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Tunable Adaptive Target Detection With Kernels 1n
Colocated MIMO Radar

Amir Zaimbashi

Abstract—We introduce a framework for exploring adaptive tar-
get detection in colocated MIMO radar in non-linear feature space
by exploiting the theory of kernel. The kernel theory inspires us to
replace the inner products of test statistics with that of nonlinear
mapped data in the feature space or that of their kernel tricks to
achieve better detection performance. We apply this framework
to the problem of tunable adaptive target detection in colocated
MIMO radar, according to the principle of the generalized likeli-
hood ratio (GLR), Rao and Wald (RaW) tests, and propose several
new detectors under two new tunable detector forms, namely kernel
tunable GLR-based and kernel tunable Raw-based detectors. The
proposed tunable detectors include most of the prior detectors
in colocated MIMO radar as special cases. One capability of the
proposed detectors is that their robustness or selectivity (RoS) to
steering vector mismatch (SVM) can be tuned flexibility through
an RoS tuning parameter. In addition, we are able to incorporate
the prior distribution (PD) of the disturbance covariance matrix, if
available, through a PD tuning parameter. Therefore, the proposed
detectors can be tuned based on the tuning RoS parameter to
achieve robust or selective performance in the presence of SVM as
well as to switch between the Bayesian or non-Bayesian based de-
tectors through the PD parameter. For practical situations, we show
that the proposed detectors possess CFAR property against distur-
bance covariance matrix by resorting to the invariance principle.
Extensive Monte Carlo simulation results are provided to indicate
that the proposed detectors have better detection performance than
their counterparts in both single-target and multi-target scenarios.

Index Terms—MIMO radar, detection theory, kernel theory,
GLR test, Rao test, Wald test, Classical and Bayesian frameworks,
Tunable detector, CFAR property.

I. INTRODUCTION

ETECTION theory and estimation theory are essential
D to the design of digital signal processing receivers of
communication systems for decision making and information
extraction, respectively [1]. In particular, in detection theory, we
encounter three different problems of the so-called signal activ-
ity detection (SAD), demodulation and classification (or pattern
recognition). In all these problems, we need to decide among two
or more possible hypotheses based on an observed data set [2].
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Thus, the central problem addressed in the detection theory is
to form a function of the observed data set, namely test statistic,
and then make a decision based on the obtained test statistic and
an appropriate detection threshold. Among them, the SAD is the
simplest detection problem, where we aim to decide whether a
specific signal is present or if only an interference signal (e.g.,
noise, clutter, and interfering targets) is present. Such statistical
problem is referred to as the binary hypothesis testing problem
since we wish to use the observed data as efficiently as possible
in making a decision between two possible hypotheses. As such,
there are various detection problems in digital communication
systems, radar, sonar, image processing, which can usually be
cast as the SAD problems [3]-[19].

In radar terminology, the SAD problem is known as target de-
tection, which is a primary task in any radar system. Among the
works of literature, the problem of radar target-detection in the
presence of mismatched signals is an important topic, addressed
in [20]-[25] by designing some tunable receivers. In this paper,
we focus on target detection through colocated multiple-input
multiple-output (C-MIMO) radar, which makes it possible to
estimate targets’ parameters as well as to detect targets without
requiring any training data and pulse compression [26]. In
this context, abundant literatures exist on the C-MIMO target
detection; see [27]-[32] and references therein. In these works,
some tunable detectors in classical and Bayesian frameworks
have been derived according to the generalized-likelihood ratio
(GLR), Rao and Wald principles, where it was assumed that no
training data is available.

Kernel-based approaches have offered great performance in
real-world nonlinear decision problems by developing nonlinear
algorithms in which the nonlinear characteristics of input data
are exploited through the use of nonlinear kernel functions [33].
Kernel functions are similarity measures that implicitly exploit
the structural information of input data by mapping them to
a higher dimensional space, known as feature space [34]. In
the context of SAD problems, there are few works exploiting
the benefit of the kernel theory to discriminate between two
possible hypotheses aimed at obtaining more efficient decision
methods [35]-[38]. For example, an improved fault detection
algorithm to enhance monitoring abilities of nonlinear biological
processes was proposed in [35], relying on generalized likeli-
hood ratio test (GLRT) and kernel-based principal component
analysis (KPCA). It was shown that the kernel-based GLRT
improved the fault detection capability, however, the detection
performance was not investigated in terms of the detection theory
metrics, particularly detection probability curves and false alarm
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behavior. A kernel-based matched subspace detector (K-MSD)
for subpixel target detection in hyperspectral imagery was, in
turn, proposed in [36]. It was shown that the K-MSD obtained
superior detection performance compared to the conventional
MSD. In [37], an accurate kernelized energy detection approach
in Gaussian and non-Gaussian noise scenarios was developed for
spectrum sensing purposes. In [38], the KMSD algorithm was
adopted for spectrum sensing tasks in a cognitive radio system
to improve the detection performance of the conventional MSD
in low signal-to-noise ratio (SNR) regimes.

However, all these aforementioned kernel-based detectors
have been proposed for real-valued measurements. For the first
time, in this paper, we aim to combine the idea of kernel
theory and detection theory to develop new target detection
algorithms for C-MIMO radars, working with complex-valued
baseband measurements. To illustrate this, we consider the
target-detection problem in C-MIMO radar introduced in [29]—
[32], where the authors proposed different algorithms based on
the GLR, Rao and Wald principles as well as Bayesian GLR
(BGLR), Bayesian Rao (BRao), Bayesian Wald (BWald) tests
in the original input space. We firstly unify them and propose
a new detector, then eight kernel-based detectors correspond-
ing to the above detectors according to the polynomial kernel
function are proposed, resulting overall in nine new detectors.
The principle of invariance is exploited to examine the poten-
tial CFAR behavior of the proposed classical detectors against
the disturbance covariance matrix. The so-obtained analytical
results show that the proposed classical detectors possess CFAR
behavior against the disturbance covariance matrix. We provide
extensive simulation results to show that the proposed detectors
significantly outperform their counterparts.

The rest of this paper is organized as follows: in Section II,
the target detection problem via C-MIMO radar is formulated
as a composite hypothesis testing problem. In Section III, the
previously proposed detectors are unified according to simple
similarity measure, namely inner product. Besides, a new de-
tector is proposed. In Section IV, firstly, some preliminaries
about kernel theory are introduced. Then, we propose eight new
approaches for C-MIMO target detection scenarios. The CFAR
property of the proposed classical detectors is examined in
Section V. Extensive simulations result are given in Section VI,
and Section VII concludes this article.

Notations: The superscripts (.)7, (.)*, and (.)! denote the
transpose, complex conjugate and the Hermitian (conjugate
transpose), respectively. All vectors and matrices are denoted by
bold lower case and bold upper case letters, respectively. I is the
identity matrix. O represents the all-zero matrix. ||b|| denotes the
Euclidean norm of vector b, |«| represents the absolute value
of scaler «, and (a, g) represents the inner product between
vectors a and g, defined as af g for complex domains. Finally,
the imaginary unit is defined as j = v/—1.

II. PROBLEM FORMULATION

As in Fig. 1, consider a monostatic MIMO radar system
consisting of two colocated uniform linear arrays (ULAs) of
M transmit antennas and N receive antennas, where without
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Fig. 1. Colocated MIMO radar target detection scenario.

loss of generality we assume that M = N. Let the antenna
spacing be d and all transmit antennas operate at the same carrier

frequency f., corresponding to carrier wavelength of \ = fi

with ¢ being the light speed. Let s(t) = [s1(t), ..., s (t)]T be
the complex baseband transmit signal vector emitted from the
M transmit antennas, where s,,(t) represents the equivalent
baseband transmitted waveform from the m-th transmit antenna.
For a constant radial velocity and point-like target located in the
far-field at direction #; and under spatial-narrowband effect, the
received signal vector through the different receive antennas can
be written as [30]

v'(t) = oe 125 g (0))al (01)s(t — 1) +n(t), (1)

where 0 < t < T7 with T being the integration time, fél) =

o . : i
20 with vl being the target velocity, and 7, = % with

R, being the one-way range between the target and a reference
point, as shown in Fig. 1. Here, the complex value o is the
corresponding path loss, assumed to be identical for all transmit
and receive antennas due to the far-field assumption. In (1), ar
and ap are respectively transmit and receive steering vectors,
given by

ag — [ejzﬂf‘@“ ~D4sine) ejzﬂMffM)%sin(el)} g
(2)
e—d2m(MFH M) ¢ sin(el)] r
(3)

Consider that the transmitted signal is a sequence of K mod-
ulated baseband pulses pg(¢) with an equal width of 7, for
k=0,..., K — 1, withaconstant pulse repetition interval (PRI)
of Tp, ie.,

—jom(MEL 1)< sin(0
an = [pre D00

K
s(t) = > pk(t — kTp) “
k=0

Then, (1) can be written as

K
t o FD
y'(t) = alaRa'T g e 12 la Fep (t — KTp — 1) + n(t)
k=0

)
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o e(1)
where a; = o/je727fa 71, Here, we assume that fél)T
. (1) (1)
<< 1 to arrive at e/?™fa tpy(t — kTp — 1) ~ e/?™fa '™
(1) .

e 92mfa kTrp, (t — KTp — 7). For a specific range-Doppler
coordinate, after compensation, the received signal during the
k-th pulse can be represented as

yvi(t) = alaRaTTpk(t — kTp) +ng(t) (6)

Let Py be an M x @-dimensional matrix, standing for the
discrete version of the spatial-temporal complex baseband trans-
mitted signal through different transmit antennas and during the
k-th pulse. Here, @ is the number of samples of each transmitted
pulse, i.e., Q@ = 7 fs with f; being the sampling frequency sat-
isfying Nyquist sampling theorem. Thus, the discrete version of
vk (t) corresponding to the pulse width 7, denoted by Y, can
be written as

Y. = alaRa}Pk + Ng 7
Define
Y =[Y,...,Yg] € CNV¥@K )
N = [Ny,...,Ng| € OV*QK, ©)
and
P = [P,,...,.Pg] € CM*QK (10)

Then, the received data during the integration time can be
compactly represented as

Y = qjagalP + N an

where the target-detection problem can be modeled as a com-
posite hypothesis testing problem, given by

Hy:Y =N

(12)
Hy:Y = aagal P+ N.

where

* The scalar « is assumed to be a complex, unknown but
deterministic parameter. It can be considered as a random
variable according to Swerling 1 target model (i.e., oy is
modeled as acomplex Gaussian random variable), however,
we focus on the deterministic unknown one here. In both
cases, this implies that K echoes collected on one scan have
the same value.

* In the case of the C-MIMO radar receiver with a symmetri-
cally spaced linear array, the vector ag, is also persymmet-
ric, satisfying ap = Jaj,. Here, both steering vectors ap
and a7 are assumed to be known.

e The columns of matrix IN are assumed to be independent
and identically distributed (IID), and have a circularly sym-
metric, complex Gaussian distribution with zero mean and
unknown covariance matrix R, i.e., n; ~ CN(0,R) for
l=1,...,QK. In the Bayesian framework, it is assumed
that the covariance matrix R is unknown but stochastic with
a specific prior density distribution. The inverse complex
Wishart distribution is a widely adopted prior distribution
for the covariance matrix R [32], i.e.,

R ~ W' (7,7Ry) (13)
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TABLE I
PRIOR DETECTORS
Detector Detector Reference
. . Hy
Ty—1 T 2
Rao \:,‘(Y?’_)l Yl: a| % 7]1 [30]
a, (YYT) aratPPTat Ho
, Hi
lal (yDLyT)~lypla,|? ,

Wald L 2 30
a al(YDLYT) la,a] PPia; ﬁo T2 1301
laf(¥DLyi+syDY!)~1vPla,)? I;h ,

TuRW N Lo LA ey 31]
ar(YDLYi+5YDY ) ~laralPPla; 1

Hy
i t —lypta,|?
BRao o (VY47 Q) VR 32]
al(YYT+~C) la,aPPTa; Ho
Hy
T Lyt —lypta,|?
BWald oD X 7 0) ¥R Al > gy (32]
a; (YDLYT4+4C)~la,a;PPTa; Hy
H,
i Lyt T —lypta,|?
BTuRW ~ A2x(YD Y AIYDY 47C) YR a0 This paper
al(YDLYT4+8YDYT+~C) aratPPfat Ho
Hy
T(yD+YT)~1a,
GLR v 2 (291
™ ™ HO
. Hy
i LI~1t -1
BGLR M > [32]
al. (YYT+yC)—la, Ho

where Ry is a known positive definite N x N matrix and
can be considered as the prior information on the average
covariance matrix, 7y is the degree of freedom measuring
the reliability of the prior information, where v > N [32].
In some literature, the persymmetric structure of the covari-
ance matrix R is exploited to improve the target-detection
performance [39]-[42]. More precisely, R has persymmet-
ric structure, satisfying R = JR!J where N x N matrix
J is called the exchange matrix. In this article, we do not
use these properties to devise our new detectors and they
are left for another work.
e It is also assumed that no target-free training data are
available due to many practical factors such as the presence
of interfering targets and variations in terrain [43]-[45].
In (12), the hypothesis H|, is referred to as the null hypothesis,
and H; is known as the alternative hypothesis. Considering all
this, we can now reformulate our composite hypothesis testing
problem as

H()SOq:O

H1 e 7& 0. (14)

This clearly shows that the unknown covariance matrix R is a
nuisance parameter, i.e., it is not relevant to the decision. Thus,
it is important to devise detectors having CFAR property against
the disturbance covariance matrix R.

III. UNIFYING PREVIOUS ADAPTIVE DETECTORS

In this section, we first introduce seven prior methods includ-
ing GLR, Rao, Wald, tunable Rao/Wald (TuRW), Bayesian GLR
(BGLR), Bayesian Rao (BRao) and Bayesian Wald (BWald)
detectors, for the detection problem (14). Next, we unify the Rao,
Wald, TuRW, BRao, BWald, BTuRW, GLR and BGLR tests,
listed in Table I, where the BTuRW detector is a new proposed
detector in this paper. To this end, let us define the following
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TABLE II
SPECIAL CASES OF THE GENERAL DETECTORS (22) AND (24)

Detector Special Detectors (B, k) Threshold
Rao (1,0) m
Wald (0,0) 72
T-RaW(B, k) TuRW (8> 0,0) 03
BRao (1,1) N4
BWald (0,1) s
BTuRW (8B>0,1) 6
GLR (1’ O) Ui
T-GLR (k) BGLR (1,1) ns

vectors and matrices so as to facilitate further discussion:

PTaT
b= - 2T 15
Prar]]’ ()
D = bb”, (16)
D" =1-bb", (17)
R(B,k) = YDYY' + 3YDY" + k7C (18)
Y. (8,5) =R 2(8,K)Y, (19)
Ri% (67 K:)aR
a(B, k) = T (20)
IIR™2 (B, k)arl|
g(B,k) = Yu(B, k)b (21)

Now, an alternative and unifying representations of the Rao,
Wald, TuRW, BRao, BWald and BTuRW detectors can be written
as

H,

AT—RaW(Y;BaH) = |<a(ﬂvﬂ)ag(ﬁv’%)>|2 2 i
Hy

(22)

where g can be considered as coherent integration along the
column direction b, performed by postmultiplying the whitened
data Y,, with b. In (22), (a,g) denotes the inner product of
vectors a and g, defined as aTg. In Table II, the special cases
of the general proposed detector (22) is represented by partic-
ularizing the parameters 3 and . The decision thresholds 7;’s
are modification detection thresholds, depending on the tuning
parameters 3 and k, system parameters (i.e., M, N) and the
desired false alarmrate, denoted by p ¢,. This general and tunable
(T) Rao and Wald -based detector is referred to as T-RaW (5, k)
in the sequel.

In [29] and [32], two adaptive detectors different from the Rao
and Wald tests are devised according to the GLRT principle in the
context of C-MIMO radar. One of them is based on the classical
approach, while another is according to the Bayesian framework
to achieve detection performance gains by incorporating prior
knowledge about the disturbance covariance matrix. After some
algebraic manipulations, we can unify them as follows

(23)
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or, equivalently, as

H
a(l,x),g(1,k)? !
(.m0 T

1+ (g1 n) (Lm) g

Arcrr (Y; fi) = (24)

It is interesting to note that the proposed unified detector (24)
is quite general, including the GLR and BGLR detectors as
special cases. More precisely, when x = 0, the proposed detector
corresponds to the GLR detector of [29], while it reduces to the
BGLR test proposed in [32] for & = 1. The special cases of the
general GLR-based detector (24) are described by the parameter
 and their corresponding thresholds in Table II. In the following,
this general and tunable GLR -based detector is referred to as
T-GLR(k).

IV. KERNEL-BASED ADAPTIVE DETECTORS

In this section, we first provide some preliminaries about
kernel theory. Then the proposed kernel-based detectors will
be introduced to offer much better detection performances as
compared with the state-of-the-art detectors.

A. Preliminaries

In the unified detectors (22) and (24), the inner product (a, g)
can provide a proper measure of similarity between vectors a
and g if the representation space of the vectors a and g (i.e.,
original space) is rich enough. In many problems, the original
space is limited in resolution, and expressive power and thus it
does not necessarily provide the best support for simple inner
product type of similarity measure [33], [46]. In kernel-based
methods, in general, the original input data belonging to the
data space X is mapped to a new space H, known as the feature
space [33]. In general, this mapping can be represented by a
nonlinear mapping function ¢;, i.e.,

pi: X =M, a—=pi(g), g—wilg) (25

where a and g are input vectors in X which are mapped into a
potentially much higher-dimensional feature space . Then, a
given similarity measure (i.e., the inner product) in the original
space can be replaced with that of the feature space using the
corresponding inner product {(y;(a), p;(g)). To this end, we
build on the idea that the original space does not necessarily
provide the best support for simple inner product type of simi-
larity measure; thus the original data space is mapped into the
feature space, aiming to obtain aricher space. Based on this idea,
the unified detectors (22) and (24) can now be re-expressed as

H,
[(ei(alB, v), ¢i(&(B, I 2 <, (26)
Hy
n n o
(@1, m), of (gL L,
(d) (d) Z ST+rk (27)
1+ <<p7+r<,(g(1a H))? 907+n(g(15 K:))> H()
where ¢ for ¢ =1,...,8 denote new detection thresholds to

achieve a given false alarm rate. In (27), we consider two
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different nonlinear mapping functions @(71)5 and <p;°_? .. in the

numerator (n) and denominator (d), respectively.

It should be noted that computing the {p;(a), v;(g)) would
be impossible unless the feature mapping ;(.) is explicit. In
addition, implementing {p;(a), ¢;(g))) directly in the feature
space is not necessarily straight-forward or computationally
efficient due to the high dimensionality of vectors ¢;(a) and
vi(g). For example, if ; is selected to be a polynomial of
order d, then the length of the vectors ¢;(a) and ¢;(g) is
equal to %, which is a large value if either NV or d is
large [33]. For the most common real-valued Gaussian kernel,
the dimensionality of the associated feature space is infinite.
Hence, the direct implementation of the proposed detectors in
the feature space, such as (26) and (27), is normally impractical,
mainly because of the high dimentionality associated with (; as
well as the lack of the knowledge about ;. Fortunately, in the
kernel method, this mapping function can be defined implicitly;
rather, we need to define a function, often called a kernel, such
that [46]

Ki(a,g) = (vi(a), vi(g)) (28)

Interestingly, it is seen that the kernel function computes the
similarity using the kernel function /C; in the input space X’
instead of the feature space H. In such cases, we do not require
to know the explicit form of the feature map ¢;, but instead, it
is implicitly defined through the corresponding kernel function.
This technique is known as kernelization or a kernel trick in the
kernel theory. A function that takes as its input vectors in the
original space and returns the inner product of the vectors in the
feature space is called a kernel function. Thus, using kernels,
we never need the coordinates of the data in the feature space,
because the detection algorithms only require the inner products
between data in the feature space, which can be obtained by
kernel function. To illustrate this, consider second-order real
polynomial (SORP) kernel defined as K;(a, g) = (a’'g + 6;)%
with d; = 2, where we considera = [a1, a]” andg = [g1, 92|
as a simplified example. In this case, the SORP kernel can be
expanded as

Ki(a,g) = (a191 + a2gz + ;)

= (pi(a), pi(g)) = vi(a) i(g) (29)
where
pi(a) = [a3, a3, \/20;a1, \/20;a2, V2a1a2,5;)7,  (30a)
0i(8) = 97,93, V2691, /26:92, V29192, 6;]". (30b)
Similarly, in the case of ; = 0, we find that
pi(a) = [af, a3, V2a1a,]", (3la)
0i(g) = [97, 95, V20192]" . (31b)

As can be seen from (30) (or (31)), the two-dimensional input
space via nonlinear mapping ¢; is mapped onto a six (or three)-
dimensional feature space, aiming to obtain a richer space. To
see this, a binary classification example is considered in Fig. 2,
where a two-dimensional original space X', represented by

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

T
b & A O O N MO ®

(a) (b)

Fig. 2. A binary classification example, (a) data of two-dimensional input
space O, represented by [z1,x2], (b) mapped data onto a three-dimensional
feature space F, represented by ¢, (x) = [21, 22, 23] = [x%,:cg,\/imlacg],
where data become linearly separable in the feature space F.

x = [x1, 227, is mapped onto a three-dimensional feature space
H, represented by ¢;(x) = [21, 22, 23] = [£7, 3, V221 25]. Itis
seen that the mapped data becomes linearly separable, i.e., the
ellipse decision boundary of the input space of Fig. 2(a) becomes
a hyperplane of Fig. 2(b) since ellipses can be written as linear
equations in the entries of [z, 29, 23] [33].

Remark 1: In general, there are different real-value ker-
nel functions used in the literature, and the most common
ones are the real polynomial KC;(x1,x2) = (x] x5 + 6;)% and
the real Gaussian radial basis function (RBF) IC;(x1,X2) =
exp (—||x1 — x2||?/202), where the first belongs to the pro-
jective kernels and the latter is radial ones [33], [34]. Here,
6; and d; are respectively bias and order parameters of the
polynomial kernel, while the single parameter o; > 0 is called
the width of Gaussian RBF. Although the Gaussian RBF is the
most popular, this radial kernel can deal with real-valued data
sequences only. While the complex Gaussian RBF kernel with
application in the complex kernel LMS algorithm has been in-
troduced in [47], its applications to the target detection problems
remain in obscurity especially when the Doppler frequency of
interested target is assumed to be unknown [48]. In contrast,
the polynomial kernel can also be used in complex domains.
To do so, it is enough to end up with a complex inner product
space. Based on this, for the first time, we use complex-valued
polynomial kernel function for radar target detection problems,
defined as K;(x1,x2) = (lexz + 0;)% with d; > 0 [33]. This
new complex-valued kernel can be served as a kernel function (in
the sense of the kernel trick) if it satisfies two key properties: (1)
positive semi-definiteness (i.e., K; (x;,x;) > Ofori = 1, 2),and
(2) symmetry (i.e., K;(x1,x2) = Kf(x2,x1)). In our case, the
positive semi-definiteness implies that KC; (x;, x;) = ((xi,%;) +
§)¢ = (||x:]|> + 8;)% > 0 for i = 1,2, which holds true for
0; > 0. The symmetry property requires that (xgxz + ;)% =
(xTx; + 67)%, implying that §; must be a real value. All of
these mean that ;(x1,X2) = (xJ{xQ +0;)% with d; > 0 is a
valid complex-valued kernel function provided that §; > 0.

Remark 2: Letusconsider (22) and (26), for example, and as-
sume that each element of vectors a(53, ), g(5, k), vi(a(8, k))
and ¢;(g(f,k)) can be considered as feature in the original
(input) or feature (transformed) spaces. In (22), the features are
all the monomials of degree 1, while being monomials up to and
including degree d; when transforming the original data (i.e.,
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a(f, k) and g(f, k)) into the feature space (i.e., ;(a(8, )) and
vi(g(B, k))) equivalently through an appropriate polynomial
kernel functions of order d;. This can be seen from (29)-(30)
for the special case of d; = 2. Thus, it is shown that in the con-
ventional detectors (22), only the inner product of all monomials
with degree one is computed, while in the case of the kernelized
detectors (26), the inner product of all monomials up to degree d;
are computed; allowing for richer feature space to be deployed
in the detection.

B. Proposed Kernel-Based Detectors

The kernelization procedure consists of two basic steps.
Firstly, we need to find an expression of the detector as a function
of inner products between the original (input) data only. This
representation is called the dual representation in contrast to
the primal representation [46]. The second step consists of the
substitution of the inner products by proper kernel functions,
building on the kernel trick. As such, for the T-RaW (S, k)
detector, the kernel-based detector corresponding to (26) can
be represented as

H,
g(/87 H>;di76i)|2 2

"
Y
Hy

‘K:’L (a(ﬁa H)? (32)

where ¢ = 1,...,6. By comparing (22) and (32), it is observed
that the inner products of (a(f, k), g(8, k)) is replaced with
kernel function K;(a(s, ), g(8, k); d;, d;). For the T-GLR(k)
detector, the kernelized detector corresponding to (27) can be
generally represented as

e, (a1, ), 801, m): ), 600, |
d d) d
1+ K, (gL k), g(L k) dsY, 080 1

H,
< §7+f<

(33)

where, in general, kernel functions /C;, ICZ(") and Ing) can
be selected from different kernel functions. In our case with
complex data, we adopt complex polynomial kernels and seek to
tune their parameters to achieve maximum detection probability.
By considering (32), the polynomial kernelized T-RaW (S, k)
detector can be expressed as

4 |? H
((a(8, k), (B, ) +6:)%| 2 < (34)
Hy
or, equivalently, as
H,y
(a8, k), 8(8, k) +0:* 2 (35)
Hy

for+=1,...,6. The proposed detector (35) has the capability
of flexibly tuning its selectivity (i.e., mismatch discrimination
capability) or robustness (i.e., non-sensitive to mismatch) to the
steering vector mismatch (SVM). This robustness or selectivity
(RoS) capability is required for multifunction radar systems.
For example, it is often desirable to reject the sidelobe targets
(targets outside the antenna main beam) for tracking mode, while
strong robustness of the system is desired for searching mode.
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To do so, we are able to change the tuning parameter, say [3,
to achieve desirable performance. For instance, the Rao-based
test provides the best selectivity performance while the strongest
robustness against steering vector mismatch is attained by the
Wald-based detector. Among them, the TuRW-based detector
provides a trade-off between the selectivity and robustness. In
the following, this group of the proposed detectors is named
kernelized and tunable RaW-based detectors, abbreviated as
KT-RaW (8, k).

For the general GLR-based detector (33), the corresponding
polynomial kernel detectors can be given by

)
(a1, k), g(1, ) + 677, ) 2 T

(d) \dD 2 T4r
1 + (<g(17’{)ag(17"€)> + 57+;<;) T HO

(36)

In the context of the adaptive target detection in the C-MIMO
radar, it is well-known that the GLR-based detectors provide the
best detection performance in the matched cases. In our case, we
aim to improve the above detection capability for the proposed
polynomial kernel GLR-based detector by properly selecting the
kernel parameters d;i),{, d(ﬁ?,{, 651),{ and 5;62,{ This new group
of the proposed detectors is also referred to as kernelized and
tunable GLR-based detectors, abbreviated as KT-GLR (k).

It is seen from (35) and (36) that the proposed detector
depends on another tunable parameter x to incorporate the
prior distribution (PD) of the disturbance covariance matrix,
if available, through the PD parameter, denoted by x. Thus,
the proposed detectors can be tuned based on the tuning RoS
parameter to achieve robust or selective performance in the
presence of SVM as well as to switch between the Bayesian
or non-Bayesian based detectors through the PD parameter.

V. CFAR PROPERTY

In this section, we exploit the principle of invariance to exam-
ine the potential CFAR behavior of the proposed KT-RaW (3, 0)
and KT-GLR (0) detectors against the nuisance parameter R.. It
is known that the invariant test statistics (ITSs) can be expressed
as some vector-valued functions of compressed data, namely
the maximal invariance (MI). In addition, the distributions of
ITSs can be parametrized by another low-dimensional function
of parameter space, named the induced maximal invariance
(IMI) [49]-[56]. Based on this strategy, we aim to achieve that
the nuisance parameters are compacted in the IMI or removed
from the considered problem, which could lead to CFAR tests.
To proceed in this way, let us define two unitary matrices

b
U= ,U2:| e 0K K
{Ilbl
V= { Vg] e NN
lag||’

such that U;b =0 and Véa r = 0. Now, it is straightforward
to show that

(37

(38)

HO W
Z=Viyu= (39)

Hy : on]jag]|||bllere? + W.
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It is seen that the above unitary matrices have been applied to
Y to rotate the signal vectors ar and b into the direction of the
first standard vector e;. Here, W have IID columns distributed
as circularly symmetric, complex Gaussian multivariate vectors
with zero mean and unknown covariance matrix VIRV, i.e.,
w; ~CN(0,VIRV) forl = 1,...,QK.

This new problem is invariant under the group of transforma-
tions, G, defined as

T T
9(Z) = FZH = [ﬂol 1%21} z [(1) %}

where g € Gand 31 # 0, B € CIN-1Dx1 M ¢ C(N-1Dx(N-1)
are arbitrary, and Q € CF~1D*(K-1) jg g ynitary matrix [49].
Here, we obtain

9(Z) = {HO W

(40)

= < (41)
Hy : Biaq]|ag||||bllerel + W.

where the columns of W have the same covariance matrix
of FRF' instead of VIRV. This means that the problem is
invariant under the transformations (40) since the unknown
parameter space changes form © = [a;, VIRV] to new one as
6= [610[1, FRFT]

In our case, similar to [49], it is easy to show that the
2-dimensional maximal invariance to the group of transforma-
tions G can be obtained as

lal R x|
[ afRR;laR ]

-
2 xR,

where Ry = YD'YT and x;, = Yb. The distribution of (42)
has been obtained in [49] and shown that it depended only on
a single IMI, playing the role of signal-to-noise ratio (SNR).
Thus, under H hypothesis, its distribution is independent of
any parameters, resulting in CFAR behavior against the nui-
sance parameter R. This means that we can obtain CFAR tests
when exploiting test statistics that are a function of maximal
invariances [; and [>. These tests are known as invariant tests,
where they are immune to the nuisance parameter R or they
do not distinguish between scenarios differing in this nuisance
parameter.

In our case, after some algebra manipulations, the unified
T-RaW((, 0) and T-GLR(0) detectors can be written as a func-
tion of maximal invariances {; and [, represented by

L

(42)

AT—RaW(Y;ﬁaO) = (1 +ﬂl2)(1 +6(12 — l]_))’ (43)
l
Arair(Y;0) = +1l2. (44)

Thus, we observe that the statistics of T-RaW(3,0) and
T-GLR(0) detectors are both functions of maximal invari-
ances, leading to nice CFAR invariant detectors with respect
to the nuisance parameter R!. As a result, the distribution of

'The CFAR behavior of these two detectors have been proven in [31] by
obtaining the closed-form expressions for the false alarm probabilities.
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(a(B,0),g(8,0)) inthe T-RaW (3, 0) detector can be parameter-
ized by the SNR only, leading to CFAR tests against the nuisance
parameter R when working with statistic |(a(53,0),g(8,0)) +
;% in the KT-RaW(3,0) detector for any value of §;. Simi-
larly, for the KT-GLR(0) detector, we get CFAR detector when
working with components ({(a(1,0),g(1,0)) +(5§n))d(7n) and
(8(L, ). g(1L,%)) +6;") = (I + 6”)%". To get more
insight, consider the special case of the KI-GLR(0) detector
when 65”) =0, ie.,

ldg") Hl
1 >
2o (45)
1+ (o + 680)%" 1,

This reveals that the KT-GLR(0) detector possesses CFAR

behavior for any value of dgn) , 5§d> and dgd) since it is a function
of maximal invariants [; and l2, namely we can set the detection
threshold of KT-GLR(0) detector without knowing the actual
nuisance parameter R.

VI. SIMULATION RESULTS

In this section, some simulation results are provided to ex-
amine and compare the detection performance of the four gen-
eral T-RaW (3, k) (including Rao, Wald, TuRW, BRao, BWald,
BTuRW as special cases), T-GLR (k) (including GLR and BGLR
as special cases), KT-RaW (3, k) (including KRao, KWald,
KTuRW, KBRao, KBWald, KBTuRW as special cases) and
KT-GLR (%) (including KGLR and KBGLR as special cases)
detectors [see Tables II and III for more specifications]. To
do this, the number of transmit/receive antennas is set 10
(i.e., N = M = 10) and the desired false alarm probability of
pra = 1073 is considered. The empirical false alarm and detec-
tion probability of the above detectors are determined by 10°
Monte-Carlo (MC) simulation runs. Unless otherwise stated,
we set tunable parameter 8 of KTuRW and KBTuRW equal to
0.5. In our simulation, we assume that each transmit antenna
uses orthogonal Hadamard waveforms of length () = 164 with
= 1,2 and unit power. Let us define the actual steering vector
by a’,, while ap is the nominal one used for detector design.
To evaluate the detection performance, the signal-to-clutter
ratio (SCR) of the general proposed classical detectors (i.e.,
T-RaW(g,0), T-GLR(0), KT-RaW($3,0) and KT-GLR(0)) is
defined by

1
SCR = |o [*|[R™2ag||[[b][? (46)
where it is
SCR = |a:1 [*[|R * alg|[*|b||* (47
for the general proposed Bayesian detectors such as

T-RaW(f3, 1), T-GLR(1), KT-RaW($3, 1) and KT-GLR(1). The
target’s DOA is set equal to 10" and it is assumed that the
[R)i; = 02pl=3l ([Rygli; = 02pl"~71), where p and o2 are re-
spectively the one-lag correlation coefficient and clutter power.
The proposed CFAR detectors are not sensitive to the values of
p and 02; however, we set them equal to 0.9 and 1, respectively.

In the case of the Bayesian-based detector, we set y equal to 12.
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TABLE III
PROPOSED TUNABLE ADAPTIVE DETECTORS BASED ON (35) AND (36), RESPECTIVELY NAMED KT-RAW (3, k) AND KT-GLR (%) IN GENERAL

Detector Special Detectors (B, k) Threshold ~ Polynomial Parameters
KRao (1,0) 1 01
KWald (0,0) 2 02
KT-RaW(8, k) KTuRW (B >0,0) S3 o3
KBRao (1,1) 4 04
KBWald (0,1) S5 35
KBTuRW (B>0,1) S6 o6
KGLR (1,0) o1 d™, 6 d\D | 5D
KT-GLR () KBGLR (1,1) s aM, s, b, s
10° T —== w 10°
——KRao
—KWald B
z — KTuRW c
;g . —KGLR % 10! ,: ]
et © 402l % i
= 0 _ | g 10 —KBRao
o - @ 5 - -KBWald
& | = " —--KBTuRW
\ N e KBGLR
-3 1 A 1 1 1 1 1
o3 ‘ ‘ ‘ \l s 0 s 20 25 0 B &
20 %0 40 50 60 70 1 X Gli = 4,5,6,8)
LxGi=1,2,37)
Fig.4. Monte-Carlo false alarm probabilities as functions of detection thresh-

Fig.3. Monte-Carlo false alarm probabilities as functions of detection thresh-
olds (1 (i.e.,t1 = 1), (2 (i.e., 12 = 1), (3 (i.e.,t3 = 1) and (4 (i.e., L4 = 2) for
the proposed KRao, KWald, KTuRW and KGLR detectors for different values
of p=0.3,0.6,0.9 and when @ = 16, indicating CFAR property against p.
The lines denote the results of p = 0.9, ‘- -’ stands for p = 0.6, and °... * is for
p = 0.3. Here, the kernel parameters are set equal to §; = 3 for: =1,...,6,

d™ = 4,d = 4,5{ = 1.35 and 61V = 5.

In addition, in the following, we only consider the single pulse
scenario, i.e., K = 1.

A. False-Alarm Probability Versus Threshold

For the proposed KRao, KWald, KTuRW and KGLR detec-
tors, the false alarm probabilities versus the detection threshold
are evaluated and plotted in Fig. 3 for three different values of
p and when @) = 16. The detector thresholds are determined by
107 Monte-Carlo (MC) simulation runs to assure the reliability
of the results.In Fig. 3, the lines denote the results of p = 0.9,
‘- -7 stands for p = 0.6, and “..."” is for p = 0.3. From Fig. 3, it
is seen that the above detectors have CFAR property against the
correlation coefficient of the clutter covariance matrix. Thus,
the obtained numerical results confirm our analytical CFAR
conclusions obtained in Section V. The false alarm probabilities
as a function of the detection threshold are depicted in Fig. 4
for the proposed KBRao, KBWald, KBTuRW and KBGLR
detectors. Figs. 3 and 4 can be used to help us to set the decision
thresholds of the proposed kernel-based detectors in the sequel
for the desired false alarm of py, = 1073,

B. Detection Performance Evaluations

For the proposed kernelized detectors, firstly, we need to select
suitable parameters for the polynomial kernel as characterized in

olds (1 (i.e., L] = 1), CQ (i.e., Lo = ].), 43 (i.e., L3 = 1) and C4 (i.e., Ly = 1073)
for the proposed KBRao, KBWald, KBTuRW and KBGLR detectors. Here, the

kernel parameters are set equal to 6; = 5fori = 1,...,6, dén) =0, déd) =1,
50 =2.2and 5\ = 4.

o
©

o
®

07

0.6

Detection Probability

!
0.5
] — —KTuRW

0.4

5 6

o 1 3
5i(i = 1,2,3)
(a) Detector KT-RaW(3, 0)

|
3 1
=
2
A 07 4
=
£
T osf g
= —-—KBRao
= ost —KBWald |

— —KBTuRW
04 | | | I
[ 1 2 4 5 6

3
3i(i = 4,5,6)

(b) Detector KT-RaW (3, 1)

Fig. 5. Detection probability as a function of polynomial kernel’s parameters
of the proposed detector KT-RaW (3, k) with k = 0,1 for pp, = 1073, Q =
16 and when (a) SCR = 17 dB and (b) SCR = 13 dB.

Table III. In the detection theory framework, we are interested in
tests that have maximum detection probability for a given false
alarm probability. Next, based on these criteria, we are interested
in finding the kernel parameters of the proposed detectors which
maximize their detection probabilities. In Fig. 5, the detection
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Fig. 6. Detection probability as a function of polynomial kernel’s parameters Jgn) and 6;‘1) of the proposed detector KT-GLR(0) when pf, = 1073, Q = 16,

d\™ = 4,d\" = 4.and SCR = 16 dB.
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Fig. 7. Detection probability as a function of polynomial kernel’s parameters dg") and d;d) of the proposed detector KT-GLR(0) when ps, = 1073, Q = 16,

5 =1.35, 8" = 5 and SCR = 16 dB.
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Fig. 8.  Detection probability as a function of polynomial kernel’s parameters (Sém and 5éd> of the proposed detector KT-GLR (1) when pf, = 1073, Q = 16,

d{™ =1,d{" = 6 and SCR = 12 dB.

probability of the proposed KT-RaW (3, ) detector as a function
of §; is plotted when we set pf, = 1073, Fig. 5(a) assumes
SCR = 17 dB, while it is SCR = 13 dB in Fig. 5(b). In this
case, it is observed that the value of §; > 3 results in the best
detection performance. In the following, we use these parameters
to compare the detection performance of the proposed detectors

with that of their counterparts. For the proposed KT-GLR(0) de-
tector the above simulation is repeated and the results are shown
in Fig. 6 for different values of parameters 5§n) and 6§d) and
when dg") =4 and d$d) = 4. This figure clearly indicates that it
is important to select proper values for 6;") and 5§d) to maximize
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Fig. 9. Detection probability as a function of polynomial kernel’s parameters dén) and déd) of the proposed detector KT-GLR (1) when ps, = 1073, Q = 16,

5" =2.2,6{" = 4and SCR = 12 dB.
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Fig. 10.
T-GLR(0) when M = N = 10 and ps, = 1073.

the detection probability. To see the effect of d(7n) and d(7d) , which
were set fixed in Fig. 6, we also plot in Fig. 7 the detection
probability as functions of dgn) and dgd) when 5§n) = 1.35 and
5§d) = 5. It is observed from Fig. 7 that increasing dgd) will
resultin zero detection probability for the considered SCR. In the
following investigation, we set d(7") =4, dgd) =4, 5§n) =1.35
and 5§d) =5 as suitable kernel parameters of the proposed
KT-GLR(0) detector. For the proposed KT-GLR(1) detector,
this examination is repeated and its results are shown in Figs. 8
and 9. The same trend, but with different kernel parameters, can
be seen in comparison with that of the KT-GLR(0) detector. In
this case, we obtain d") = 6,d\" = 1,6{" =2.2and6{" =4
as proper polynomial kernel parameters.

In Fig. 10, the detection performance of the proposed unified
detectors KT-RaW (3, 0) (KT-GLR(0)) and that of T-RaW (3, 0)
(T-GLR(0)) are compared together for different values of
@ =16,32. It is seen that the proposed general detectors
KT-RaW(/3, 0) have significantly better performances than that
of their counterparts especially for small value of (. In the case
of @@ = 16, the SCR gain improvements are about 11 dB, 2 dB,

—=—Rao

- e-KRao
——Wald

- - KWald
—TuRW |
- - - KTuRW
——GLR
-+-KGLR

y
o o o o
> N ® ©

o
=~

Detection Probabilit;
o o
@ &

o
o

0.1

SCR(dB)
(b) Q=32

Detection probability versus SCR in the matched spatial signal scenario for the unified detectors KT-RaW (3, 0), KT-GLR(0), T-RaW(3,0) and

3 dB and 2 dB, respectively, for the proposed KRao, KWald,
KTuRW and KGLR at the detection probability of 0.68. In
contrast, these improvements reduce to values of about 1.5 dB
for Q = 32. For the proposed KT-RaW (3, 1) (KT-GLR(1)) and
that of T-RaW (3, 1) (T-GLR(1)), these simulation results are
repeated and the results are shown in Fig. 11. In this case, we
obtain SCR gain improvement of about 1.5 dB and 1 dB for all
the proposed Bayesian-based detectors for Q = 16 and ) = 32,
respectively.

According to the Remark 2, the above improvements in the
detection performance through the proposed kernel-based de-
tectors are obtained due to exploiting the richer features of the
transformed data (i.e., monomial features with degree up to d;
or d(ﬁr)n) as compared to that of the original data represented
by monomials with degree one. Thus, while the conventional
detectors are efficient in finding linear relations, the kernel-based
detectors provide generally a richer space to exploit both linear
and nonlinear relations of the received data.

Up to this point, we have considered the matched spatial signal
scenario. In the following, we assume that the actual input signal
to the receive antennas over the k-th pulse is ozla’Ra}P k (a’R is

Authorized licensed use limited to: University of Florida. Downloaded on June 22,2020 at 14:16:10 UTC from IEEE Xplore. Restrictions apply.



1510

——BRao E
- -KBRao
—=—Wald
-u-KBWald 4
—— BTuRW
KBTuRW

——BGLR
-+-KBGLR |

e 20 o o
> N o ©

o
~

Detection Probability
o o
w o

o
)

0.1

0 3 6 9 12 5 18 21 24 27 30

1
SCR(dB)
(@) Q=16

—<—BRao 1
- o - KBRao
——Wald

- «- KBWald
—— BTuRW

- - - KBTuRW
——BGLR
[ KBGLR

e 2 9
N ® ©

o
o

o
=~

Detection Probability
=) o
w o

o
o

0.1

0 3 6 9 12 15 18 21 24 27 30
SCR(dB)

(b) Q=32

Fig. 11. Detection probability versus SCR in the matched spatial signal
scenario for the unified detectors KT-RaW(/3,1), KT-GLR(1), T-RaW(;3,1)
and T-GLR(1) when M = N = 10 and py, = 1073.

called actual steering vector) but it is o a Ra"'TP 1 (ag is called
nominal steering vector) in used our signal model to derive
the detectors. For the general proposed classical detectors (i.e.,
T-RaW($3,0), T-GLR(0), KT-RaW (3, 0) and KT-GLR(0)), the
squared sinusoid of the angle, say ¢, between the whitened nom-
inal steering vector and the whitened actual steering direction
can be defined as

T R—l /12
sin?(¢) =1 — : 25 E,iLR| (48)
(agpR tag)(ayRta})
or, it is
| Jf]_:{fl /2
sin?(¢) =1 — : iR - E,iLR| — (49)
(agrRy agr)(agR, a%)
for the general proposed Bayesian detectors such as

T-RaW (3, 1), T-GLR(1), KT-RaW(3, 1) and KT-GLR(1).

In the first mismatched case, similar to [31], we assume that
the actual DOA of the target of interest is 32°, while it is
considered equal to 30" for the nominal one. Fig. 12 shows the
detection probability versus SCR for ) = 16. In comparison
to that of matched case, it is seen that the detection perfor-
mance of all the considered detectors, especially the classical
ones, are degraded as the SCR increases for the high SCR
regime. In the proposed detector KT-RaW (S, 0), this degrada-
tion in detection performance becomes severe as the tunable
parameter /3 increases due to more target signal contamination.
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Fig. 12.  Detection probability versus SCR in the mismatched spatial signal
scenario for the unified detectors T-RaW (g, k), T-GLR(k), KT-RaW (83, k),
KT-GLR (k) detectors with x = 0,1 when M = N = 10,Q = 16 and py, =
1073,
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Fig. 13. Detection probability as a function of [ for the unified detec-
tors T-RaW (3, 0) and KT-RaW(3,0) and when M = N = 10, Q = 16, 32,
SCR =17 dB and ps, = 1073.

From Fig. 12, it is observed that the detection performances
of the KT-RaW (3, 1) detector is not degraded substantially for
the SCR values in the range of [0—27] dB due to exploiting the
available prior knowledge of the covariance matrix. To examine
this phenomenon for the proposed classical detectors, in Fig. 13,
the detection probability as a function of 3 is depicted for
the detectors of T-RaW(/3,0) and KT-RaW($,0), and when
SCR = 17 dB and ) = 16, 32. Using this figure, we can discuss
the robustness and selectivity of the above detectors in the
presence of a mismatched signal. This figure shows that by
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Fig. 14. Detection probability as a function of sin?(¢) in the mismatched
scenario for the unified detectors KT-RaW (3, 0), KT-GLR(0), T-RaW (£, 0)
and T-GLR(0) when M = N = 10 and ps, = 1072.

increasing the tunable parameter [ the selectivity of the pro-
posed detectors T-RaW (3, 0) and KT-RaW (3, 0) increases. As
such, by increasing the tunable parameter 3, the above-proposed
detectors are less inclined to declare a detection if a mismatched
signal is present, making them suitable for the tracking stage
of a radar system. In contrast, more robustness is obtained by
decreasing the tunable parameter 3, which is suitable for the
searching stage of a radar system. In the second examination of
the mismatched signal, the detection performance as a function
of sin?(¢) for the proposed detectors and their counterparts are
depicted in Figs. 14 and 16. Fig. 14(a)-(b) assumes @ = 16
and SCR = 18 dB (SCR = 15 dB), while Fig. 16(a)—(b) cor-
responds to @ = 32 and SCR = 14 dB (SCR = 14 dB). In all
cases, itis seen that the proposed KWald/KBWald detector offers
the most robustness capability in the presence of mismatched
signals, while the KRao/KBRao test has the best selectivity ca-
pability. From this figure, the significant detection performance
improvement of the proposed kernelized detectors over their
counterparts can be clearly seen.

From waveform design viewpoint, we are interested in design-
ing a waveform resulting in a ambiguity function (or detector
statistic output) with no sidelobe in range dimension. This char-
acteristic makes it ideal for multi-target detection. To investigate
this important aspect, we again consider the case of ) = 16
with M = 10 and use ten rows of the Hadamard matrix of order
16 as orthogonal waveforms (codes) transmitted over transmit
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Fig. 15. Detection probability as a function of sin2(¢) in the mismatched

scenario for the unified detectors KT-RaW(g3, 1), KT-GLR(1), T-RaW(f3, 1)
and T-GLR(1) when M = N = 10 and py, = 1073.

MS-ACF

10
Range Bin Number

Fig. 16. Modulus-squared autocorrelation function (MS-ACF) of orthogonal
Hadamard codes transmitted over different antennas as functions of range bin,
where they result in the best ISL-based code in the output of the Rao statistic
[see Fig. 17(a)].

antennas. To do this, the number of possible codes is equal to the
number of combinations of () items taken M at a time, which
is equal to 8008 here. Through extensive search we choose the
best integrated-sidelobe (ISL)-based code among the possible
codes, where it is called Best code (Bcode) and represented in
Table IV. Here, we assume a matched case in which the DOA
of the target of interest is 32°.

Modulus-squared autocorrelation functions (MS-ACFs) of
different waveforms transmitted over transmit antennas as func-
tions of range bins are shown in Fig. 16, where the Rao test
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TABLE IV
BEST ISL-BASED TRANSMIT ANTENNA ORTHOGONAL HADAMARD
WAVEFORMS OF LENGTH @ = 16 WHEN M = 10

Antenna number Hadamard code

1 r-r1-1r-11-11-11-111-11-1]
2 [t-1r1-11-11-11-11-11-11-1]
3 M-11-1-11-111-11-1-11-11]
4 Mr-1-1r11-1-1-1-111-1-111]
5 [rr1rr111-1-1-1-1-1-1-1-1]
6 Mr-1-r11-1-111-1-111-1-1]
7 Mr-1-r-1-111-1-11111-1-1]
8 [t-r-111-1-11-111-1-111-1]
9 [fTrrrrr1r1r11111111]
10 Mr-1-1-1-11111-1-1-1-111]
&
Sﬁ%o.zf B
s = 10 £ et o . Qs = 10 . 15

-5
Range Bin Number

(a) Best ISL-Based code

osf b
06 B

0.4t 4

Lot Tl 1ot 1oz,

-10 10 5

Rao Test Statistic Output

-5 o 5
Range Bin Number

(b) Worst ISL-Based code

Fig. 17. Rao test statistic as functions of range bin for the obtained best and
worst ISL-based codes.

statistic output,? is also depicted in Fig. 17(a). For compar-
ison purposes, the worst ISL-based code, called Wcode, is
also searched, where its Rao test statistic output is plotted
in Fig. 17(b). We compare the detection performance of the
considered detectors in three cases: 1) single-target scenario,
2) two-target scenario when the Bcode is chosen, 3) two-target
scenario when the Wcode is used. For the multi-target scenario,
two targets are considered with the same Doppler frequency but
with the range bin differences of 12, and when the target under
test has a SCR of 17 dB, while it is 14 dB for interfering target.
The results of this simulation in terms of the Receiver Operating
Characteristics (ROC) curves of all the detectors are plotted in
Fig. 18. It can be observed that the presence of the interfering
target can severely degrade the detection performances of the
considered detectors when the Wcode is exploited, while it is
better when the Bcode is chosen. This degradation in detection
performance is due to the energy leakage of the strong interfering
target into the adjacent range bins of the target under test.
From Fig. 18, it can be observed that the proposed KGLR and
KTuD detectors performs clearly better than the other detectors,
being followed in performance by the proposed KWald and
GLR detectors. In all cases, the Rao detector achieves the worst

2 As shown in Fig. 18 the Rao detector achieves the worst performance.
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Fig. 18.  ROC curves of the proposed detectors and those of the previously
proposed ones for M = 10, Q = 16, SCR = 17 dB for the target under test
(TUT), SCR = 14 dB for the interfering target with a 12 range-bin separation
with TUT.

performance. Additionally, by comparing Figs. 16 and 17, it can
be seen that the resulting C-MIMO detector may have better
range dimension characteristic as compared to the MS-ACF of
different waveforms transmitted over transmit antennas. This
highlights the importance of the waveform design problem in
C-MIMO systems when the range dimension of the exploited
detector is considered.

VII. CONCLUSION

We have adopted the theory of kernel to develop an exhaus-
tive study for target detection in colocated MIMO radar. To
do so, firstly, we have unified the detectors in the colocated
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MIMO radar literatures. Then, they have been reformulated
under the kernel method framework to improve their detection
performances as measured by the SCR gains. To this end, we
exploited the polynomial kernel functions and try to optimize
the corresponding parameters of the functions to achieve a
maximum detection probability under a fixed level of false
alarm probability. Additionally, through the invariance theory,
we investigated the potential CFAR behavior of the proposed
classical detectors against the disturbance covariance matrix.
Specifically, it was shown that all proposed classical detectors
are robust against the disturbance covariance matrix. Finally, ex-
tensive simulation results are provided to indicate that the seven
proposed detectors have better detection performance than their
counterparts. In addition, the proposed detectors have tunable
capability to select between the classical and Bayesian detectors
as well as to choose between more selectivity or robustness
against a mismatched signal, respectively, required for tracking
or searching stages of a radar system. Finally, the importance
of the waveform design for target detection in a multi-target
scenario was investigated, where we showed that the proper
choice of the signals transmitted via colocated MIMO antennas
can improve the performance of adaptive colocated MIMO radar
methods in multi-target scenarios.

Possible future extensions of our work might include the
case of formulating an optimization problem to obtain optimal
parameters of the complex-valued polynomial kernel. To do
this, firstly, it is required to obtain closed-form expressions for
the false alarm and detection probabilities of the kernelized
detectors. Further extensions could be to devise a new kernel
function through solving a complicated optimization problem.
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