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Abstract

We give a rigorous proof of existence for solitary waves of a peridynamics
model in one space dimension recently investigated by Silling (J. Mech. Phys.
Solids 96:121–132, 2016). We adapt the variational framework developed by
Friesecke and Wattis (Comm. Math Phys. 161:391–418, 1994) for the Fermi-
Pasta-Ulam-Tsingou lattice equations to treat a truncated problem which cuts
off short-range interactions, then pass to the limit.
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1 Introduction

1.1 Overview

Peridynamics is a relatively new nonlocal continuum model that was introduced
in 2000 by Silling [6]. A distinguishing feature of this model is that it consists of
integro-differential equations that do not involve spatial derivatives. For this reason,
it has received considerable attention for its potential uses in modeling materials that
have defects such as cracks.

Recently, Silling in [7] investigated large-amplitude localized nonlinear waves—
solitary waves—in a peridynamics model in one space dimension. This model takes
the form

utt =

∫ δ

−δ
f(u(x+ ξ, t)− u(x, t), ξ) dξ. (1)

Here x represents a material (Lagrangian) coordinate, u represents the displacement
field, ξ is called a bond and describes the relative position between two material
points, δ is called the horizon and represents the maximum reference distance be-
tween interacting material points. The function f is a pairwise bond force density
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that is determined by the material model and is required to satisfy the anti-symmetry
condition

f(−η,−ξ) = −f(η, ξ). (2)

Taking f in a form that models an elastic material that hardens in compression (see
Remark 2 below), Silling demonstrated the presence of solitary waves in numerical
simulations of (1) and studied their form by approximate analytical methods.

Our work, inspired by that of Friesecke and Wattis [3], aims to provide a general
framework to rigorously prove the existence of solitary waves for (1) by looking at
the problem as a variational problem. In particular, we are looking for a solution in
the form of a travelling wave,

u(x, t) = q(x− ct),

where q : R → R is monotone. This provides a solution of (1) if, for all real z,

c2q′′(z) =

∫ δ

0

(
f(q(z + ξ)− q(z), ξ)− f(q(z)− q(z − ξ), ξ)

)
dξ. (3)

This equation is formally the Euler-Lagrange equation of the following general
variational problem, expressed in terms of a function W (called the micropotential)
which satisfies

∂ηW (η, ξ) = f(η, ξ). (4)

Problem 1. Minimize

T (q) :=
1

2

∫
R
q′(z)2dz (5)

subject to fixed potential energy

E(q) :=
∫
R

∫ δ

0
W

(
q(z + ξ)− q(z), ξ

)
dξ dz = K (6)

where K > 0.

Assumptions on micropotential. In this paper, we assume that the microp-
otential takes the scaling form

W (η, ξ) = V

(
η

m(ξ)

)
k(ξ) (7)

for some functions m and k that are chosen so that (2) holds and m(0) = k(0) = 0,
where V is C2 and the following hold:

(H1) V is non-increasing (or decreasing), convex and superquadratic on (−∞, 0] (or
[0,∞)) with V (0) = V ′(0) = 0, V ′′(0) > 0, and

V ′′(x) ≤ V ′′(0) + c1|x|γ1 + c2|x|γ2 ,

where c1, c2 ≥ 1 and 0 < γ1 ≤ γ2.
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(H2) k : R → R is even, m : R → R is odd, both m and k vanish at only 0 and are
non-decreasing on [0,∞), and satisfy∫ δ

0

ξ2k(ξ)

m(ξ)γ2+2
dξ < ∞ and

∫ δ

0

k(ξ)

m(ξ)
dξ < ∞.

Under these assumptions, we will prove the following theorem. We note that
under the long-wave approximation u(x+ ξ, t)− 2u(x, t) + u(x− ξ, t) ≈ ξ2uxx, the
linearization of equation (1) takes the form utt ≈ c20uxx, where the “speed of sound”
c0 in this long-wave limit satisfies

c20 = V ′′(0)

∫ δ

0

k(ξ)ξ2

m(ξ)2
dξ.

Theorem 1. There exists a K1 such that for K > K1, there exists a constant c > c0
and a function q ∈ C2(R) so that E(q) = K and q solves equation (3). Furthermore,
q is increasing (decreasing) if V is superquadratic on [0,∞) ((−∞, 0]).

Remark 1. Actually, while the function q in Theorem 1 provides a travelling wave
solution to (1), we do not know whether it provides a minimizer for Problem 1.
Rather, it is a solution to a minimization problem with a symmetrized micropoten-
tial, which is described in the next subsection.

Remark 2. The speed of the travelling wave is actually always faster than both the
group and phase velocities at any wave number κ. Upon linearizing the equation
around u(·+ ξ, ·)−u(·, ·) = 0 and taking solutions of the form u(x, t) = eiκx−iωt, we
get the dispersion relation

ω2 =

∫ δ

0
V ′′(0)4 sin2

(
ξκ

2

)
k(ξ)

m2
dξ = κ2

∫ δ

0
sinc2

(
ξκ

2

)
dγ(ξ), (8)

where sincx = sinx
x and dγ(ξ) = V ′′(0)k(ξ)ξ

2

m(ξ)2
dξ. Since sinc2x ≤ 1 and

∫ δ
0 dγ(ξ) = c20,

this tells us that the phase velocity ω/κ satisfies (ω/κ)2 < c20. Moreover, due to the
identity

sinc2(x) +
x

2

d

dx
sinc2(x) = cos(x) sinc(x),

we also compute that the group velocity (for ω, κ > 0) satisfies

dω

dκ
=

κ

ω

∫ δ

0
cos

(
ξκ

2

)
sinc

(
ξκ

2

)
dγ(ξ) <

κ

ω

√
ω2

κ2

√∫ δ

0
dγ(ξ) = c0,

by the Cauchy-Schwarz inequality.
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Remark 3. The model that we study is a direct generalization of the one that was
studied by Silling in [7]. More specifically, the model investigated by Silling has the
micro-potential

W (η, ξ) =

{
η2

2|ξ|(1−
η
3ξ ), if η

ξ < 0,
η2

2|ξ| , otherwise.
(9)

This fits our framework with

V (s) =

{
1
2s

2(1− 1
3s), if s < 0,

1
2s

2, otherwise,

m(ξ) = ξ, k(ξ) = |ξ|,

γ1 = γ2 = 1, c1 = c2 =
1

2
.

We point out that while our general framework is good for showing the existence
of travelling waves given large enough potential energy, Silling’s model has a struc-
ture that allows us to prove the following result, showing that travelling waves exist
even in the case of low potential energy.

Theorem 2. There exists a monotone travelling wave solution to equation (1) sat-
isfying E(q) = K for every K > 0, where

f(η, ξ) = F (η/ξ)sgn(ξ), 0 < |ξ| ≤ δ, (10)

with

F (s) =

{
s− s2

2 , s < 0,

s, otherwise.

Concerning the asymptotic behavior of q(z) for large |z|, we have only a little
information. In [7], by using Taylor’s approximation, Silling derived an approximat-
ing ODE to (3) and found an explicit solution to that ODE whose derivative has
compact support. While this is numerically a good approximation, exact travelling
waves for (1) do not have compactly supported derivatives. This is proved in section
6 under a rather general assumption.

Silling’s model is the peridynamics counterpart of the discrete spring model that
was studied by Fermi, Pasta, Ulam and Tsingou [1]. In fact, Friesecke and Wattis [3]
rigorously showed that the discrete spring model possesses travelling wave solutions.
While our result was inspired by that in [3], difficulties arose when we directly applied
the method from [3] due to the lack of control over the weak derivatives of functions
in the Sobolev space W 1,2

loc (R). Unlike the setting in [3], in which the authors only
need to use the finiteness of kinetic energy to ensure the continuity of q(·+1)− q(·),
we do not have the difference quotients (q(·+ ξ)− q(·))/m(ξ) uniformly bounded as
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ξ approaches zero. To be more specific, when we tried to apply the method from
[3] directly, we were not able to see how an analog of Lemma 6, a reformulation the
nonvanishing condition of the minimizing sequence, would hold.

To overcome this problem, we find the existence of travelling waves in an ap-
proximate problem obtained by cutting off short bonds, and then prove that the
approximate solutions converge to a solution of the main problem. The ability
to prove such convergence relies heavily on an improved potential energy estimate
(Lemma 10) and the monotonicity of the solutions of the approximate problem.

We also note that the truncation near zero is not related to the assumptions on
m and k. It is mainly to deal with the lack of uniform boundedness of the difference
quotients.

It is plausible that the existence of solitary waves can be obtained with different
or more general structural assumptions on the micropotential from those we impose
here. We have chosen to treat micropotentials in the scaling form of (7) because
they can conveniently represent a variety of typical peridynamic force densities, such
as arise, e.g., by finite-horizon truncation of energies involving fractional derivatives.

1.2 Symmetrization

In order to prove existence of solitary waves, we will symmetrize our potential W
by replacing V with a function V that is even and superquadratic on R. More
specifically, let I be the half line on which V is superquadratic (i.e. (−∞, 0] or
[0,∞)). Define

V (x) :=

{
V (x), x ∈ I

V (−x), −x ∈ I
.

Define then
W (η, ξ) := V (

η

m(ξ)
)k(ξ).

It turns out that problem 1 with the potential W will have a minimizer that
is monotone. Furthermore, if q is a minimizer of this problem, then −q is also a
minimizer (due to the symmetric nature of V ).

Once we prove the existence of minimizers for this symmetrized problem, we will
see that if the original V is superquadratic on [0,∞) ((−∞, 0]) then the increasing
(decreasing) minimizer of the symmetrized problem will be a solitary wave to the
original problem 1.

We note that the solitary wave found here may not be the minimizer of the
original variational problem 1.

Remark 4. It is not necessary to symmetrize the potential if V is already strictly
convex. The only place that this is utilized heavily is Lemma 9, where we prove
monotonicity of minimizers by exploiting the strict convexity of V . This is not
necessary to prove existence of the minimizer, where we only need to exploit the
one-sided superquadraticity of V .
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1.3 Truncation

Next, we introduce the following truncated problem:

Problem 2. Minimize

T (q) :=
1

2

∫
R
q′(z)2dz

subject to a fixed potential energy

Eℓ(q) :=

∫
R

∫ δ

ℓ
W

(
q(z + ξ)− q(z), ξ

)
dξdz = K (11)

where ℓ ∈ (0, δ), K > 0 and W is defined above.

It turns out that we can solve this problem by adapting the technique of [3]:

Theorem 3. There exists a K0 such that for all K > K0, there exists qℓ ∈ C2(R) so
that Eℓ(qℓ) = K and qℓ solves Problem 2. Furthermore, it solves the Euler-Lagrange
equation

c2(qℓ)′′(x) =

∫ δ

ℓ

[
f(qℓ(x+ ξ)− qℓ(x), ξ)− f(qℓ(x)− qℓ(x− ξ), ξ)

]
dξ (12)

where c2 > 0 is the inverse of the Lagrange multiplier.

We will then extract a limit
qℓ → q

along some subsequence and show that q is non-trivial and solves (3).

1.4 Strategy and plan of the paper

To summarize, the strategy to establish the existence of a solution to (3) is the
following:

1. Prove the existence of a minimizer qℓ to Problem 2,

2. Show that qℓ is monotone,

3. Show that as ℓ → 0, a subsequence of the qℓ converges to a minimizer of
Problem 1 with the symmetrized potential W .

4. Conclude that this minimizer of the problem associated with W is a function
that satisfies (3).
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The existence of minimizers to the truncated Problem 2 is proven in section 2.
Section 3 derives various properties for the minimizers and completes the proof of
Theorem 3. The analysis in sections 2 and 3 is similar to that in [3], so readers
who are familiar with that can skip the details in these sections without missing
any major concept. The existence of travelling waves in the original problem will
be proven in Section 4. Theorem 2 is shown in Section 5. Finally, we discuss
compactness of the travelling waves’ derivatives in Section 6.

2 Existence of a minimizer to the truncated problem

We establish Theorem 3 in this section, which deals with the truncated Problem 2.
Since we only deal with the symmetrized potential, we will write V as V in this
section, unless specifically stated otherwise. We also note that our proof follows
almost exactly as in [3] with some modifications needed due to the fact that our
potential is an integral, not a function as in [3].

2.1 Notations

We will be working on the following Hilbert space

H :=

{
q ∈ W 1,2

loc (R) : ∥q
′∥L2(R) < ∞, q(0) = 0

}
where the inner product is given by ⟨q, p⟩ =

∫
R q′p′ and ∥q∥ = ∥q′∥L2(R). For

convenience, we define

T ℓ
K := inf

Aℓ
K

T, Aℓ
K := {q ∈ H : U(q(·)) ∈ L1(R), Eℓ(q) = K}. (13)

The analysis in this section and the next is performed for each fixed ℓ ∈ (0, δ).
Therefore, for convenience we suppress the explicit dependence on ℓ frequently in
these sections to make the notations less cluttered. The results in sections 4 and
5 require close attention to different values of ℓ so we will explicitly write the ℓ
dependence there in all of the calculations.

It is also convenient to define the piecewise linear function qΛ,L by

qΛ,L(z) =

⎧⎪⎨⎪⎩
0, z ≤ 0,

Λz, z ∈ [0, L],

ΛL, z > L.

2.2 Analysis

Let us start with the concentration-compactness lemma.
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Lemma 1 (concentration-compactness). Let {qk} be a sequence in W 1,2
loc (R) such

that there exists a C > 0 so

sup
k

∥(qk)′∥L2(R) ≤ C

and that ∫
R

Uk ≡ K (14)

where K > 0 and

Uk(z) = U(qk; z) :=

∫ δ

ℓ
V
(qk(z + ξ)− qk(z)

m(ξ)

)
k(ξ) dξ. (15)

Then, up to a subsequence, qk satisfies exactly one of the following

i. (compactness) There exists yk ∈ R such that Uk(· + yk) is tight, i.e., ∀ε > 0,
∃R < ∞ such that ∫

R\BR(0)

Uk(·+ yk) ≤ ε

for all k.

ii. (vanishing)

lim
k→∞

sup
y∈R

∫
BR(y)

Uk(·) = 0

for all R < ∞.

iii. (splitting) There exists α ∈ (0,K) such that ∀ε > 0, ∃k0 such that ∀k ≥ k0,
∃ qk1 , qk2 ∈ W 1,2

loc (R), ∥(q
k
i )

′∥L2(R) < ∞ and the following is true:

∥Uk − (Uk
1 + Uk

2 )∥L1(R) ≤ ε,⏐⏐⏐⏐ ∫
R

Uk
1 − α

⏐⏐⏐⏐ ≤ ε,

⏐⏐⏐⏐ ∫
R

Uk
2 − (K − α)

⏐⏐⏐⏐ ≤ ε,

and
1

2

∫
R

((qk)′)2 − 1

2

∫
R

((qk1 )
′)2 − 1

2

∫
R

((qk2 )
′)2 ≥ 0

with
dist(supp((qk1 )

′), supp((qk2 )
′)) → ∞

as k → ∞. Here Uk
j (x) := U(qkj ;x) where j = 1, 2.
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Proof. Step 1. For each k, define a concentration function Qk : R+ → R+ such
that

0 ≤ Qk(R) := sup
y∈R

∫
BR(y)

Uk ≤ K

for all k.
Since Qk’s are increasing functions that are uniformly bounded, up to a sub-

sequence, we have that Qk converges to some non-negative increasing function Q,
pointwise. Define

α := lim
R→∞

Q(R) ∈ [0,K].

We have 3 cases:

• α = 0. This implies (ii).

• α = K. This implies (i).

• α ∈ (0,K). We need to prove that this implies (iii).

To show the last item, we proceed as following.
Step 2. Fix ε > 0, since Q ↗ α, there exists R such that Q(R − δ) > α − ε.

Since Qk → Q pointwisely and Qk’s are increasing function, for large enough k, pick
yk so that ∫

BR(yk)
Uk > α− ε.

Furthermore, since limR→∞Q(R) = α, we can find Rk → ∞ such that

Qk(R
k + δ) < α+ ε.

Let Rk
1 ∈ [R,R + 1

3(R
k − R)] and Rk

2 ∈ [R + 2
3(R

k − R), Rk] where Rk
1 < Rk

2 to be
specified later.

Define continuous functions qk1 and qk2 so that

(qk1 )
′ =

{
(qk)′, z ∈ BRk

1
(yk),

0, otherwise ,

and

(qk2 )
′ =

{
0, z ∈ BRk

2
(yk),

(qk)′, otherwise .

More specifically,

qk1 (z) :=

⎧⎪⎨⎪⎩
qk(yk −Rk

1), z ≤ yk −Rk
1 ,

qk(z), z ∈ BRk
1
(yk),

qk(yk +Rk
1), z ≥ yk +Rk

1 .

(16)
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qk2 (z) :=

⎧⎪⎨⎪⎩
qk(z)− qk(yk −Rk

2), z ≤ yk −Rk
2 ,

0, z ∈ BRk
2
(yk),

qk(z)− qk(yk +Rk
2), z ≥ yk +Rk

2 .

(17)

By direct computation, we have that

1

2

∫
R

((qk)′)2 − 1

2

∫
R

((qk1 )
′)2 − 1

2

∫
R

((qk2 )
′)2 =

1

2

∫
BR2

(yk)\BR1
(yk)

((qk)′)2 ≥ 0

and
dist(supp((qk1 )

′), supp((qk2 )
′)) → ∞

as k → ∞.
We now need to choose good Rk

1 and Rk
2 .

Step 3. We next get some estimate for Uk
j , for j = 1, 2. First, from Cauchy-

Schwarz inequality and since ℓ > 0,

Uk
j (z) := U(qkj ; z) =

δ∫
ℓ

V

(
qkj (z + ξ)− qkj (z)

m(ξ)

)
k(ξ) dξ

≤
∫ δ

ℓ
V

(
ξ1/2(

∫ ξ
0 |(qkj )′(z + s)|2ds)1/2

m(ξ)

)
k(ξ) dξ

≤ Cℓ

∫ δ

ℓ

(∫ δ

0
|(qkj )′(z + s)|2ds

)1/2 ξ1/2k(ξ)

m(ξ)
dξ

≤ Mℓ

(∫ δ

0
|(qk)′(z + s)|2ds

)1/2

where Cℓ is the local Lipschitz constant of V depending on C in the hypothesis and
ℓ. (We remark that this is the key new estimate that makes the rest of the proof
work almost exactly as in [3] again.)

Step 4. Let
D−

i,k := (yk −Rk
i − δ, yk −Rk

i ],

D+
i,k := [yk −Rk

i , yk −Rk
i + δ),

E−
i,k := (yk +Rk

i − δ, yk +Rk
i ],

E+
i,k := [yk +Rk

i , yk +Rk
i + δ).

We have that, z < yk −Rk
1 implies (qk1 )

′ = 0. So,

∫
D−

1,k

Uk
1 (z)dz ≤ Mℓ

∫
D−

1,k

( z+δ∫
z

|(qk1 )′(s)|2ds
)1/2

dz
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ykyk −Rk
2 yk −Rk

1 yk +Rk
2yk +Rk

1

E−
1,k E−

2,k E+
2,kD+

1,kD−
1,kD−

2,k

Figure 1: Intervals

≤ Mℓ

∫
D−

1,k

(∫
D+

1,k

|(qk1 )′(s)|2ds
)1/2

dz

= Mℓδ

(∫
D+

1,k

|(qk1 )′(s)|2ds
)1/2

where the constant Mℓ may differ from line to line. Similarly, we have that

∫
E−

1,k

Uk
1 ≤ Mℓ

(∫
E−

1,k

((qk)′)2
)1/2

,

∫
D−

2,k

Uk
2 ≤ Mℓ

(∫
D−

2,k

((qk)′)2
)1/2

,

∫
E−

2,k

Uk
2 ≤ Mℓ

(∫
E+

2,k

((qk)′)2
)1/2

,

where we can take Mℓ to be the same for all estimates.
Step 5. Now, we partition [R + δ,R + 1

3(R
k −R)] into Rk−R

3δ − 1 intervals and
use the fact that

∫
R
((qk)′)2 ≤ C2 to get the following.

(
(Rk −R)

3δ
− 1

)
min

Rk
1∈[R+δ,R+ 1

3
(Rk−R)]

∫
E−

1,k

Uk
1 ≤

∫
[R,R+ 1

3
(Rk−R)

Uk
1

≤ Mℓ

( ∫
[R,R+ 1

3
(Rk−R)+δ]

((qk)′)2
)1/2

≤ MℓC.

Thus,

min
Rk

1∈[R+δ,R+ 1
3
(Rk−R)]

∫
E−

1,k

Uk
1 ≤ δ̃(k) (18)

where

δ̃(k) :=
MℓC

Rk−R
3δ − 1

k→∞−−−→ 0.
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Similarly, the above works if we replace E−
1,k by D−

1,k and so

min
Rk

1∈[R+δ,R+ 1
3
(Rk−R)]

∫
E−

1,k

⋃
D−

1,k

Uk
1 ≤ 2δ̃(k). (19)

We also have the following

min
Rk

2∈[R+ 2
3
(Rk−R),Rk]

∫
D−

2,k

⋃
E−

2,k

Uk
2 ≤ 2δ̃(k).

(20)

Step 6. Choose Rk
1 and Rk

2 so that the minima above are obtained. We then
have that

∫
R
|Uk − Uk

1 − Uk
2 | =

∫
D−

1,k

⋃
E−

1,k

|Uk − Uk
1 | +

∫
D−

2,k

⋃
E−

2,k

|Uk − Uk
2 |

+

( yk−Rk
1−δ∫

yk−Rk
2

+

yk+Rk
2−δ∫

yk+Rk
1

)
Uk

≤
∫

D−
1,k

⋃
E−

1,k

(Uk
1 + Uk) +

∫
D−

2,k

⋃
E−

2,k

Uk
2 + Uk

+

( yk−Rk
1−δ∫

yk−Rk
2

+

yk+Rk
2−δ∫

yk+Rk
1

)
Uk

≤ 4δ̃(k) +

∫
B

Rk+δ
(yk)

Uk −
∫
BR−δ(yk)

Uk

< 4δ̃(k) + (α+ ε)− (α− ε) = 4δ̃(k) + 2ε.

Furthermore,

∫
R
Uk
1 =

∫
D−

1,k

⋃
E−

1,k

Uk
1 +

yk+Rk
1−δ∫

yk−Rk
1

Uk
1 (21)

But we know that, from the definitions of R,Rk and Rk
1 , for large enough k so

that Rk
1 − δ ≥ R,

yk+Rk
1−δ∫

yk−Rk
1

Uk ∈ (α− ε, α+ ε).
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So, ⏐⏐⏐⏐ ∫
R
Uk
1 dz − α

⏐⏐⏐⏐ ≤ ε.

Similarly, we have, for large enough k,

∫
R
Uk
2 =

∫
D−

2,k

⋃
E−

2,k

Uk
1 +

( yk−Rk
2−δ∫

−∞

+

∞∫
yk+Rk

2

)
Uk
2 (22)

and ( yk−Rk
2−δ∫

−∞

+

∞∫
yk+Rk

2

)
Uk ∈ ((K − α)− ε, (K + α)− ε).

So, ⏐⏐⏐⏐ ∫
R
Uk
2 dz − (K − α)

⏐⏐⏐⏐ ≤ ε.

This proves the last item in step 1 and hence the lemma.

Remark 5. For each minimizing sequence {qk} ⊆ AK of T , by replacing qk by

q̃k =

⎧⎪⎨⎪⎩
qk(−a), z ≤ −a

qk(z), −a ≤ z ≤ a

qk(a) + qΛ,1(z − a− 1), z ≥ a

for sufficiently large a, and Λ chosen to ensure that Eℓ(q̃k) = K, we can assume each
function of the minimizing sequence has a compact-support derivative.

Lemma 2. The map K ↦→ TK ,K ∈ [0,∞) is monotone increasing and continuous.

Proof. The argument of this lemma is basically the same as in Lemma 1d in [3].
The monotone part is based on a simple scaling argument. Let α ≤ K, q ∈ AK .

Because Eℓ(Λq) = 0 when Λ = 0 and Eℓ(Λq) = K when Λ = 1, there exists Λ0 ∈ [0, 1]
so that Eℓ(Λ0q) = α. We have that

Tα ≤ T (Λ0q) = Λ2
0T (q) ≤ T (q).

This works for all q ∈ AK . Thus, Tα ≤ TK .
To see K ↦→ TK is continuous, we proceed as follows. Since TK is monotone in

K, it suffices to show that there exists η(r) → 0 as r → 0+ so that for all K,

TK+r − TK ≤ η(r).
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Fix K and r > 0. Let ε > 0, qK ∈ AK such that T (qK) ≤ TK + ε. Consider the
function

q(z) :=

{
qK(z), z ≤ a

qK(a) + qΛ,1(z − a), z > a
,

where Λ and a will be specified later.
Observe that q ∈ H and

Eℓ(q) =

∫ a−δ

−∞
U(qK ; ·) +

∫ a

a−δ
U(q; ·) + Eℓ(qΛ,1).

Also,

T (q)− TK ≤ T (q)− T (qK) + ε ≤ T (qΛ,1) + ε =
1

2
Λ2 + ε.

Now, define
Λ1(r) := inf{Λ > 0 : Eℓ(qΛ,1) = 2r}.

Since Eℓ(qΛ,1) is increasing and continuous in Λ and Eℓ(q0,1) = 0, pick 0 < Λ ≤
Λ1(r) so that r < Eℓ(qΛ,1) < K + r. Then, we have that

Eℓ(q) → K + Eℓ(qΛ,1) > K + r

as a → ∞ and
Eℓ(q) → Eℓ(qΛ,1) < K + r

as a → −∞. By continuity of the integral, there exists a ∈ R such that

Eℓ(q) = K + r.

Thus,

TK+r − TK ≤ T (q)− TK ≤ T (qΛ,1) + ε ≤ 1

2
Λ1(r)

2 + ε.

Since ε is arbitrary,

TK+r − TK ≤ 1

2
Λ2
1(r).

Observe that Λ1(r) → 0 as r → 0 independently of K. Thus, we define

η(r) :=
1

2
Λ2
1(r)

and the result follows.

Lemma 3. Let U be as above and K > 0 be fixed. Then the following are equivalent:

i. No minimizing sequence {qk} ⊆ AK splits, i.e., satisfies Lemma 1.iii.

ii. T satisfies a subadditivity condition

TK < Tα + TK−α, ∀α ∈ (0,K). (S)

14



Proof. The proof of this goes almost exactly the same as in [3].
((ii) =⇒ (i)). Suppose, by contradiction, that there exists a minimizing

sequence {qk} ⊆ AK that splits for some α ∈ (0,K). Define

αk := Eℓ(qk1 ),

and
βk := Eℓ(qk2 ).

As k → ∞, by continuity of TK , we have that

TK ≥ lim inf
k→∞

(T (qk1 ) + T (qk2 )) ≥ lim inf
k→∞

(Tαk
+ Tβk

) = Tα + TK−α,

quod est absurdum.
((i) =⇒ (ii)). Suppose, by contradiction, that (S) does not hold, i.e., ∃α ∈

(0,K) such that
TK ≥ Tα + TK−α.

We want to construct a minimizing sequence that splits. Let {qkα} ⊆ Aα and
{qkK−α} ⊆ AK−α be minimizing sequence of T under the respective constraints.

By remark 5, we can assume that the supports of (qkα)
′ and (qkK−α)

′ are contained
in BRk

(0) for some Rk > 0. Then the sequence

qk(z) := qkK−α(z +Rk + k) + qkK−α(z −Rk − k) + Ck

where Ck is chosen to make qk(0) = 0 works as desired.

Next, we introduce the quantity

[q(x)]ℓ = sup
ℓ≤ξ≤δ

⏐⏐⏐⏐q(x+ ξ)− q(x)

m(ξ)

⏐⏐⏐⏐,
and note that this bounds the argument of V in the expression for U(q; z) defined in
(15). As in Step 3 of the proof of Lemma 1, by Cauchy-Schwarz we find the bound

∥[q]ℓ∥∞ ≤
√

2δT (q)

m(ℓ)
.

Lemma 4 (Uniform modulus of continuity of U). Let M > 0. There exists a
constant C1 such that for all q ∈ W 1,2

loc (R) with T (q) ≤ M2,

|U(q; z1)− U(q; z2)| ≤ C1|z1 − z2|1/2

for any z1, z2 ∈ R.
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Proof. Let z1, z2 ∈ R, writing η(z, ξ) = q(z + ξ)− q(z) we have that

|U(q; z1)− U(q; z2)| =
⏐⏐⏐⏐ ∫ δ

ℓ

[
V

(
q(z1 + ξ)− q(z1)

m(ξ)

)
− V

(
q(z2 + ξ)− q(z2)

m(ξ)

)]
k(ξ) dξ

⏐⏐⏐⏐
≤

∫ δ

ℓ

⏐⏐⏐⏐ ∫ η(z1,ξ)/m(ξ)

η(z2,ξ)/m(ξ)
V ′(s)ds

⏐⏐⏐⏐k(ξ) dξ
≤

∫ δ

ℓ
C̃

⏐⏐⏐⏐η(z1, ξ)m(ξ)
− η(z2, ξ)

m(ξ)

⏐⏐⏐⏐k(ξ) dξ
≤ C̃ ′

∫ δ

ℓ

⏐⏐⏐⏐ ∫ z2

z1

[q′(s+ ξ)− q′(s)]ds

⏐⏐⏐⏐ dξ
≤ C̃ ′

∫ δ

ℓ
|z1 − z2|1/2∥q′∥L2 dξ

= (δ − ℓ)C̃ ′M |z1 − z2|1/2 = C1|z1 − z2|1/2

where C̃ = V ′(∥[q]ℓ∥∞).

Now, for convenience, we introduce the following notation:

Nℓ =

∫ δ

ℓ

ξ2k(ξ)

m(ξ)2
dξ.

Lemma 5. Define

TK,ε = inf{T (q) : q ∈ AK , ∥[q]ℓ∥∞ ≤ ε}.

Then

lim inf
ε→0

TK,ε =
K

NℓV ′′(0)
. (23)

Proof. First, we prove the following inequality

lim inf
ε→0

TK,ε ≥
K

NℓV ′′(0)
. (24)

Let {qk} ⊆ AK be a sequence such that ∥[qk]ℓ∥∞ → 0. LetRk
ℓ := [−∥[qk]ℓ∥∞, ∥[qk]ℓ∥∞].

Then, let Mℓ = supx∈Rk
ℓ
|V ′′(x)|,

U(qk; z) =

∫ δ

ℓ
V

(
qk(z + ξ)− qk(z)

m(ξ)

)
k(ξ) dξ

≤ 1

2
Mℓ

∫ δ

ℓ

(
qk(z + ξ)− qk(z)

m(ξ)

)2

k(ξ) dξ

≤ 1

2
Mℓ

∫ δ

ℓ

(∫ z+ξ

z
|qk ′(s)|2ds

)
ξk(ξ)

m(ξ)2
dξ.
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Thus, ∫
R
U(qk; z)dz ≤ 1

2
Mℓ

∫
R

∫ δ

ℓ

(∫ z+ξ

z
|qk ′(s)|2ds

)
ξk(ξ)

m(ξ)2
dξ dz

=
1

2
Mℓ

∫ δ

ℓ

∫
R

(∫ z+ξ

z
|qk ′(s)|2 ds

)
ξk(ξ)

m(ξ)2
dz dξ

=
1

2
Mℓ

∫ δ

ℓ

ξ2k(ξ)

m(ξ)2

∫
R
|qk ′(s)|2 dsdξ

= MℓNℓT (q
k).

Therefore, by assumption,

lim inf
k→∞

T (qk) ≥ K

NℓV ′′(0)
.

Since {qk} is arbitrary, the inequality (24) follows.
Next, we prove the equality (23) by employing the piecewise linear function qΛ,L.

We note that,

T (qΛ,L) =
1

2
Λ2L

and ∫
R
U(qΛ,L) =

∫ δ

ℓ

[
(L− ξ)V (

Λξ

m(ξ)
)k(ξ) + g(ξ)

]
dξ (25)

where g ≥ 0 is integrable and nonvanishing and doesn’t depend on L. Further-
more, for each Λ, we can choose an L(Λ) so that

∫
R U(qΛ,L) = K and if Λ → 0 then

L(Λ) → ∞. Thus, we have, for some C > 0,

K

T (qΛ,L(Λ))
=

∫ δ

ℓ

[
(L− ξ)V (

Λξ

m(ξ)
)k(ξ)

]
dξ + C

1
2Λ

2L(Λ)
.

Using Taylor expansion on the left and right sides and letting Λ → 0, we find that

K = NℓV
′′(0) lim

Λ→0
T (qΛ,L(Λ)) ≥ NℓV

′′(0) lim sup
ε→0

TK,ε. (26)

Combined with the inequality (24), we find that indeed (23) holds.

Lemma 6. The following are equivalent:

i. No minimizing sequence {qk} ⊆ AK vanishes, i.e., satisfies Lemma 1.ii.

ii. There exists ε(K) > 0 such that every minimizing sequence {qk} ⊆ AK satisfies

lim inf
k→∞

∥[qk]ℓ∥∞ > ε.
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iii. T satisfies the energy inequality

NℓV
′′(0) · TK < K. (E)

Proof. ((ii) ⇐ (iii)). This is an easy consequence of Lemma 5.
((ii) ⇒ (iii)). Since we assume that ∥[qk]ℓ∥∞ > ε for every minimizing sequence,

necessarily from (23),
TK < TK,ε̂

for each ε̂ < ε. So, because TK,ε̂ increases as ε̂ decreases, we deduce

TK < lim
ε̂→0

TK,ε̂ =
K

NℓV ′′(0)
.

((i) =⇒ (ii)). Suppose we have that there exists a minimizing sequence {qk}
with ∥[qk]ℓ∥∞ → 0. Then for all y ∈ R and R > 0,

∫
BR(y)

U(qk; ·) =
∫
BR(y)

∫ δ

ℓ
V

(
qk(x+ ξ)− qk(x)

m(ξ)

)
k(ξ) dξ dx

≤
∫
BR(y)

C

∫ δ

ℓ

(
qk(x+ ξ)− qk(x)

m(ξ)

)2

k(δ) dξ dx

k→∞−−−→ 0,

which implies we have vanishing; i.e., (i) fails.
(ii) =⇒ (i). Step 1. Let q ∈ AK such that ∥[q]ℓ∥∞ > ε. We can then pick

y0, ξ0 so that ⏐⏐⏐⏐q(y0 + ξ0)− q(y0)

m(ξ0)

⏐⏐⏐⏐ > ε

2
.

Since ξ0 ≥ ℓ,

|q(y0 + ξ0)− q(y0)| >
m(ℓ)ε

2
.

By continuity, we can pick δ′ so that ∀ξ ∈ Bδ′(ξ0), |q(y0 + ξ) − q(y0)| > m(ℓ)ε
4 .

Without loss of generality, assume that y + ξ0 + δ′ < δ and y0 + ξ0 − δ′ > ℓ. Thus,

U(q; y0) =

∫ δ

ℓ
V (

q(y0 + ξ)− q(y0)

m(ξ)
)k(ξ) dξ

≥
∫ y0+ξ0+δ′

y0+ξ0−δ′
V (

m(ℓ)ε

4m(δ)
)k(ℓ) dξ

=2δ′V (
m(ℓ)ε

4m(δ)
)k(ℓ) > 0.
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Thus, for each ℓ, ε, there exists a Cℓ,ε such that, for each q such that ∥[q]ℓ∥∞ > ε,
there exists a y0 such that

U(q; y0) ≥ Cℓ,ε. (27)

Step 2. Let ε > 0, Cℓ,ε be as in step 1. Let q be such that ∥[q]ℓ∥∞ > ε. Thus,
by step 1, there exists y0 such that U(q; y0) > Cℓ,ε. By Lemma 4 we then have,
there exists an R so that for x ∈ BR(y0)

U(q;x) ≥
Cℓ,ε

2
.

Thus, ∫
BR(y0)

U(q;x) ≥ RCℓ,ε.

So, we have shown that for any q such that ∥[q]ℓ∥∞ > ε, there exist R and ε1
dependent only on ε and ℓ so that for some y0,∫

BR(y0)
U(q; z) dz ≥ ε1.

This implies (i).

Proposition 4. Let U be as above and K > 0 be fixed. Assume

TK < Tα + TK−α, ∀α ∈ (0,K). (S)

and
NℓV

′′(0) · TK < K. (E)

Then there exists a minimizer of T on AK .

Proof. Let {qk} ⊆ AK be a minimizing sequence of T . By lemmas 3 and 6, we have
that, up to a subsequence, {qk} satisfies the compactness case of the concentration-
compactness lemma. By replacing qk by qk(yk + ·) − qk(yk), we can assume that
qk’s have centers at 0 and qk(0) = 0. Since {qk} is bounded in H, there exists
a subsequence that weakly converges to q ∈ H. By weak lower semicontinuity of
norm,

T (q) ≤ lim inf T (qk) = inf
AK

T.

To see that Eℓ(q) = K, we note that W 1,2(BR(0)) is compactly embedded in
L∞(BR(0)). Therefore, qk → q in L∞(BR(0)). This implies U(qk; ·) → U(q; ·)
in L∞(BR−δ(0)). Therefore,∫

BR(0)
U(qk; ·) →

∫
BR(0)

U(q; ·)

for all R > 0.
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On the other hand, by Lemma 1 case i, for every ε′ > 0 there exists an R such
that for every k ∈ N ∫

R\BR

U(qk; ·) ≤ ε′.

Using a standard ε/2 argument, we see that

K = lim

∫
R
U(qk; ·) =

∫
R
U(q; ·).

So, q is a minimizer of T on AK .

Lemma 7. There exists K0 > 0 such that for all K > K0, (E) holds.

Proof. Fix Λ > 0. Let qΛ,L be defined as above. Then, from (25),

Eℓ(qΛ,L) ≥
∫ δ

ℓ

[
(L− ξ)V (

Λξ

m(ξ)
)k(ξ)

]
dξ

>

∫ δ

ℓ

[
(L− ξ)

1

2
V ′′(0)

Λ2ξ2

m(ξ)2
k(ξ)

]
dξ

=
1

2
LΛ2V ′′(0)

∫ δ

ℓ

[
ξ2k(ξ)

m(ξ)2
− ξ3k(ξ)

m(ξ)2L

]
dξ

= T (qΛ,L)V
′′(0)

∫ δ

ℓ

[
ξ2k(ξ)

m(ξ)2
− ξ3k(ξ)

m(ξ)2L

]
dξ

by superquadratic property of V .
So, there exists L0 such that ∀L > L0,

Eℓ(qΛ,L) > NℓV
′′(0)T (qΛ,L).

Let K0 := Eℓ(qΛ,L0). Since L ↦→ Eℓ(qΛ,L) is increasing, for each K > K0, there is an
L > L0 so that K = Eℓ(qΛ,L), hence

K > NℓV
′′(0)TK .

Lemma 8. Let K0 be as in Lemma 7, then for all K > 2K0, (S) holds.

Proof. As Lions pointed out in [5], to prove that a function h : [0,K] → R satisfies
h(K) < h(α) + h(K − α) for all α ∈ (0,K), it suffices to show the following:{

h(θα) ≤ θh(α), ∀α ∈ (0, K2 ),∀θ ∈ (1, Kα ],

h(θα) < θh(α), ∀α ∈ [K2 ,K), ∀θ ∈ (1, Kα ].
(S̃)

We want to check that h(α) = Tα satisfies the above properties.
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Let α ∈ (0,K) and θ ∈ (1,K/α]. We first consider the case α ≥ K/2. By the
concentration-compactness principle and Lemma 7, there exists ε and C such that

Tα = inf{T (q) : q ∈ Aα,ε,C}

where
Aα,ε,C := {q ∈ H : Eℓ(q) = α, ∥[q]ℓ∥∞ ≥ ε, ∥q∥ ≤ C}.

By (27), there exists α0 > 0 such that, for A := {z : [q(z)]ℓ ≥ ε/2},∫
A
U(q; z) ≥ α0

for all u ∈ Aα,ε,C .
Let q ∈ Aα,ε,C . Since Eℓ(q) = α and for λ =

√
θ,

Eℓ(λq) = Eℓ(
√
θq) ≥ θEℓ(q) = θα.

By the intermediate value theorem, there exists λ = λ(θ, q) ∈ [1,
√
θ] such that

Eℓ(λq) = θα.

We claim that λ <
√
θ. To see this, suppose by contradiction, λ =

√
θ. Let

θ0 := min

{
V (λr)

λ2V (r)
: |r| ∈ [

ε

2
, C], λ ∈ [

1 +
√
θ

2
,
√
θ]

}
.

Note that θ0 > 1. We then have

θα = Eℓ(
√
θq) =

∫
AC

U(
√
θq; ·) +

∫
A
U(

√
θq; ·)

≥ θ

∫
R\A

U(q; ·) + θ0θ

∫
A
U(q; ·)

≥ θ[α+ (θ0 − 1)α0],

which is a contradiction.
Define

λ2
0 :=

θα

α+ (θ0 − 1)α0
< θ.

The same calculation above shows that

λ(θ, q) ≤ λ0.

Thus,

Tθα ≤ inf

{
T (λ(θ, q)q) : q ∈ Aα,ε,C

}
≤ λ2

0 inf

{
T (q) : q ∈ Aα,ε,C

}
= λ2

0Tα < θTα.
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Combining Proposition 4, Lemma 7 and Lemma 8, we have shown the following:

Proposition 5. There exists a K0 such that for all K > K0, there exists q ∈ AK

that minimizes the problem

min

{
T (q) : q ∈ AK

}
.

3 Properties of minimizers

We now study the properties of minimizers q = qℓ for the truncated problem (Prob-
lem 2) where ℓ ∈ (0, δ) is fixed. To make the notations less cluttered, we continue
to suppress explicit dependence on ℓ throughout this section.

3.1 Euler-Lagrange equation

This subsection is devoted to showing that the Euler-Lagrange equation of the trun-
cated minimization problem (Problem 2) is equation (12).

Proposition 6. Let q ∈ AK be such that

T (q) = inf
AK

T.

Then q satisfies (12) and q ∈ C2.

Proof. Let ζ ∈ H be a non-zero function. Define Ψ,Φ : R2 → R+ by

Ψ(t, ε) := Eℓ(q + tq + εζ), Φ(t, ε) := T (q + tq + εζ).

First, we claim that

∂Ψ

∂ε
(0, 0) =

∫
R

∫ δ

ℓ
V ′

(
q(z + ξ)− q(z)

m(ξ)

)
(ζ(z + ξ)− ζ(z))

k(ξ)

m(ξ)
dξ dz.

To see this, let η1(z, ξ) := (q(z + ξ) − q(z))/m(ξ) and η2(z, ξ) := (ζ(z + ξ) −
ζ(z))/m(ξ). We only need to find a function in L1(R) that dominates the quantity

1

ε
(V (η1 + εη2)− V (η1)) (28)

to be able to pass the derivative inside. Note that η1(·, ξ) and η2(·, ξ) are uniformly
bounded in L2(R), because, for example, by Cauchy-Schwarz,∫

R
|ζ(z + ξ)− ζ(z)|2 dz ≤

∫
R
ξ

∫ ξ

0
ζ ′(z + s)2 ds dz = 2ξ2T (ζ).
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Because |V ′(t)| ≤ C1|t| whenever |t| ≤ ∥η1∥∞ + ε∥η2∥∞, where C1 is a local bound
for V ′′, we then find that whenever |ε| ≤ 1,

|V (η1 + εη2)− V (η1)| = |V (|η1 + εη2|)− V (|η1|)| ≤ C1(|η1|+ |η2|)ε|η2| .

Thus, (28) is dominated by C(|η1|+ |η2|)|η2| ∈ L1(R).
Similarly,

∂Ψ

∂t
(0, 0) =

∫
R

∫ δ

ℓ
V ′(

q(z + ξ)− q(z)

m(ξ)
)(q(z + ξ)− q(z))

k(ξ)

m(ξ)
dξ dz. (29)

We also have that, since V (x) is strictly increasing for x > 0 and strictly decreasing
for x < 0, V ′(x)x > 0 for x ̸= 0. Therefore, ∂Φ

∂t (0, 0) > 0 and so

∇Ψ(0, 0) ̸= 0. (30)

On the other hand, it is easy to see that

∂Φ

∂ε
(0, 0) =

∫
R
q′ζ ′ ,

∂Φ

∂t
(0, 0) =

∫
R
(q′)2.

We rewrite the problem in terms of minimizing Φ under the constraint Ψ = K.
By the hypothesis, we know that Φ(0, 0) is a minimizer of Φ under the constraint.
Because of ∇Ψ(0, 0) ̸= 0, we can apply the Lagrange multiplier rule to deduce that
there exists a λ such that (0, 0) is a critical point of Φ− λΨ. That means

0 = ∇Φ(0, 0)− λ∇Ψ(0, 0)

In particular, we have∫
R

[
q′ζ ′ − λ

∫ δ

ℓ
V ′(

q(z + ξ)− q(z)

m(ξ)
)(ζ(z + ξ)− ζ(z))

k(ξ)

m(ξ)
dξ

]
dz = 0 (31)∫

R

[
(q′)2 − λ

∫ δ

ℓ
V ′(

q(z + ξ)− q(z)

m(ξ)
)(q(z + ξ)− q(z))

k(ξ)

m(ξ)
dξ

]
dz = 0. (32)

Equation (32) tells us that λ is greater than 0 and independent of ζ. Rewriting
(31), for any ζ ∈ C∞

c (R) we have∫
R
q′ζ ′dz = λ

∫
R

∫ δ

ℓ

[
f(q(z)− q(z − ξ), ξ)− f(q(z + ξ)− q(z), ξ)

]
dξ ζ(z) dz.

So, −λ
∫ δ
ℓ

[
f(q(z)−q(z−ξ), ξ)−f(q(z+ξ)−q(z), ξ)

]
dξ is the distributional second

derivative of q. But since λU ′(q(z)) is continuous, q′′ exists in classical sense and is
continuous. So, q ∈ C2(R). This means that q solves (12) where c = λ−1/2.
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3.2 Monotone travelling wave in the approximate problem

Lemma 9. Let V be as above. Then, any minimizer q of T over AK is monotone.

Proof. This proof is done by applying a scaling argument repeatedly. Let q ∈ AK

be a minimizer of T . Consider the function

q̃(z) :=

∫ z

0
|q′(s)| ds.

We claim that for all z ∈ R and ξ ∈ [ℓ, δ],

q̃(z + ξ)− q̃(z) = |q(z + ξ)− q(z)|. (33)

We only need to show q̃(z + ξ)− q̃(z) ≤ |q(z + ξ)− q(z)| since the other inequality
is obvious by definition. Suppose there exists a z0 and ξ0 so that

η̃(z0, ξ0) := q̃(z0 + ξ0)− q̃(z0) > |q(z0 + ξ0)− q(z0)| =: η(z0, ξ0).

Since η̃ and η are continuous, there exists a δ′ > 0 such that on A := (z0 − δ′, z0 +
δ′)× (ξ0 − δ′, ξ0 + δ′),

η̃(z, ξ) > η(z, ξ).

Without loss of generality, assume that ξ0 − δ′ > ℓ. Thus, on A, we have that

V (
q̃(z + ξ)− q̃(z)

m(ξ)
) > V (

q(z + ξ)− q(z)

m(ξ)
).

and, therefore,
Eℓ(q̃) > Eℓ(q).

So, there exists λ ∈ (0, 1) such that

Eℓ(λq̃) = Eℓ(q) = K.

But, we have
T (λq̃) = λ2T (q̃) < T (q̃) = T (q),

which contradicts the optimality of q. This proves the claim (33).
Now, suppose q is not monotone. Since q ∈ C2, there exists a, b ∈ R such that

q′(a) < 0 and q′(b) > 0. Without loss we assume a < b. Since, for z ∈ R and
ξ ∈ [ℓ, δ], ∫ z+ξ

z
|q′| =

⏐⏐⏐⏐ ∫ z+ξ

z
q′
⏐⏐⏐⏐,

on each interval [z, z + δ], either q′ ≥ 0 or q′ ≤ 0. We infer that b− a ≥ δ. Let

z1 = sup{z ∈ (a, b) : q′(z) < 0}, z2 = inf{z ∈ (z1, b) : q
′(z) > 0}.
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Then z2 − z1 ≥ δ and q′(z) = 0 for all z ∈ (z1, z2). Define

˜̃q(z) :=

{
q̃(z), z ≤ z1

q̃(z + (z2 − z1)), z > z1
.

(The basic idea is we want to get rid of this constant part of q̃.) We have that

Eℓ(˜̃q)− Eℓ(q̃) =

=

∫ δ

ℓ

[ ∫
R
V

( ˜̃q(z + ξ)− ˜̃q(z)

m(ξ)

)
− V

(
q̃(z + ξ)− q̃(z)

m(ξ)

)
dz

]
k(ξ) dξ

=

∫ δ

ℓ

[ ∫ z1

z1−ξ
V

(
q̃(z + ξ + (z2 − z1))− q̃(z)

m(ξ)

)
dz

−
∫ z1

z1−ξ
V

(
q̃(z1)− q̃(z)

m(ξ)

)
dz −

∫ z2

z2−ξ
V

(
q̃(z + ξ)− q̃(z1)

m(ξ)

)
dz

]
k(ξ) dξ

=

∫ δ

ℓ

∫ z1

z1−ξ

[
V

(
q̃(z + ξ + (z2 − z1))− q̃(z)

m(ξ)

)
− V

(
q̃(z1)− q̃(z)

m(ξ)

)
− V

(
q̃(z + ξ + (z2 − z1))− q̃(z1)

m(ξ)

)]
dz k(ξ) dξ

≥ 0.

Here, due to the strict convexity of V , the equality occurs if and only if for all
(z, ξ) ∈ [z1 − ξ, z1]× [ℓ, δ] either

r1(z, ξ) := q̃(z1)− q̃(z) = 0

or
r2(z, ξ) := q̃(z + ξ + (z2 − z1))− q̃(z1) = 0.

By the way we define z1, z2, neither of these conditions can hold. Thus,

Eℓ(˜̃q) > Eℓ(q̃).

Again, let λ ∈ (0, 1) so that Eℓ(λ˜̃q) = Eℓ(q̃) = K. But then,

T (λ˜̃q) = λ2T (˜̃q) < T (˜̃q) = T (q̃) = T (q),

which is a contradiction.

Proof of Theorem 3. Combine Lemma 9, the Euler-Lagrange equation, and the ar-
gument in subsection 1.3, we achieve the desired result.

Remark 6. If q is a solution to the approximating symmetrized problem, then −q is
also a solution. We will assume q to be monotone increasing to make the subsequence
analysis notationally easier.
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4 Passing to the limit: proof of Theorem 1

Now we turn our attention to step 3 in the strategy outlined in Subsection 1.4.
Recall Eℓ in (11) is the potential energy associated with cutoff parameter ℓ. Our
goal is to extract a subsequential limit from the minimizers qℓ of Problem 2.

We need an improved version of Lemma 7. Recall T ℓ
K is defined in (13).

Lemma 10. For some ℓ0,K0 > 0, there exists a C > 0 independent of ℓ (and K0)
so that for all K > K0 and all ℓ ∈ (0, ℓ0),

K − C > NℓV
′′(0)T ℓ

K , where Nℓ =

∫ δ

ℓ

ξ2k(ξ)

m(ξ)2
dξ .

Proof. Fix λ. Let Lℓ > 3δ. Recall from the argument following equation (25) that∫
R
U(qΛ,Lℓ ; ·) =

∫ δ

ℓ

[
(Lℓ − ξ)V (

Λξ

m(ξ)
)k(ξ) + g(ξ)

]
dξ

=

∫ δ

ℓ

[
(Lℓ − ξ)V (

Λξ

m(ξ)
)k(ξ)

]
dξ + Cℓ ,

where Cℓ > 0. By the way we choose Lℓ, g(ξ) is independent of ℓ and therefore
Cℓ > Cℓ0 > 0 for 0 < ℓ < ℓ0. Following the same analysis as in Lemma 7, we have
that

E(qΛ,Lℓ)− Cℓ0 > T (qΛ,Lℓ)V ′′(0)

∫ δ

ℓ

[
ξ2k(ξ)

m(ξ)2
− ξ3k(ξ)

m(ξ)2Lℓ

]
dξ. (34)

Again, following the same analysis as in Lemma 7, our conclusion holds.

Pick K0 as in Lemma 10. For small enough ℓ0, we have that for K > 2K0 and
for all ℓ ∈ (0, ℓ0], there exists a minimizer qℓ of T over the constraint Eℓ(q) = K.

Proposition 7. For 0 < ℓ1 < ℓ2 < ℓ0, T (q
ℓ1) ≤ T (qℓ2).

Proof. For each ℓ, let qℓ be a minimizer of T ℓ under the constraint Eℓ(q) = K. Then

Eℓ2(qℓ2) =

∫
R

∫ δ

ℓ2

V (
qℓ2(z + ξ)− qℓ2(z)

m(ξ)
)k(ξ) dξ dz

≤
∫
R

∫ δ

ℓ1

V (
qℓ2(z + ξ)− qℓ2(z)

m(ξ)
)k(ξ) dξ dz

= Eℓ1(qℓ2) =: K∗ ≥ K.

Note that from Lemma 2, we have that for each fixed ℓ, K ↦→ T ℓ
K is monotone

increasing. Therefore,
T (qℓ2) ≥ T ℓ1

K∗ ≥ T ℓ1
K = T (qℓ1).
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We infer that {qℓ} is a bounded sequence in H and so there exists a subsequence
{qℓi} that weakly converges to some q ∈ H. In particular, for all ζ ∈ H,∫

R
(qℓi)′ζ ′

i→∞−−−→
∫
R
q′ζ ′.

Because qℓ(0) = 0 it is straightforward to infer that {qℓi} also converges weakly to
q in W 1,2([a, b]) for every a ≤ b ∈ R.

We want next to show q is a non-trivial minimizer of T subject to E0(q) = K.
We introduce some notation to make the following analysis a little more tractable.

Write
g(x) := c1|x|γ1 + c2|x|γ2

where ci, γi (i ∈ {1, 2}) are from Hypothesis (H1). We note that, by Hypothesis
(H2), ∫ δ

0
g

(
1

m(ξ)

)
ξ2k(ξ)

m(ξ)2
dξ < ∞.

Proposition 8. Up to re-centering and taking the limit of {qℓi} again, q is non-
trivial.

Proof. Combine Hypothesis (H1) and Lemma 10, we have that there exists C > 0
so that, for every ℓi,

K =

∫
R

∫ δ

ℓi

V

(
qℓi(z + ξ)− qℓi(z)

m(ξ)

)
k(ξ) dξ dz

≤
∫
R

∫ δ

ℓi

1

2

(
V ′′(0) + g

(
qℓi(z + ξ)− qℓi(z)

m(ξ)

))(∫ 1

0
(qℓi)′(z + ξs)2ds

)
ξ2k(ξ)

m(ξ)2
dξ dz

≤ V ′′(0)T (qℓi)

∫ δ

0

ξ2k(ξ)

m(ξ)2
dξ + sup

z∈R
g(qℓi(z + δ)− qℓi(z))T (qℓi)

∫ δ

0
g

(
1

m(ξ)

)
ξ2k(ξ)

m(ξ)2
dξ

≤ K − C + sup
z∈R

g(qℓi(z + δ)− qℓi(z))T (qℓ0)

∫ δ

0
g

(
1

m(ξ)

)
ξ2k(ξ)

m(ξ)2
dξ

Thus,
sup
z∈R

(qℓi(z + δ)− qℓi(z)) ≥ C∗ > 0 (35)

where

g(C∗)T (q
ℓ0)

∫ δ

0
g

(
1

m(ξ)

)
ξ2k(ξ)

m(ξ)2
dξ >

C

2
> 0.

Now we can re-center qℓi to get qℓi(δ) − qℓi(0) > 1
2C∗ > 0 for all ℓi. Take the

weak limit again to arrive at a non-trivial limit.

We now need to show that q satisfies (3) for some c ̸= 0.
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Lemma 11. For some C > 0, C ≤ λℓi ≤ T (qℓ0)/K for all i.

Proof. To see the lower bound on λi, we note that
∫
(qℓi

′
)2 is decreasing as ℓi → 0

and that q is non-trivial so that

lim inf
i→∞

∫
(qℓi

′
)2 ≥

∫
(q′)2 > 0.

By similar estimates as in the proof of Proposition 8, we find∫
R

∫ δ

ℓi

V ′
(
qℓi(z + ξ)− qℓi(z)

m(ξ)

)(
qℓi(z + ξ)− qℓi(z)

m(ξ)

)
k(ξ)dξ dz ≤ C,

where C < ∞ is independent of i. The lower bound on λℓi follows by the last two
estimates and the identity (32) with q, λ replaced by qℓi , λℓi .

To prove the upper bound on λℓi , we note that, by Taylor theorem and mono-
tonicity of V , we have

V ′(
q(z + ξ)− q(z)

m(ξ)
)(q(z + ξ)− q(z)) ≥ V (

q(z + ξ)− q(z)

m(ξ)
).

The integral over ξ and z gives K on the right hand side, so combining this with
(32), we get the desired bound.

Due to the bounds in the last lemma, there exists a λ0 > 0 so that, up to a
subsequence, limλi = λ0.

We now want to show that the limiting function q satisfies equation (3). We
need to look at (31) for the proof of this one.

Proposition 9. The limit q is a solution to equation (3) with c2 = 1/λ0. Further-

more, c2 > c20 = V ′′(0)
∫ δ
0

k(ξ)ξ2

m(ξ)2
dξ.

Proof. Fix ζ ∈ C∞
c (R) and let M > 0 be such that supp(ζ(z+δ)−ζ(z)) ⊆ (−M,M).

Since ζ is smooth and compactly supported, |ζ(z+ ξ)− ζ(z)| ≤ Cξ for some C > 0.
By the fact that qℓi weakly converges to q in H, we have∫
R
q′(z)ζ ′(z)dz = lim

i→∞

∫
R
qℓi

′
(z)ζ ′(z) dz

= lim
i→∞

λℓi

∫ δ

ℓi

[ ∫ M

−M
V ′(

qℓi(z + ξ)− qℓi(z)

m(ξ)
)(ζ(z + ξ)− ζ(z))

k(ξ)

m(ξ)
dz

]
dξ

= λ0

∫
R

[ ∫ δ

0
V ′(

q(z + ξ)− q(z)

m(ξ)
)(ζ(z + ξ)− ζ(z))

k(ξ)

m(ξ)
dξ

]
dz.

The last equality holds by the dominated convergence theorem, since for each ξ, we
have∫ M

−M
V ′(

qℓi(z + ξ)− qℓi(z)

m(ξ)
)|ζ(z + ξ)− ζ(z)| k(ξ)

m(ξ)
dz
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≤ C

∫ M

−M

(
V ′′(0) + g

(
qℓi(z + ξ)− qℓi(z)

m(ξ)

))(
ξ ·

∫ 1
0 (q

ℓi)′(z + sξ)ds

m(ξ)

)
ξk(ξ)

m(ξ)2
dz

≤ C

(
V ′′(0) + g

(
(δT (qℓ0))1/2

m(ξ)

))
ξ2 k(ξ)

m(ξ)2

∫ 1

0

∫ M+δ

−M−δ
(qℓi)′(ẑ) dẑ ds

≤ C

(
V ′′(0) + g

(
(δT (qℓ0))1/2

m(ξ)

))
ξ2 k(ξ)

m(ξ)2
(2(M + δ))1/2(T (qℓ0))1/2

= C1
ξ2 k(ξ)

m(ξ)2
+ C1g

(
C2

m(ξ)

)
ξ2 k(ξ)

m(ξ)2
,

and this is integrable over ξ ∈ (0, δ) by Hypothesis (H2).
To see that c2 > c20, we notice that, by the previous lemma, 1/c2 = λ0 ≤

T (qℓ0)/K. Therefore, by Lemma 10,

c2 ≥ K

T (qℓ0)
> NℓV

′′(0) = V ′′(0)

∫ δ

0

ξ2k(ξ)

m(ξ)2
dξ = c20.

Proposition 10. q is a minimizer of problem 1 with the symmetrized potential W

Proof. We proceed by contradiction. Suppose that q is not a minimizer of problem
1 with the symmetrized potential W . This means, there exists a function p ∈ H so
that E(p) = K and

T (p) < T (q) ≤ T (qℓ)

for all ℓ < ℓ0.
Let ε2 = T (q)− T (p) > 0. Pick ℓ > 0 small enough,

K − Eℓ(p)

NℓV ′′(0)
< ε2.

Let ε1 := K−Eℓ(p) > 0. By the same argument as in remark 5, we can assume that
p′ has compact support. Then, let x0 = 2δ+sup(supp p′) and define a function p by

p(x) :=

{
p(x), x ≤ x0,

qΛ,L(x− x0) + p(x0), x > x0,

where we pick L = L(Λ) for small Λ so that Eℓ(qΛ,L(Λ)) = ε1. . Now, we compute

Eℓ(p) =

∫
R

∫ δ

ℓ
V

(
p(z + ξ)− p(z)

m(ξ)

)
k(ξ) dξ dz = Eℓ(p) + Eℓ(qΛ,L(Λ)) = K.
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Now, by the first equality in (26) (with K replaced by ε1), for sufficiently small Λ
we have

ε1
NℓV ′′(0)

≈ T (qΛ,L(Λ)) < ε2.

But then,
T (p) = T (p) + T (qΛ,L(Λ)) < T (qℓ),

which is a contradiction.

Now, by remark 6 both q and −q are solution to (3). So, if the original potential
(which has not been symmetrized) is superquadratic on [0,∞), then q would be a
function that satisfies the corresponding (original) travelling wave equation since
q(z + ξ)− q(z) ≥ 0 (which belongs to the domain for the superquadratic portion of
the potential).

Similarly, if the original potential is superquadratic on (−∞, 0], q̃ = −q would
be the function that satisfies the corresponding travelling wave equation since q̃(z+
ξ)− q̃(z) ≤ 0.

Combining everything in this subsection, we have proven Theorem 1.

5 Low energy

In this section, we prove Theorem 2, showing existence of travelling waves for
Silling’s model in [7] with low potential energy. (Recall from remark 3. this cor-
responds to the choice m(ξ) = ξ, k(ξ) = |ξ| with symmetrized potential V (s) =
1
2s

2(1 + 1
3 |s|).) This is done by revisiting the previous calculations with a different

approximating function. Namely, instead of looking at the piecewise linear function,
we follow [3] to consider

qΛ,β(z) :=
Λ√
β
tanh(βz).

With small β > 0, this turns out to be a better approximation to the solution
of the minimizer when the potential energy is low.

We have that

T (qΛ,β) =
1

2
Λ2

∫
R
sech4(z)dz. (36)

Furthermore,

ϕΛ,β(z, ξ) := qΛ,β(z +
ξ

2
)− qΛ,β(z −

ξ

2
) =

Λ√
β

[
tanh(β(z +

ξ

2
))− tanh(β(z − ξ

2
))

]
=

Λ√
β

2 tanh(βξ2 ) sech2(βz)

1− tanh2(βz) tanh2(βξ2 )

=
Λ√
β

[
βξ − (βξ)3

12
+O(β5ξ5)

][
1 +

1

4
β2ξ2 tanh2(βz) +O(β4ξ4)

]
sech2(βz)

30



=
Λ√
β

[
βξ +

1

4
(βξ)3 tanh2(βz)− (βξ)3

12
+O(β5ξ5)

]
sech2(βz).

By a change of variable, we have that

Eℓ(qΛ,β) =

∫
R

∫ δ

ℓ

[
1

2

(
ϕΛ,β(z, ξ)

ξ

)2

+
1

6

(
ϕΛ,β(z, ξ)

ξ

)3]
ξ dξ dz

=
Λ2

2β

∫
R

∫ δ

ℓ

[
βξ +

1

4
(βξ)3 tanh2(βz)− (βξ)3

12
+O(β5ξ5)

]2 sech4(βz)
ξ

dξ dz

+
Λ3

6β3/2

∫
R

∫ δ

ℓ

[
βξ +

1

4
(βξ)3 tanh2(βz)− (βξ)3

12
+O(β5ξ5)

]3 sech6(βz)
ξ2

dξ dz

=
Λ2

2β

∫
R

∫ δ

ℓ

[
βξ + 2(βξ)3(

1

4
tanh2(z)− 1

12
) +O(β5ξ5)

]
sech4(z) dξ dz

+
Λ3

6β3/2

∫
R

∫ δ

ℓ

[
β2ξ + 3β4ξ3(

1

4
tanh2(z)− 1

12
) +O(β8ξ7)

]
sech6(z) dξ dz

=
Λ2

2

∫
R

[
1

2
(δ2 − ℓ2) +

β2

4
(δ4 − ℓ4)(

1

2
tanh2(z)− 1

6
) +O(δ6β4)

]
sech4(z) dz

+
Λ3

6

∫
R

[
1

2
(δ2 − ℓ2)β1/2 +

3

4
β5/2(δ4 − ℓ4)(

1

4
tanh2(z)− 1

12
) +O(δ8β13/2)

]
sech6(z) dz

= C1
Λ2

4
(δ2 − ℓ2) + C2

Λ2β2

8
(δ4 − ℓ4) + C3

Λ3β1/2

12
(δ2 − ℓ2) +O(Λ2β4 + Λ3β5/2),

(37)

where C1, C3 > 0 and C2 < 0. We choose Λℓ(β) so that

Eℓ(qΛℓ(β),β) = K.

Note that from (37), we have

lim
β→0

Λℓ(β) =

√
4K

C1(δ2 − ℓ2)
=: Mℓ.

Thus, we can pick β small enough so that by (36),

K =
δ2 − ℓ2

2
T (qΛℓ(β),β) + C3

M3
ℓ β

1/2

12
(δ2 − ℓ2) + o(β1/2)

So, for any K > 0, we can find a fixed β > 0 so small that

K ≥ δ2 − ℓ2

2
T (qΛℓ,β) + C(β),

where C(β) > 0 independent of ℓ. This proves the inequality in Lemma 10 for
low energy, which is what we need to prove both existence of the minimizer to the
approximate problem and to be able to pass to the limit using the similar argument
in the previous section.
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Remark 7. Taking β small in the expression Λ√
β
tanh(βz) here is similar to taking

the length L large in the piecewise linear approximating function in sections 3 and
4. Recall that in Lemma 10 we needed to make L large enough to create a constant
C independent of ℓ because the mass in the middle of the function is independent
of ℓ.

6 Discussion

While with the tanh function in section 5, one could establish existence of travelling
waves in low potential energy setting, it is not clear that this argument would work
for more general potentials, even when one could have existence for high potential
energy. This is hinted in the work of [3]—one needs to be more clever to obtain such
result with more general potentials.

An outstanding question is that about the compactness of the derivatives of the
travelling waves. We answer this question by the following short argument.

Proposition 11. Let q be a C2 and increasing (resp. decreasing) function that
solves (3). Suppose that f(x, ξ) has a sign for x ∈ (0,∞) (resp. x ∈ (−∞, 0)).
Then supp{q′} is unbounded above and below.

Proof. We consider only the case q is increasing and f(x, ξ) > 0 for x ∈ (0,∞),
ξ ∈ (0, δ). The other cases are similar.

We argue by contradiction. Suppose that q′ has compact support. Let z+ =
sup{supp{q′}}. Consider z = z+ + δ/2. By (3) and the assumption, we have
q(z) < q(z+) for z < z+, hence

0 = c2q′′(z) =

∫ δ

0

(
f(q(z + ξ)− q(z), ξ)− f(q(z)− q(z − ξ), ξ)

)
dξ

= −
∫ δ

0
f(q(z)− q(z − ξ), ξ) dξ < 0,

which is a contradiction.

While we know that the support of q′ is not compact, because of numerical
evidence in [7] (that the solutions with compact supports can approximate well the
analytical solutions) and the result of Friesecke and Pego for discrete lattices in [2],
we conjecture that the solutions to (3) decay exponentially to 0.

Finally, we note that our approach is only one possible approach to prove ex-
istence of solitary waves in one dimensional peridynamics. Since there are quite a
few results about the existence of solitary waves for Fermi-Pasta-Ulam-Tsingou’s
system, it would be worthwhile trying to adapt other approaches to peridynamics.
We mention, in particular, the approach in [4], in which the author solves a con-
strained maximization problem and argues that certain maximizers are fixed points
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of a so-called improvement operator T , which in turns solve the travelling wave
equation. This approach is appealing since it provides good numerical results for
Fermi-Pasta-Ulam-Tsingou’s system and has a rather clean and interesting abstract
framework.
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