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The advent of Service-Oriented Architecture (SOA) has brought a fundamental shift in the way in which

distributed applications are implemented. An overwhelming number of Web-based services (e.g., APIs and

Mashups) have leveraged this shift and furthered development. Applications designed with SOA principles

are typically characterized by frequent dependencies with one another in the form of heterogeneous net-

works, i.e., annotation relations between tags and services, and composition relations between Mashups and

APIs. Although prior work has shown the utility gained by exploring these networks, their analysis is still in

its infancy. This article develops an approach to learning representations of the Web service network, which

seeks to embed Web services in low-dimensional continuous vectors with preserved information of the net-

work structure, functional tags, and service descriptions, such that services with similar functional properties

and network structures are mapped together in the learned latent space. We first propose a topic generative

model for constructing two topic distribution networks (Mashup-Topic and API-Topic) from the service con-

tent. Then, we present an efficient optimization process to derive low-dimensional vector representations of

Web services from a tri-layer bipartite network with the Mashup-Topic and API-Topic networks on two ends

and the Mashup-API composition network in the middle. Experiments on real-word datasets have verified

that our approach is effective to learn robust low-rank service representations, i.e., 25% F1-measure gain over

the state-of-the-art in Web service recommendation task.

CCS Concepts: • Software and its engineering → Software creation and management; • Applied com-

puting → Document management and text processing; • Computing methodologies → Learning latent

representations;

Additional Key Words and Phrases: Web services, Mashups, service representation, network embedding, prob-

abilistic topic model

ACM Reference format:

Min Shi, Yufei Tang, Xingquan Zhu, and Jianxun Liu. 2020. Topic-aware Web Service Representation Learning.

ACM Trans. Web 14, 2, Article 9 (April 2020), 23 pages.

https://doi.org/10.1145/3386041

1 INTRODUCTION

Many complex systems in the real world take the form of networks, e.g., social, citation, and bio-
logical networks [1]. Similarly, Web services do not exist for independent use alone, but for com-
position with other modular services [2, 3], naturally forming a network between collaborating
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services, e.g., Application Programming Interfaces (APIs) [4]. One such example is combining the
addresses and photographs of related locations in Google Maps to create a new Mashup. Net-
worked systems inherently interpret rich structure and semantic relations between entities [5, 6].
For example, in Facebook, users form a homogenous social network where the edges can indi-
cate similar preference shared by corresponding users on each end; in search engines, queries and
webpages form a heterogeneous bipartite network, where the edges can indicate users’ click be-
havior, providing a valuable signal for relevance [7]. In the bipartite composition network of Web
services, edges usually reveal the functional similarity and information interplay between linked
services, i.e., the operation fulfillment of a Mashup service heavily relies on the execution and data
exchange of some component API services.

Researchers across many disciplines have become increasingly aware of the importance of an-
alyzing these aforementioned information networks to support many emerging applications [8,
9]. For example, in social networks, classifying users into meaningful interest groups is useful for
many downstream tasks such as user search, targeted advertising, and recommendation. Existing
work has also confirmed the powerful benefits brought to Web service recommendation [6] and
mobile application recommendation [8] by considering the implicit knowledge derived from ser-
vice linking relations. However, analyzing Web service networks specifically and comprehensively
by considering various types of entities (e.g., Mashups, APIs, and functional tags) and relationships
(e.g., composition relationships and annotation relationships) is still in its infancy.

Traditionally, to analyze a network, the first step is to obtain the representations of all vertices
usually in the form of an adjacency matrix with elements indicating whether pairs of vertices are
adjacent or not [10, 11]. However, such bag-of-word representations are subject to the curse of
dimensionality and cannot capture rich structural and semantic information [12]. Recently, net-
work embedding, also known as network representation learning, was proposed to learn low-
dimensional feature vectors for each vertex while preserving underlying rich network structure
and other auxiliary information such as textual content [13, 14]. To date, existing works have pri-
marily focused on learning homogenous networks where vertices are typically of the same type [5,
15]. They cannot be directly generalized to Web service network for the following two reasons:

(1) Web service networks are not directly comparable to homogeneous networks. For exam-
ple, there are two types of entities (e.g., Mashup and API) in a composition Mashup-API
network, where each Mashup has functional dependencies with all the composed APIs
[16]. In other words, the functional semantics of each Mashup should be close to the col-
lective functional semantics of its entire composed APIs.

(2) In addition to the heterogeneous dependency between Mashup and API services, there
are essentially implicit relationships between entities of the same type, i.e., the intra-layer
relationships between Mashups are characterized by their shared functional tags. It is
necessary to reveal such subtle relationships to accurately characterize affinities between
Web services.

Figure 1 shows a real Web service network from ProgrammableWeb, which has three types of
entities organized in three layers of an interdependent bipartite network, with two Mashup-Tag
and API-Tag networks on each end and a Mashup-API network in the middle. In this article, we
aim to develop an effective approach for learning the low-dimensional semantic or vector repre-
sentations of Mashup and API services from the tri-layer bipartite network shown in Figure 1. The
learning process seeks to reach two objectives: (1) the semantic of each Mashup should be similar
to the collective semantics of all its component APIs; and (2) the Mashups (or APIs) with shared
functional properties should be similar. In addition, recent studies [13, 17] show that the content
information of a network is capable of measuring the affinities between vertices aligned with that
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Fig. 1. An example Web service network among Mashups, APIs, and tags. For simplicity, the annotation

relationships between Mashups and tags are not shown for the case where Mashups and APIs share the tag

space. The composition relationships characterize the functional dependencies between Mashups and APIs,

while the annotation relationships characterize the functional similarities between Mashups and APIs.

Fig. 2. A real API service from ProgrammableWeb. The description describes complex functional semantics

abstracted by multiple tags.

revealed by network structures. For example, Figure 2 shows a real-world example API with rich
content such as functional tags and description. Apart from the tags that have been considered
in Figure 1, we argue that it is necessary to consider the functional descriptions to enhance the
structure-based embedding, which may repair some missing relationships between vertices that
have not been captured by the sparse network connectivity.

However, learning a vector representation for each service while simultaneously preserving
network structures (composition relations) and the functional contents (tags and descriptions) is
nontrivial. In this article, we propose to abstract the description and tags of each service with
a functional topic distribution vector to model relations between services from the content per-
spective. As a result, the Mashup-Tag and API-Tag networks in Figure 1 will be transformed into
Mashup-Topic and API-Topic distribution networks that reflect the subtler and richer functional se-
mantics (see Figure 5 in Section 3.2). The topic distribution networks are then used to reconstruct
the service representations. Meanwhile, we force the semantic (representation) of each Mashup
service to be equivalent to the collective semantics of its composed API services to model re-
lationships from the network structure perspective. The two aspects are optimized in a unified
framework to derive the final service representations.

Specifically, our contributions are threefold:

(1) We propose a novel generative model, PV-LDA, to elicit functional topics from descrip-
tions and tags of Web services. To learn accurate latent topics from the sparse and noisy
service content, we first obtain the semantic relevance distribution between words and
functional tags in each based on the widely used paragraph vector model. Then, the topic
assignment for each word is refined by a collective weighted Gaussian influence from the
related tags.
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(2) We present an effective approach called TWSRL to represent each service as a low-rank
semantic vector by encoding the rich structure and content information. The content in-
formation is preserved through representation learning from the bipartite Mashup-Topic
and API-Topic distribution networks while the structural information is preserved via
representation optimization within the bipartite Mashup-API composition network.

(3) Extensive experiments on two real-world datasets demonstrate the effectiveness of our
proposed approach to learning Web service representations on two popular tasks, includ-
ing the Web service classification and recommendation.

The rest of this article is organized as follows: Section 2 defines the problem. Section 3 intro-
duces the proposed topic model for functional topic extraction, followed by the proposed network
embedding approach for Web service representation learning. Section 4 describes the extensive
experiments used to evaluate the proposed approach. Section 5 reviews the related work. Finally,
Section 6 concludes the article.

2 PROBLEM DEFINITION

In this section, we first define the well-studied Web service network with a tri-layer bipartite
structure, followed by the formulation of the Topic-aware Web Service Representation Learning
(TWSRL) problem. In this article, Web services refer to all web-based Mashup and API services.

Definition 1 (Mashup-API Composition Network). Let Gm,a = (Vm , Va , Em,a ) be the bipartite
Mashup-API composition network, where Vm = {vi }i=1, ..., |Vm | and Va = {vj }j=1, ..., |Va | are the
Mashup service and API service sets, respectively. Em,a ∈ Vm × Va defines the inter-set edges of
the composition relationship between Mashups and APIs, i.e., Em,a (i, j ) = 1 indicates the jth API
is a member of the ith Mashup.

Definition 2 (Mashup-Topic and API-Topic Distribution Networks). Let Gm,t = (Vm , Vt , Em,t ) be
the bipartite Mashup-Topic distribution network. Vt = {vk }k=1, ..., |Vt | denotes the set of latent top-
ics used to abstract the diverse functional properties of Web service contents (tags and textual de-
scriptions). Em,t ∈ Vm × Vt defines a set of edges representing the topic distributions of Mashups,
i.e., Em,t (i,k ) = wi,k indicates that the ith Mashup is relevant to the corresponding functional se-
mantic revealed by the kth topic, with the relevance intensity quantified by wi,k . Similarly, let
Ga,t = (Va , Vt , Ea,t ) be the bipartite API-Topic distribution network, where Ea,t ∈ Va × Vt de-
fines a set of edges representing the topic distributions of APIs, with each edge carrying a weight
indicating the relevance intensity between the corresponding API and functional topic. It is worth
noting that the latent topic space Vt is shared by all Mashup and API services.

Problem Definition. The tri-layer bipartite Web service network is represented as G = (Gm,t ,
Gm,a ,Ga,t ) or G = (V,E), which is a tri-layer bipartite network (see Figure 5 in Section 4.2), with
the Mashup-Topic and API-Topic networks on each end and the Mashup-API network in the
middle, where V = Vm ∪ Va ∪ Vt and E = Em,t ∪ Em,a ∪ Ea,t . Web service representation learn-
ing aims to represent each node vi ∈ V with a low-dimensional semantic vector hvi

∈ �nd , i.e.,
learning a mapping f : G→ {hvi

}i=1, ..., |V | so both the Web service functional content and net-
work structures can be well preserved, where nd is the dimension of learned node vectors. In this
article, the expression “semantic vector” and “semantic representation” are used interchangeably.

3 METHODOLOGY OVERVIEW

As previously discussed, it is beneficial to incorporate content information together with network
structures for semantically incremental representation learning [13, 17]. However, it is prohibitive
to directly model the various forms of content (e.g., tags and descriptions) and the composition
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Table 1. Notations Used in the Proposed Models

Notations Description
Vm The set of Mashup services
Va The set of API services
V The set of Mashup and API services, V = Vm ∪ Va

Vt The set of latent topics
Em,t The set of edges representing the topic distributions of Mashups
Ea,t The set of edges representing the topic distributions of APIs
D The set of description texts of Mashup and API services
A The set of tags of a specific service s ∈ D

W The set of words of the service s ∈ D

N The total number of words in the service repository
T The number of functional topics trained in PV-LDA

θ The functional topics distribution of all services, θ ∈ R |D |×T

wi The ith word wi ∈W

aj The jth tag aj ∈ A

Zi The topic assignment for word wi ∈W

Z j The topic assignment for tag aj ∈ A

φw The words distribution for topic Zi , φw ∈ R1×N

φa The tags distribution for topic Z j , φa ∈ R1×N

π The relevance distribution of word wi with tags in A, where π = {σi,k }k=1, ..., |A |
pi,t The probability that the ith word is assigned with topic t, where t = Zi

pk,t The probability that the kth tag is assigned with topic t, where t = Zi

γ The probability distribution of tags in A on topic t, where γ = {pk,t }k=1, ..., |A |
σi,k The semantic relevance value between ith word wi ∈W and the kth tag ak ∈ A

δi,t The collective weighted influence by all tags in A exerted on word wi being
assigned topic t, where t = Zi

α , τ The prior parameters for the model
βw , βa The prior parameters for the model

relations in a unified framework. Although there are some existing embedding methods such as
PLANE [18] and TriDNR [19] that can collectively incorporate contents and structures, unfortu-
nately almost all of them treat the contents of each vertex as a set of flat word features to charac-
terize a simplex semantic of the corresponding vertex. This assumption is inappropriate for Web
service contents with complex semantics paired with multiple functional tags (refer to the API
service in Figure 2 as an example). Therefore, in this section, we first propose reformulating the
content of each service as a collection of topics following some distribution shown in Figure 5,
with each topic carrying a different part of the functional semantics. We then couple service-topic
distribution networks with the Mashup-API composition network for unified Web service repre-
sentation learning. For easy reference, Table 1 has defined the notations used in our method.

3.1 Topic Distribution Learning of Web Services

In the past, probabilistic topic models have been widely used to extract the latent semantics of
natural language documents [18, 20] based on the Gibbs sampling process [21] in an unsuper-
vised manner. Such a paradigm works well when substantial observed word samples (e.g., large
corpus and long documents) are available for ample feature statistics and topic inference [22, 23].
However, Web service descriptions are usually short and presented with various writing styles,
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Fig. 3. The paragraph vector model.

i.e., developers may use different phrases to express the same concepts [24], making it difficult to
discover the rich feature co-occurrence patterns heavily relied on by most existing topic models.

To address the aforementioned problem, we propose a novel probabilistic generative model
trained in a semi-supervised way by taking the functional tags as prior knowledge to guide the
Gibbs sampling process. More specifically, we argue that the functional tags have exhibited a prior
high-level abstraction of the corresponding functional description (refer to Figure 2 as an example).
For a specific service, each tag reveals a functional semantic contributed by all words following
a relevance distribution, i.e., different words in the Web service description could carry different
functional semantics. This observation has motivated us towards the semi-supervised topic mod-
eling; that is, topic assignments for tags together with the semantic relevance distribution between
words and functional tags in each service can help guide and refine the topic sampling for common
words. In addition, functionally equivalent Web services may use different tags or descriptions that
express similar semantics [6, 16]. Linking tags with their corresponding words together would help
to bridge the vocabulary gap between similar services caused by either different tags or different
description words expressing the same concepts.

With this in mind, we first obtain the relevance distribution between words and functional tags
for each service based on the widely used Paragraph Vector Model (PVM) [25]. PVM is a pow-
erful neural network model to derive the semantic vectors of terms that allows for the similarity
calculation between words and tags. PVM takes the service descriptions and tags (e.g., each word
wi or tag ak first initialized with a random vector representation hwi

or hak
) as inputs and then

outputs the optimized word and tag vector representations. The vector optimization framework
of PVM is shown in Figure 3, which seeks to use word context together with related functional
tags to predict the corresponding target word within the same word sequence moving window.
More specifically, given the word sequence W = w1,w2, . . . ,w |W | of a service description s ∈ D,
the learning objective of PVM is to maximize the probability over all service descriptions and tags:

L =
D∑
s

|W |∑
i=1

|A |∑
k=1

logp (wi |wi−h , . . . ,wi+h ,ak ), (1)

where W and A are the word set and tag set of service s. The moving window size is noted as h
and wi−h , . . . ,wi+h are words surrounding the target word wi in the sequence. The prediction of
word wi can be estimated by a multiclass classifier defined by the softmax function [25]:

p (wi |wi−h , . . . ,wi+h ,ak ) =
exp

(̄
h
T
wi

hwi

)
∑N

j=1 exp
(̄
h
T
wi

hw j

) , (2)

where N is the total number of words in the vocabulary. h̄wi
and hwi

are the input and output (e.g.,
optimized representation) vectors of word wi , respectively. h̄wi

is computed by concatenating (⊕)
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Fig. 4. The notation representation of PV-LDA model.

the vector of tag ak and the averaged vector of all words within the moving window by:

h̄wi
= hak

⊕ ��
�

1

2h

∑
−h≤j≤h, j�0

hwi+j

��
� . (3)

The PVM can be trained via the gradient descent [25] to iteratively optimize word and tag semantic
representations. After training the PVM, a semantic relevance value is computed between each
word wi ∈W and each tag ak ∈ A by the cosine method:

σi,k = cos(hwi
, hak

). (4)

With the relevance distributions obtained in Equation (4), we then propose a generative model
for functional topic extraction as shown in Figure 4, called Paragraph Vector augmented LDA, or
PV-LDA for simplicity. Please refer to Table 1 for the relevant notations used in PV-LDA.

PV-LDA assumes that each service s is composed of a set of words (W) together with a set
of tags (A) generated by a mixture of latent variables or topics. Each service follows a distribu-
tion over all topics θ , with each topic (Zi or Z j ) being responsible for generating a set of words
and tags. The Gibbs training process of PV-LDA is used to infer the posterior functional topic
distributions θ of services from all observed words and tags based on the prior Dirichlet alloca-
tion parameters βw and βa . PV-LDA is summarized in Algorithm 1. First, the model samples a
mixture of words and tags for each functional topic (Lines 1–4). It then samples topic distribu-
tion for each service s (Line 6), which is subsequently used to literately generate all included tags
(Lines 7–10) and words (Lines 11–16). When sampling the topic for wordwi , the collective Gauss-
ian influence enforced by all tags have been drawn previously (Lines 12–13) to supervise the final
topic assignment (Line 14) of word wi , with pi,t and τ being the mean and standard deviation,
respectively.

The inference of all latent variables in PV-LDA can be performed through the Gibbs sampling
process, where a Markov Chain Monte Carlo chain is created to update the topic assignment of all
words and tags. Similar to the basic LDA model [26], the probability to assign topic t to tag aj in
PV-LDA is given by:

p (Z j = t ) ∝
n(aj , t )¬j + βa∑

q∈W∪A n(q, t ) + Nβa
×

n(s, t )¬j + α∑
f ∈[1,T ] n(s, f ) +Tα

, (5)

wheren(aj , t ) is the number of times topic t is allocated for tag aj , andn(s, t ) is the number of times
topic t appears in tags and words of service s. The symbol of ¬j means the jth tag is not counted in
the statistic. Then, by taking the semantic relevance with tags as prior auxiliary information, the
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ALGORITHM 1: The Generative Procedure of PV-LDA

Required: words W of a service s
Required: tags A of a service s
Required: semantic relevance distribution π of each word wi ∈W with all tags in A

procedure begin:

1. for each topic t ∈ [1,T ] do

2. sample the mixture of words φw ∼ Dirichlet (βw )
3. sample the mixture of tags φa ∼ Dirichlet (βa )
4. end for

5. for each service s ∈ D do

6. sample the mixture of topics θ ∼ Dirichlet (α )
7. for each tag aj ∈ A do

8. sample a topic zj ∼ Multinomial (θ )
9. sample the tag aj ∼ Multinomial (φa )
10. end for

11. for each word w j ∈W do

12. for each tag ak ∈ A, sample pk,t ∼ N (pi,t ,τ )
13. sample δi,t ∼ Multinomial (σi,k ,pk,t )
14. sample a topic zi ∼ Multinomial (θ ,δi,t )
15. sample the word wi ∼ Multinomial (φw )
16. end for

17. end for

end procedure

probability to assign topic t to word wi is given by:

p∗ (Zi = t ) ∝ pi,t ×
pk,t ∈γ,σi,k ∈π∏

k ∈[1, |A |]

σi,k√
2πτ

exp ��−
(
pk,t − pi,t

)2

2τ 2
�
� , (6)

where pi,t is calculated by:

p (Zi = t ) ∝
n(wi , t )¬i + βw∑

q∈W∪A n(q, t ) + Nβw
×

n(s, t )¬j + α∑
f ∈[1,T ] n(s, f ) +Tα

, (7)

where n(wi , t ) is the number of times topic t is allocated for word wi . Equation (7) calculates the
sampling probability pi,t of wordwi on topic t similar to the basic LDA model without considering
the topic enhancement of tags. However, in PV-LDA the topic sampling of a common word is
refined by the collective weighted Gaussian influence of all tags (the second term in Equation (6)).
The reason for choosing the normal distribution to characterize the influence of tag ak on word
wi is twofold: (1) the influence increases dramatically when ak and wi have very close probability
on topic t; (2) the influence decreases gradually otherwise. Moreover, the prior semantic relevance
of σi,k between ak and wi exists to control the final influence intensity exerted by each individual
tag, i.e., if ak andwi are not semantically relevant (e.g., σi,k is very small), then the corresponding
Gaussian influence would degrade to be invisible. With above favorable properties, the proposed
PV-LDA model is able to learn functional topics preserving both the tags and descriptions in an
enhanced manner.

After above topic sampling process, the functional topic distribution of a service s can be rep-
resented as θ = {θ t }t=1, ...,T , with θ t being computed by [16]:

θ t =
n(wi , t ) + βw∑

q∈W∪A n(q, t ) + Nβw
. (8)
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Fig. 5. The hierarchical bipartite Web service network structure among topics, Mashups, and APIs.

3.2 Representation Learning of Tri-layer Bipartite Web Service Network Structure

To this end, we have derived the API-Topic and Mashup-Topic distribution networks based on
Equation (8) with all learned topics being topic nodes in the network. Each Mashup or API service
has edges with its relevant topics, where edges are weighted indicating the probabilities of ser-
vices belonging to the respective topics. Combined with the Mashup-API composition network,
the target network studied in this article exhibits a tri-layer bipartite structure shown in Figure 5.
It visualizes with the topic distribution networks on two ends revealing the functional semantic
distributions of services from the content perspective (e.g., M5 connects to topics T3 and T5, which
are learned from the text content associated with M5), and the composition network in the middle
capturing the semantic interplay between Mashups and APIs. In the following, we elaborate on the
unified optimization process to learn representations of services simultaneously from the network
contents and structures.

3.2.1 Network Content Preservation. The content preservation is achieved by representation
learning based on the Mashup-Topic and API-Topic distribution networks. To learn meaningful
and discriminative representations, we argue that the learned service representations should be ca-
pable of reconstructing the original networks, i.e., services with similar topic distributions should
also have similar semantic representations and vice versa. Similar to the first-order relations mod-
eling mechanism adopted in LINE [27], we focus on the observed local proximities (e.g., each
service exhibits top K most relevant topics out of the T topics in our setting) over the whole topic
distribution networks, where the joint probability between the ith Mashup (or the jth API) and the
kth topic is defined as:

pm,t (i,k ) =
wik∑

eik ∈Em,t
wik

(9)

or

pa,t (j,k ) =
w jk∑

ejk ∈Ea,t
w jk
, (10)

where wik (or w jk .) is the probability/weight that the ith Mashup (or the jth API) emphasizes the
kth topic. Equations (9) and (10) reflect the empirical closeness of each pair of observed nodes,
which can then be used to reconstruct the affinities between nodes in the embedding space. We
represent the joint probability between the ith Mashup (or the jthAPI) and the kth topic in the
embedding space by inner product through a sigmoid transformation. They are represented as:

p̂m,t (i,k ) =
1

1 + exp
(
−hvi

T
hvk

) , (11)

p̂a,t (j,k ) =
1

1 + exp
(
−hvj

T
hvk

) , (12)
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where the hvi
, hvj
, and hvk

are the low-rank representations of the corresponding Mashup, API,
and topic, respectively. The optimization goal is to minimize the difference between the empirical
distributions under the functional topic spacand the semantic distributions under the embedding
space. We choose the Kullback-Leibler (KL) divergence as difference measure and minimize the
following objectives corresponding to the Mashup-Topic and API-Topic distribution networks, re-
spectively:

L1 = KL(pm,t |p̂m,t ) =
∑

eik ∈Em,t

pm,t (i,k )log

(
pm,t (i,k )

p̂m,t (i,k )

)
∝ −

∑
eik ∈Em,t

wik log p̂m,t (i,k ), (13)

L2 = KL(pa,t |p̂a,t ) =
∑

ejk ∈Ea,t

pa,t (j,k )log

(
pa,t (j,k )

p̂a,t (j,k )

)
∝ −

∑
ejk ∈Ea,t

w jk log p̂a,t (j,k ). (14)

The optimization process of Equations (13) and (14) guarantees that the functional semantics de-
rived from the service content can be described by the learned low-dimensional representations
of services.

3.2.2 Network Structure Preservation. The structure preservation is achieved by implicit se-
mantic interactions between Mashups and APIs over the Mashup-API composition network. We
develop a translation-based mechanism to characterize the composition relationships between
Mashups and all member APIs under the principle that each Mashup is semantically equal to
its member APIs, i.e., hM1 ≈ hA1 + hA4 in Figure 5, where hM1, hA1, and hA4 are vector represen-
tations of services M1, A1, and A4, respectively. The basic idea is that semantic of each Mashup
is collectively composed by corresponding APIs, which respects the fact that a Mashup service is
normally developed by integrating multiple member APIs. Such a property would greatly facilitate
the service composition recommendation. For example, if we have selected a base API for a candi-
date Mashup of known functionalities, then it would be highly likely to discover other appropriate
component APIs based on the above conservation principle of functional semantics. Therefore, the
optimization goal attempts to minimize the difference of semantic representations between each
Mashup and its entire member API consort. It can be performed by minimizing a margin-based
ranking creation [28] over the Mashup-API composition network:

L3 =

{ei, j }j=[1, |Ci |]
⊆Em,a∑

i=[1, |Vm |]

[
M + �

(
h̄C〉 , h�〉

)
− �

(
h̄C〉 , h�¬〉

)]
, (15)

where M > 0 is a margin hyper parameter, Ci is the set of member/linked APIs of Mashup vi ,
and v¬i is a sampled negative Mashup that is different from the positive Mashup vi , i.e., there are
no links between v¬i and APIs in Ci observed from the Mashup-API composition network. h̄Ci

is
the averaged pair-wise sum over semantic representations of all APIs in Ci , which is computed by
Equation (16):

h̄Ci
=

1

|Ci |

|Ci |∑
j=1

hvj
. (16)

d is a function for measuring the closeness between two vector representations, i.e., the squared
Euclidean distance as adopted in this article. The loss function in Equation (15) favors slower
values of energy for all observed positive links than for the negative ones, which converges to
give Mashups similar semantic representations with their composed APIs.
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3.2.3 Joint Optimization. The joint learning process from the content and structure perspec-
tives is summarized in Algorithm 2. The low-dimensional representation of each node is first ran-
domly initialized with each vector value generated following a normal distribution (Lines 1–3).
Then, all node representations are trained and optimized in mini-batches (Lines 4–13). To learn
discriminative representations that capture the composition relations between Mashups and APIs,
we randomly sample negative examples of Mashups (Lines 7–10) that have no links with APIs
in Ci . Finally, the training process performed in Algorithm 2 minimizes the following collective
objective:

L = (1 − λ)L1 + (1 − λ)L2 + λL3, (17)

where λ is a hyper parameter set to balance the representation learning from the Web service
content and structure aspects.

ALGORITHM 2: The Joint Representation Learning Process of Web Services

Input: the hierarchical Web service network G of topics, Mashups, and APIs

Output: the low-dimensional vector representations {hvi }i=1, ..., |V | of all nodes in network G

process begin:

1. for each vertex vi ∈ V do

2. Initialize hvi by the truncated normal distribution, with standard deviation equals to 1√
nd

3. end for

4. loop

5. sample mini-batches mtbatch = {eik }, atbatch = {ejk },mabatch = {ei, j }j=[1, |Ci |] of size b from the

Mashup-Topic, API-Topic and Mashup-API networks, respectively

6. mabatch
∗ = {}

7. for each positive Mashup vi ∈mabatch do

8. sample a negative Mashup v¬i

9. mabatch
∗ ← {e¬i, j }j=[1, |Ci |]

10. end for

11. optimize w.r.t. Equation (14) over mtbatch

12. optimize w.r.t. Equation (15) over atbatch

13. optimize w.r.t. Equation (16) over mabatch andmabatch
∗

14. until the iteration times end

15. end procedure

Optimization of Equation (17) is intractable, since learning has to emphasize both the content
and structure information to search for an optimal solution in the unconstrained low-dimensional
semantic space. To solve this problem, we adopt Stochastic Gradient Decent (SGD) algorithm as
the optimization strategy using mini-batch training, which, respectively, minimizes the three com-
ponents in Equation (17) as below.

First, we update the embedding vectors hvi
and hvk

involved in (1 − λ)L1 by:

hvi
= hvi

+ η
{
(1 − λ)wik

[
1 − σ

(
hvi

T
hvk

)]
· hvk

}
, (18)

hvk
= hvk

+ η
{
(1 − λ)wik

[
1 − σ

(
hvi

T
hvk

)]
· hvi

}
, (19)

where σ is the sigmoid function and η is the learning rate of the SGD algorithm.
Then, in a similar way, we update the embedding vectors hvj

and hvk
involved in (1 − λ)L2 by:

hvj
= hvj

+ η
{
(1 − λ)w jk

[
1 − σ

(
hvj

T
hvk

)]
· hvk

}
, (20)

hvk
= hvk

+ η
{
(1 − λ)w jk

[
1 − σ

(
hvj

T
hvk

)]
· hvj

}
. (21)
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Finally, we update the embedding vectors hvi
and all {hvj

}vj ∈Ci
involved in the last term λL3 by:

hvi
= hvi

+ η{λ(hvi
− h̄Ci

)}, (22)

hvj
= |Ci | · {hvj

+ η
[
λ

(
hvi
− hv¬i

)] }. (23)

From above updating rules, we can observe that Mashups, APIs, and topics are being projected
into the same latent space, where the representations of Mashups and APIs learned both from
the content (by Equations (18)–(21)) and the structure (by Equations (22)–(23)). The two aspects
influence each other based on the shared latent parameters.

3.3 Applications of Web service Representation Learning

The Web service representations learned by the proposed approach in this article can have multiple
downstream applications in real-world scenarios. We discuss three promising application domains
as follows:

Web Service Functionality Classification. Service functionality classification is the process of iden-
tifying functional categories of unlabeled Web services, which can classify new services or find
the potential application domains for existing services. The task is normally performed by con-
sidering the content and structure similarities between labeled and unlabeled services. Since the
embedding space in this article has preserved both service description and structure information,
we can simply apply off-the-shelf machine learning algorithms such as Support Vector Machine
[29] by taking representations of Web services as input features.

Web Service Functionality Clustering. Service functionality clustering is a popular task that aims
group Mashup or API services into different clusters, where each cluster represents an application
domain. The clustering results can improve service searching and management processes. Based
on the learned service representations with well-encoded contextual and structural features with
respect to closeness between services, one can use algorithms such as K-means to fulfill the task.

Web Service Functionality Visualization. Service functionality visualization projects Web services
into a two-dimensional Euclidean space, which allows users to have a straightforward observation
of the functionality distribution and the affinity between each pair of service. Since the learned ser-
vice representations are continuous, we can easily map them into a two-dimensional visualization
space using a dimensionality reduction/visualization algorithm such as t-SNE [1].

4 EXPERIMENTS

To evaluate the proposed models for Web service representation learning, we design two types of
popular tasks: Web service recommendation [24, 30] and classification [24, 31]. We mainly investi-
gate two questions: (1) Can the proposed PV-LDA model elicit more accurate functional semantics
when compared with the state-of-the-art topic models?; (2) Can the proposed embedding approach
learn robust representations that are helpful in other downstream applications?

4.1 Experimental Settings

4.1.1 Datasets. We evaluate the proposed models on two real-world datasets named Webser-
vice and Wiki, respectively. The Wiki is considered a supplemental set that has richer text content
information and presents analogous data structure as the Webservice set, i.e., each Web page doc-
ument links to a collection of others, therefore the proposed topic-aware embedding approach still
applies. The two datasets are described as follows:

Webservice is a Web service dataset recently crawled from ProgrammableWeb during August
2018. In total, we collected 19,718 Web services, where the numbers of API and Mashup services
are 13,460 and 6,258, respectively. There are 26,246 composition links between Mashups and APIs
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Table 2. Statistics Information

of the Network Datasets

Items Webservice Wiki

# Nodes 19,718 2,405
# Edges 26,246 17,981
# Labels 478 17
# Vocabulary 25,028 4,973
# Words per node 36 647
# Tags per node 4 –

in the bipartite Mashup-API network. Each service node is associated with a functional description
together with some functional tags. The average number of words and tags for every node are 36
and 4, respectively. Each service corresponds to a major functional category out of the total 487.

Wiki is a Web page linking network that contains 2,405 Web pages from 17 categories with
each Web page classified as a relevant category. Each page node links to a collection of others and
there are 17,981 hyperlinks in total between these Web pages. Every page node is described by a
text with 647 average words.

The statistic information regarding these two datasets is shown in Table 2. It is necessary to
mention that when evaluating the proposed method on the Wiki dataset, we first construct the
Web page-Topic distribution network from Wiki contents based on the basic LDA model [21].
Then, coupled with the Web page linking network, the topic distribution network is used for rep-
resentation learning based on the process described in Section 3.2, i.e., each Web page node is
semantically close to the collective semantic of all linked Web pages.

4.1.2 Evaluation Protocols. First, we perform Web service recommendation (or link prediction)
[32] based on the similarities between Mashups and Services in learned representations. We ran-
domly remove 20% of links from the training set and take them as a test set to evaluate the service
recommendation performance. We choose Recall, Precision, and F-measure as evaluation metrics
defined as follows:

Recall@NR =
|CR (m) ∩ Rec (m) |

|CR (m) | , (24)

Precision@NR =
|CR (m) ∩ Rec (m) |
|Rec (m) | , (25)

F −measure@NR =
2 × Recall × Precision
Recall + Precision

, (26)

where CR(m) denotes all member APIs of Mashup m, and Rec(m) represents the recommended
API services. |CR(m) | and |Rec(m) | are the number of real member APIs and the recommended
number of APIs, respectively. For each Mashup service m, we recommend NR API services, which
ranges from 1 to 6.

We then benchmark node classification performance based on both the Webservice and Wiki
datasets. Using similar settings to that of previous work [27, 19], we build a classifier based on
the linear kernel Support Vector Machine (SVM) [29] on the training set (e.g., all involved nodes
with categories known for training), where the low-dimensional node representations learned by
the proposed embedding approach are taken as input features for SVM. Then, based on the trained
SVM classifier, we predict a category for each node in the test set and compare with their respective
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ground-truth categories to calculate the accuracy. The classification performance is evaluated by
the following two metrics:

Micro − F1 =

∑Λ
i=1 2TP i

∑Λ
i=1 (2TP i + FP i + FN i )

, (27)

Macro − F1 =
1

Λ

Λ∑
i=1

2TP i

(2TP i + FP i + FN i )
, (28)

where Λ indicates the total number of categories involved in the node classification task, TP i ,
FN i and FP i denote the number of true positive, false negatives and false positives w.r.t. the ith
resulting category, respectively.

4.1.3 Baselines.

Web service recommendation:

• LDA: It recommends API services whose descriptions are similar (e.g., cosine method) to
that of the target Mashup based on the topic distribution vectors learned by the standard
LDA model.

• RTMrec [33]: It recommends Web APIs whose descriptions are similar to that of the target
Mashup in semantics derived by the Relational Topic Model (RTM). RTM extends the basic
LDA model by additionally considering the composition relationships between APIs and
Mashups during the training process, where Mashups and APIs with links are more likely
to follow similar topic distributions.

• PV-LDA: The proposed Paragraph Vector augmented LDA model in this article, which si-
multaneously learns from the functional descriptions and tags in a semi-supervised manner.

• ICNC-CF [24]: It first clusters Mashups based on the latent topics learned by a two-level
topic model considering the relationships between Mashups. Then, with the aid of historical
invocation history between Mashup clusters and API services, it explores using item-based
collaborative filtering to rank and recommend diverse API services.

• TWSRLrec: It recommends API services whose representations are similar (e.g., cosine
method) to that of the target Mashup based on the proposed topic-aware embedding ap-
proach proposed in this article. In addition, the translation-based mechanism (introduced
in Section 3.2.2) is adopted while ranking the candidate APIs for recommendation.

Multi-category Node classification:

• DeepWalk [34]: This method preserves only the network structure information by the
truncated random walk over the whole network. It then learns the node representations by
using the Skip-Gram model.

• Node2vec [35]: Compared with DeepWalk, this method adopts a more flexible random walk
process by simultaneously capturing the local and global structure of the network; however,
both Node2vec and DeepWalk preserve only the network structure information.

• LINE [27]: It is a structure-preserving embedding method that encodes both the local and
global network structures. This method adopts an edge-sampling algorithm to address the
limitation of classical stochastic gradient descent while improving both the effectiveness
and the efficiency of inference.

• PLANE [18]: It is an extended version of RTM that specifically trains a latent low-
dimensional vector for representing each document node. The node structure, content, and
latent topics are preserved in the final network representations.
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Fig. 6. Web service recommendation performance.

• TriDNR [19]: A state-of-the-art method that exploits network structure, node content, and
label information for node representation learning. The content and structure learning en-
hance each other through shared latent parameters.

• TWSRL: It is the proposed approach for topic-aware Web service representation learning
in this article, which learns semantics from both the network contents and structures.

4.1.4 Parameter Settings. There are many parameters that should be defined beforehand. In this
article, some hyper parameters such as α are set either by previous experiences [6, 20] or several
trials. To train the proposed PV-LDA model, hyper parameters α , βw , βa , and τ are set as 0.1,
0.1, 0.05, and 1.0, respectively. Other parameters such as λ and T are selected based on sensitivity
testing results. In this article, r percent of network nodes with labels known are used for training
the SVM classifier. The rest are split into two parts, where 20% are used for validation to select the
parameters and 80% are used to evaluate the trained model. For comparison, the rest parameters
are set as follows: The number of topic (T) is set as 20 for PV-LDA, and the number (K) of relevant
topics chosen for each vertex is 4. The dimension (dn) for the learned representations is set as 100.
The balance parameter λ is set as 0.2. The ranking marginM is set as 1.0, and the learning rate
adopted in the SGD algorithm is set as 0.05. In the node classification task, r is set as 70%. For each r

value, the experiment repeats 10 times, and the average results as well as their standard deviations
are reported.

4.2 Experimental Results

4.2.1 Web Service Recommendation. Figure 6 shows the service recommendation results
achieved by five topic model-based methods. The recommendation process for each candidate
Mashup repeats five times, and the average results are reported. From the Recall, Precision, and
F-measure results, we have the following three significant observations:

(1) When increasing the number of Web services, Recall performance increases, while the
opposite is observed in Precision. This is due to the fact that more services recommended
increases the hit rate, but meanwhile introduces more noise. F-measure is a trade-off be-
tween the Recall and Precision results. We can see from Figure 6(c) that LDA performs
the worst, which demonstrates the fact that Web service content lacks quality features
[24, 33]. As we know, the basic LDA model needs a substantial enough training corpus
to perform well [40], which is difficult to satisfy in experiments. In comparison, all other
baselines achieve better results, which are based on the topic models (e.g., RTM), assisted
by auxiliary information during the unsupervised training process. This demonstrates that
it is necessary to incorporate some valuable side information such as service structures to
help derive more accurate functional semantics.
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Table 3. The distribution of Web services

in top 20 categories

Category Number Category Number

Tools 841 Video 412

eCommerce 740 Telephony 395

Social 739 Reference 392

Financial 632 Payments 385

Search 570 Government 385

Messaging 528 Science 304

Enterprise 511 Sports 265

Photos 459 Advertising 265

Music 440 Education 264

Travel 419 Email 262

(2) Although RTM outperforms LDA, it is not competitive with the proposed model PV-
LDA. RTM considers the linking relations between Mashups and APIs to influence the
topic sampling process, enforcing linked services into similar topic distributions. How-
ever, when compared with PV-LDA, the inferiority of RTM is most likely caused by the
content not fully being learned due to the sparsity of features. PV-LDA addresses this
problem by including tags as valuable prior functional semantic information to enhance
the training data as well as refine word topic assignment, which is more effective than
simply expanding from the structure level as in RTM. Moreover, we can observe from
Figure 6 that PV-LDA is superior to the two-level topic model ICNC-CF. The primary rea-
son is that the descriptions are normally sparse and littered with noisy or irrelevant word
features that could confuse the regular topic sampling process adopted in ICNC-CF. In
comparison, tags associated with services are able to reveal the functionalities described
in the descriptions, therefore it is helpful to leverage the tag information to highlight the
relevant functional features in descriptions for improved topic assignment. The observa-
tion again demonstrates the effectiveness of the proposed mechanism of word embedding
augmented LDA model for functional topics extraction of Web services.

(3) From observations of all metrics, TSWRLrec performs significantly better compared with
other topic model baselines, with the average F-measure increasing 25.06% over the ICNC-
CF, 39.76% over RTM, and 86.73% over the LDA. The reason is that the proposed embedding
approach has seamlessly combined functional content and network structures to learn rich
semantic feature representations of services, where the learned vector representation is
capable of reflecting the affinities between Mashups and APIs. In addition, we adopted
the translation-based mechanism to model the relationships between Mashups and their
member APIs, such that the conservation of functional semantics would help rank and
recommend appropriate services.

4.2.2 Multi-category Node Classification. Classifying Web services is important to improve the
efficiency of distributed service computing [31, 36], such as convenient service management and
fast service retrieval. Typically, the feature representation of services is of paramount importance
for classification performance. We compare the proposed approach with several state-of-the-art
baselines of learning network representations. The experimental results on Webservice and Wiki
datasets are, respectively, summarized in Tables 4 and 5, where 20 categories of Web services
shown in Table 3 are examined in the experiment. The first and second best performances
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Table 4. Node Classification Results on Webservice dataset

Metrics %r 10 30 50 70

Macro-F1

DeepWalk 0.078±0.005 0.110±0.004 0.113±0.006 0.116±0.006
LINE 0.201±0.012 0.256±0.014 0.273±0.010 0.282±0.011

Node2vec 0.233±0.012 0.296±0.011* 0.324±0.011* 0.335±0.013

PLANE 0.146±0.011 0.173±0.011 0.178±0.012 0.192±0.017
TriDNR 0.218±0.019 0.266±0.012 0.284±0.009 0.297±0.011
TWSRL 0.232±0.013 0.286±0.009 0.312±0.008 0.336±0.007

Micro-F1

DeepWalk 0.148±0.007 0.185±0.007 0.210±0.009 0.226±0.009
LINE 0.293±0.010 0.348±0.008 0.374±0.011 0.390±0.013

Node2vec 0.325±0.008 0.393±0.007 0.428±0.008 0.448±0.011
PLANE 0.203±0.007 0.238±0.008 0.254±0.008 0.263±0.011
TriDNR 0.391±0.009 0.431±0.006 0.443±0.006 0.449±0.008

TWSRL 0.424±0.008* 0.460±0.007* 0.466±0.006* 0.475±0.005*

Table 5. Node Classification Results on Wiki dataset

Metrics %p 10 30 50 70

Macro-F1

DeepWalk 0.217±0.014 0.273±0.009 0.296±0.010 0.303±0.017
LINE 0.345±0.013 0.432±0.013 0.458±0.014 0.481±0.019

Node2vec 0.382±0.011 0.454±0.014 0.493±0.013* 0.513±0.012
PLANE 0.162±0.011 0.216±0.009 0.234±0.012 0.192±0.017
TriDNR 0.385±0.016 0.441±0.013 0.452±0.012 0.479±0.016
TWSRL 0.415±0.013* 0.463±0.013 0.472±0.013 0.486±0.016

Micro-F1

DeepWalk 0.323±0.014 0.398±0.010 0.426±0.011 0.442±0.013
LINE 0.445±0.012 0.538±0.007 0.567±0.013 0.581±0.012

Node2vec 0.451±0.012 0.569±0.009 0.609±0.006 0.629±0.008

PLANE 0.244±0.008 0.311±0.009 0.340±0.010 0.365±0.012
TriDNR 0.564±0.011 0.606±0.010 0.616±0.012 0.628±0.012
TWSRL 0.578±0.012* 0.631±0.010* 0.643±0.011* 0.656±0.013*

have been highlighted with bold-faced and italic bold-faced fonts, respectively. In addition, we
perform a student t-test with p < 0.05 on the comparative results; for each training ratio, the best
result is marked with * if it significantly outperforms others. We draw the following three major
observations from the results:

(1) Among all baselines, DeepWalk, LINE, and Node2vec are structure-preserving methods,
while others aim to preserve both network content and structure information. We can
observe that in most cases incorporating the content information could generate better
embedding performance on both datasets, i.e., TriDNR and TWSRL are significantly better
than DeepWalk and LINE with different training set ratios. A convincing explanation is
that network contents are reliable information to characterize affinities between vertices
in a similar way aligned with the network structure. For example, services connecting
each other tend to share identical or similar functional properties revealed by their
respective functional descriptions and tags. In addition, we argue that there are many
missing composition links between Mashups and services, since an appropriate API is not
used because of many other functionally equivalent alternatives. For instance, “Google
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Fig. 7. Parameter influence on Webservice dataset.

Maps” is functionally equivalent to “Bing Maps” in the Webservice dataset, where
“Google Maps” was used 2,576 times compared with the latter being used only 32 times.
We believe that considering service contents other than composition structures would
repair some missing and potential links throughout the sparsely connected network.

(2) The proposed approach TWSRL performs better than the state-of-the-art model TriDNR,
i.e., the average Macro-F1 and Micro-F1 for service representation learning improved by
2.5% and 2.8%, respectively. TriDNR effectively models the content and structure in a uni-
fied framework, where the learned low-dimensional vectors can well preserve information
in a reciprocally enhanced manner. However, in TriDNR the service content is considered
as only a set of plain word attributes to reveal a simplex semantic supporting a correspond-
ing structure link. This paradigm is not appropriate for Web service contents or long texts
that usually exhibit rich and complex semantics. For example, a Web service may demon-
strate multiple functionalities and interact with others for different aspects. A Web page in
Wikipedia may describe many aspects of topics and cite many others of different subject
matters. In this paper, we propose abstracting network content as a set of topics revealing
different aspects of functional semantics. Through learning from the Mashup-Topic and
API-Topic distribution networks, we are able to gather more subtle and discriminative
vector representations than TriDNR. The comparison results presented in Tables 4 and 5
demonstrate the effectiveness of our topic-aware network embedding approach.

(3) From the results, PLANE performs the worst among all methods even though both net-
work content and structure information have been modeled. The reason is most likely
due to the fact that sparse content information has impeded accurate semantic extrac-
tion, since PLANE is an LDA-based model that requires large data to perform well, and
there is no additional semi-supervised information used in PLANE to mitigate this prob-
lem. It is interesting to observe that Node2vec performs slightly better than the proposed
TWSRL model w.r.t. Macro-F1 performance on Webservice dataset, while TWSRL signifi-
cantly outperforms Node2vec on Wiki dataset. There are two possible reasons behind this
phenomenon. First, Node2vec adopts a more flexible way for capturing the network struc-
ture relationships [12] that is helpful specifically when the connectivity density (e.g., 1.33
for Webservice set compared with 7.48 for Wiki set) is sparse. Second, Wiki set contains
richer text content than Webservice, with the average numbers of word features per node
647 and 36, respectively. The richer text information can help learn more accurate node
relations that could subsequently boost the structure-based node relation modeling.

4.2.3 Parameter Sensitivity. We designed a series of experiments on both datasets to test the
sensitivity of parameters with regards to K, T, dn , and λ. Figure 7(a) and Figure 8(a) show the
impacts of parameter K on the representation learning performance by running the multi-category
classification task. The larger value of K means that each vertex exhibits more semantic topics (i.e.,
assuming the vertex content contains more fragmented semantic information), while the smaller
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Fig. 8. Parameter influence on Wiki dataset.

value of K means content is centralized to reveal simplex semantics. The results show an upward
tendency followed by a gradual decline after peaking when K equals to 3 and 2 on Webservice
and Wiki datasets, respectively. Similarly, parameter T is also a parameter to indicate the semantic
compactness of network content. We can see from Figure 7(b) and Figure 8(b) that the performance
change with different values of T, where the best settings are 20 and 15, respectively. The influences
of embedding sizes are shown in Figure 7(c) and Figure 8(c); they increase sharply from 50 to 100
and then fluctuate slightly afterwards. The best embedding sizes for Webservice and Wiki are 100
and 300, respectively. Last, λ. is set to balance the learning between content aspect and structure
aspect. Larger value will give bias to emphasize the network structure (e.g., the optimization will
focus on minimizing the structure part in Equation (17)) while preserving both the content and
structure information. From Figure 7(d) and Figure 8(d), we can see that 0.2 is the best setting for
both two datasets.

5 RELATED WORK

A large spectrum of effort has been devoted to the area of learning representations from social
networks [14], citation networks [18], biological networks [37], and so on. We first summarize
the general network embedding techniques from structure-based and content-based perspectives.
Then, we survey existing works related to Web service representation learning.

5.1 Structure-preserving Network Embedding

Early work mainly focuses on structure-preserving network embedding, which seeks to find an
optimal scheme for precisely characterizing affinities between vertices based on the structural
properties of a given network, such as neighborhood relations [34], high-order relations [38], and
communities [39].

DeepWalk [18] is a pioneering work intentionally encoding neighborhood relationships. Affini-
ties between vertices are determined by the truncated random walk over the whole network, where
vertices within a walk are forced to have similar semantic representations based on the Skip-Gram
model [40]. However, DeepWalk is not expressive enough to capture the diversity of connectivity
patterns in a network. Node2vec [38] thus adopts a more flexible way of capturing neighborhood
relations by an additional second-order random walk strategy, which can smoothly interpolate
between the breadth-first and depth-first samplings. Similarly, Tang et al. proposed a model LINE
to preserve simultaneously the first- and second-order proximities simultaneously [27]. The first-
order proximity is defined by the observed edges between vertices, while the second-order prox-
imity is derived from the transitivity of neighbor relations (e.g., neighborhoods’ neighbors). In ad-
dition to the microscopic structure information preserved, some methods further extend to explore
the macroscopic properties such as communities and groups [39, 41]. For example, Wang et al. [39]
proposed a Modularized Nonnegative Matrix Factorization model for network embedding, which
enables the preservation of both local node proximities and global community structures.
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The above methods are mainly based on shallow models (e.g, Skip-Gram) in which the learning
ability might be limited. Deep neural network models have therefore been proposed to break this
constraint. For example, Wang et al. [42] proposed a deep autoencoder model with multiple non-
linear layers to preserve the neighbor structure of nodes. Cao et al. [43] proposed a deep network
embedding method to capture the weighted graph structure and represent nodes of non-linear
structures. However, preserving only structural information may be insufficient for expressing
the rich affinities between vertices in a network, i.e., a qualified API is not composed (it will cause
a missing link in the Web service network) by a Mashup because there are many functionally
equivalent APIs. To address this issue, content information (e.g., tags and textual descriptions)
has been widely utilized to enhance the structure-based methods, especially when the network
connectivity is sparse.

5.2 Content-preserving Network Embedding

In addition to the structure properties that explicitly define the closeness of vertices, content in-
formation associated with specific networks naturally reveal the similarities between nodes, i.e.,
services having some identical tags should share some common functional semantics [44]. A vast
number of content-preserving approaches have been proposed so far [17, 18].

Tu et al. [45] proposed a label information augmented network embedding algorithm based on
matrix factorization. It adopts support vector machines (SVM) and incorporates label information
to learn representations that generate the optimal classification boundary. Yang et al. [13] proved
that matrix factorization is equivalent to the DeepWalk learning process and proposed a text-
associated DeepWalk model. Their work incorporates text features of vertices into network rep-
resentation learning under the framework of matrix factorization. However, computational cost
of the matrix factorization–based methods is subject to the network scale. Sun et al. [46] treats
content as a special kind of node and integrates text modeling and structure modeling in a unified
framework. Pan et al. also proposed a unified learning framework, TriDNR, to embed both the
structure and content information [19]. TriDNR forces it to learn representations simultaneously
from linking relations, labels, and textual content, where learning from the structural and content
aspects influence each other under shared parameters.

Nearly all existing methods simply model content information as a set of word features to help
learn a simple semantic representation that tries to explain corresponding network structures.
However, such an assumption is not reasonable when content features of vertices exhibit multiple
types of semantics, i.e., a Web service may have multiple tags with each indicating a different aspect
of functional property. To address this problem, in this article, we propose to abstract content (e.g.,
tags and descriptions) of every Web service as a collection of functional topics, where each topic
encodes a part of semantics of that service content.

5.3 Web Service Representation Learning

Web service representation has not been specifically studied. Prior work generally utilizes the
feature extraction step to support the completion of advanced tasks such as Web service clustering
[16, 36] and recommendation [30, 24, 47].

Platzer et al. [48] represented Web services based on the Vector Space Model (VSM), with each
word feature constituting a relevant dimension. However, one obvious drawback of VSM is that
the vector dimensionality is subject to the vocabulary size, which may suffer from the curse of
dimensionality and feature sparsity. Ma et al. [49] used the Singular Value Decomposition (SVD)
technique to map services into a latent semantic space, which can significantly reduce the vec-
tor dimensionality and meanwhile encode the interactions between services efficiently. How-
ever, SVD usually involves undesirable computation complexity especially when the input feature
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matrix is too large. To address this problem, many researchers have appealed to probabilistic mod-
els that derive latent topic distributions of Web services in an unsupervised manner. For exam-
ple, the Probabilistic Latent Semantic Analysis (PLSA) [31] and Latent Dirichlet Allocation (LDA)
[16] have been used to elicit semantics from service descriptions and then represent each service
with a low-rank topic distribution vector. However, the standard PLSA and LDA models rely on a
substantial enough number of observed examples to perform well, which may not be feasible to
Web services in which content information is often sparse and noisy [24, 20]. In the past, a large
amount of effort has been devoted to mitigating these problems. Cao et al. [50] proposed to re-
duce the influence of irrelevant and noisy words in service descriptions through a statistic-based
feature reduction process (e.g., based on the notion of TF-IDF). Analogously, to reduce the impact
of sparse word features in service descriptions, Shi et al. [20] proposed a word-augmented LDA
training process that uses words within the same cluster to help choose and refine the optimal
topic assignment for each other. In addition to adaptation from the text content perspective, some
works also seek to explore the rich service structure relations. For example, Cao et al. [24] and
Li et al. [33] proposed to consider the composition links between services for improved service
semantic extraction and representation. Although these methods could achieve improved results
in representation learning, they consistently suffer from at least one of the following three limi-
tations: First, existing methods are often application-oriented, which means they target a specific
application such as Mashup or API service clustering, which may result in suboptimal generaliza-
tion ability for learned representations when applied to other tasks such as service functionality
classification. Second, many existing works either only consider text information [50] or simply
model service structures as plain information where linked services are forced to have similar se-
mantics. Such a paradigm fails to fully capture the semantic interactions between services reflected
by the network structure, i.e., a Mashup service is often reflected by its composed API services as
a whole. Finally, the service representations learned based on topic models are discrete, which
means different dimensions in the topic distribution vectors of services are not continuous and
therefore cannot measure the closeness between service nodes in Euclidean space.

In comparison, we specifically focus on Web service representation learning in this article, which
simultaneously models service content and structure information in a unified optimization frame-
work. The learned vector representations are continuous to measure the closeness or distance in
a Euclidean space, where services with similar functional features and topology structures are
mapped together. In addition, we propose taking tags as prior information to highlight the impor-
tant word features for topic sampling, which is also in stark contrast with previous methods.

6 CONCLUSIONS

We studied the problem of Web service representation learning by exploring a tri-layer bipartite
service network. The contributions of this article are threefold: (1) To effectively preserve the con-
tent/text information, we proposed a generative model PV-LDA to incorporate words and tags
for semi-supervised topics training; (2) We proposed a unified optimization framework that first
reconstructs the service representations from the Mashup-Topic and API-Topic distribution net-
works. The learned service representations from topic distribution networks are then enhanced
by the learning from Mashup-API composition network based on a translation principle; (3) We
presented how to optimize the proposed embedding approach in a unified way. The extensive ex-
periments on two real-world datasets demonstrated the learned low-rank vector representations
are effective and robust in service recommendation and functionality classification.

Since the proposed approach only considers the immediate composition relationships between
Mashup and API services, future work can incorporate high-order structures. For instance, two
Mashup service nodes can reach each other through their shared API service nodes in the network.
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These second-order structure relations between Mashup services can be leveraged to enhance the
affinities between the respective representations.
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