as we
will see, with respect to this causality graph our algorithm
is commutative, allowing us to apply Theorem 2.6.

Lemma 4.4. Let f ∈ {fv, fH} for a vertex v and a
connected subgraph H of G with an odd number of

vertices and let D = ∆t+∆
1
3 +4. For every ζ > 0 there

exists ∆ζ such that if ∆ ≥ ∆ζ then

(a) γf ≤ 1−ζ
eD ;

(b) |Γ(f)| ≤ D,

where the charges are computed with respect to the mea-
sure µ and the algorithm that samples from the ideal dis-
tributions.

The proof of Lemma 4.4 can be found in Section 4.3.
Lemma 4.5 establishes that our algorithm is commutative
with respect to the causality relation ∼ induced by neigh-
borhoods Γ(·). Its proof can be found in Section 4.4.

Lemma 4.5. For each pair of flaws f � g, the matrices
Af , Ag commute.

Now, setting xf = 1
1+maxf′∈F |Γ(f ′)| for each flaw f ,

we see that condition (2.3) with ε = ζ/2 is implied by

γf ·
(
1 + max

f ′∈F
(|Γ(f ′)|

)
· e ≤ 1− ζ/2 for every flaw f,

(4.8)

which is true for large enough ∆ according to Lemma 4.4.
Notice further that the causality graph induced by ∼ can
be partitioned into n cliques, one for each vertex of G,
with potentially further edges between them. Indeed,
flaws indexed by subgraphs that contain a certain ver-
tex of G form a clique in the causality graph. Com-
bining Lemma 4.5 with the latter observation, we are
able to apply Theorem 2.6, which implies that our al-
gorithm terminates after an expected number of at most
O
(
maxσ∈Ω

θ(σ)
µ(σ) ·

n
ζ log n log(1/δ)

ζ

)
= O(n log n) steps.

(This is because we assume that θ = µ per our discussion
above.)

This completes the proof of Lemma 4.1 and hence,
as explained at the beginning of Section 4, Theorem 1.3
follows. It remains, however, to go back and prove
Lemmas 4.4 and 4.5, which we do in the next two
subsections.

4.3 Proof of Lemma 4.4. In this section we prove
Lemma 4.4. Given a state σ = (M1, . . . ,MN ), a
subgraph H , and d > 0 let

QH(d, σ) = (M1 − S<d(H), . . . ,MN − S<d(H)) ,

where we define M − X := M ∩ E(G − X). More-
over, let QiH(d, σ) = Mi − S<d(H) denote the i-th en-
try of QH(d, σ). Finally, let G<d+1(H) be the multi-
graph induced by S<d+1(H) and Mi

d+1(H,σ) be the
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set of matchings of G<d+1(H) that are compatible with
QiH(d, σ). That is, for any matching M inMi

d+1(H,σ)
we have that M ∪QiH(d, σ) is also a matching of G.

Remark 2. Recall the definition of the multigraph
Gi,<d+1 in Line 7 of procedure RESAMPLE and observe
that the set of matchings Mi

d+1(H,σ) is exactly the set
of matchings of this multigraph. As we saw earlier, this
implies that any hard-core distribution overMi

d+1(H,σ)
can be efficiently sampled using the algorithm of [16]. We
introduce this equivalent definition of Mi

d+1(H,σ) here
because it will be convenient in defining events with re-
spect to the probability space induced by µ.

Proof of part (a). We will need the following key lemma,
which was essentially proved in [19]. Its proof can be
found in Appendix A. Recall that µ is the distribution over
Ω induced by taking N independent samples from ν.

Lemma 4.6. For every ζ > 0 there exists ∆ζ such that,
if ∆ ≥ ∆ζ , then for any random state σ distributed
according to µ:

(i) for every flaw fv and state τ ∈ Ω,
µ(σ ∈ fv | Qv(t, σ) = Qv(t, τ)) ≤ 1−ζ

eD ; and

(ii) for every flaw fH and state τ ∈ Ω,
µ(σ ∈ fH | QH(t, σ) = QH(t, τ)) ≤ 1−ζ

eD .

We show the proof of part (a) of Lemma 4.4 only for
the case of fv- flaws, as the proof for fH - flaws is very
similar. Specifically, our goal will be to prove that

γfv = max
τ∈Ω

µ(σ ∈ fv | Qv(t, σ) = Qv(t, τ)).(4.9)

Lemma 4.6 then concludes the proof.
Let xv(σ) = (xv,1(σ), . . . , xv,N (σ)) denote the

vector such that xv,i(σ) = |Mi ∩ Ev|, where Ev is the
set of edges incident on v. Notice that xv,i(σ) ≤ 1
since Mi is a matching. For a vector x ∈ {0, 1}N define
O(x) := {i ∈ [N ] : xi = 1}, and observe that σ ∈ fv
iff |O(xv(σ))| < dG(v) − c∗ + ε

4N . Define the set
Xv = {x ∈ {0, 1}N : x = xv(σ) for some σ ∈ fv} and
notice that the latter observation implies that σ ∈ fv iff
xv(σ) ∈ Xv . (In other words, the elements of Xv induce
a partition of fv .) Hence, for a fixed state τ ∈ Ω and a
random sample σ from µ, we have

µ(σ ∈ fv | Qv(t, σ) = Qv(t, τ))

=
∑
x∈Xv

N∏
i=1

ν
(
xv,i(σ) = xi | Qiv(t, σ) = Qiv(t, τ)

)
,

(4.10)

since µ corresponds to N independent samples from
ν. Recall that ν is associated with a set of activities
{λ(e)}e∈E . Thus, for any vector x ∈ Xv , we obtain

ν
(
xv,i(σ) = xi | Qiv(t, σ) = Qiv(t, τ)

)
=
ν
(
(xv,i(σ) = xi) ∩

(
Qiv(t, σ) = Qiv(t, τ)

))
ν (Qiv(t, σ) = Qiv(t, τ))

=

∑
M :|M∩Ev|=xi,(M−S<t(v))=Qiv(t,τ) λ(M)∑

M :(M−S<t(v))=Qiv(t,τ) λ(M)

=

∑
M∈Mi

t+1(v,τ),|M∩Ev|=xi λ(M)∑
M∈Mi

t+1(v,τ) λ(M)
,(4.11)

where we recall thatMi
t+1(v, τ) denotes the set of match-

ings of G<t+1(v) that are compatible with Qiv(t, τ). To
get (4.11) we used the form of λ(M) to cancel the contri-
butions of edges in Qiv(t, τ).

We will use (4.10) and (4.11) to prove that, for σ
distributed according to µ, and any state τ ∈ Ω,

∑
ω∈fv

µ(ω)

µ(τ)
ρfv (ω, τ) = µ(σ ∈ fv | Qv(t, σ) = Qv(t, τ)).

(4.12)

According to the definition of γfv , maximizing (4.12)
over τ ∈ Ω yields (4.9) and completes the proof.

Fix τ = (M1,M2, . . . ,MN ) ∈ Ω. To com-
pute the sum on the left-hand side of (4.12) we need
to determine the set of states Inv(τ) ⊆ fv for which
ρfv (ω, τ) > 0. To do this, recall that given as in-
put a state ω = (Mω

1 ,M
ω
2 , . . . ,M

ω
N ) ∈ fv , procedure

RESAMPLE(v, ω, t) modifies one by one each matching
Mi, i ∈ [N ], “locally” around v. In particular, observe
that the support of the distribution for updating Mi is ex-
actly the set Mi

t+1(v, ω), and hence it must be the case
that Qiv(t, ω) = Qiv(t, τ) for every i ∈ [N ] and state
ω ∈ Inv(τ). This also implies that, for every such ω,

µ(ω)

µ(τ)
=

N∏
i=1

ν(Mω
i )

ν(Mi)
=

N∏
i=1

λ(Mω
i ∩ E(G<t+1(v)))

λ(Mi ∩ E(G<t+1(v)))
.

(4.13)

Recall now that we have assumed that the hard-core
distribution in Lines 8, 9 of RESAMPLE (v, ω, t) is
induced by the ideal vector of activities λ. In particular,
we have

ρfv (ω, τ) =
N∏
i=1

λ(Mi ∩ E(G<t+1(v)))∑
M∈Mi

t+1(v,ω) λ(M)

=

N∏
i=1

λ(Mi ∩ E(G<t+1(v)))∑
M∈Mi

t+1(v,τ) λ(M)
(4.14)
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since Qiv(t, ω) = Qiv(t, τ), which combined with (4.13)
yields

µ(ω)

µ(τ)
ρfv (ω, τ) =

N∏
i=1

λ(Mω
i ∩ E(G<t+1(v)))∑
M∈Mi

t+1(v,τ) λ(M)
.(4.15)

Finally, recall that Xv = {x ∈ [0, 1]N : x =
xv(ω) for some ω ∈ fv}, and specifically that ω ∈ fv iff
xv(ω) ∈ Xv . For x ∈ Xv , let Ωv,x = {ω : xv(ω) = x}.
We now have∑

ω∈fv

µ(ω)

µ(τ)
ρfv (ω, τ)

=
∑
x∈Xv

∑
ω∈Ωv,x

µ(ω)

µ(τ)
ρfv (ω, τ)

=
∑
x∈Xv

∑
ω∈Ωv,x

N∏
i=1

λ(Mω
i ∩ E(G<t+1(v)))∑
M∈Mi

t+1(v,τ) λ(M)
(4.16)

=
∑
x∈Xv

N∏
i=1

∑
ω∈Ωv,x

xv,i(ω)=xi

λ(Mω
i ∩ E(G<t+1(v)))∑
M∈Mi

t+1(v,τ) λ(M)
(4.17)

=
∑
x∈Xv

N∏
i=1

∑
M∈Mi

t+1(v,τ),|M∩Ev|=xi λ(M)∑
M∈Mi

t+1(v,τ) λ(M)
.(4.18)

To get (4.16) we used (4.15). For (4.17) we used the fact
that Ω is the product space M(G)N , so that the choices
per matching are independent, while for (4.18) we used
the definition of xv,i(ω).

Combining (4.18) with (4.10) and (4.11) estab-
lishes (4.12), concluding the proof of part (a).

Proof of part (b). To see part (b) of Lemma 4.4, first
notice that every set S<t+2(v) has at most ∆t+2 elements.
Moreover, the fact that N = bχ∗e(G)3/4c = Θ(∆3/4)

implies that ∆
(ε/4)N ≤ ∆

1
3 for sufficiently large ∆. So,

every vertex u is in at most ∆∆
1
3 sets H corresponding to

a flaw fH . Hence, every S∗t+2(v) has at most ∆t+∆
1
3 +3

elements. Thus, since every H for which we define
S∗t+2(H) has fewer than ∆ vertices, every S∗t+2(H) has

less than D = ∆t+∆
1
3 +4 elements.

4.4 Proof of Lemma 4.5. Fix states σ1 =
(M1,M2, . . . ,MN ) ∈ f and σ2 = (M ′1,M

′
2, . . . ,M

′
N ) ∈

g such that f 6∼ g. To prove that the matrices Af , Ag
commute, we need to show that for every such pair

∑
τ

ρf (σ1, τ)ρg(τ, σ2) =
∑
τ

ρg(σ1, τ)ρf (τ, σ2).

(4.19)

To that end, let Hf , Hg be the subgraphs (which may
consist only of a single vertex) associated with flaws
f and g, respectively. Since f � g we have that
minu∈V (Hf ),v∈V (Hg) dist(u, v) ≥ t+2, where dist(u, v)
denotes the length of the shortest path between u and v.
Notice that this implies S<t+2(Hf ) ∩ S<t+2(Hg) = ∅.

Consider a pair of transitions σ1
f−→ τ , τ

g−→ σ2,
where τ = (M ′′1 , . . . ,M

′′
N ), and so that ρf (σ1, τ) >

0, ρg(τ, σ2) > 0. The facts that procedure RE-
SAMPLE (σ, f, t) only modifies the input set of match-
ings locally within S<t+1(Hf ), that ρg(τ, σ2) > 0,
and that S<t+2(Hf ) ∩ S<t+2(Hg) = ∅ imply that
(i) σ1 ∈ g; and (ii) for every i ∈ [N ], Mi ∩
(S<t+2(Hg)) = M ′′i ∩(S<t+2(Hg)). Notice now that the
probability distribution ρg(τ, ·) depends only on (M ′′1 ∩
S<t+2(Hg), . . . ,M

′′
N ∩ St+2(Hg)). Hence, (i) and (ii)

imply that the probability distribution ρg(σ1, ·) is well de-
fined and, in addition, there exists a natural bijection bg
between the action set a(g, τ) and the action set a(g, σ1)
so that ρg(τ, τ ′) = ρg(σ1, bg(τ

′)) for every τ ′ ∈ a(g, τ).
This is because both distributions are implemented by
sampling from the set of matchings of the same multi-
graph according to the same probability distribution.

Now let τ ′ = bg(σ2). A symmetric argument im-
plies that τ ′ ∈ f and that there exists a natural bijec-
tion bf between a(f, σ1) and a(f, τ ′) so that ρf (σ1, σ) =
ρf (τ ′, bf (σ)) for every σ ∈ a(f, σ1). In particular, notice
that σ2 = bf (τ) and that

ρf (σ1, τ)ρg(τ, σ2) = ρg(σ1, τ
′)ρf (τ ′, bf (τ))

= ρg(σ1, τ
′)ρf (τ ′, σ2).(4.20)

Overall, what we have shown is a bijective mapping that

sends any pair of transitions σ1
f−→ τ, τ

g−→ σ2 to a pair of

transitions σ1
g−→ τ ′, τ ′

f−→ σ2 and which satisfies (4.20).
This establishes (4.19), concluding the proof. �

5 List-Edge Coloring Multigraphs: Proof of
Theorem 1.4

In this section we review the proof of Theorem 1.2 and
then prove its constructive version, Theorem 1.4.

5.1 A High Level Sketch of the Existential Proof. As
we explained in the introduction, the non-constructive
proof of Theorem 1.2 is a sophisticated version of the
semi-random method and proceeds by partially coloring
the edges of the multigraph in iterations, until at some
point the coloring can be completed greedily. (More
accurately, the method establishes the existence of such
a sequence of desirable partial colorings.)

We will follow the exposition in [27]. In each
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iteration, we have a list Le of acceptable colors for each
edge e. We assume that each Le originally has C colors
for some C ≥ (1 + ε)χ∗e(G), where ε > 0 is an arbitrarily
small constant. For each color i, we letGi be the subgraph
of G formed by the edges for which i is acceptable. Since
Gi ⊆ G,χ∗e(Gi) ≤ χ∗e(G). Thus, Theorem 2.9 implies
that we can find a hard-core distribution on the matchings
of Gi with marginals ( 1

C , . . . ,
1
C ) whose activity vector

λi satisfies λi(e) ≤ K
C for all e, where K = K(ε) is a

constant.
In each iteration, we will use the same activity vector

λi to generate the random matchings assigned to color
i. Of course, in each iteration we restrict our attention
to the subgraph of Gi obtained by deleting the set E∗

of edges colored (with any color) in previous iterations,
and the endpoints of the set of edges E∗i colored i in
previous iterations. (Thus, although we use the same
activity vector for each color in each iteration, the induced
hard-core distributions may vary significantly.) Further,
we will make sure that our distributions have the property
that for each edge e, the expected number of matchings
containing e is very close to 1. ad

We apply the Lopsided LLL in the following proba-
bility space. For each color i, independently, we choose
a matching Mi ∈ Gi from the corresponding distribu-
tion. Next, we activate each edge in Mi independently
with probability α := 1

log ∆(G) ; we assign colors only to
activated edges in order to ensure that very few edges are
assigned more than one color. We then update the multi-
graph by deleting the colored edges, and update the lists
Le by deleting any color assigned to an edge incident on e.
We give a more detailed description below.

Notice that our argument needs to ensure that (i)
at the beginning of each iteration the induced hard-core
distributions are such that, for each uncolored edge e,
the expected number of random matchings containing e
is very close to 1; and (ii) after some number of iterations,
we can complete the coloring greedily.

As far as the latter condition is concerned, notice
that if (i) holds throughout then, in each iteration, the
probability that an edge retains a color remains close to
the activation probability α. This allows us to prove that
the maximum degree in the uncolored multigraph drops
by a factor of about 1 − α in each iteration. Hence,
after log 1

1−α
3K iterations, the maximum degree in the

uncolored multigraph will be less than ∆
2K . Furthermore,

for each e and i, the probability that e is in the random
matching of color i is at most λi(e) ≤ K

C . Since (i)
continues to hold, this implies there are at least C

K > ∆
K

colors available for each edge, and so the coloring can be
completed greedily. (Recall that the C > χ∗e(G) ≥ ∆.)

An Iteration.

1. For each color i, pick a matching Mi according to a
hard-core probability distribution µi onM(Gi) with
activities λi such that for some constant K:

(a) ∀e ∈ E(G),
∑
i µi(e ∈Mi) ≈ 1; and

(b) ∀i,∀e ∈ E(G), λi(e) ≤ K
C and hence ∀v ∈

V (G),
∑
Le3i λi(e) ≤ K.

2. For each i, activate each edge of Mi independently
with probability α = 1

log ∆(G) , to obtain a matching
Fi. We color the edges of Fi with color i and delete
V (Fi) from Gi. We also delete from Gi every edge
not in Mi which is in Fj for some j 6= i. We do
not delete edges of (Mi − Fi) ∩ Fj from Gi. (Note
that this may result in edges receiving more than one
color, which is not a problem since we can always
pick one of them arbitrarily at the end of the iterative
procedure.)

3. Note that the expected number of edges that are both
colored and removed from Gi in Step 2 is less than
α|E(Gi)| because, although the expected number of
colors retained by an edge is very close to α, some
edges may be assigned more than one color. As is
standard in this kind of proof, we will perform an
equalizing coin flip for each edge e of Gi so that the
probability that e is both colored and removed from
Gi in either Step 2 or Step 3 is exactly α.

The outcome of an iteration is defined to be the
choices of matchings, activations, and equalizing coin
flips. Let Q = Q` denote the random variable that equals
the outcome of the `-th iteration. (In what follows, we
will focus on a specific iteration ` and so we will omit the
subscript.)

For each edge e = (u, v), we define a bad eventAe as
follows. Let G′i be the multigraph obtained after carrying
out the modifications to Gi in Steps 2 and 3 of the above
iteration. Let t′ = 8(K + 1)2(log ∆)20 + 2, recall the
definition of S<t′(H) for subgraph H , and let G<t′(H)
denote the corresponding induced subgraph. Let Zi be
a random matching in G′i ∩ G<t′({u, v}) sampled from
the hard-core probability distribution induced by activity
vector λi. Let Ae be the event that

(5.21)∣∣∣ ∑
i:G′i3e

Pr(e ∈ Zi | Q)−
∑
i:Gi3e

Pr(e ∈Mi)
∣∣∣ > 1

2(log ∆)4
.

To get some intuition behind the definition of
event Ae, let M ′i be a random matching in G′i chosen
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according to the hard-core distribution with activi-
ties λi. Since correlations decay with distance, one
can show that Pr(e ∈ M ′i | Q) is within a factor
1 + 1

(log ∆)20 of Pr(e ∈ Zi | Q). Thus, accord-
ing to (5.21), avoiding bad event Ae implies that∑
i Pr(e ∈M ′i) ≈

∑
i Pr(e ∈Mi) ≈ 1, which is what is

required in order to maintain property (i) at the beginning
of the next iteration. In particular, it is straightforward to
see that avoiding all bad events {Ae}e∈E(G) guarantees
that

(5.22)∣∣∣ ∑
i:G′i3e

Pr(e ∈M ′i | Q)−
∑
i:Gi3e

Pr(e ∈Mi)
∣∣∣ ≤ 1

(log ∆)4
,

for sufficiently large ∆, which is what we really need. The
reason we consider Zi and not M ′i is that events defined
with respect to the former are mildly negatively correlated
with most other bad events, making it possible to apply the
Lopsided LLL.

Further, for each vertex v we define Av to be the
event that the proportion of edges incident on v which are
colored in the iteration is less than α− 1

(log ∆)4 .
It can be formally shown that, if we avoid all bad

events, then (i) holds, i.e., at the beginning of the next
iteration we can choose new probability distributions so
that for each uncolored edge e we maintain the property
that the expected number of random matchings containing
e is very close to 1, and, moreover, after log 1

1−α
3K

iterations we can complete the coloring greedily.

Theorem 5.1 ([20]). Assume that (5.22) holds for the
edge marginals of the matching distributions of iteration
`. Then, with positive probability, the same is true for the
matching distributions of iteration `+ 1.

Theorem 5.2 ([20]). If we can avoid the bad events of
the first log 1

1−α
3K iterations, then we can complete the

coloring greedily.

Proving Theorems 5.1, 5.2 is the heart of the proof
of Theorem 1.2. The most difficult part is proving that,
for any x ∈ V ∪ E, the probability of event Ax is
very close to 0 conditioned on any choice of outcomes
for distant events. (This is needed in order to apply the
Lopsided LLL.) Below we state the key lemma that is
proven in [20], and which we will also use in the analysis
of our algorithm.

Recall the definition of t′ and let t = (t′)2. For
a subgraph H , we let RH be the random outcome
of our iteration in G − S<t(H), i.e., RH consists
of
⋃
i (Mi − S<t(H)) together with the choices of the

activated edges in G − S<t(H) which determine the⋃
i (Fi − S<t(H)), and the outcomes of the equalizing

coin flips for edges in this subgraph.

Lemma 5.3 ([20]). For every x ∈ E ∪ V and possible
choice R∗x for Rx, there exists ∆0 such that if ∆ ≥ ∆0,
then Pr(Ax | Rx = R∗x) ≤ 1

∆3(t+t′+2) .

In the remaining sections we will focus on providing
an efficient algorithm for Theorem 5.1 which, combined
with Theorem 5.2, will imply the proof of Theorem 1.4.

As a final remark, we note that detecting whether
bad events {Ae}e∈E(G) are present in a state is not a
tractable task since it entails the exact computation of
edge marginals of hardcore distributions over matchings.
In order to overcome this obstacle, we will define flaws
{fe}e∈E(G) whose absence provides somewhat weaker
guarantees than the removal of bad events {Ae}e∈E(G),
but nonetheless implies (5.22) for every edge. To decide
whether a flaw fe is present in a state, we will use the re-
sults of [16] to estimate the corresponding edge marginals
of random variablesMi andZi for every color i. Note that
since we will only perform an approximation, it is possi-
ble that we deduce that fe is not present while in reality
it is. However, our approximation will be tight enough so
that, even in this case, (5.22) will still hold for every edge.
We give the details below.

5.2 The Algorithm. Let U denote the set of uncolored
edges and N = |

⋃
e∈U Le| , the cardinality of the set of

colors that appear in the list of available colors of some
uncolored edge. For a color i ∈ [N ], recall that Gi
denotes the subgraph of uncolored edges that contain i
in their list of available colors. Finally, let Ei = |E(Gi)|.

Define Ω =
∏
i∈[N ]

(
M(Gi)× {0, 1}Ei × {0, 1}Ei

)
.

We consider an arbitrary but fixed ordering over
U , so that each state σ ∈ Ω can be represented
as σ = ((M1, a1, h1), . . . , (MN , aN , hN )), where
Mi, ai, hi are the matching, activation and equalizing
coin flip vectors, respectively, that correspond to color
i, so that edge e is activated in Gi if ai(e) = 1 and is
marked to be removed if hi(e) = 1.

Recall that for color i we choose a matching accord-
ing to probability distribution µi, and we define Eqi(e)
to be the probability of success of the equalizing coin flip
that corresponds to edge e and color i. Note that, given
access to the marginals of µi, the value of Eqi(e) can be
computed efficiently. (Of course, we will have only (ar-
bitrarily good) estimates of the marginals of µi, but as in
the proof of Theorem 1.3, this suffices for our purposes.)

We let µ be the probability distribution over Ω that is
induced by the product of the µi’s, activation flips, and
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equalizing coin flips for each color i. In other words,
µ is the probability distribution over Ω induced by the
iteration.

The initial distribution. Recall that each edge e ini-
tially has a list Le of size at least (1 + ε)χ∗e(G). As we
have already seen in Lemma 4.3, the results of [16, 37]
imply that for every color i and parameter η > 0, there ex-
ists a poly(n, ln 1

η , ln
1
ε )-algorithm that computes a vec-

tor λ′i such that the induced hard-core distribution η-
approximates in variation distance the hard-core distribu-
tion induced by vector λi. Setting η = 1

nβ
for β suffi-

ciently large, let µ′ be the distribution obtained in an iden-
tical way to µ but using vectors λ′i instead of vectors λi.
The initial distribution θ of our algorithm is obtained by
η-approximately sampling from µ′. Theorem 2.10 implies
that this can be done in polynomial time.

Finding and addressing flaws. We define a flaw
fv for each bad event Av . Moreover, for each edge e we
define flaw fe to be the set of states σ ∈ Ω such that

(5.23)∣∣∣ ∑
i:G′i3e

Pr(e ∈ Zi | σ)−
∑
i:Gi3e

Pr(e ∈Mi)
∣∣∣ > 2

3(log ∆)4
.

We fix an arbitrary ordering π over V ∪ E. In each step,
the algorithm finds the lowest indexed flaw according to π
that is present in the current state and addresses it.

Clearly, checking if vertex-flawsAv are present in the
current state can be done efficiently.

For edge indexed flaws, we use the results of [16]
to approximate the edge marginals of the corresponding
distributions within a factor (1 + η) with probability at
least 1− η, in time poly(n, ln 1

η )). Recalling that η = 1
nβ

and taking β to be a sufficient large constant, we can
subsume this error probability into the expected running
time of the algorithm.

Moreover, since Pr(e ∈ M ′i | σ) is within a factor
1 + 1

(log ∆)20 of Pr(e ∈ Zi | σ), for ∆ and β sufficiently
large, deducing that flaw fe is not present in a state σ using
our estimates for the edge marginals implies that (5.22)
holds for edge e in state σ. In other words, if our algorithm
decides that it has fixed every flaw, we are guaranteed
that (5.22) holds for its output, even if some flaws are in
fact still present.

In the opposite direction, there is the possibility that
our algorithm decides that a flaw fe is present while in
reality it is not. In particular, there is a danger that, due to
approximation errors, our algorithm effectively attempts
to get rid of supersets f̃e ⊇ fe of the original flaws
we defined and, as a result, fails to converge efficiently.
Nonetheless, using Lemma 5.3, together with the facts

that our approximations can be made arbitrarily accurate
and that Ae ⊆ fe for all e ∈ E, we can still conclude that
µ(f̃e | Re = R∗e) ≤ ∆−3(t+t′+2).

Summarizing, we may assume without loss of gener-
ality that we are able to accurately and efficiently search
for edge-flaws fe, and that their probability with respect to
measure µ is bounded above by ∆−3(t+t′+2) conditional
on any instantiation of Re.

Recall the definition of t and the procedure RESAM-
PLE described in Section 4.1. Below we describe proce-
dure FIX that takes as input a subgraph H and a state
σ. In the description of FIX below we invoke procedure
RESAMPLE with an extra parameter, namely an activ-
ity vector λ′i for each color i. By that we mean that in
Lines 8, 9 of RESAMPLE we use the vector λ′i to define
p.

1: procedure FIX(H,σ)
2: Let σ = ((M1, b1, h1), . . . , (MN , bN , hN ))
3: (M ′1, . . . ,M

′
N )

← RESAMPLE(H, (M1, . . . ,MN ), t, λ′i)
4: for i = 1 to N do
5: Update ai to a′i by activating independently

each edge in Gi ∩G<t+1(H) with probability α
6: Update hi to h′i by flipping the corresponding

equalizing coin for each edge in Gi ∩G<t+1(H)

7: Output σ = ((M ′1, a
′
1, h
′
1), . . . , (M ′N , a

′
N , h

′
N ))

Theorem 2.10 implies that procedure FIX runs
in polynomial time for any input subgraph H and state
σ. To address flaws fv, f{u1,u2} in a state σ we invoke
FIX({v}, σ) and FIX({u1, u2}, σ) , respectively.

5.3 Proof of Theorem 1.4. Similarly to the proof of
Theorem 1.3, for our analysis we will assume that our
algorithm samples from the “ideal” distributions, i.e.,
the ones induced by the vectors λi rather than by the
approximate ones λ′i. An identical argument shows that
this is sufficient if we take the exponent β in the definition
of η to be large enough.

For two flaws fx1 , fx2 , where x1, x2 ∈ V ∪
E, we consider the causality relation fx1

∼ fx2
iff

dist(x1, x2) ≤ t+ t′ + 2. By inspecting procedure FIX it
is not hard to verify that this is a valid choice for a causal-
ity graph in the sense that no flaw f can cause flaws out-
side Γ(f). This is because, in order to determine whether
a flaw fx is present in a state σ, we only need informa-
tion about σ in G ∩ S<t′(x), and procedure FIX locally
modifies the state within a radius at most t of the input
subgraph H .

The algorithmic proof of Theorem 5.1, which as
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we explained earlier is the key ingredient in making
Kahn’s result constructive, follows almost immediately by
combining Theorem 2.4 with Lemma 5.4 below, whose
proof can be found in Section 5.4.

Lemma 5.4. Let f ∈ {fe, fv} for an edge e and a vertex
v. There exists ∆0 such that if ∆ ≥ ∆0 then

γf ≤
1

∆3(t+t′+2)
,

where the charges are computed with respect to measure
µ and the algorithm that samples from the ideal distribu-
tions.

Constructive Proof of Theorem 5.1. Recall from (4.8)
that, setting xf = 1

1+maxf∈F |Γ(f)| for each flaw f ,
condition (2.3) with ε = ζ/2 is implied by

max
f∈F

γf ·
(
1 + max

f∈F
|Γ(f)|

)
· e ≤ 1− ζ/2.(5.24)

Clearly, for each flaw f , |Γ(f)| = O(∆2(t+t′+2)) so, by
Lemma 5.4, condition (5.24) is satisfied for all sufficiently
large ∆. Thus, Theorem 2.4 implies that, for every
multigraph with large enough degree ∆0, the algorithm
for each iteration terminates after an expected number

O

(
(m+ n) log2

(
1

1− 1/∆2(t+t′+2)

))
= O(n2)

steps.

Finally, the proof of Theorem 1.4 is concluded by
combining the algorithm for Theorem 5.1 with the greedy
algorithm of Theorem 5.2. It remains only for us to
prove Lemma 5.4 stated above. This we do in the next
subsection.

5.4 Proof of Lemma 5.4. Let Ω1 =
∏N
i=1M(Gi) and

Ω2 = Ω3 =
∏N
i=1{0, 1}Ei and note that each state

in σ ∈ Ω can be represented as σ = (σ1, σ2, σ3) ∈
Ω1 × Ω2 × Ω3. For notational convenience, sometimes
we write Ωi1 = M(Gi) and Ωi2 = Ωi3 = {0, 1}Ei , for
i ∈ [N ].

Let ν1 be the distribution over Ω1 induced by the
product of distributions µi, i ∈ [N ]. Let also ν2, ν3 be the
distributions over Ω2 and Ω3 induced by the product of
activation and equalizing coin flips of each color i ∈ [N ],
respectively. Recall that µ = ν1 × ν2 × ν3 is a product
distribution. Moreover, note that each νj is the product
of N distributions νij , one for each color i ∈ [N ]. For
example, notice that νi1 is another name for µi, while νi2
is the product measure over the edges of Gi induced by
flipping a coin with probability α for each edge.

For σ1 = (M1,M2, . . . ,MN ) ∈ Ω1, a subgraph
H , and an integer d > 0, we define QH(d, σ1) =
(M1 − S<d(H), . . . ,MN − S<d(H)) and QiH(d, σ1) =
Mi − S<d(H), similarly to the proof of Lemma 4.4.
Moreover, for σ2 ∈ Ω2 that represents the outcome of
the activations, we let AH(d, σ2) denote the restriction
of σ2 to Mi − S<d(H) for each color i ∈ [N ]. In
the same fashion, for σ3 ∈ Ω3 that represents the out-
come of the equalizing coin flips, we let CH(d, σ3) de-
note the restriction of σ3 to Mi − S<d(H) for each color
i ∈ [N ]. For σ2 ∈ Ω2, σ3 ∈ Ω3, we also defineAiH(d, σ2)
and CiH(d, σ3), i ∈ [N ], similarly to QiH(d, σ1). Fi-
nally, for σ = (σ1, σ2, σ3) ∈ Ω, define RH(d, σ) =
(QH(d, σ1), AH(d, σ2), CH(d, σ3)).

Our goal will be to show that, for every x ∈ V ∪ E,

γfx = max
τ∈Ω

µ(σ ∈ fx | Rx(t, σ) = Rx(t, τ)),(5.25)

where σ is a random state distributed according to µ. Note
that combining (5.25) with Lemma 5.3 will conclude the
proof of Lemma 5.4.

We only prove (5.25) for fe-flaws, since the proof
for fv flaws is very similar (and we have actually seen a
large portion of it in the proof of Lemma 4.4). Observe
that whether flaw fe is present at a state σ is determined
by
⋃N
i=1 (Gi ∩G<t′(e)) and the entries of the activation

and equalizing flip vectors of each color i ∈ [N ] that cor-
respond to edges in Gi ∩ G<t′(e). With that in mind,
for each color i, let Mi(t

′, e) = Mi ∩ E(Gi ∩ G<t′(e))
and ai(t

′, e), hi(t
′, e) denote the (random) vectors con-

straining the entries of the activation and equalizing coin
flip vectors for color i that correspond to the edges of
Gi ∩ G<t′(e). Let also Di(t′, e) denote the domain of
possible values of (Mi(t

′, e), ai(t
′, e), hi(t

′, e)).
The fact that we can determine whether fe is present

in a state by examining local information around e implies
that there exists a set Xe = Xe(t

′) of vectors of size N
such that the i-th entry of a vector x ∈ Xe is an element
of Di(t′, e), and so that

fe =
⋃
x∈Xe

⋂
i∈[N ]

((Mi(t
′, e), ai(t

′, e), hi(t
′, e)) = xi) .

(5.26)

For a state σ ∈ Ω, let xσe be the N -dimensional vec-
tor whose i-th entry is (Mi(t

′, e), ai(t
′, e), hi(t

′, e)). Ac-
cording to (5.26), for τ ∈ Ω we have

µ(σ ∈ fe | Re(t, σ) = Re(t, τ))

=
∑
x∈Xe

N∏
i=1

µ(xσe,i = xi | Re(t, σ) = Re(t, τ)),(5.27)
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since the random choices of matching, activation, and
equalizing coin flips for each color are independent. For
anN -dimensional vector x whose i-th entry is an element
of Di(t′, e), we write xi(j) to denote the j-th element of
triple xi. Thus, recalling the definition of the distributions
νij , we have

µ(xσe,i = xi | Re(t, σ)Re(t, τ))

=

3∏
j=1

νij(x
σ
e,i(j) = xi(j) | Re(t, σ) = Re(t, τ)),

(5.28)

because, for a fixed color, the random choices of match-
ing, activation and equalizing coin flips are independent.

Recall now that for a subgraph H , multigraph
G<d+1(H) is induced by S<d+1(H), and Mi

d+1(H,σ)
is the set of matchings of G<d+1(H) that are compatible
with QiH(d, σ1). Hence,

νi1(xσe,i(1) = xi(1) | Re(t, σ) = Re(t, τ))

= νi1(xσe,i(1) = xi(1) | Qie(t, σ1) = Qie(t, τ1))

=
νi1(xσe,i(1) = xi(1) ∩Qie(t, σ1) = Qie(t, τ1))

νi1(Qie(t, σ1) = Qie(t, τ1))

=

∑
M∈Mi

t+1(e,τ1),M∩E(G<t′ (e))=xi(1) λi(M)∑
M∈Mi

t+1(e,τ1) λi(M)
.

(5.29)

Moreover, we clearly have

νi2(xσe,i(2) = xi(2) | Re(t, σ) = Re(t, τ))

= νi2(ai(t
′, e) = xi(2));(5.30)

νi3(xσe,i(3) = xi(3) | Re(t, σ) = Re(t, τ))

= νi3(hi(t
′, e) = xi(3)).(5.31)

We will use (5.27)-(5.31) to show that, for σ distributed
according to µ, and any state τ ∈ Ω,

∑
ω∈fe

µ(ω)

µ(τ)
ρfe(ω, τ) = µ(σ ∈ fe | Re(t, σ) = Re(t, τ)).

(5.32)

According to the definition of γfe , maximizing (5.32) over
τ ∈ Ω yields (5.25).

To compute the sum in (5.32) we need to determine
the set of states Ine(τ) = {ω : ρfe(ω, τ) > 0}. We
claim that for each ω ∈ Ine(τ) we have that Re(t, ω) =
Re(t, τ).

To see this, let

ω = (ω1, ω2, ω3)

=
(
(ω1

1 , . . . , ω
N
1 ), (ω1

2 , . . . , ω
N
2 ), (ω1

3 , . . . ω
N
3 )
)

;

τ = (τ1, τ2, τ3)

=
(
(τ1

1 , . . . , τ
N
1 ), (τ1

2 , . . . , τ
N
2 ), (τ1

3 , . . . , τ
N
3 )
)
,

where ωj , τj ∈ Ωj and ωij , τ
i
j ∈ Ωij . Notice that the

probability distribution ρfe(ω, ·) can be seen as the prod-
uct of 3N distributions. Namely, for each i ∈ [N ] we
have a probability distribution ρi,1fe (ωi1, ·) corresponding
to Line 3 of FIX and color i, and similarly, for ωi2, ω

i
3

we have probability distributions ρi,2fe (ωi2, ·), ρ
i,3
fe

(ωi3, ·),
corresponding to Lines 5, 6 of FIX and color i, respec-
tively. Recalling procedure RESAMPLE, we see that the
support of ρi,1fe (ωi1, ·) is Mi

t+1(e, ω1), and hence it must
be the case that Qie(t, ω1) = Qie(t, τ1) for every i ∈ [N ]
and state ω ∈ Ine(τ). Similarly, by inspecting proce-
dure FIX one can verify that Aie(t, ω2) = Aie(t, τ2) and
that Cie(t, ω3) = Cie(t, τ3) for each i ∈ [N ]. Hence,
Re(t, ω) = Re(t, τ), as claimed.

For each ω ∈ fe,

µ(ω)

µ(τ)
ρfe(ω, τ) =

N∏
i=1

3∏
j=1

νij(ω
i
j)

νij(τ
i
j)
ρi,jfe (ωij , τ)

=:

N∏
i=1

3∏
j=1

ri,j(ω).(5.33)

We will now give an alternative expression for each
ri,j(ω) in order to relate (5.33) to (5.32). We start with
ri,1(ω). The fact that Qie(t, ω1) = Qie(t, τ1) for each
ω ∈ Ine(τ) implies that

νi1(ωi1)

νi1(τ i1)
=
λi(ω

i
1 ∩ E(G<t+1(e)))

λi(τ i1 ∩ E(G<t+1(e))
.(5.34)

Furthermore, since we have assumed that the hard-core
distribution in Lines 8, 9 of RESAMPLE is induced by the
ideal vector of activities λi, we have

ρfe(ω
i
1, τ

i
1) =

λi(τ
i
1 ∩ E(G<t+1(e))∑

M∈Mi
t+1(e,ω1) λi(M)

.(5.35)

Combining (5.34) with (5.35) and the fact that
Qie(t, ω1) = Qie(t, τ1) we obtain

ri,1(ω) =
λi(ω

i
1 ∩ E(G<t+1(e))∑

M∈Mi
t+1(e,τ1) λi(M)

.(5.36)

Recall now the definitions of ai(t′, e) and hi(t′, e). The
fact that Aie(t, ω2) = Aie(t, τ2) for each ω ∈ Ine(τ)
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implies that

νi2(ωi2)

νi2(τ i2)
=
νi2(ai(t

′, e) = xωe,i(2))

νi2(ai(t′, e) = xτe,i(2))
.(5.37)

Further, since in Line 5 of FIX we simply flip a coin
independently with success probability α for each edge of
Gi ∩ S<t+1(e), we have

ρfe(ω
i
2, τ

i
2) =

νi2(ai(t
′, e) = xτe,i(2))∑

a ν
i
2(ai(t′, e) = a)

,(5.38)

where the sum in the denominator ranges over all the
possible values for ai(t′, e). Thus, combining (5.37)
with (5.38) we get

ri,2(ω) =
νi2(ai(t

′, e) = xωe,i(2))∑
a ν

i
2(ai(t′, e) = a)

.(5.39)

Finally, an identical argument shows that

ri,3(ω) =
νi3(hi(t

′, e) = xωe,i(2))∑
h ν

i
3(hi(t′, e) = h)

.(5.40)

For x ∈ Xe, let Ωe,x = {ω : xωe = x}. For σ distributed
according to µ, the left-hand side of (5.32) can be written
as∑
x∈Xe

∑
ω∈Ωe

µ(ω)

µ(τ)
ρfe(ω, τ)

=
∑
x∈Xe

∑
ω∈Ωe,x

N∏
i=1

3∏
j=1

ri,j(ω)

=
∑
x∈Xe

N∏
i=1

3∏
j=1

∑
ω∈Ωe,x

xωe,i=xi(j)

ri,j(ω)

(5.41)

=
∑
x∈Xe

N∏
i=1

3∏
j=1

νij(x
σ
e,i(j) = xi(j) | Re(t, σ) = Re(t, τ))

(5.42)

= µ(σ ∈ fe | Re(t, σ) = Re(t, τ)),

concluding the proof of (5.32). Note that (5.41) follows
from the fact that Ω is a product space, and (5.42) follows
by (5.29) and (5.36) for j = 1, (5.30) and (5.39) for j = 2,
and (5.31) and (5.40) for j = 3. This concludes the proof
of (5.25) and hence of Lemma 5.4
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A Proof of Lemma 4.6
We will need the following standard concentration bound
(see, e.g., [27, Section 10.1]).

Lemma A.1. Let X be a random variable determined by
n independent trials T1, . . . , Tn, and such that changing
the outcome of any one trial can affect X by at most c.
Then

Pr[|X − E[X]| > λ] ≤ 2e−
λ2

2c2n .

Proof of Part (a) of Lemma 4.6. Recall that t = 8(K +
1)2δ−1 + 2 and that δ = ε

4 . Consider a random state σ
distributed according to µ and a fixed state τ ∈ Ω, and
notice that applying Theorem 2.9 with the parameter ε
instantiated to δ and our choice of t imply that

µ(e ∈Mi | Qiv(t, σ) = Qiv(t, τ)) ≥ (1− δ) 1− δ
χ∗e(G)

≥
1− ε

2

χ∗e(G)
,

for any vertex v, any edge e incident on v and any i ∈ [N ].
This implies

E[dGσ (v) | Qiv(t, σ) = Qiv(t, τ)]

≤ ∆

(
1−

1− ε
2

χ∗e(G)

)N
≤ χ∗e(G)

(
1−

1− ε
2

χ∗e(G)

)N
.

Now, since N = o(χ∗e(G)), we have

E[dGσ (v) | Qiv(t, σ) = Qiv(t, τ)]

≤ χ∗e(G)

(
1− (1 + o(1))

(1− ε
2 )N

χ∗e(G)

)
≤ χ∗e(G)−

(
1− 9ε

17

)
N.(A.1)

Further, since c∗ = χ∗e(G)−(1+ε)−1N and ε ≤ 1
10 , (A.1)
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yields

E[dGσ (v) | Qiv(t, σ) = Qiv(t, τ)]

≤ c∗ −
(

1− 9ε

17
− (1 + ε)−1

)
N ≤ c∗ − ε

3
N.

As the choices of the Mi are independent and each
affects the degree of v in G′ by at most 1, we can apply
Lemma A.1 with λ = ( ε3 −

ε
4 )N = ε

12N to prove part (a).
In particular, recalling that N = bχ∗e(G)

3
4 c ∼ ∆3/4 we

have

µ
(
dGσ(v) > c∗ − ε

4
N
∣∣∣ Qiv(t, σ) = Qiv(t, τ)

)
≤ 2e−

λ2

2N ≤ 1

∆C+∆
1
3

,

for any constant C for sufficiently large ∆.

Proof of Part (b) of Lemma 4.6. The proof of part (b) is
similar. Consider again a random state σ distributed
according to µ and fix a state τ ∈ Ω. Theorem 2.9
implies that for each i ∈ [N ], the probability that an
edge e with both endpoints in H is in Mi, conditional on
QiH(t, σ) = QiH(t, τ), is at least (1 − δ) 1−δ

χ∗e(G) ≥
1− ε2
χ∗e(G) .

Moreover, Edmonds’ characterization of the matching
polytope (which we have already seen in the the proof of
Lemma 4.2) implies that the number of edges in G with
both endpoints in H is at most χ∗e(G)bV (H)−1

2 c. Similar
calculations to those in part (a) reveal that

E[|Eσ(H)| | QiH(t, σ) = QiH(t, τ)]

≤
(
V (H)− 1

2

)
(c∗ − ε

3
N),

where Eσ(H) is the set of edges of Gσ induced by H .
Since the choices of matchings Mi are independent and
each affects |Eσ(H)| by at most |V (H)|−1

2 , we can again
apply Lemma A.1 to prove part (b).
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