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Abstract

We give a rigorous proof of existence for solitary waves of a peridynamics
model in one space dimension recently investigated by Silling (J. Mech. Phys.
Solids 96:121-132, 2016). We adapt the variational framework developed by
Friesecke and Wattis (Comm. Math Phys. 161:391-418, 1994) for the Fermi-
Pasta-Ulam-Tsingou lattice equations to treat a truncated problem which cuts
off short-range interactions, then pass to the limit.
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1 Introduction

1.1 Overview

Peridynamics is a relatively new nonlocal continuum model that was introduced
in 2000 by Silling [6]. A distinguishing feature of this model is that it consists of
integro-differential equations that do not involve spatial derivatives. For this reason,
it has received considerable attention for its potential uses in modeling materials that
have defects such as cracks.

Recently, Silling in [7] investigated large-amplitude localized nonlinear waves—
solitary waves—in a peridynamics model in one space dimension. This model takes
the form

)
w = / e+ €.1) — (e 1), ) d (1)

Here x represents a material (Lagrangian) coordinate, u represents the displacement
field, € is called a bond and describes the relative position between two material
points, d is called the horizon and represents the maximum reference distance be-
tween interacting material points. The function f is a pairwise bond force density
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that is determined by the material model and is required to satisfy the anti-symmetry
condition

Taking f in a form that models an elastic material that hardens in compression (see
Remark 2 below), Silling demonstrated the presence of solitary waves in numerical
simulations of and studied their form by approximate analytical methods.

Our work, inspired by that of Friesecke and Wattis [3], aims to provide a general
framework to rigorously prove the existence of solitary waves for by looking at
the problem as a variational problem. In particular, we are looking for a solution in
the form of a travelling wave,

ul(,t) = qlx — ct),

where ¢ : R — R is monotone. This provides a solution of if, for all real z,

é
') = [ (faG+9 - a1~ faC) —ac-0.9) ke ©)

This equation is formally the Euler-Lagrange equation of the following general
variational problem, expressed in terms of a function W (called the micropotential)
which satisfies

MW (n,€) = f(n,€). (4)
Problem 1. Minimize

T(g) = + /R MORE (5)

subject to fixed potential energy

£(q) :=/R/06W(q(z+£>—q<z>,f) dé dz = K (6)

where K > 0.

Assumptions on micropotential. In this paper, we assume that the microp-
otential takes the scaling form

W) = v (5 )6) (7)

for some functions m and k that are chosen so that (2]) holds and m(0) = k(0) = 0,
where V is C? and the following hold:

(H1) V is non-increasing (or decreasing), convex and superquadratic on (—oo, 0] (or
[0,00)) with V(0) = V'(0) =0, V"(0) > 0, and

V'(x) < V7(0) + exfa|™ + eola]™,

where ¢1,c2 > 1 and 0 < v < 9.



(H2) k:R — R is even, m : R — R is odd, both m and k vanish at only 0 and are
non-decreasing on [0, c0), and satisfy

6752]{(5) oo an 6@ 00
/0 m(gyar2 6 <00 and /0 m(e) % =

Under these assumptions, we will prove the following theorem. We note that
under the long-wave approximation u(z + &,t) — 2u(z,t) + u(z — &,t) ~ Uy, the
linearization of equation takes the form uy ~ cgum, where the “speed of sound”
co in this long-wave limit satisfies

2 M b k(§)£2
2—v (0)/0 g

Theorem 1. There exists a K1 such that for K > K1, there exists a constant ¢ > ¢
and a function ¢ € C%(R) so that £(q) = K and q solves equation (3). Furthermore,
q 1is increasing (decreasing) if V' is superquadratic on [0, 00) ((—o0,0]).

Remark 1. Actually, while the function ¢ in Theorem [I| provides a travelling wave
solution to , we do not know whether it provides a minimizer for Problem
Rather, it is a solution to a minimization problem with a symmetrized micropoten-
tial, which is described in the next subsection.

Remark 2. The speed of the travelling wave is actually always faster than both the
group and phase velocities at any wave number x. Upon linearizing the equation
around u(-+¢,-) —u(-,-) = 0 and taking solutions of the form u(z,t) = e~ we
get the dispersion relation

w? = /0 V"(0)4 sin® <52”’> k;fg dé = K? /06 sinc2(§;> dy(8), (8)

where sincz = S22 and dy(¢) = V”(O)%g?j d¢. Since sinc?z < 1 and fo‘s dvy(€&) = 3,
this tells us that the phase velocity w/k satisfies (w/k)? < c3. Moreover, due to the
identity

d
sinc?(x) + gd—sinc2(m) = cos(z) sinc(z),

we also compute that the group velocity (for w, k > 0) satisfies

1)
27: = Z/o cos (gf)sinc(g2 ) \/7\/ d’Y = Co,

by the Cauchy-Schwarz inequality.



Remark 3. The model that we study is a direct generalization of the one that was
studied by Silling in [7]. More specifically, the model investigated by Silling has the
micro-potential

21— 1) if 2 <0
Wn,€) = {f' S €= 9)
2 otherwise.
This fits our framework with
1s2(1 - 1s), if s <0,
Vi(s)=191 5 .
55%, otherwise,

m(&) =& k() =[],
1

Mm=7r=1 a=c=g.

We point out that while our general framework is good for showing the existence
of travelling waves given large enough potential energy, Silling’s model has a struc-
ture that allows us to prove the following result, showing that travelling waves exist
even in the case of low potential energy.

Theorem 2. There exists a monotone travelling wave solution to equation sat-
isfying E(q) = K for every K > 0, where

f(n,€) = F(n/&sgn(§), 0<[E <4, (10)
with )
F(s) = s— %, s <0,
s, otherwise.

Concerning the asymptotic behavior of ¢(z) for large |z|, we have only a little
information. In [7], by using Taylor’s approximation, Silling derived an approximat-
ing ODE to and found an explicit solution to that ODE whose derivative has
compact support. While this is numerically a good approximation, exact travelling
waves for do not have compactly supported derivatives. This is proved in section
6 under a rather general assumption.

Silling’s model is the peridynamics counterpart of the discrete spring model that
was studied by Fermi, Pasta, Ulam and Tsingou [I]. In fact, Friesecke and Wattis [3]
rigorously showed that the discrete spring model possesses travelling wave solutions.
While our result was inspired by that in [3], difficulties arose when we directly applied
the method from [3] due to the lack of control over the weak derivatives of functions
in the Sobolev space VV&)C2 (R). Unlike the setting in [3], in which the authors only
need to use the finiteness of kinetic energy to ensure the continuity of ¢(-+1) —¢(-),
we do not have the difference quotients (q(- + &) — q(+))/m(&) uniformly bounded as



& approaches zero. To be more specific, when we tried to apply the method from
[3] directly, we were not able to see how an analog of Lemma [6] a reformulation the
nonvanishing condition of the minimizing sequence, would hold.

To overcome this problem, we find the existence of travelling waves in an ap-
proximate problem obtained by cutting off short bonds, and then prove that the
approximate solutions converge to a solution of the main problem. The ability
to prove such convergence relies heavily on an improved potential energy estimate
(Lemma and the monotonicity of the solutions of the approximate problem.

We also note that the truncation near zero is not related to the assumptions on
m and k. It is mainly to deal with the lack of uniform boundedness of the difference
quotients.

It is plausible that the existence of solitary waves can be obtained with different
or more general structural assumptions on the micropotential from those we impose
here. We have chosen to treat micropotentials in the scaling form of because
they can conveniently represent a variety of typical peridynamic force densities, such
as arise, e.g., by finite-horizon truncation of energies involving fractional derivatives.

1.2 Symmetrization

In order to prove existence of solitary waves, we will symmetrize our potential W
by replacing V with a function V that is even and superquadratic on R. More
specifically, let I be the half line on which V' is superquadratic (i.e. (—o0,0] or
[0,00)). Define

Viz) - {V(m), rxel
V(-z), —zrel

Define then .
W(,8) 1= V(7 k(E).

It turns out that problem |l| with the potential W will have a minimizer that
is monotone. Furthermore, if ¢ is a minimizer of this problem, then —q is also a
minimizer (due to the symmetric nature of V).

Once we prove the existence of minimizers for this symmetrized problem, we will
see that if the original V' is superquadratic on [0,00) ((—o0,0]) then the increasing
(decreasing) minimizer of the symmetrized problem will be a solitary wave to the
original problem

We note that the solitary wave found here may not be the minimizer of the
original variational problem 1.

Remark 4. It is not necessary to symmetrize the potential if V is already strictly
convex. The only place that this is utilized heavily is Lemma [9] where we prove
monotonicity of minimizers by exploiting the strict convexity of V. This is not
necessary to prove existence of the minimizer, where we only need to exploit the
one-sided superquadraticity of V.



1.3 Truncation

Next, we introduce the following truncated problem:

Problem 2. Minimize

subject to a fized potential energy

£'(g) = /R /e 5W<q<z+§>—q<z>,£>dsdz=f( (1)

where £ € (0,5), K >0 and W is defined above.

It turns out that we can solve this problem by adapting the technique of [3]:

Theorem 3. There exists a Ko such that for all K > Ky, there exists ¢* € C?(R) so
that £%(¢") = K and ¢ solves Problem @ Furthermore, it solves the Euler-Lagrange
equation

)
(g (x) = /E (@ +6) — ' (2),6) - (@) — ¢z — €),6)]de  (12)

where ¢ > 0 is the inverse of the Lagrange multiplier.

We will then extract a limit
¢ —q

along some subsequence and show that ¢ is non-trivial and solves .

1.4 Strategy and plan of the paper

To summarize, the strategy to establish the existence of a solution to is the
following;:

1. Prove the existence of a minimizer ¢ to Problem
2. Show that ¢ is monotone,

3. Show that as £ — 0, a subsequence of the ¢ converges to a minimizer of
Problem |1f with the symmetrized potential W.

4. Conclude that this minimizer of the problem associated with W is a function
that satisfies (3)).



The existence of minimizers to the truncated Problem [2]is proven in section [2]
Section [3| derives various properties for the minimizers and completes the proof of
Theorem The analysis in sections [2| and 3| is similar to that in [3], so readers
who are familiar with that can skip the details in these sections without missing
any major concept. The existence of travelling waves in the original problem will
be proven in Section @] Theorem [2] is shown in Section Finally, we discuss
compactness of the travelling waves’ derivatives in Section [6}

2 Existence of a minimizer to the truncated problem

We establish Theorem [3|in this section, which deals with the truncated Problem
Since we only deal with the symmetrized potential, we will write V as V in this
section, unless specifically stated otherwise. We also note that our proof follows
almost exactly as in [3] with some modifications needed due to the fact that our
potential is an integral, not a function as in [3].

2.1 Notations

We will be working on the following Hilbert space
= {a € WER) £ 1120 < .900) =0}

where the inner product is given by (¢,p) = [p¢'p" and |lq|| = [|¢l|2®). For
convenience, we define

TS = jﬁf T, A% :={qeH:U(q)) e L'(R),Eq) = K}. (13)

The analysis in this section and the next is performed for each fixed ¢ € (0,9).
Therefore, for convenience we suppress the explicit dependence on ¢ frequently in
these sections to make the notations less cluttered. The results in sections [ and
require close attention to different values of ¢ so we will explicitly write the £
dependence there in all of the calculations.

It is also convenient to define the piecewise linear function ga ; by

0, z <0,
aan(z) =S Az, 2z €0, L],
AL, z> L.

2.2 Analysis

Let us start with the concentration-compactness lemma.



. , 1,2
Lemma 1 (concentration-compactness). Let {¢*} be a sequence in W, 7(R) such
that there exists a C > 0 so

Sl}ip H(qk)/HLQ(R) <C

and that
/Uk =K (14)
R
where K > 0 and
) k(s —dF(
U = Ut = [ V(ST de (15)

Then, up to a subsequence, q* satisfies exactly one of the following

i. (compactness) There exists y, € R such that UF(- + yi.) is tight, i.e., ¥Ye > 0,
JR < oo such that

Uk(' +uyp) <e
R\Br(0)
for all k.

ii. (vanishing)

lim sup / Uk() =0
Br(y)

for all R < oo.

iii. (splitting) There exists o € (0, K) such that Ve > 0, 3kg such that Vk > ko,
¥, ¢k € VV;’?(R), ||(qzl-c)’||L2(]R) < oo and the following is true:

|U* — (UF + US|y < e,

'R/Ulk —a| <g,
‘R/Ug_(f{_a) <e,
and ! R/((qk),)g_; ﬂz((qlf)/)z_ / ((¢))* >0
with

dist(supp((q})’), supp((g5)")) — oo
as k — oo. Here UJk(IL‘) = U(q;-“;a:) where j =1, 2.

8



Proof. Step 1. For each k, define a concentration function @ : R™ — RT such
that

0 < Qi(R) := sup / Uk <K
yeR
Br(y)

for all k.
Since @Q’s are increasing functions that are uniformly bounded, up to a sub-
sequence, we have that ), converges to some non-negative increasing function @,

pointwise. Define
a:= lim Q(R) € [0, K].

R—00
We have 3 cases:
e o = 0. This implies (ii).
e o = K. This implies (i).
e a € (0,K). We need to prove that this implies (iii).

To show the last item, we proceed as following.

Step 2. Fix ¢ > 0, since Q " «, there exists R such that Q(R — 0) > a — ¢.
Since Qr — @ pointwisely and Q)i’s are increasing function, for large enough k, pick
Yy so that

/ Uk>a—e.
Br(yr)

Furthermore, since limpg_,o Q(R) = «, we can find R¥ — oo such that
QrRF+0) <a+e.

Let R} € [R,R+ 3(R* — R)] and R} € [R + 2(R* — R), R*] where R < Rk to be
specified later.
Define continuous functions ¢f and ¢4 so that

k
(ql{;)/ — (q )/7 zZ € BR]f (yk)’
0, otherwise |,

and

0, z € Bpr(yk),
(@) =19 4, i
(¢")', otherwise .

More specifically,
¢"(ye — RY), 2z <uyr— Ry,
g1 (2) := 4 ¢*(2), z € Bpi(yr), (16)
¢"(yx + RY), 2>y + RY.



¢"(2) — ¢"(yn — R), 2z <y, — R,
¢5(2) =4 0, z € Bpr(yr), (17)
¢*(2) — ¢"(yx + RY), 2z>yp + R}

By direct computation, we have that

it / 23 [y /<<q2>’>2=§ [ @rrzo
R

Br, (Yx)\Bry (yx)

and
dist(supp((q7)"), supp((g5)")) = o0
as k — oo.
We now need to choose good R’f and R§ .

Step 3. We next get some estimate for UJ'-" , for j = 1,2. First, from Cauchy-
Schwarz inequality and since ¢ > 0,

St (rt€) — (s
Uk () = U(qf;z>=/V<qJ( o) 2ol )>k(£)d5
4

m(§)

6 EV([E1(gh) (2 + 5)|2ds)
< ( () )’“@ i

o[ ([l are) "
<Mg(/ 1(¢") (z + s)| st)l/z

where (Y is the local Lipschitz constant of V' depending on C' in the hypothesis and
¢. (We remark that this is the key new estimate that makes the rest of the proof
work almost exactly as in [3] again.)

Step 4. Let

Dy= (e — RF — 6,y — RY),

D}y = [yx — Rf,yr — BY +9),

B, o= (yx+ RF — 8,y + RY),

Ef = luk + Rf,yk + R +6).
We have that, z < yx — R¥ implies (¢F)’ = 0. So,

z+6

1/2
/_ Uf(z)dngg/ </|q1 2ds) dz
1,k

10
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Figure 1: Intervals

<u [ ([ |<qf>'<s>\2ds)1/2dz

1,k 1,k

o [ty oras) "

1,k

where the constant M, may differ from line to line. Similarly, we have that

e
i E il [ watre)

[ uts ([ <<q’“>’>2)1/2,

where we can take M, to be the same for all estimates. .
Step 5. Now, we partition [R + 0, R + %(Rk — R)] into RggR — 1 intervals and
use the fact that [((¢*)")2 < C? to get the following.
R

1/2
) ) <<qk>'>2) |
1,k 1,k

1/2

2,k

+
2,k

k _
<(R R) — 1) min / Uy g/ Ur
30 RY€[R+6,R+5(RF—R)] [R,R+3%(RF—R)
jha

1/2
szw( / ((q’fy)?) < MC.
[R,R+ % (RF—R)+6]

Thus,
min / UF < 6(k) (18)
RY€[R+6,R+ % (RF—R)]
o
where MO
< V4 k—00
6(k) == ¢ — 0.
35 1

11



Similarly, the above works if we replace £, by D, and so

min / Uk < 20(k). (19)
RE€[R+6,R+5 (RF—R)]
B UDy,

We also have the following
min / Uy < 26(k).

RE€[R+2(RF—R),RF]
DQ,k U Ez,k

(20)

Step 6. Choose R¥ and R so that the minima above are obtained. We then
have that

fwt-vt-up= [ wt-v o+ [ v

Dy UE, Dy UE,
yp—RF—6  yp+RE—6
yr— RS yr+RY
< / ur+ur o+ / Uy + Uk
Dy UE, Dy UE;
yp—RF—6  yp+RE—6

(o ]

yr— RS yr+RY

< 45(k) +/ Uk —/ u*
Bpky5(yk) Br—s(yx)
<40(k)+ (a+¢e) — (a —e) = 46(k) + 2e.
Furthermore,
yr+RY -0
/Uf_ / ur o+ / Uy (21)
: Dr UE, yr—Rf

But we know that, from the definitions of R, R* and le, for large enough £ so
that RY —§ > R,
yk—i—R’f =

Uk c(a—ea+e).

yr—RE

12



So,

/dez—a <eg
R

Similarly, we have, for large enough k,

yp—RE—5
fae [ (] @
. Dy UE;, yr+RE
and
—RE—§
/ / ) K—-a)—¢ (K+a) —e).
yk+RE
So,
‘/Rdez—(K—a) <e.
This proves the last item in step 1 and hence the lemma. ]

Remark 5. For each minimizing sequence {¢*} C Af of T, by replacing ¢* by

k(a) +qri(z—a—1), z>a

for sufficiently large a, and A chosen to ensure that £/(§*) = K, we can assume each
function of the minimizing sequence has a compact-support derivative.

Lemma 2. The map K — Tk, K € [0,00) is monotone increasing and continuous.

Proof. The argument of this lemma is basically the same as in Lemma 1d in [3].

The monotone part is based on a simple scaling argument. Let a < K, g € Ag.
Because £/(Aq) = 0 when A = 0 and £4(Aq) = K when A = 1, there exists A € [0, 1]
so that £¢(Agq) = a. We have that

To < T(Aog) = AGT(q) < T(q).

This works for all ¢ € Ag. Thus, T, < Tk.
To see K — Tk is continuous, we proceed as follows. Since Tk is monotone in
K, it suffices to show that there exists n(r) — 0 as r — 0 so that for all K,

Tryr —Tx < n(r).

13



Fix K and r > 0. Let ¢ > 0, gx € Ak such that T(qx) < Tk + €. Consider the

function
QK(Z)a z<a
q(z) = :
qr(a) +qri(z —a), z>a

where A and a will be specified later.
Observe that ¢ € H and

a—0 a
52((1)2/ U(‘]Ké‘)+/a_6U(q; )+ Eqna)-

Also,
1
T(q) = Tk <T(q) = Tlax) +& < T(aan) +e = ;A" +e.

Now, define
Ar(r) == inf{A > 0: E(qa1) = 2r}.

Since £¢(ga.1) is increasing and continuous in A and £¢(go1) = 0, pick 0 < A <
A (r) so that r < £%(qa 1) < K +r. Then, we have that

) = K +E&%qa1) > K+

as a — oo and
Eq) = E%qna) < K+

as a — —oo. By continuity of the integral, there exists a € R such that
Eq) =K+

Thus,
1
Tkr — T <T(q) — T < T(qpn) +e < §A1(r)2 +e.

Since ¢ is arbitrary,
1
Tkir — Tk < 51\%(7“).

Observe that Ai(r) — 0 as r — 0 independently of K. Thus, we define

(r) = 3430
and the result follows. O
Lemma 3. Let U be as above and K > 0 be fized. Then the following are equivalent:
i. No minimizing sequence {qk} C Ag splits, i.e., satisfies Lemma .z'ii.
1. T satisfies a subadditivity condition

Tk <To+Tk—a» Va € (0, K). (S)

14



Proof. The proof of this goes almost exactly the same as in [3].
((ii) = (i)). Suppose, by contradiction, that there exists a minimizing
sequence {¢*} C A that splits for some a € (0, K). Define

Qf = 5é(q11€)’
and
Br == E'(qh).

As k — oo, by continuity of Tk, we have that
T > liminf(T(q}) + T(¢5)) > liminf(Ty, + T5,) = Ta + Tk —a,
k—oo k—00

quod est absurdum.
((i) = (i7)). Suppose, by contradiction, that does not hold, i.e., Ja €
(0, K) such that
TK > Ta + TKfoz-

We want to construct a minimizing sequence that splits. Let {¢f} C A, and
{q’f(_a} C Ag_, be minimizing sequence of 1" under the respective constraints.
By remark [5| we can assume that the supports of (¢¥) and (¢%__)" are contained
in Bpg, (0) for some Ry > 0. Then the sequence

¢"(2) = dc—a(2+ Ri + k) + dfc—a(2 = B — k) + Ci
where Cj, is chosen to make ¢*(0) = 0 works as desired. O

Next, we introduce the quantity

q(z +¢) —q(x)
m(§)

and note that this bounds the argument of V' in the expression for U(q; z) defined in
. As in Step 3 of the proof of Lemma |1} by Cauchy-Schwarz we find the bound

[q(x)]e = sup
(<¢<s

Y

20T(q)

el < Yoo

Lemma 4 (Uniform modulus of continuity of U). Let M > 0. There exists a
constant C such that for all q € T/VI})'?(R) with T(q) < M?,

|U(q;21) — U(q; 22)| < Cilz1 — 2’2!1/2

for any z1, 22 € R.

15



Proof. Let z1, 29 € R, writing n(z,£) = q(z + &) — q(2) we have that

v = [ (259590 (240

n(z1 5)/7”(5)
/ V' (s)ds | k(€) de
(2,6 /m(€)

77(Z1> 5) _ "7(Z2: 5)
m(§) m(§)

[+ - doas

<

C

IN

k(€) d§

A
I

Cl
L

)
sc’/g o1 — 22| o de

= (6 —0)C' M|z — 2|"? = C1]z1 — z|/?

IN

dg

where & = V/(||lqlel]oo). -

Now, for convenience, we introduce the following notation:

* k(€

Lemma 5. Define

T e =mf{T(q) : g € Ak, [llglellcc <}

Then
liminf Tyo = ——2 (23)
it e = Nvi)
Proof. First, we prove the following inequality
K
hrEIme Tke > AOR (24)
Let {¢"} C Ak be asequence such that ||[¢¥]||oc — 0. Let RS := [~[/[g"]¢]| oo, | [d¥]¢]|0o)-

Then, let My = sup,¢ pi V" (x)],

[v(Peas )<5>d5
s% /(qk ) hieyae
<y ([ %)fﬁ?z “

16



Thus,

frtssesgul [ ("o G
el (] o) S
L e
:MgNgT( )

Therefore, by assumption,

K

hm 1nf T(¢") > AKOR

Since {¢*} is arbitrary, the inequality follows.
Next, we prove the equality by employing the piecewise linear function ga .
We note that,

1
T(gaL) = §A2L

and

0 Af
/R Ulgas) = /{Z [(L—£>V<M>k<£>+g<5>}df (25)

where g > 0 is integrable and nonvanishing and doesn’t depend on L. Further-
more, for each A, we can choose an L(A) so that [, U(qa,r) = K and if A — 0 then
L(A) — o0. Thus, we have, for some C' > 0,

A [(L—é)W%)k(&)}d&é

T(qaLn) 1A2L(A)

Using Taylor expansion on the left and right sides and letting A — 0, we find that

K = NV"(0) lim T(qa,,(a)) = NeV”(0) limsup T . (26)
A—0 ’ e—0 7
Combined with the inequality , we find that indeed holds. O

Lemma 6. The following are equivalent:
1. No minimizing sequence {qk} C Ag vanishes, i.e., satisfies Lemma .ii.
ii. There exists e(K) > 0 such that every minimizing sequence {q*} C Ak satisfies

lim inf ||[¢*]¢]|cc > €.
k—ro0

17



1. T satisfies the energy inequality
NV"(0) Tk < K. (E)

Proof. ((i1) <= (4t7)). This is an easy consequence of Lemma
((i4) = (#44)). Since we assume that ||[¢¥]¢|lec > € for every minimizing sequence,

necessarily from ,
Tk < TK@A

for each & < €. So, because T ¢ increases as é decreases, we deduce

K
Ty < lim Thos = ——
K= RS Nvi(o)

((i) = (ii)). Suppose we have that there exists a minimizing sequence {g*}
with [|[¢*]¢/lcc — 0. Then for all y € R and R > 0,

/BR(y) U(q"5) = /BR@/) /; V<Qk(x +ﬂ§2§; qk($)>k(§) dedr

<o () o

k—
oo 0’

which implies we have vanishing; i.e., (i) fails.
(1) = (i). Step 1. Let ¢ € Ak such that ||[¢]¢]|cc > €. We can then pick
10, &o so that
€

> —.
2

‘(J(yo + &) — q(wo)
m(&o)

Since &y > ¢,
m({)e

o + &) ~ alu)] > ™

By continuity, we can pick ¢’ so that V& € Bg (&), |q(yo + &) — q(yo)| > %.
Without loss of generality, assume that y + &y + ¢’ < § and yo + & — ¢’ > £. Thus,

J _
Ulaiw) = [ VARSI ) g

>/ W O 0y

Yo+&o—0’

m(l)e
4m(9)

—25'V/( Yk(£) > 0.

18



Thus, for each ¢, ¢, there exists a Cy . such that, for each ¢ such that ||[¢]¢]|- > €,
there exists a gy such that
U(g;90) = Coe. (27)

Step 2. Let € > 0, Cy. be as in step 1. Let ¢ be such that ||[¢]¢||c > . Thus,
by step 1, there exists yo such that U(q;y0) > Cr.. By Lemma {4] we then have,
there exists an R so that for x € Bg(yo)

CZ €

U(g;x) > —.

Thus,
/ U(Q;-r) > RC&a'
Br(yo)

So, we have shown that for any ¢ such that ||[¢]¢||c > €, there exist R and &;
dependent only on ¢ and ¢ so that for some vy,

/ U(g;z)dz > €.
Br(yo)

This implies (i). O
Proposition 4. Let U be as above and K > 0 be fized. Assume
Tk <Th+Tk—q, Va € (0, K). (S)

and
NV"(0) - Tk < K. (E)

Then there exists a minimizer of T on A .

Proof. Let {¢*} C Ak be a minimizing sequence of 7. By lemmas [3{ and @, we have
that, up to a subsequence, {¢*} satisfies the compactness case of the concentration-
compactness lemma. By replacing ¢* by ¢*(yx + ) — ¢*(yx), we can assume that
¢"’s have centers at 0 and ¢¥(0) = 0. Since {¢*} is bounded in H, there exists
a subsequence that weakly converges to ¢ € H. By weak lower semicontinuity of
norm,
T(q) < liminf T(¢*) = inf T.
Ax

To see that £%(q) = K, we note that W1H2(Bg(0)) is compactly embedded in

L>*(Bg(0)). Therefore, ¢* — ¢ in L>(Bg(0)). This implies U(q*;-) — U(g;-)
in L*°(Br_5(0)). Therefore,

/ U(q";) — Ulg; )
Br(0) Br(0)
for all R > 0.
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On the other hand, by Lemma [1| case i, for every & > 0 there exists an R such
that for every k € N

/ U(dh) <<
R\Bg

Using a standard €/2 argument, we see that

Kzlim/RU(qk;‘):/RU(q;-)-

So, ¢ is a minimizer of T on Ag.

O
Lemma 7. There exists Ky > 0 such that for all K > K, (@) holds.

Proof. Fix A > 0. Let ga,1, be defined as above. Then, from ,

¢ "on— ey A
eann) > [ (L= OV

o 1 " A2§2
> [z -o5vro Sore]a

Loy [CTERE) k()
= o) | {mw m(@-‘)ZL}d5

— T(gan)V"(0) /; [fzk(f) k() }d{

m(§)*  m(£)*L
by superquadratic property of V.

So, there exists Ly such that VL > Lg,

Eqa.L) > NV"(0)T(qa.L)-

Let Ko := &(qa.1,)- Since L v Ee(qAJJ) is increasing, for each K > Ky, there is an
L > Ly so that K = Ef(qAL), hence

K > NzV”(O)TK.

O
Lemma 8. Let Ky be as in Lemma@ then for all K > 2Ky, (@ holds.

Proof. As Lions pointed out in [5], to prove that a function A : [0, K] — R satisfies
h(K) < h(a) + h(K — «) for all a € (0, K), it suffices to show the following:

{h(aa) < Oh(a), Vo e (0,5),v0 € (

L&,
h(fa) < Oh(a), Va €[5 K),v0 e (1,5].
We want to check that h(a) = T, satisfies the above properties.

(S)
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Let a € (0,K) and 6 € (1, K/a]. We first consider the case a > K/2. By the
concentration-compactness principle and Lemma [7] there exists ¢ and C such that

To =inf{T(q) : g € Ancc}

where

Avec=1{a€H:ENq) = a, ||ldlellc = &, Jlall < C}.
By (27)), there exists ap > 0 such that, for A := {z : [¢(2)]s > £/2},

/AU(q; z) > o

for all u € Aq e c-
Let ¢ € Ay e c. Since £%q) = a and for A\ = /0,

E'(\g) = E'(Vbq) > 0E (q) = ba.
By the intermediate value theorem, there exists A = \(#, q) € [1,v/6] such that
E4(\q) = fov.

We claim that A\ < v/6. To see this, suppose by contradiction, A = v/6. Let

0p = mln{;é}\(?) Dl e [%,C],)\ c [1 +2\/§’\/§]}.

Note that 6y > 1. We then have

ga:gf(\/éq):/ U(Vog;-) +[4qu,

R\A

> Ola + (0o — 1)),

which is a contradiction.
Define 0
A\ = e 0.
0 o+ (90 — 1)0[0 <
The same calculation above shows that

Thus,

TGa < inf {T()‘<97Q)Q) BV -Aa,e,C} < /\(2) inf {T(Q) 1q € Aa,E,C}
= \T, < 0T,
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Combining Proposition [4] Lemma[7] and Lemma |8 we have shown the following:

Proposition 5. There exists a Ko such that for all K > Ky, there exists ¢ € Ag
that minimizes the problem

min{T(q) ‘g€ AK}.

3 Properties of minimizers

We now study the properties of minimizers ¢ = ¢* for the truncated problem (Prob-
lem [2) where ¢ € (0,9) is fixed. To make the notations less cluttered, we continue
to suppress explicit dependence on ¢ throughout this section.

3.1 Euler-Lagrange equation

This subsection is devoted to showing that the Euler-Lagrange equation of the trun-
cated minimization problem (Problem [2) is equation (12)).

Proposition 6. Let ¢ € Ax be such that

T(q) = inf T.
(9) inf

Then q satisfies and q € C?.
Proof. Let ¢ € H be a non-zero function. Define ¥, ® : R? — R, by
U(t,e):=Eg+tg+eC),  ®(te) :=T(q+tq+eC).

First, we claim that

0% o ov_ [ [P (1) —aD)Y e o EE) e
500 = [ [v(TEEEZIE (et g - ) B dea

To see this, let 71(2,€) = (q(z + &) — q(2))/m(§) and na2(z,&) := (((z + &) —
¢(2))/m(¢). We only need to find a function in L*(R) that dominates the quantity

L (Von +em) — Vim) (28)

to be able to pass the derivative inside. Note that 71 (-, &) and n2(-, &) are uniformly
bounded in L?(R), because, for example, by Cauchy-Schwarz,

3
— ZQZ /Z 52322 2 .
/R|<(z+f) <<>d§/Re/0c<+)dd 262T(C)
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Because |V'(t)| < Ci|t] whenever [t| < ||71]loo + €]|72]/0c0, Where C} is a local bound
for V. we then find that whenever |e| < 1,

V(e +enz) = V(n)| = [V(Im +enl) = V(Im))] < Ci(in] + |n2))eln| .

Thus, is dominated by C(|mi| + |n2])|m2] € L' (R).
Similarly,

ov N PG —a@)) RO
500 = [ It g o) g a9

We also have that, since V' (z) is strictly increasmg for z > 0 and strictly decreasing
for © < 0, V'(z)x > 0 for @ # 0. Therefore, 2 St $(0,0) > 0 and so

V¥ (0,0) # 0. (30)

On the other hand, it is easy to see that

Fo0= /¢ Foo-[wr

We rewrite the problem in terms of minimizing ® under the constraint ¥ = K.
By the hypothesis, we know that ®(0,0) is a minimizer of ® under the constraint.
Because of VU(0,0) # 0, we can apply the Lagrange multiplier rule to deduce that
there exists a A\ such that (0,0) is a critical point of ® — A\U. That means

0 = V&(0,0) — AV¥(0,0)

In particular, we have

12+ —az) HO) ]y
[[re -2 [t Oyt M aela=o

11O —q(2) MO e gs
[ [ vt b g o) 2 aa =0 @

Equation tells us that A is greater than 0 and independent of (. Rewriting
(31)), for any ¢ € C°(R) we have

/chz—x//[ 29—z -6, 5)—f<q<z+s>—q<z>,£>]dsc<z>dz

So, —A f; [f(q(z)—q(z—{), &)—f(q(z+&)—q(2), 5)] d¢ is the distributional second

derivative of ¢. But since AU’ (g(2)) is continuous, ¢" exists in classical sense and is
continuous. So, ¢ € C?(R). This means that g solves where ¢ = \71/2, O
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3.2 Monotone travelling wave in the approximate problem

Lemma 9. Let V' be as above. Then, any minimizer q of T over Ay is monotone.

Proof. This proof is done by applying a scaling argument repeatedly. Let ¢ € A
be a minimizer of T'. Consider the function

/\q )| ds.

We claim that for all z € R and £ € [¢, ¢],
G(z +&) —4(2) = lg(z + &) —a(2)|. (33)
We only need to show ¢(z + &) — ¢(z) < |q(z + &) — q(z)| since the other inequality

is obvious by definition. Suppose there exists a zg and &y so that

71(20,€0) = 4(20 + o) — 4(20) > [g(20 + &) — q(20)| =1 n(20, &o)-

Since 77 and 7 are continuous, there exists a ¢’ > 0 such that on A := (29 — &', z0 +
&) x (& — &', 80 + '),
1(z,€) > n(z,€).

Without loss of generality, assume that & — ¢’ > £. Thus, on A, we have that

q(z+¢&) —q(2) q(z+&) —q(2)

M7 m(©)

) > V( ).

and, therefore,
£4(q) > £%q).
So, there exists A € (0,1) such that
E' (A = E'(q) = K.

But, we have
T(Ag) = N’T(q) < T(q) = T(q),

which contradicts the optimality of ¢. This proves the claim .
Now, suppose ¢ is not monotone. Since ¢ € C?, there exists a,b € R such that
) < 0 and ¢’(b) > 0. Without loss we assume a < b. Since, for z € R and

q(a
seltal +e +e
!q’IZ‘/

on each interval [z, z 4 ¢], either ¢ > 0 or ¢’ < 0. We infer that b —a > §. Let

/

21 =sup{z € (a,b) : ¢'(2) < 0}, 29 = inf{z € (21,b) : ¢'(z) > 0}.
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Then z9 — 21 > 6 and ¢/(2) = 0 for all z € (21, 22). Define

5e) {q<z>, 2<2z

(j(Z + (22 — Zl>)7 zZ >z .

(The basic idea is we want to get rid of this constant part of §.) We have that

e e+ )= ),

(
6—£1_§v(~‘W)dz_/;v<q<z +;>(£—) q<zl>>dz}k(§)d§
:/Z / [V<Q(Z+£+(:§(g)zl))—q(d)

B V(d(zl)—(j(Z)) B V<§(Z +&+ (27121(_5)21)) —4(=)

)] dz k(€) dé

Here, due to the strict convexity of V', the equality occurs if and only if for all
(2,€) € [21 — &, z1] X [, §] either

r1(2,6) == q(z1) — q(2) =0
or
r2(2,€) == G(z + &+ (22 — 21)) — q(z1) = 0.
By the way we define z1, 2o, neither of these conditions can hold. Thus,
£(q) > £'q).
Again, let A € (0,1) so that £(\q) = £Y(§) = K. But then,
T(Aq) = N’T(q) < T(q) = T(q) = T(a),

which is a contradiction. O

Proof of Theorem[3. Combine Lemma [J] the Euler-Lagrange equation, and the ar-
gument in subsection we achieve the desired result. O

Remark 6. If q is a solution to the approximating symmetrized problem, then —q is
also a solution. We will assume q to be monotone increasing to make the subsequence
analysis notationally easier.
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4 Passing to the limit: proof of Theorem

Now we turn our attention to step 3 in the strategy outlined in Subsection
Recall £ in is the potential energy associated with cutoff parameter £. Our
goal is to extract a subsequential limit from the minimizers ¢ of Problem

We need an improved version of Lemma . Recall Tf; is defined in .

Lemma 10. For some £y, Ko > 0, there exists a C > 0 independent of £ (and K)
so that for all K > Ky and all ¢ € (0,4p),

)
K —C>NV"(0)Tf, where Np= / ilggg
V4

de .

Proof. Fix X. Let L* > 35. Recall from the argument following equation that
1
¢ Ag
Ulgapes) = | |(L7 = V(=75 )k(E) + 9(§) | dE
R ¢ m(§)

_ /; [(Lf _ g)V(rri\é))k(ﬁ)} dé +Cy,

where Cy > 0. By the way we choose L¢, g(£) is independent of ¢ and therefore
Cy > Cy, > 0 for 0 < £ < {y. Following the same analysis as in Lemma |7, we have

that
5 r¢2 3
k(€)  £k(E)
g —Cypy>T V"0 / : - d¢. 34
(QA,LZ) b > (qA,L[) ( ) . |:m(£)2 m(g)gL[ § ( )
Again, following the same analysis as in Lemma [7} our conclusion holds. O

Pick Ky as in Lemma For small enough ¢y, we have that for K > 2K, and
for all £ € (0, £p], there exists a minimizer ¢’ of T' over the constraint £°(¢q) = K.

Proposition 7. For 0 < {1 < {y < {y, T(¢") < T(¢").

Proof. For each ¢, let ¢* be a minimizer of T under the constraint £¢(¢) = K. Then

f2(4t2) 2(z+¢) —q"(2) ;
) = [ g T e
) —

(248~ g2()
<), f, g T e

=) = K*> K.

Note that from Lemma [2, we have that for each fixed ¢/, K — Tf; is monotone

increasing. Therefore,
T(q%) > Ti > Ti = T(q™).
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We infer that {¢’} is a bounded sequence in H and so there exists a subsequence
{q%} that weakly converges to some ¢ € H. In particular, for all ¢ € H,

/R(qfi)’C’H—o%/Rq’C’-

Because ¢‘(0) = 0 it is straightforward to infer that {¢%} also converges weakly to
q in Wh2([a, b]) for every a < b € R.
We want next to show ¢ is a non-trivial minimizer of T' subject to £%(q) = K.
We introduce some notation to make the following analysis a little more tractable.
Write
9(x) := crfa[" + colz|

where ¢;,7; (i € {1,2}) are from Hypothesis (H1)). We note that, by Hypothesis

(H2), 5 ,
olatg) e <=

Proposition 8. Up to re-centering and taking the limit of {qei} again, q is non-
trivial.

Proof. Combine Hypothesis ( and Lemma we have that there exists C' > 0
so that, for every ¢;,

s (g o
// (V” (q@ i(Z)))(/Ol(qfi)/(erfs)?ds)i?SQ) dé dz

. 52 (&) B o [ < 1 ) £k ()
<V e d5+§gﬂgg< o =d" T [ o) i
| . P (1 \EkE©
. l; 4 Lo _ -
<K C+§161£g(q (z+06) —q"(2)T(q )/0 g<m(§)) m(g)Qdé
Thus,
sup(q"i(z +6) — ¢"(2)) > C. > 0 (35)
z€R
where 5 . k() c
Lo - —
Now we can re-center ¢ to get ¢ (8) — ¢“(0) > $C, > 0 for all ¢;. Take the
weak limit again to arrive at a non-trivial limit. O

We now need to show that ¢ satisfies for some ¢ # 0.
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Lemma 11. For some C >0, C < )\, < T(q%)/K for all i.

Proof. To see the lower bound on J;, we note that [ (qeil)2 is decreasing as ¢; — 0
and that ¢ is non-trivial so that

liminf/(qei/)2 > /(CJ’)2 > 0.
71— 00

By similar estimates as in the proof of Proposition |8, we find

// v’( z+£gq (2 ))(qe"(z tszg; q&(z))k(f)dfdzga

where C' < oo is independent of ¢. The lower bound on )y, follows by the last two
estimates and the identity with ¢, A replaced by ¢, Ag;-

To prove the upper bound on )y,, we note that, by Taylor theorem and mono-
tonicity of V', we have

q(z+§&) —q(z)

q(z +§&) —q(z)

1% qg(z+¢&) —q(z) >V .

(e a6 = a(2) 2 V(T )
The integral over ¢ and z gives K on the right hand side, so combining this with
, we get the desired bound. O

Due to the bounds in the last lemma, there exists a A\g > 0 so that, up to a
subsequence, lim \; = Ag.

We now want to show that the limiting function ¢ satisfies equation . We
need to look at for the proof of this one.

Proposition 9. The limit q 18 a solution to equation (@ with ¢ = 1/X\g. Further-
more, ¢ > c2 =V"(0 ) 5 > dE.

m

Proof. Fix ¢ € C°(R) and let M > 0 be such that supp(({(z+9)—((2)) C (=M, M).
Since (¢ is smooth and compactly supported, [((z+ &) — ((z)| < C¢ for some C > 0.
By the fact that g% weakly converges to ¢ in H, we have

/Rq'(Z)C’(Z)dZ = lim [ ¢"'(2)¢'(2) dz

1—00 R
° M /qei(2+f)_qei(2) el @ .
= e / [/Mw g e = >>m(§)d]dg
) . —als
:/\O/R [/0 V’(W)(((szg)_g(z))i((%dé]dz

The last equality holds by the dominated convergence theorem, since for each £, we
have

Mo (z+8) —d"(z) k(&)
[ v R ol
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M (V” <q&-(z+5z € fy (q") (2 + s&)ds >€k(§) "
u m

o J

\_/
— N
VR

/ / ) Md m(é) m(§)?
0 12 2 +
(w0 o >>;f;fz//
el B
5 k

) ( & ) £ k(6
m(£)? m(§) ) m(£)*
and this is integrable over £ € (0,¢) by Hypothesis (H?2)).

To see that ¢ > c%, we notice that, by the previous lemma, 1/c? = )¢ <
T(q%)/K. Therefore, by Lemma

K 8k
2 " " 2
> > N,V"(0) = V"( ./ .

T(g%) ‘0

O
Proposition 10. g is a minimizer of problem with the symmetrized potential W

Proof. We proceed by contradiction. Suppose that ¢ is not a minimizer of problem
with the symmetrized potential 7. This means, there exists a function p € H so
that £(p) = K and

T(p) < T(q) < T(q")

for all £ < £y.
Let €2 = T(q) — T'(p) > 0. Pick £ > 0 small enough,

K —E&(p)

NVI(0) T

Let e; := K —&%(p) > 0. By the same argument as in remark we can assume that
p’ has compact support. Then, let zy = 2 +sup(supp p’) and define a function p by

B(z) = {P(w% z < o,

ga.n(x —x0) + p(z0), x> w0,

where we pick L = L(A) for small A so that EZ(qA’L(A)) =¢1. . Now, we compute

/:/ (:Z+§ ()>(®d&k:5%m+5%%LmQ:K;
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Now, by the first equality in (26) (with K replaced by €7), for sufficiently small A
we have

Ne‘ii}’((]) ~ T(qa,L(n)) < €2
But then,
T(p) = T(p) + T(qa,r(n)) < T(q"),
which is a contradiction. O

Now, by remark@ both ¢ and —q are solution to (3)). So, if the original potential
(which has not been symmetrized) is superquadratic on [0, 00), then ¢ would be a
function that satisfies the corresponding (original) travelling wave equation since
q(z+ &) — q(2) > 0 (which belongs to the domain for the superquadratic portion of
the potential).

Similarly, if the original potential is superquadratic on (—o0,0], § = —q would
be the function that satisfies the corresponding travelling wave equation since ¢(z +
&) —a(z) < 0.

Combining everything in this subsection, we have proven Theorem

5 Low energy

In this section, we prove Theorem showing existence of travelling waves for
Silling’s model in [7] with low potential energy. (Recall from remark [3| this cor-
responds to the choice m(§) = &, k(§) = |¢| with symmetrized potential V(s) =
2s2(1+ %\s\)) This is done by revisiting the previous calculations with a different
approximating function. Namely, instead of looking at the piecewise linear function,

we follow [3] to consider
A
qap(z) == ﬁtanh(ﬁz).

With small 8 > 0, this turns out to be a better approximation to the solution
of the minimizer when the potential energy is low.
We have that

T(qap) = ;Aszsechzl(z)dz. (36)

Furthermore,

2 2) = /B
A 2tanh(%)sech2(ﬁz)
- VB1- tanh?(3z) tanh2(%)

3
= |- B 0| |14 1€ ani(52) + 051 | soa52)

o0l €)= aaale + §) (e = §) = | tanh(B(: + §)) ~ tanh((: ~ )]

30



(8)*
12

[55 +3(89)" tanb2(82) — w%ﬂ soch?(82).

V]

By a change of variable, we have that

- [ [ (B 1 (445120 e
-3 /R /Z {5§+4(5§>3tanh2(5z)—(5152)3+0(B5§5)}2W(ﬁz)d§dz

§
(8¢)°

A’ ' 1 % sech®(Bz)
+,3:)’/2// [[3§+(6§)3tanh2(ﬁz) — 5 +O(,85§5):| gidfd

// [5€+2 BE) ( tanhQ( ) — )+0(55£5)} sech (2) dé dz

6,6’3/2 / / {ﬂQS + 35453( tanh?(z) — 112) + O(,B8§7)] sech®(z) d¢ dz

A? 2 o, B
=3 IR[2(5 €)+4
A {1«52 — )2 4 3 gorast - )L vann?(z) -
6 Jp |2 4 4

A2
_017(52—62)“:2

(5 e‘*)( tanh2(z) — 1)+0(5654)] sech () dz

6
%) + 0(58ﬂ13/2)] sech®(2) dz
A3l61/2
12

A2,32
5 (

(54—€4>+03 (62—£2)+O(A254+A365/2),
(37)

where C1,C3 > 0 and Cy < 0. We choose Ay(f) so that

Earup 8) = K.

Note that from , we have

4K

hm Ae(B) = m

=: M,.

Thus, we can pick 8 small enough so that by ,
52 _ 52 MEﬁl/?

K=— T(qp,8),8) + Cs 1 (6% — %) + o(B"/?)
So, for any K > 0, we can find a fixed § > 0 so small that
52 _ P2
K> T(qa,8) + C(B),

2

where C(8) > 0 independent of ¢. This proves the inequality in Lemma for
low energy, which is what we need to prove both existence of the minimizer to the
approximate problem and to be able to pass to the limit using the similar argument
in the previous section.
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Remark 7. Taking 8 small in the expression % tanh(fz) here is similar to taking
the length L large in the piecewise linear approximating function in sections [3| and
[ Recall that in Lemma [I0] we needed to make L large enough to create a constant
C independent of ¢ because the mass in the middle of the function is independent

of ¢.

6 Discussion

While with the tanh function in section b, one could establish existence of travelling
waves in low potential energy setting, it is not clear that this argument would work
for more general potentials, even when one could have existence for high potential
energy. This is hinted in the work of [3]—one needs to be more clever to obtain such
result with more general potentials.

An outstanding question is that about the compactness of the derivatives of the
travelling waves. We answer this question by the following short argument.

Proposition 11. Let ¢ be a C? and increasing (resp. decreasing) function that
solves (3). Suppose that f(z,€) has a sign for x € (0,00) (resp. = € (—o0,0)).
Then supp{q'} is unbounded above and below.

Proof. We consider only the case ¢ is increasing and f(z,&) > 0 for z € (0,00),
€ € (0,6). The other cases are similar.

We argue by contradiction. Suppose that ¢’ has compact support. Let zt =
sup{supp{¢'}}. Consider z = 2% + §/2. By and the assumption, we have
q(z) < q(z*) for z < z*, hence

)
0= - | (f<q<z 1)~ (). — Flalz) — qlz — 5)@)) e

)
:/0 F(a(=) — q=z — €),€) de <0,

which is a contradiction. ]

While we know that the support of ¢’ is not compact, because of numerical
evidence in [7] (that the solutions with compact supports can approximate well the
analytical solutions) and the result of Friesecke and Pego for discrete lattices in [2],
we conjecture that the solutions to decay exponentially to 0.

Finally, we note that our approach is only one possible approach to prove ex-
istence of solitary waves in one dimensional peridynamics. Since there are quite a
few results about the existence of solitary waves for Fermi-Pasta-Ulam-Tsingou’s
system, it would be worthwhile trying to adapt other approaches to peridynamics.
We mention, in particular, the approach in [4], in which the author solves a con-
strained maximization problem and argues that certain maximizers are fixed points
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of a so-called improvement operator T, which in turns solve the travelling wave
equation. This approach is appealing since it provides good numerical results for
Fermi-Pasta-Ulam-Tsingou’s system and has a rather clean and interesting abstract
framework.

Acknowledgments

T.-S.V. would like to thank Gautam Iyer and Hung V. Tran for encouragement
and useful comments. This material is based upon work partially supported by the
National Science Foundation under grants DMS-1515400 and DMS-1812609, the
Simons Foundation under grant #395796, and the Center for Nonlinear Analysis,
through NSF grant OISE-0967140.

References

[1] I. E. Fermi, P. Pasta, S. Ulam, and M. Tsingou. Studies of nonlinear problems.
Technical report, Los Alamos Scientific Lab., N. Mex., 1955. (reprinted in Lecture
Appl. Math. 15 143-56).

[2] G. Friesecke and R. L. Pego. Solitary waves on FPU lattices: I. qualitative
properties, renormalization and continuum limit. Nonlinearity, 12(6):1601, 1999.

[3] G. Friesecke and J. A. D. Wattis. Existence theorem for solitary waves on lattices.
Comm. Math. Phys., 161(2):391-418, 1994.

[4] Michael Herrmann. Unimodal wavetrains and solitons in convex
fermi-pasta—ulam chains. Proceedings of the Royal Society of Edinburgh:
Section A Mathematics, 140(4):753-785, 2010.

[5] P. L. Lions. The concentration-compactness principle in the calculus of varia-
tions. the locally compact case, part 1. Annales de 'LLH.P, section C, 1(2):109—
145, 1984.

[6] S. A. Silling. Reformulation of elasticity theory for discontinuities and long-range
forces. Journal of Mechanics Physics of Solids, 48:175-209, January 2000.

[7] S.A. Silling. Solitary waves in a peridynamic elastic solid. Journal of the
Mechanics and Physics of Solids, 96:121 — 132, 2016.

33



	Introduction
	Overview
	Symmetrization
	Truncation
	Strategy and plan of the paper

	Existence of a minimizer to the truncated problem
	Notations
	Analysis

	Properties of minimizers
	Euler-Lagrange equation
	Monotone travelling wave in the approximate problem 

	Passing to the limit: proof of Theorem 1
	Low energy
	Discussion

