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ABSTRACT

As deep reinforcement learning (RL) is applied to more tasks, there is a need to
visualize and understand the behavior of learned agents. Saliency maps explain
agent behavior by highlighting the features of the input state that are most relevant
for the agent in taking an action. Existing perturbation-based approaches to com-
pute saliency often highlight regions of the input that are not relevant to the action
taken by the agent. Our proposed approach, SARFA (Specific and Relevant Fea-
ture Attribution), generates more focused saliency maps by balancing two aspects
(specificity and relevance) that capture different desiderata of saliency. The first
captures the impact of perturbation on the relative expected reward of the action
to be explained. The second downweighs irrelevant features that alter the relative
expected rewards of actions other than the action to be explained. We compare
SARFA with existing approaches on agents trained to play board games (Chess
and Go) and Atari games (Breakout, Pong and Space Invaders). We show through
illustrative examples (Chess, Atari, Go), human studies (Chess), and automated
evaluation methods (Chess) that SARFA generates saliency maps that are more
interpretable for humans than existing approaches. For the code release and demo
videos, see https://nikaashpuri.github.io/sarfa-saliency/.

1 INTRODUCTION

Deep learning has achieved success in various domains such as image classification (He et al., 2016;
Krizhevsky et al., 2012), machine translation (Mikolov et al., 2010), image captioning (Karpathy et al.,
2015), and deep Reinforcement Learning (RL) (Mnih et al., 2015; Silver et al., 2017). To explain
and interpret the predictions made by these complex, “black-box”-like systems, various gradient
and perturbation techniques have been introduced for image classification (Simonyan et al., 2013;
Zeiler & Fergus, 2014; Fong & Vedaldi, 2017) and deep sequential models (Karpathy et al., 2015).
However, interpretability for RL-based agents has received significantly less attention. Interpreting
the strategies learned by RL agents can help users better understand the problem that the agent is
trained to solve. For instance, interpreting the actions of a chess-playing agent in a position could
provide useful information about aspects of the position. Interpretation of RL agents is also an
important step before deploying such models to solve real-world problems.

Inspired by the popularity and use of saliency maps to interpret in computer vision, a number
of existing approaches have proposed similar methods for reinforcement learning-based agents.
Greydanus et al. (2018) derive saliency maps that explain RL agent behavior by applying a Gaussian
blur to different parts of the input image. They generate saliency maps using differences in the value
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For Atari games, the features are pixels. We are interested in identifying which features of the state s
are important for the agent in taking action â. We assume that the agent is in the exploitation phase
and therefore plays the action with the highest expected reward. This feature importance is described
by an importance-score or saliency for each feature f , denoted by S, where S[f ] ∈ (0, 1) denotes
the saliency of the f th feature of s for the agent taking action â. A higher value indicates that the f th

feature of s is more important for the agent when taking action â.

Perturbation-based Saliency Maps The general outline of perturbation based saliency approaches
is as follows. For each feature f , first perturb s to get s′. For instance, in chess, we can perturb the
board position by removing the piece in the f th square. In Atari, Greydanus et al. (2018) perturb the
input image by adding a Gaussian blur centered on the f th pixel. Second, query M to get Q(s′, a)
∀a ∈ As ∩As’. We take the intersection of As and As′ to represent the case where some actions may
be legal in s but not in s′ and vice versa. For instance, when we remove a piece in chess, actions that
were legal earlier may not be legal anymore. In the rest of this section, when we use “all actions” we
mean all actions that are legal in both the states s and s′. Finally, compute S[f ] based on how different
Q(s, a) and Q(s′, a)) are, i.e. intuitively, S[f ] should be higher if Q(s′, a) is significantly different
from Q(s, a). Greydanus et al. (2018) compute the saliency map using S1[f ] =

1

2
|πs − πs′ |

2, and

S2[f ] =
1

2
(V (s)− V (s′))2, while Iyer et al. (2018) use S[f ] = Q(s, â)−Q(s′, â). In this work,

we will propose an alternative approach to compute S[f ].

Properties We define two desired properties of an accurate saliency map for policy-based agents:

1. Specificity: Saliency S[f ] should focus on the effect of the perturbation specifically on the action
being explained, â, i.e. it should be high if perturbing the f th feature of the state reduces the
relative expected reward of the selected action. Stated another way, S[f ] should be high if
Q(s, â)−Q(s′, â) is substantially higher than Q(s, a)−Q(s′, a), a 6= â. For instance, in figure
1, removing pieces such as the white queen impact all actions uniformly (Q(s, a)−Q(s′, a) is
roughly equal for all actions). Therefore, such pieces should not be salient for explaining â. On
the other hand, removing pieces such as the white knight on a4 specifically impacts the move
(â =Bb6) we are trying to explain (Q(s,Bb6) − Q(s′, Bb6) ≫ Q(s, a) − Q(s′, a) for other
actions a). Therefore, such pieces should be salient for â.

2. Relevance: Since the Q-values represent the expected returns, two states s and s′ can have
substantially different Q-values for all actions, i.e. may be higher for s′ for all actions if s′ is a
better state. Saliency map for a specific action â in s should thus ignore such differences, i.e. s′

should contribute to the saliency only if its effects are relevant to â. In other words, S[f ] should
be low if perturbing the f th feature of the state alters the expected rewards of actions other than â.
For instance, in Figure 1, removing the black pawn on c6 increases the expected reward of other
actions (in this case, Bb4). However, it does not effect the expected reward of the action to be
explained (Bb6). Therefore, the pawn is not salient for explaining the move. In general, such
features that are irrelevant to â should not be salient.

Existing approaches to saliency maps do not capture these properties in how they compute the saliency.
Both the saliency approaches used in Greydanus et al. (2018), i.e. S1[f ] =

1

2
(V (s)− V (s′))2 and

S2[f ] =
1

2
|πs − πs′ |

2, are not focusing on the action-specific effects since they aggregate the change
over all actions. Although the saliency computation in Iyer et al. (2018) is somewhat more specific to
the action, i.e. S[f ] = Q(s, â)−Q(s′, â), it is ignoring whether the effects on Q are relevant only to
â, or effect all the other actions as well. This is illustrated in Figure 1.

Identifying Specific Changes To focus on the effect of the change on the action, we are interested
in whether the relative returns of â change with the perturbation. Using Q(s, â) directly, as in Iyer
et al. (2018), does not capture the relative changes to Q(s, a) for other actions. To support specificity,
we use the softmax over Q-values to normalize the values (as is also used in softmax action selection):

P (s, â) =
exp(Q(s, â))

∑
a
exp(Q(s, a))

(1)

and compute ∆p = P (s, â)− P (s′, â), the difference in the relative expected reward of the action to
be explained between the original and the perturbed state. A high value of ∆p thus implies that the
feature is important for the specific choice of action â by the agent, while a low value indicates that
the effect is not specific to the action.
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Identifying Relevant Changes Apart from focusing on the change in Q(s, â), we also want to
ensure that the perturbation leads to minimal effect on the relative expected returns for other actions.
To capture this intuition, we will compute the relative returns of all other actions, and compute
saliency in proportion to their similarity. Specifically, we normalize the Q-values using a softmax
apart from the selected action â.

Prem(s, a) =
exp(Q(s, a))

∑
a′ 6=â

exp(Q(s, a′))
∀a 6= â (2)

We use the KL-Divergence DKL = Prem(s
′, a)||Prem(s, a) to measure the difference between

Prem(s
′, a) and Prem(s, a). A high DKL indicates that the relative expected reward of taking some

actions (other than the original action) changes significantly between s and s′. In other words, a high
DKL indicates that the effect of the feature is spread over other actions, i.e. the feature may not be
relevant for the selected action â.

Computing the SARFA Saliency To compute salience S[f ], we need to combine ∆p and DKL. If
DKL is high, S[f ] should be low, regardless of whether ∆p is high; the perturbation is affecting many
other actions. Conversely, when DKL is low, S[f ] should depend on ∆p. To be able to compare
these properties on a similar scale, we define a normalized measure of distribution similarity K using
DKL:

K =
1

1 +DKL

(3)

As DKL goes from 0 to ∞, K goes from 1 to 0. Thus, S[f ] should be low if either ∆p is low or K
is low. Harmonic mean provides this desired effect in a robust, smooth manner, and therefore we
define S[f ] to be the harmonic mean of ∆p and K:

S[f ] =
2K∆p

K +∆p
(4)

Equation 4 captures our desired properties of saliency maps. If perturbing the f th feature affects the
expected rewards of all actions uniformly, then ∆p is low and subsequently S[f ] is low. This low
value of ∆p captures the property of specificity defined above. If perturbing the f th feature of the
state affects the rewards of some actions other than the action to be explained, then DKL is high, K
is low, and S[f ] is low. This low value of K captures the property of relevance defined above.

3 RESULTS

To show that SARFA produces more meaningful saliency maps than existing approaches, we use
sample positions from Chess, Atari (Breakout, Pong and Space Invaders) and Go (Section 3.1). To
show that SARFA generates saliency maps that provide useful information to humans, we conduct
human studies on problem-solving for chess puzzles (Section 3.2). To automatically compare the
saliency maps generated by different perturbation-based approaches, we introduce a Chess saliency
dataset (Section 3.3). We use the dataset to show how SARFA is better than existing approaches in
identifying chess pieces that humans deem relevant in several positions. In Section 3.4, we show how
SARFA can be used to understand common tactical ideas in chess by interpreting the action of a
trained agent.

To show that SARFA works for black-box agents, regardless of whether they are trained using
reinforcement learning, we use a variety of agents. We only assume access to the agent’s Q(s, a)
function for all experiments. For experiments on chess, we use the Stockfish agent3. For experiments
on Go, we use the pre-trained MiniGo RL agent4. For experiments on Atari agents and for generating
saliency maps for Greydanus et al. (2018), we use their code and pre-trained RL agents5. For
generating saliency maps using Iyer et al. (2018), we use our own implementation6. All of our
code and more detailed results are available in our Github repository: https://nikaashpuri.github.
io/sarfa-saliency/.

3https://stockfishchess.org/
4https://github.com/tensorflow/minigo
5https://github.com/greydanus/visualize atari
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Most relevant to SARFA are the visual interpretable explanations of deep networks using saliency
maps. Methods for computing saliency can be classified broadly into two categories.

Gradient-based methods identify input features that are most salient to the trained DNN by using the
gradient to estimate their influence on the output. Simonyan et al. (2013) use gradient magnitude
heatmaps, which was expanded upon by more sophisticated methods to address their shortcoming,
such as guided backpropagation (Springenberg et al., 2014), excitation backpropagation (Zhang et al.,
2018), DeepLIFT (Shrikumar et al., 2017), GradCAM (Selvaraju et al., 2017), and GradCAM++
(Chattopadhay et al., 2018). Integrate gradients (Sundararajan et al., 2017) provide two axioms to
further define the shortcomings of these approaches: sensitivity (relative to a baseline) and implemen-
tation invariance, and use them to derive an approach. Nonetheless, all gradient-based approaches
still depend on the shape in the immediate neighborhood of a few points, and conceptually, use
perturbations that lack physical meaning, making them difficult to use and vulnerable to adversarial
attacks in form of imperceivable noise (Ghorbani et al., 2019). Further, they are not applicable to
scenarios with black-box access to the agent, and even with white-box access to model internals, they
are not applicable when agents are not fully differentiable, such as Stockfish for chess.

We are more interested in perturbation-based methods for black-box agents: methods that compute
the importance of an input feature by removing, altering, or masking the feature in a domain-aware
manner and observing the change in output. It is important to choose a perturbation that removes
information without introducing any new information. As a simple example, Fong & Vedaldi
(2017) consider a classifier that predicts ’True’ if a certain input image contains a bird and ‘False’
otherwise. Removing information from the part of the image which contains the bird should change
the classifier’s prediction, whereas removing information from other areas should not. Several kinds
of perturbations have been explored, e.g. Zeiler & Fergus (2014); Ribeiro et al. (2016) remove
information by replacing a part of the input with a gray square. Note that these approaches are
implementation invariant by definition, and are sensitive with respect to the perturbation function.

Existing perturbation-based approaches for RL (Greydanus et al., 2018; Iyer et al., 2018), however,
by focusing on the complete Q (or V ), tend to produce saliency maps that are not specific to the
action of interest. SARFA addresses this by measuring the impact only on the action being selected,
resulting in more focused and useful saliency maps, as we show in our experiments.

5 LIMITATIONS AND FUTURE WORK

Saliency maps focus on visualizing the dependence between the input and output to the model,
essentially identifying the situation-specific explanation for the decision. Although such local
explanations have applications in understanding, debugging, and developing trust with machine
learning systems, they do not provide any direct insights regarding the general behavior of the model,
or guarantee that the explanation is applicable to a different scenario. Attempts to provide a more
general understanding of the model include carefully selecting prototype explanations to show to the
user (van der Linden et al., 2019) and crafting explanations that are precise and actionable (Ribeiro
et al., 2018). We will explore such ideas for the RL setting in future, to provide explanations that
accurately characterize the behavior of the policy function, in a precise, testable, and intuive manner.

There are a number of limitations of SARFA to generating saliency maps in our current implemen-
tation. First, we perturb the state by removing information (removing pieces in Chess/Go, blurring
pixels in Atari). Therefore, SARFA cannot highlight the importance of absence of certain attributes,
i.e. saliency of certain positions being empty. In games such as Chess and Go, an empty square or file
(collection of empty squares) can often be important for a particular move. Future work will explore
perturbation functions that add information to the state (e.g. adding pieces in Chess/Go). Such
functions, along with SARFA, can be used to calculate the importance of empty squares. Second, it
is possible that perturbations may explore states that lie outside the manifold, i.e. they lead to invalid
states. For example, unless explicitly prohibited like we do, SARFA will compute the saliency of the
king pieces by removing them, which is not allowed in the game, or remove the paddle from Pong.
In future, we will explore strategies that take the valid state space into account when computing the
saliency. Last we estimate the saliency of each feature independently, ignoring feature dependencies
and correlations, which may lead to incorrect saliency maps. We will investigate approaches that
perturb multiple features to quantify the importance of each feature (Ribeiro et al., 2016; Lundberg &
Lee, 2017), and combine them with SARFA to explaining black-box policy-based agents.
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6 CONCLUSION

We presented a perturbation-based approach that generates more focused saliency maps than existing
approaches by balancing two aspects (specificity and relevance) that capture different desired char-
acteristics of saliency. We showed through illustrative examples (Chess, Atari, Go), human studies
(Chess), and automated evaluation methods (Chess) that SARFA generates saliency maps that are
more interpretable for humans than existing approaches. The results of our technique show that
saliency can provide meaningful insights into a black-box RL agent’s behavior. For the code release
and demo videos, see https://nikaashpuri.github.io/sarfa-saliency/.
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(a) Move Qd4 (b) Move Rf1 (c) Move Bb5

Figure 8: Saliency Maps generated by SARFA for the top 3 moves in a chess position

A EXPERIMENTAL DETAILS

For experiments on chess, we use the Stockfish 10 agent: https://stockfishchess.org/. Stockfish
works using a heuristic-based measure for each state along with Alpha-Beta Pruning to search over
the state-space.

For experiments on Go, we use the pre-trained MiniGo RL agent: https://github.com/tensorflow/
minigo. This agent was trained using the AlphaGo Algorithm (Silver et al., 2016). It also adds
features and architecture changes from the AlphaZero Algorithm Silver et al. (2017).

For experiments on Atari agents and for generating saliency maps for Greydanus et al. (2018), we
use their code and pre-trained RL agents available at https://github.com/greydanus/visualize atari.
These agents are trained using the Asynchronous Advantage Actor-Critic Algorithm (A3C) (Mnih
et al., 2016).

For generating saliency maps using Iyer et al. (2018), we use our implementation. All of our code
and more detailed results are available in our Github repository: https://nikaashpuri.github.io/
sarfa-saliency/ .

For chess and Go, we perturb the board position by removing one piece at a time. We do not remove
a piece if the resulting position is illegal. For instance, in chess, we do not remove the king. For Atari,
we use the perturbation technique described in Greydanus et al. (2018). The technique perturbs the
input image by adding a Gaussian blur localized around a pixel. The blur is constructed using the
Hadamard product to interpolate between the original input image and a Gaussian blur. The saliency
maps for Atari agents have been computed on the frames provided by Greydanus et al. (2018) in their
code repository.

The puzzles for conducting the Chess human studies, creating the Chess Saliency Dataset, and
providing illustrative examples have been taken from Lichess: https://database.lichess.org/. The
puzzles for illustrative examples on Go have been taken from OnlineGo: https://online-go.com/
puzzles.

B SALIENCY MAPS FOR TOP 3 MOVES

Figure 8 shows the saliency maps generated by SARFA for the top 3 moves in a chess position. The
maps highlight the different pieces that are salient for each move. For instance, Figure 8a shows that
for the move Qd4, the pawn on g7 is important. This is because the queen move protects the pawn.
For the saliency maps in Figures 8b and 8c, the pawn on g7 is not highlighted.

C SALIENCY MAPS FOR LEELAZERO

To show that SARFA generates meaningful saliency maps in Chess for RL agents, we interpret the
LeelaZero Deep RL agent https://github.com/leela-zero/leela-zero. Figure 9 shows the results. As
discussed in Section 1, the saliency maps generated by (Greydanus et al., 2018; Iyer et al., 2018)
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