Generalizing Long Short-Term Memory Network for Deep
Learning from Generic Data

HUIMEI HAN, Zhejiang University of Technology and Florida Atlantic University
XINGQUAN ZHU, Florida Atlantic University
YING LI, Xidian University

Long Short-Term Memory (LSTM) network, a popular deep-learning model, is particularly useful for data with
temporal correlation, such as texts, sequences, or time series data, thanks to its well-sought after recurrent
network structures designed to capture temporal correlation. In this article, we propose to generalize LSTM
to generic machine-learning tasks where data used for training do not have explicit temporal or sequential
correlation. Our theme is to explore feature correlation in the original data and convert each instance into
a synthetic sentence format by using a two-gram probabilistic language model. More specifically, for each
instance represented in the original feature space, our conversion first seeks to horizontally align original
features into a sequentially correlated feature vector, resembling to the letter coherence within a word. In
addition, a vertical alignment is also carried out to create multiple time points and simulate word sequen-
tial order in a sentence (i.e., word correlation). The two dimensional horizontal-and-vertical alignments not
only ensure feature correlations are maximally utilized, but also preserve the original feature values in the
new representation. As a result, LSTM model can be utilized to achieve good classification accuracy, even
if the underlying data do not have temporal or sequential dependency. Experiments on 20 generic datasets
show that applying LSTM to generic data can improve the classification accuracy, compared to conventional
machine-learning methods. This research opens a new opportunity for LSTM deep learning to be broadly
applied to generic machine-learning tasks.

CCS Concepts: « Computing methodologies — Instance-based learning;
Additional Key Words and Phrases: Deep learning, feature learning, long short-term memory, classification

ACM Reference format:

Huimei Han, Xingquan Zhu, and Ying Li. 2020. Generalizing Long Short-Term Memory Network for Deep
Learning from Generic Data. ACM Trans. Knowl. Discov. Data 14, 2, Article 13 (February 2020), 28 pages.
https://doi.org/10.1145/3366022

This work was conducted while the first author (Huimei Han) was a visiting scholar at the Florida Atlantic University. This
research is supported by the US National Science Foundation (NSF) through Grant Nos. IIS-1763452 and CNS-1828181.
Authors’ addresses: H. Han, Zhejiang University of Technology, College of Information Engineering, Hangzhou, Zhejiang,
310032, P.R. China; email: hmhan1215@zjut.edu.cn; X. Zhu, Florida Atlantic University, Department of Computer & Elec-
trical Engineering and Computer Science, Boca Raton, FL, 33431; email: xzhu3@fau.edu; Y. Li, Xidian University, School of
Telecommunications Engineering, Xi’an, Shannxi, 710071, P.R. China; email: yli@mail xidian.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1556-4681/2020/02-ART13 $15.00

https://doi.org/10.1145/3366022

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

https://doi.org/10.1145/3366022
mailto:permissions@acm.org
https://doi.org/10.1145/3366022

13:2 H. Han et al.

1 INTRODUCTION

Long Short-Term Memory (LSTM) network, a type of deep recurrent neural network (RNN) ar-
chitecture, is becoming increasingly popular in recent years [20, 39]. Benefiting from its recurrent
network design, this kind of deep neural network (DNN) has a powerful ability in preserving tem-
poral information. When unrolling its loop structure along the time axis, all LSTM units (or cells)
share the same structure and the temporal behavior of data can be captured and characterized
clearly, making LSTM inherently advantageous to temporal or sequential data, as shown in Fig-
ure 1. As a result, recent years has witnessed great success of LSTM being applied to a broad range
of applications involving temporal or sequential data, such as sequences, texts, time series, audio,
video recognition, and the like [22, 24, 49, 50].

While the special recurrent neural structure allows LSTM to exploit temporal or sequential cor-
relations of the data in a deep multi-layered fashion, to extract features preferable for the under-
lying tasks (e.g., classification), using LSTM to solve generic data classification tasks is infeasible
because generic data are typically collected/stored in the form of instance-feature table and do not
have explicit temporal or sequential correlation. Conventional machine-learning methods, such
as random forest, k-NN, and so on [45], do not take the correlations between feature/data into
consideration for generic data classification tasks.

Indeed, in generic machine-learning settings, feature correlation is deemed a flaw which is pri-
marily solved by using feature preprocessing to produce independent features for learning. We
take the feature extraction, a classical feature preprocessing method, as an example. The feature
extraction method, such as principle component analysis or manifold learning [44, 45], aims to
produce orthogonal feature space preferable for the classification methods by utilizing arithmetic
decomposition of features, implying that the new features do not have temporal or sequential
correlation, as shown in Figure 2.

While the traditional two-step paradigm, feature preprocessing then learning, has been com-
monly used in generic machine-learning tasks, existing methods often rely on given input fea-
tures and use data preprocessing to create independent features. Under this routine, the succeed-
ing learning algorithms often do not aware, or pay attention to, feature correlations. Recently,
deep learning has shifted the traditional two-step learning paradigm into a one-step feature learn-
ing framework, where the underlying deep-learning algorithms not only output a classification
model but also extract meaningful features to represent the original data for a better classification
accuracy [21, 39]. Furthermore, while conventional classification algorithms (along with feature
selection/extraction) may achieve good performance for generic data classification tasks. Such
methods heavily rely on hand-selected features by experts, requiring strong domain knowledge
and data understanding. The implementation of this process is difficult because of the expensive
expertise and a large amount of time requirements. Deep-learning algorithms focus on learning
high-level features from the original data, which reduces the task of developing new feature ex-
tractor for underlying learning problems. For most of existing deep learning frameworks, such as
convolutional neural networks (CNN) or LSTM, the feature learning process is to exploit spatial
or temporal correlation of the data and utilize such correlations to form new features for learning.
In addition, attention mechanism has been utilized as a useful tool for improving the performance
of deep-learning model, such as attention-based LSTM [53].

For many real-world applications, such as image/speech recognition, deep learning has shown
superb performance outperforming best conventional machine-learning classifiers. Nevertheless,
for generic dataset classification tasks, where data are already represented in the form of instance-
feature table, deep learning has not yet shown any privilege, compared to conventional machine-
learning algorithms, such as decision trees, SVM, and so on. For existing deep-learning models,
they are often selectively used depending on different types of domains and inputs. Specifically,

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

Generalizing Long Short-Term Memory Network for Deep Learning from Generic Data 13:3

M Classification

Temporal Series or
Sequence Data

Fig. 1. Typical workflow of utilizing LSTM to process temporal data for extracting features preferable for
classification.

Instance Fel F 5 ... |Label
! A * i Feature Dense Neural Classification
2 A * # Selection/Extraction Network/SVM... Hicatl
3 A * i

Generic Dataset

Fig. 2. Typical workflow of applying traditional machine learning methods to generic data for classification
tasks, where generic data is shown in the form of instance-feature table and instances are assumed identical
and independently distributed (i.i.d.).

CNNs are commonly used for applications with image data, whereas LSTM is specially designed
for sequential inputs such as speech and language. In our recent works [27, 28], original generic
data is converted into a “synthetic image” format by creating “artificial correlation,” and thus CNN
can be used to learn effective features for classification, yet the research of using LSTM (and its
subtypes) for generic machine learning still remain unexplored, at least in the literature.

The above observations motivate interesting questions on (1) whether LSTM is still effective in
learning better classification models from generic instance-feature tabular represented machine-
learning tasks, and reducing the task of developing new feature extractor for underlying learning
problems, and (2) how to make LSTM work for generic data to obtain better performance. More
fundamentally, the major challenges of generalizing LSTM for generic data are described as fol-
lows, which are also the challenges for other deep learning models:

—Rationality of LSTM for Feature Learning: While the recurrent neural structure allows
LSTM to exploit data in temporal or spatial order to learn new features, generic instance-
feature represented data do not have such temporal or spatial data correlation. We need
to artificially create correlation for the rational use of LSTM to generic data for feature
learning.

—Feature Correlation and Ordering Exploration: For the generic dataset, there are no
explicit correlations between features. Since it is the correlation between features that the
LSTM utilizes to extract meaningful features for classification, a critical issue of enabling
LSTM for generic dataset is to explore correlations between features.

—Instance Representation for LSTM: Given properly ordered features, we need to con-
struct LSTM compatible instances, which retain all the information of original dataset and
ensure the temporal/sequential correlations at the same time. Then, the new instances can
be utilized by the LSTM to extract meaningful features.

—Construction Modeling: We need to find a theoretical model to construct the new rep-
resentation, ensuring that the new instance representation has sequential correlation with
sound theoretical basis.

Motivated by the above challenges, our research proposes to generalize LSTM to generic
machine-learning tasks (GeLSTM), where the goal is to explore feature correlation in the original
data and convert each instance into a “synthetic sentence” format by using a two-gram probabilistic

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

13:4 H. Han et al.

Instance Fe"lt'"e Fe"; Label
1 A | *x # s |
A | x #

Generic Dataset

Fig. 3. Typical workflow of utilizing the proposed GeLSTM framework to make LSTM available for generic
data classification tasks.

language model, such that LSTM and its subtypes can be utilized to the generic machine-learning
tasks to obtain accurate classification models. Note that, since LSTM and its subtypes (including
attention-based LSTM) belong to the same type of deep-learning model, we primarily focus on
how to design “synthetic sentence” for such deep learning model to improve the classification
performance, instead of considering which specific deep-learning model should be used for the
“synthetic sentence.” For simplify, we utilize LSTM as the deep-learning model for validation.

It is also worth noting that our research is fundamentally different from existing work on fea-
ture extraction/construction/selection, and so on [42, 55], mainly because that our goal is not to
extract/learn/select good features from the given data, but to find an effective way to allow LSTM
to be applied to the given data for feature learning. We believe that by enabling LSTM for generic
learning tasks, it will eventually open a new paradigm to allow a rich set of deep-learning algo-
rithms, including LSTM, to handle generic dataset classification tasks.

Figure 3 shows the typical workflow of utilizing the proposed GeLSTM for generic data classifi-
cation tasks. In summary, we advance the LSTM based deep learning to generic machine learning
tasks, by proposing solutions to address three challenges as follows.

—To tackle the challenge of feature correlation and ordering exploration (i.e., the second chal-
lenge), we propose to derive the feature—feature correlation matrix and feature-label corre-
lation vector, by utilizing Pearson correlation and chi-square accordingly. The correlation
matrix and vector are further utilized to reorder features for data correlation construction.

—To resolve the challenge of instance representation for LSTM (i.e., the third challenge), we
convert each original instance into a synthetic sentence, which not only ensures the cor-
relation within a signal word but also the correlation between words. For the synthetic
sentence, each word includes all of the original features, but the order of features in each
word is different. By doing so, the synthetic sentence can be fed to the LSTM for learning.

—For the challenge of the construction modeling (i.e., the last challenge), we utilize two-gram
model, which is a generally used model in the natural language modeling, to construct
synthetic sentences. This model ensures that the synthetic sentence has the sequential cor-
relation, and thus makes the synthetic sentence resemble to a genuine sentence.

The rest of this article is organized as follows. In Section 2, we introduce work related to feature
representation learning. In Section 3, we present the problem definition and system overview.
Section 4 describes the proposed GeLSTM algorithm. Experiments and conclusion are reported in
Section 5 and Section 6, respectively.

2 RELATED WORK

Feature learning is to find informative and discriminating features to represent underlying objects.
This is a crucial step for classification tasks, because machine-learning algorithms often require
input data to be computationally convenient for computing. A critical step of all machine-learning
tasks is to obtain meaningful features from the original data to represent the data. In other words,
how to represent the original data is the key for learning. In general, there are two kinds of data

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

Generalizing Long Short-Term Memory Network for Deep Learning from Generic Data 13:5

representation methods. One is the feature selection and extraction based data representation, and
the other is deep learning based feature representation learning.

2.1 Feature Selection and Extraction Based Data Representation

Feature selection and extraction based data representation methods can be divided into feature
selection based methods and feature extraction based data representation methods. They are com-
monly used technologies in traditional machine-learning models, where the original feature space
is transformed into a low dimensional subspace to represent the data. A main characteristic of
these methods is that they often require domain information to find meaningful features.

2.1.1 Feature Selection Based Data Representation Method. Feature selection based data rep-
resentation methods aim to choose a subset from the original features by removing redundant or
irrelevant features to represent the data without losing much information. This process does not in-
troduce new features [56]. This kind of methods are used for better human interpretations, training
time decreasing, dimensionality reduction, and generalization enhancement [8, 32]. Three types
of feature selection techniques (i.e., filter methods, wrapper methods, and embedded methods) are
commonly used, and the differences between these selection algorithms can be found in the lit-
erature [37, 51]. In summary, filter methods choose highly ranked original features to represent
the data, and wrapper methods explore features with the highest accuracy via warping predictors
to a search algorithm [35]. Embedded methods decrease the computation time by performing the
feature selection in the training process instead of before the training process, compared to the
wrapper methods [9, 25, 38].

2.1.2 Feature Extraction Based Data Representation Method. As we described above, feature
selection based data representation methods do not generate new features. However, feature ex-
traction is commonly used to create informative and non-redundant features to represent the raw
data. By doing so, the created new features facilitate the conventional machine-learning meth-
ods and enhances the human interpretations. Like feature selection methods, feature extraction is
also a dimensionality reduction process, with information describing the original data being pre-
served. We can also use feature extraction method to connect data from different domains, such
as cross-domain learning [59] and domain-adversarial learning [54].

According to whether the label information is available, feature extraction based data rep-
resentation methods can be divided into supervised methods, unsupervised methods, and
semi-supervised methods. More specifically, supervised feature extraction methods, such as
Fisher discriminant analysis, utilize label information to extract informative features for better
classification [51]. Unsupervised feature extraction methods, such as principal components anal-
ysis (PCA) [48] and independent component analysis (ICA), extract meaningful features based
on the statistic characteristics of data without label information. PCA employs the covariance
structure of data, and ICA focuses on the statistical dependence. The semi-supervised methods,
such as semi-supervised universum, employ both supervised and unsupervised information to
learn meaningful features to improve model performance [11, 26, 57].

2.2 Deep Learning Based Feature Representation Learning

Deep learning is a kind of hierarchical learning method, which can be categorized into super-
vised, semi-supervised, or unsupervised methods [5]. The main feature of deep-learning methods,
such as CNN and LSTM deep-learning model, is utilizing the spatial/temporal correlation to obtain
meaningful features without domain expertise. Deep learning has made revolutionary progress in
fields such as computer vision, speech recognition, audio recognition, and so on, where the perfor-
mance is comparable to or even superior to human beings in some scenarios [15, 36]. Compared to

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

13:6 H. Han et al.

traditional machine-learning methods, the major advantage of deep learning is the power of fea-
ture learning. More specifically, deep-learning method can learn meaningful feature from the un-
structured data without human effort in feature design, whereas the traditional machine-learning
methods require hand-engineered features involving significant labor and financial costs.

In deep learning, there are two types of commonly used deep-learning networks, CNN and
RNNs. CNN is a popular deep feed-forward artificial neural networks model, which is specially
designed for the data represented in array (or in a high order tensor) form and have been popu-
larly used in the domain of image/video/audio/speech [41]. RNNs focus on data represented in the
sequential format (e.g., audio and speech) to learn effective features to represent data by learning
long-term dependencies. To address the long-term storage problem of RNN, LSTM utilizes mem-
ory cells to improve the performance [7, 23, 30]. In addition to videos, images, and texts, research
has also advanced the deep learning to networked data, such as social networks, to learn feature
representation for networks [58].

2.3 Differentiation from the Proposed Work

In conclusion, feature learning is to find informative and discriminating features to represent the
initial data. Feature learning methods extract/learn/select good/new, informative and discriminat-
ing, features for better classification. Specifically, feature selection and extraction based data rep-
resentation aims to extract/select good features for better classification, where the original feature
space are transformed into a subspace with low dimension to represent the data. Deep-learning
architectures utilizes spatial/temporal correlation of the data to obtain new features, which do not
exist in the original feature space.

The two data representation methods described in Sections 2.1 and 2.2 are designed for dif-
ferent types of input data. Specifically, feature selection and extraction based methods typically
take generic data with weak or no correlation as input, whereas deep learning based methods are
specially designed for data with temporal and/or spatial correlation.

In general, deep learning based methods are more popular and effective than feature selection
and extraction based methods. On one hand, research shows that deep learning based methods
outperform feature selection and extraction based methods in terms of accuracy metric [6]. On
the other hand, feature selection and extraction based methods heavily reply on hand-selected
features by experts, requiring strong domain knowledge and data understanding, whereas deep
learning based methods focus on learning high-level features from the original data, which reduce
the task of developing new feature extractor for learning problems. Unfortunately, we can not
directly apply deep learning based methods to generic data, because features of generic data have
weak or no correlation.

To handle the problem described above, our research proposes a solution to represent generic
data, and makes LSTM available to the generic dataset to improve the classification accuracy. Dif-
ferent from the above feature learning methods, our research goal is not to extract/learn/select
good features from the given data, but to find an effective way to represent original instances.
Specifically, the output of GeLSTM reorders the original features and remains the original features.
As far as we know, there is no existing research focusing on making LSTM available to generic
dataset classification task. Accordingly, our work intends to open a new paradigm to allow LSTM
module to be broadly applied to generic machine-learning datasets.

3 PROBLEM DEFINITION AND SYSTEM OVERVIEW
3.1 Problem Definition

Considering a generic dataset 9, represented in an instance-feature tabular format with n in-
stances and m features, we denote the k" instance as xj = {Xk.1, - - -» Xk, m3 Yk }, where xi ; and

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

Generalizing Long Short-Term Memory Network for Deep Learning from Generic Data 13:7

(a)

Features _ Features

id »
8 -]
i =
o o

ajdueg

Horizontal
\\J E
3
Vertical

Fig. 4. (a): A conceptual view of the LSTM network. Left panel shows an LSTM network with three-
dimensional tensor input (i.e., [samples, time steps, features]), and the right panel shows the unfolded LSTM
where each LSTM unit corresponds to one time point; and (b) a conceptual review of the proposed Gel-
STM which converts a generic dataset (left panel) into three dimensional tensor input (right panel) using
horizontal-vertical feature alignment (middle panel).

yx denote the i*” feature and label of the instance xj accordingly. The aim of GeLSTM is to find
an LSTM compatible representation of instance xy, denoted by ¥ (xj). By doing so, LSTM can di-
rectly utilize 7 (xg) to learn classifiers with a better classification accuracy, compared to classifiers
trained from the original feature space.

It is worth noting that our research goal is not to extract/learn/select good features from the
given data, but to find an effective way to represent original instances such that LSTM can be
directly applied to train deep-learning classifiers from generic machine learning tasks. Therefore,
our solutions and experiments are large different from the existing feature extraction/selection
research [42, 55].

In Figure 4(a), we briefly show the LSTM structure and its unfolded units, where input data of
LSTM are three-dimensional tensor X (i.e., [samples, time steps, features]). On the right panel, the
LSTM loop structure is unfolded into multiple LSTM units along the time axis, so the input data
at time step t; is Xy, and the output of the last LSTM unit is return to the input of the current
LSTM unit.

Since it is the temporal/sequential correlation of the data that LSTM utilizes to obtain mean-
ingful features, we propose a GeLSTM method to convert each instance xj. into a synthetic sen-
tence to create “artificial sequential correlation data.” Specifically, as shown in Figure 4(b), for
each instance in the original feature space (left panel), our conversion (middle panel) first seeks to
horizontally align original features into a sequentially correlated feature vector, resembling to the
letter coherence within each single word. In addition, a vertical alignment is also carried out to
create multiple time steps and simulates word correlation within a sentence. The two-dimensional
horizontal-and-vertical alignments converts the original dataset into a three-dimensional tensor
input (right panel) for LSTM model to learn effective features.

3.2 Overall Framework of GeLSTM

The workflow of applying the proposed GeLSTM method to the generic dataset is shown in Fig-
ure 5. Overall, GeLSTM includes the following three major steps:
ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

13:8 H. Han et al.

Features

2) |Feature Correlation Matrix A7 3 (Feature Reordering Set) (4
1 Feature-Label Correlation Vector £ \S=[w,.w,...w,] T
’

LSTM = LSTM =»... ¥ LSTM

4
l.s*'rm-» LszIL» oo ISV
— ,

1

t
S h pRE—— .
---- s E79 E7PY K PP ; R T
; 4
xk tm """""""""""

Fig. 5. An overview of the proposed GeLSTM which generalizes LSTM for deep learning from generic data.
For a generic dataset represented in instance-feature tabular format in @, GeLSTM first calculates feature-
feature correlation matrix and feature-label correlation vector @. Next, GeLSTM builds a feature reordering
set ®, and converts the original two-dimensional data dataset into three-dimensional tensor @ which is
fed into LSTM module ® for learning features for classification. Lower panel (dashed-line box) shows the
conversion of instance xj into a synthetic sentence format with m words ¥ (x.) = [d:j,dz, e ,d:‘m]. The

ith word df is fed into the unfolded LSTM unit at time step t;.

—Feature-feature correlation matrix and feature-label correlation vector acqui-
sition: We utilize Pearson correlation and chi-square correlation to acquire a pair-
wise feature-feature correlation matrix and a correlation vector, denoted by M and L,
respectively.

—Feature reordering set construction: To build LSTM compatible instance representation
and remain each instance’s original features, we utilize correlation matrix M and correla-
tion vector L to construct a feature reordering set S = [wq, Wy, ..., Wy,], through a two
dimensional horizontal-and-vertical alignment, where w; = [w; 1, Wi.2, ..., Wi m] € R>™
stands for the i* feature reordering vector in 8 and R is the spaces real-valued numbers
spaces. w; indicates each instance converting its initial features into the i** word of the
synthetic sentence.

—New presentation of instances generation: By using feature reordering set §, GeLSTM
reorders original feature values of instance xj; and converts instance xj into a synthetic

sentence format F (xj.) = [dfl,dt’;, .. .,dfm], where d:‘i =[df . df ..o df] € RV de-

notes the i*" word in the synthetic sentence ¥ (xi), which will be fed into the LSTM net-
work at time step t;.

Based on the above three steps, an original instance will be converted into a synthetic sentence.
Then, the LSTM can be utilized to learn features from the converted synthetic sentence for per-
formance improving.

4 GELSTM ALGORITHM

Algorithm 1 briefly describes the proposed GeLSTM algorithm. In the following, we will discuss
how to construct correlation matrix M, correlation vector £, and feature reordering set S,
followed by an example showing the process of using GeLSTM algorithm to convert instances for
LSTM learning.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

Generalizing Long Short-Term Memory Network for Deep Learning from Generic Data 13:9

ALGORITHM 1: GeLSTM Algorithm

Input:
D: A generic dataset;
Output:
The converted synthetic sentence format F (D);
1: M « Construct feature-feature correlation matrix;
2: L « Construct feature-label correlation vector;
3: Feature reordering set S = [wq, wg, ..., Wy,] construction:
(a) S =0;
(b) h « Obtain the index of the feature that has the strongest correlation with the class label
according to feature-label correlation vector L;
(c) V « Sort features in a descending order according to their correlation to the h’ h feature by
utilizing feature-feature correlation matrix M;
(d) w1 = V: Determine the elements in the feature reordering vector wy;
(e) foreachie[2,...,m]do
(i) foreachje([1,2,...,m]do
wi,j < Apply M to obtain the jt" element in vector w; using Equation (6).
(i) end
(f) end
4: for all x;. € D do
50 F(xp) < Algorithm2 (xi., S)
6: end for
7: return F (D)

4.1 Feature-feature Correlation Matrix M and Feature-label Correlation Vector £

To obtain higher order feature correlation, we first utilize Pearson correlation [29] to obtain the
feature-feature correlation matrix M, to capture pair-wise correlation between features, which
can be computed by Equation (1).

ZJC\]:1 (xc,i — fi)(xc,j - f_})

Mi’j - N F\2 N 2
VN (i = VN ZY (i —)

ALGORITHM 2: Synthetic sentence ¥ (xj) of instance xj generation

Input:
S = [w1, wa, ..., wn]: The feature reordering set;
xi: The k! h instance in the original dataset;
Output:
. k k k
The synthetic sentence ¥ (xj.) = [dt1 R dtz’ e dtm];
Li=1j=1

2: while i # m do
3: whilej # mdo

4 dfi = Xhwi Determine the j* element in the i‘" word of the synthetic sentence F(xr);
5: i=i+1

6: end while

7 j=j+1

8: end while

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

13:10 H. Han et al.

In Equation (1), f; and f; stand for the sample means of features i and j, respectively, which can
be computed by

B N ~ N
fi =Zxc,i’ f}zzxc,j- (2)
c=1 c

=1

Similarity, in order to capture the correlation between each feature and the class label, we obtain
the correlation vector £ by utilizing the Chi-Square method [12, 43]

_ 2
4= B3

kefi deL

where L is the label vector of the dataset, Ny is the observed frequency of feature k and label d
appearing simultaneously in the dataset, and Ey4 is the expected frequency of k and d simultane-
ously in the dataset. The greater the value of L;, the stronger the correlation between feature f;
and label L.

Note that, we only utilize the magnitude of the correlation to assess the feature-feature correla-
tion and feature-label correlation. Therefore, our calculation, in the remaining part of the article,
uses the absolute values of M and L.

4.2 Feature Reordering Set S Construction

Once the correlation matrix M and the correlation vector £ are available, the feature reordering
set 8 = [wy, wa, ..., wy,] is constructed to create temporal correlation features for LSTM.

The i'" element in the feature reordering set S (i.e, w;) is a feature index vector, which indi-
cates all the instances to convert their initial features into the i*" word of their synthetic sentence
according to Algorithm 2.

In order to create a “synthetic sentence” with characteristics similar to genuine word cor-
relation and order information, we use two-gram model, which is a generally used model in
the natural language modeling [2, 19]. In summary, two-gram model is a model of assigning a
probability value to a sentence, indicating how likely the sentence is from that language. In other
words, different orders of the words in a sentence correspond to different probability values. The
higher the probability value of a sentence, the more likely the sentence belongs to the language.
Therefore, the order of words in the synthetic sentence can be determined by maximizing the
probability of the synthetic sentence. Furthermore, two-gram model assumes that the current
word is associated with the previous word, such that the correlation is added in the synthetic
sentence. Thus, our aim is to maximize the following probability to create sequential correlation
sentence by utilizing the two-gram model.

argmax p(S) = p(wy, wa, ..., W)
S=[wi,w2,...,Wm]

(a)
= p(wi)p(walwi) - .. p(Won| W1, Was .., Wyns))

(b)
= p(w1)p(waw1) . .. p(Win [Wm-1),

In Equation (4), (a) is derived by the chain rule, and (b) relies on the two-gram approximation
where the current probability of the word depends on the previous word. p(w;|w;_1) means the
probability of w;_; transiting into w; to construct the sequence correlation.

Finding feature reordering set S = [wy, wa, . . ., wy,,] satisfying Equation (4) is equal to find each
feature index vector in turn such that

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

Generalizing Long Short-Term Memory Network for Deep Learning from Generic Data 13:11

arg max p(wilwi—q)
Wi=[Wi 1, Wi 2,0 Wi,]
(@) = ®)
~ arg max 1—1 Mwi—l,kswi,k’
wi=[wi 1, Wiz, ..., Wi,m] k=1

The proof and Example of (a) is described in Appendix A.
Apparently, since there are m™ cases for wy, it is impossible to derive solutions to solve Equa-
tion (5) directly. To make Equation (5) solvable, we add two constraints to Equation (5) as follows:

—(1) In order to make the feature reordering set S be label-targeting, we utilize the correlation
vector L and correlation matrix M to determine the elements in w;. Specifically, we first
find the index of the feature that has the strongest correlation with the class label according
to feature-label correlation vector £, denoted by h. Then, the feature index vector V =
[(V1, Vo, ..., Vy]is equal to Sort(My,), where Sort stands for returning the corresponding
feature indices by sorting vector My, . in a descending order. The feature reordering in w;
isV = [(Vl,(V2, ce ,(Vm], ie., wyj = rV] (1 S] < m)

—(2) In order to ensure the fairness between features and preserve all initial feature values,
we make each w; contain all feature indices but in different order by adding constraints on
w;, j, which will be described at the end of this Section.

Therefore, the problem in Equation (5) can be transformed as follows.

argmax My, . w, ;

Wi j
st.wit € [win, Wot,. s Wil ©6)
wij & [Wi1, Wiz, ..o Wij-1],

w1 =V,(l§j§m).

Based on Equation (6), we can derive the elements in w; (i = 2,...,m) one by one. According
to the constraint w; 1 € [wy,1, Wa,1,. .., Wi_1,1], We can easily derive that the maximum number of
time spans is the number of features of the generic data m. In order to preserve complete infor-
mation of the original dataset, we utilize m as the number of time spans in our feature reordering
mechanism. Actually, the procedure of determining wy is to horizontally align original features
into a sequential correlated feature vector, resembling to the letter coherence within each single
word. The procedure of determining w; (i = 2, ..., m) is to vertically align to create multiple time
steps and simulates sequential order of words (i.e., word correlation) within a sentence. The two-
dimensional horizontal-and-vertical alignments not only ensures the correlation within a signal
word but also the correlation among words.

In the following, we briefly explain why the constraints on w; ; (i.e., wi 1 & [wi,1, W21, ..., Wi—1,1]
and w; ; & [wi1, Wi2,...,w; j-1]) can ensure that each w; contains all feature indices but in differ-
ent order. The first constraint w; ; ¢ [wy 1, W2.1,...,wj—_1,1] means that the first element in the
feature reordering vector w; is different from those of the preceding feature reordering vec-
tors. This ensures that the elements in the feature reordering set S (i.e, wi, wa, ... wy,) are dif-
ferent from each other, ie, w1, wa, ... wy,, are in different orders. The second constraint w; ; ¢
[Wi1, Wi2,...,w; j-1] means that the jt" element in w; is different from its preceding j — 1 ele-
ments. This ensures that the w; contains all feature indices.

4.3 Example: Synthetic Sentence Explanation

In the remaining part of this subsection, an example is utilized to elaborate the following three
aspects: (1) why generic data cannot be directly used for LSTM; (2) how to convert a generic

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

13:12 H. Han et al.

Table 1. Toy Example Demonstrating: (a) Toy Machine-Learning Dataset Contains Six Instances
{x1, X2, x3, x4, x5, X6}, Four Features { f1, f2, f3, fa} and a Binary Class Label {1, 0}; (b) The Pair-wise Feature
Correlation Matrix M of the Toy Dataset, Calculated Using Equation (1)

(a (b)
Instance | f; f2 f f1 | Label Feature | f f2 fs fa

X1 03] 07 | 06 | 01 1 fi 1.0 | 0.43 | 0.32 | 0.58
X2 04 | 072] 03 | 09 0 f2 043 | 1.0 [0.07 | 0.27
x3 0.13] 055 | 03 | 0.4 0 f3 0.31 [0.07 | 1.0 | 0.19
x4 022042 014|025 1 fi 058 | 027 | 019 | 1.0
X5 034051048079 | 0

X6 0.28 | 037 | 059 | 032 | 1

dataset into synthetic sentence for LSTM module; and (3) why the feature reordering can mimic
real word sequential data. Table 1(a) presents a toy dataset of six instances, four features, and two
class labels. Let’s first discuss why generic data cannot be directly used for LSTM.

4.3.1 Why Generic Data cannot be Directly Used for LSTM. Since LSTM is specially designed
for sequential data, the inputs of LSTM should be more like sentences. LSTM relies on correlation
in the sentence to learn new feature representation to represent data for better classification. In
our problem settings, instances are represented in the form of instance-feature table with weak or
no correlation. The proposed GeLSTM algorithm converts each original instance into a “synthetic
sentence” format by using two-gram model which assigns a probability value to a sentence, and
ensures that the correlation and order information are added in the synthetic sentence, such that
LSTM can be utilized as the deep learning model. The higher the probability value of a sentence,
the more likely the sentence is from that language.

In the following, we use the toy dataset as an example, and compare the probability values
between the initial sentence and that of the synthetic sentence. Our goal is to show that by tak-
ing correlation into consideration to rearrange instances, we can convert original instance into a
format better fit the LSTM learning.

For simplicity, we consider a simple case that a word only corresponds to one feature and demon-
strate why generic data cannot be directly used for LSTM (In our proposed feature reordering
mechanisms, each word actually considers more features).

Based on Equation (5)(a), the probability value of the initial sentence (without taking the order-
ing and correlation into account) of the toy dataset is

P(S) = p(wy, wa, w3, wq) = p(f1, fo. f3. fa)
= p(fO)p(fol fOP(f31 f2)p(fal f3) = 1 X 0.43 X 0.07 X 0.19 = 0.005719.

Alternatively, if we set the first word of the sentence to f;, and utilize two-gram model to obtain
the synthetic sentence ([w1, w2, w3, wa] = [f1, fa, f2, f3]) with sequential correlation, we have

p(S’) = P(Wh w2, W3, W4) = P(fl’ f4’f2’f3)
= p(fO)p(fal fOp(f2l f)p(f3]fa) = 1 X 0.58 X 0.43 X 0.07 = 0.017458.

The results from Equations (7) and (8) show that the probability value of the initial sentence
(f1, f25 f3, fa) is much lower than that of the synthetic sentence (fi, fi, f2, f3). This means that,
compared to the initial sentence (f1, f2, f3, f1), the synthetic sentence (fi, fa, f2, f3) is more like a
real sentence. The reason is that, compared to the the generic data (without taking the order-
ing and correlation into account), the two-gram model ensures that the correlation and order
information are added in the synthetic sentence, such that the synthetic sentence is more like a

™)

®)

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

Generalizing Long Short-Term Memory Network for Deep Learning from Generic Data 13:13

genuine sentence and LSTM can be utilized to learn new feature representation. Therefore, generic
data may not be directly used for LSTM, but should be transformed into synthetic sentence, which
is described in the following subsection, to support deep learning.

4.3.2 How to Convert a Generic Dataset into Synthetic Sentence for LSTM Module. In order to
convert the toy dataset in Table 1 into synthetic sentence format, GeLSTM first build the correlation
matrix M, which is shown in Table 1(b), and correlation vector £ = [0.003,0.0257,0.0259, 0.731].
Then, GeLSTM finds h = 4, i.e., the index of the feature with the strongest correlation to the class
label according to L. The feature index vector V = [4, 3, 2, 1] equals Sort(My, .), where Sort stands
for returning the corresponding feature indices by sorting vector My, in a descending order. Thus,
the first feature reordering vector wy is [4, 1, 2, 3].

Next, by substituting M and w; into Equation (6), we derive elements in w, one by one (i.e.,
wy = [1,4,2,3]). Then, by substituting M and w;, into Equation (6), w3 = [2,4, 1, 3] can be fur-
ther obtained. Finally, we can derive wy = [3, 4, 1, 2] using the same way. As a result, the feature
reordering set is S = [wy, wa, w3, wa] = [[4,1,2,3],[1,4,2,3],(2,4,1,3],[3,4, 1, 2]].

Following Algorithm 2, the constructed synthetic sentence of instance x; is as follows,
_[g g1 g1 n
F (i) = |d} . d} . d} d] | o
= [[0.1,0.3,0.7,0.1],[0.3,0.1,0.7, 0.6], [0.7, 0.1, 0.3, 0.6], [0.6, 0.1, 0.3, 0.3, 0.7]].

Finally, we discuss why the feature reordering can mimic real word sequential data.

4.3.3 Rationality of Feature Reordering to Mimic Real-word Sequential Data. According to Equa-
tion (5), the probability value of the synthetic sentence of the toy dataset is

P(S) = p(w1, wa, w3, wy)
= p(w1)p(walw1)p(ws|wz)p(wa|ws) ~ 0.003.
If we employ random ordering to obtain the feature reordering set S, where each feature
reordering vector w; includes all feature indices, the random feature reordering set is S =
(w1, wo, w3, wq] = [[1,3,2,4],[2,4,1,3],[2,3,1,4], [4, 3, 2, 1]]. Similarly, the probability of the ran-
dom sentence of the toy dataset is

(10)

P(S") = p(wi, wa, w3,) (11)
= p(w1)p(walw1)p(ws|wz)p(walws) ~ 1.62 X 107°,

The calculations from Equations (10) and (11) show that the sentence derived from our proposed
feature reordering mechanism much more resembles to real-world sequential data. Furthermore,
the random feature reordering mechanism uses random order to create a synthetic sentence, with-
out taking correlation into consideration. In the next Section (Section 5.4), our experiments will
show that the proposed feature reordering mechanism (i.e., GeLSTM) outperforms random feature
reordering mechanism (i.e., RoLSTM), which means that constructing correlation by reordering
features is preferable for LSTM.

5 EXPERIMENTS

In this section, we validate the proposed GeLSTM in terms of its effectiveness of enabling LSTM
learning for generic datasets. In the experiments, we implement the proposed framework and
baselines using Tensorflow [1], and mainly report the effectiveness of the GeLSTM enabled deep-
learning classifiers, and compare their accuracy with traditional machine learning classifiers, in-
cluding support vector machine (SVM), decision trees (DT), random forests (RF), and the like. We
did not compare GeLSTM with any feature extraction/selection methods [42, 55], because our re-
search goal is not to extract/learn/select good features from the given data, but to find effective

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

13:14 H. Han et al.

Table 2. A Brief Introduction of the 20 Benchmark Datasets

D Datasets number of Instances | number of Features | number of Classes
1 vehicle 946 18 4
2 vowel 990 9 6
3 | breast cancer wisconsin (Diagnostic) 569 30 2
4 wine 178 13 3
5 banknote authentication 1372 4 2
6 vertebral column 310 6 2
7 yeast 1484 8 10
8 seeds 210 7 3
9 climate model simulation crashes 540 18 2

10 glass identification 214 9 6

11 per 182 12 2

12 pima 768 9 2

13 iris 150 4 3

14 wireless indoor localization 2000 7 4

15 sonar 208 60 2

16 LSVT voice rehabilitation 126 309 2

17 parkinsons 197 22 2

18 fertility 100 9 2

29 waveform 5000 21 3

20 leaf 340 14 30

ways to represent original instances for training deep learning classifiers. If needed, one can al-
ways employ feature selection/extraction methods prior to apply GeLSTM to their data to enable
deep learning.

We compare the baseline and the proposed GeLSTM method on 20 machine-learning bench-
mark datasets from UCI data repository [46]. The 20 benchmark datasets cover a variety of data
characteristics (e.g., the number of classes vary from 2 to 30, and the number of features vary from
several to several hundreds). We intentionally select such diverse datasets to ensure that our ap-
proach is effective for different kinds of generic datasets. For UCI benchmark datasets, we assume
that data examples are independent and identically distributed (i.i.d.), such that the model trained
from the training dataset can be evaluated on the test set. Meanwhile, we perform a case study
by utilizing time series dataset from the UCR Time Series Classification Archive dataset [14], to
explain features learned from GeLSTM converted sentence. Table 2 presents a brief description of
the 20 benchmark datasets used in the experiments.

In our experiments, we use cross validations to validate the algorithm performance. For small
datasets, more splits mean fewer samples in the test set for each fold. Considering several small
datasets in the experiments, we carry out the experiments using five-fold cross validation, and
report the classification accuracy in the article.

5.1 Experimental Settings

In the experiments, we take the output of the last time step of the LSTM network as the learned
features. Then, the learned features are (fully connected) fed to the output layer with m nodes and
a softmax activation function is used to produce the correctly normalized probability values [18].
Furthermore, we use the Adam optimizer [34] and set the learning rate to 0.001 at the training
process.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

Generalizing Long Short-Term Memory Network for Deep Learning from Generic Data 13:15

5.2 Baseline Methods

To the best of our knowledge, there is no work on generalizing LSTM for generic datasets. There-
fore, we implement two baseline approaches, random feature reordering LSTM (RoLSTM) and
label-feature correlation feature reordering LSTM (LoLSTM), to validate the effectiveness of the
feature reordering method of GeLSTM. The difference between the two baselines and GeLSTM is
the ways of constructing feature reordering set S.

RoLSTM: utilizes random ordering to obtain the feature reordering set $, where each vector w; of
S includes all feature indices. The random ordering results in the constructed synthetic sentence
with no correlation. If GeLSTM can achieve performance gain, compared to RoLSTM, this means
that constructing correlation by reordering features is preferable for the LSTM.

LoLSTM: This method obtains the set S according to the feature—feature correlation matrix and
feature-label correlation vector without taking sequential correlation into account. In other words,
each feature reordering vector w; includes all feature indices. We utilize the index of feature that
has the ith strongest correlation with the class label according to feature-label correlation vector £
as the first element in w;. The other m — 1 elements in w; are the indices of features in a descending
order according to their correlation to the first feature by utilizing feature—feature correlation
matrix M. Obviously, LoOLSTM only considers a local correlation within word, while GeLSTM
considers both global (i.e., temporal) and local correlation.

5.2.1 Conventional Machine-Learning Classifiers. In order to validate the benefit of using GeL-
STM for generic machine-learning tasks, some popular machine-learning methods are considered
as the baseline. The methods used include k-nearest neighbors algorithm (k-NN), dense neural
network (NN), SVM, DT, RF, XGBoost (XG) which is completed by using the sklearn module in
Tensorflow [47]. If GeLSTM shows better performance than conventional machine learning algo-
rithms, it will confirm that enabling LSTM learning for generic i.i.d. datasets is useful for improving
generic machine-learning tasks using deep learning.

— k-NN aims to find k nearest neighbors from the training set for each test instance [4], and
labels the instance as the class that the most k nearest neighbors agree.

—Support Vector Machines (SVM) constructs a hyperplane by utilizing kennel func-
tion [17]. Then, the original instances are mapped into high-dimensional space and labeled
as the class according to the side they falling to.

—Decision Tree (DT) builds a decision tree to classify the instance. The leaves and branches
of the decision tree stand for the labels and conjunctions of features accordingly [10].

—Random Forest (RF) is an ensemble learning method for classification. It relies on multiple
decision trees, constructed from random feature subspaces, and combines different trees to
generate final outputs [33].

—Multilayer Neural Network (NN) is a kind of multi-layered neural network, including in-
put layer, hidden layer(s), and output layer [16]. The output layer outputs the predicted re-
sults. In our experiments, we use dense networks for training and classification. Because, in
theory, two hidden layers can approximate arbitrary shaped decision boundaries to achieve
sufficiently high classification accuracy (with suitable learning rates), more hidden layers
are unnecessary and require much more training time [31]. A dense network with one hid-
den layer (denoted by NN-1) or two hidden layers (denoted by NN-2) is utilized in our
experiments.

—XGBoost (XG) is a DT-based ensemble machine-learning algorithm, and is commonly used
for classification and regression tasks [13].

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

13:16 H. Han et al.

1 T T T T T T
09 ___/ 7
V- - B bt P e mmmmmmmmeeeee—eena A AR e TR T
08 b’- -
>
§ 0.7 N
5 P e
(5] r‘ P
K06 i
05 L [+ vertebral column .
yeast
04k --climate model simulation crashes| i
’ --glass
> leaf
0.3 1 T T T 1 1
816 32 64 128 256 400 512

Number of LSTM feature

Fig. 6. Accuracy comparisons w.r.t. different number of LSTM output features, where the x-axis denotes the
number of learned features, varying from 8 to 512, and the y-axis denotes the accuracy reported in decimal
numbers.

5.2.2 Deep-Learning Classifiers. To validate the performance of deep-learning classifiers on
generic machine-learning tasks, we mainly use LSTM as the deep-learning baseline. Meanwhile,
to demonstrate that GeLSTM is also useful for other deep-learning algorithms, we also apply CNN
and attention-based LSTM (A-LSTM) as the deep-learning models. For all these deep-learning clas-
sifiers, we use GeLSTM to convert original instances into “synthetic sentence” format, and then
use the sentences to train deep-learning classifiers.

—Convolutional Neural Network (CNN) uses convolutional layers to explore spatial/
temporal adjacency to construct new feature representation, which is the go-to method
for any type of prediction problem involving image data as an input [40].

— Attention-based LSTM (A-LSTM) obtains the performance gain of the LSTM network
by utilizing the attention-based models, so A-LSTM can concentrate on different parts of a
sentence for learning [53].

In the following subsections, we first study classification accuracy of the GeLSTM with respect
to different number of learned features. After that, we compare different feature reordering method
in terms of the classification accuracy. Next, we report the classification accuracy of all benchmark
datasets. Finally, a case study is performed to validate the effectiveness of applying the GeLSTM
for LSTM learning.

5.3 Results w.r.t. Different Number of LSTM Features

In our experiments, we fix the number of LSTM layers to two, and take the output of the final
LSTM network as the learned features. In Figure 6, we report the performance of GeLSTM w.r.t.
different number of learned features on five datasets, where the x-axis denotes the number of
learned features and the y-axis denotes the accuracy. The results show that increasing the number
of learned features from 8 to 32 will continuously improve the classification accuracy, but increas-
ing the feature size further (from 32 to 512) does not impose additional performance gain and the
results fluctuate within a small range.

5.4 Feature Reordering Method Comparisons

For all experiments in the following, we utilize the parameter settings below. We set the number
of LSTM layers to 1 and 2, and the hidden layer sizes 20 and 64.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

Generalizing Long Short-Term Memory Network for Deep Learning from Generic Data 13:17

Table 3. Classification Accuracy Comparisons between GeLSTM and Different Feature
Reordering Methods on the 20 Benchmark Datasets, where the Digit 1 and 2 Denote the Number
of LSTM Layers, and the Hidden Layer Sizes is Set to 20 (the Results are Reported in Percentage)

Dataset RoLSTM LoLSTM GeLSTM

1 2 1 2 1 2
vehicle 60.18 | 63.01 | 60.96 | 60.14 | 62.97 | 64.23
vowel 83.46 | 83.67 | 83.85 | 85.36 | 86.66 | 87.63
breast cancer wisconsin (Diagnostic) | 96.61 | 96.96 | 96.27 | 96.52 | 96.62 | 96.57
wine 96.09 | 95.9 | 95.57 | 95.16 | 97.18 | 96.07
banknote authentication 99.91 | 99.95 | 99.93 | 99.96 | 99.93 | 99.94
vertebral column 80.42 | 83.55 | 83.09 | 85.23 | 83.48 | 84.84
yeast 57.77 | 58.04 | 57.61 58.5 58.64 | 59.13
seeds 94.24 | 94.29 | 94.19 | 93.76 | 95.14 | 94.95
climate model simulation crashes 91.48 | 91.48 | 91.48 | 91.48 | 91.52 | 91.78
glass identification 60.33 | 60.79 | 59.2 | 60.04 | 62.83 | 63.5
per 71.44 | 71.44 | 71.44 | 7144 | 7144 | 71.44
pima 76.79 | 76.64 | 76.72 | 76.51 | 76.43 | 76.23
iris 96.93 | 96.47 97 96.4 | 96.73 | 96.47
wireless indoor localization 98.15 | 98.14 | 98.07 | 98.14 | 98.16 | 98.2
sonar 77.72 | 79.13 | 79.56 | 78.26 | 78.08 | 80.91
LSVT voice rehabilitation 83.01 | 83.67 | 82.42 | 84.51 | 84.21 | 83.38
parkinsons 87.15 86.7 89.68 | 83.07 | 88.15 | 89.63
fertility 86.07 | 86.12 | 86.07 | 84.02 | 87.12 | 84.12
waveform 85.18 | 85.12 | 85.88 | 85.88 | 86.68 | 86.26
leaf 50 52.02 | 50.33 | 49.84 | 56.97 | 55.53
Average Accuracy 81.65 | 82.15 | 81.97 | 81.7 | 82.95 | 83.04

Tables 3-4 compare different feature reordering methods, with respect to different number of
LSTM layers and hidden nodes. Specifically, Table 3 shows the classification accuracy performance
for different feature reordering methods on 20 benchmark datasets, where the number of LSTM
layers and hidden nodes are (1,2) and 64. The results of one and two LSTM layers with 64 hidden
nodes are reported in Table 4.

We can see from Tables 3 and 4 that GeLSTM outperforms other feature reordering methods
for different parameter settings. This indicates that, for the generic dataset, creating sequential
correlation by reordering features is preferable for the LSTM to produce good classification ac-
curacy. In other words, it is the sequential correlation that the LSTM utilizes to obtain effective
features. While LoLSTM only considers correlation within each signal word, RoOLSTM ignores any
correlation in the synthetic sentence.

The results in Table 3 shows that, compared to RoLSTM and LoLSTM, the average accuracy
gains of GeLSTM are 1.3% and 0.98% for one LSTM layer, and 0.89% and 1.34% for two LSTM layer
accordingly. The results in Table 4 shows that, compared to RoLSTM and LoLSTM, the average
accuracy gains of GeLSTM are 1.23% and 0.84% for one LSTM layer, and 1.09% and 1.04% for two
LSTM layer accordingly. In addition, the best accuracy gain of GeLSTM is higher than those of
RoLSTM and LoLSTM. Specifically, the best accuracy gain of GeLSTM, RoLSTM and LoLSTM are
84.26% in Table 4, 83.17% in Table 4, and 83.39% in Table 4.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

13:18 H. Han et al.

Table 4. Classification Accuracy Comparisons between GeLSTM and Different Feature
Reordering Methods on the 20 Benchmark Datasets, where the Digit 1 and 2 Denote the Number
of LSTM Layers and the Hidden Layer Sizes is Set to 64 (the Results are Reported in Percentage)

Dataset RoLSTM LoLSTM GeLSTM

1 2 1 2 1 2
vehicle 64.82 | 65.21 | 64.46 | 66.26 | 66.65 | 65.66
vowel 88.21 | 90.42 | 87.81 90.4 | 92.93 | 93.15
breast cancer wisconsin (Diagnostic) | 97.08 | 97.01 | 96.76 | 96.57 | 96.48 | 96.43
wine 95.39 | 96.03 | 96.01 | 9595 | 96.95 | 96.84
banknote authentication 99.96 | 99.93 | 99.97 | 99.91 | 99.95 | 99.9
vertebral column 84.58 | 84.48 | 84.48 | 84.77 | 84.35 | 85.03
yeast 59.28 | 58.98 | 59.74 | 58.69 | 58.5 57.64
seeds 94.52 | 94.52 | 94.38 | 93.62 | 95.33 | 94.79
climate model simulation crashes 9159 | 91.9 | 91.59 | 91.58 94 94.09
glass identification 64.14 | 64.94 | 64.39 | 64.43 | 66.66 | 66.13
plrx 71.44 | 7144 | 71.39 | 7144 | 71.39 | 71.44
pima 76.44 | 76.71 | 76.36 | 76.29 | 76.24 | 76.22
iris 96.4 | 96.27 96.6 | 96.47 | 96.51 | 96.07
wireless indoor localization 98.04 | 98.04 | 98.1 | 97.97 | 98.17 | 98.14
sonar 80.14 | 80.25 80.4 81.41 | 80.94 | 82.43
LSVT voice rehabilitation 82.77 | 84.29 | 84.02 | 84.58 | 81.12 | 83.2
parkinsons 83.58 | 84.29 | 89.75 | 84.58 | 90.45 | 89.24
fertility 83.07 | 84.12 | 82.17 | 82.01 | 86.06 | 86.97
waveform 85.82 | 83.28 86.3 | 86.18 | 85.12 | 85.25
leaf 62.9 | 61.27 | 63.03 | 61.24 | 66.73 | 66.55
Average Accuracy 83.00 | 83.17 | 83.39 | 83.22 | 84.23 | 84.26

The results from Tables 3 and 4 demonstrate that using the feature reordering matrix in GeLSTM
to create sequential correlation is the key for LSTM to learn informative features to improve the
classification accuracy.

The above results show that, the LSTM structure settings to achieve the best accuracy per-
formance for GeLSTM are as follows: the number of the LSTM layer and hidden nodes are set
to 2 and 64 accordingly. Therefore, we use the same LSTM parameter settings in the following
subsections.

5.5 Comparisons of Different Learning Methods

Table 5 shows comparisons between CNNs, GeLSTM, A-LSTM and conventional learning algo-
rithms (i.e., k-NN, SVM, DT, RF, and NN) on 20 benchmark datasets, where NN-i indicates that
there are i hidden layers in the neural network.

The parameter settings of conventional machine-learning methods in this subsection are de-
scribed as follows. For k-NN, we set the parameter k to 5. For SVM, we utilize the linear kennel
function. For DT, the decision tree is generated by CART (Classification And Regression Tree) al-
gorithm. For NN, the mumber of hidden layers is set to 1 and 2, and the corresponding number of
nodes is set to to 16 and (32,16). For XG, we use trees as the booster.

For the GeLSTM deep-learning algorithms, we take the output of the last time step of the LSTM
network as the learned features. Then, the learned features are fully connected to the output
layer with m nodes and a softmax activation function is used to produce the correctly normalized

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

Generalizing Long Short-Term Memory Network for Deep Learning from Generic Data 13:19

Table 5. Accuracy Comparisons between GeLSTM and Some Traditional Machine Learning Methods
on Benchmark Datasets (the Results are Reported in Percentage)

Dataset k-NN | SVM | DT RF | NN-1| NN-2 | XG | CNN [GeLSTM | A-LSTM
vehicle 57.2 | 58.78 | 63.38 | 63.93 | 53.65 | 65.68 | 63.26 | 66.45 65.66 68.04
vowel 92.05 | 66.88 | 79.16 | 90.71 | 55.78 | 74.42 | 86 | 93.12 93.15 91.06
breast cancer wisc. | 96.59 | 97.47 | 92.41 | 95.23 | 97.03 | 97.01 | 95.98 | 96.15 96.43 96.32
wine 80.5 | 98.32| 91.18 | 97.54 | 97.07 | 98.03 | 96.34 | 96.89 96.84 97.19
banknote authent. 99.86 | 97.96 | 98.39 | 99.23 | 95.67 | 99.81 | 99.39 | 99.94 99.9 99.93
vertebral column 79.06 | 79.29 | 80.29 | 82.97 | 71.67 | 80.25 | 81.93 | 83.67 85.03 85.16
yeast 56.97 | 56.74 | 51.14 | 57.86 | 47.04 | 58.42 | 60.52 | 59.34 57.64 56.73
seeds 93.24 [93.29 | 90.29 | 91.61 | 91.48 | 91.48 | 92.9 | 92.66 94.79 94.85

climate model sim. | 92.76 | 95.33 | 90.77 | 92.39 | 93.89 | 95.24 | 94.53 | 93.4 94.09 94.68
glass identification | 65.48 | 57.51 | 67.21 | 74.51 | 40.16 | 58.43 | 73.75 | 68.45 66.13 67.55

plrx 62.1 | 71.44 | 56.78 | 66.98 | 71.44 | 71.38 | 60.99 | 70.92 71.44 70.68

pima 73.76 | 76.95 | 70.08 | 73.87 | 70.42 | 76.38 | 75.84 | 75.63 76.22 76.42

iris 95.53 | 96.2 | 95.07 | 94.93 | 95.27 | 96.27 | 95.93 | 96.13 96.07 96.33

wireless indoor local. | 98.42 | 98.01 | 97.22 | 97.96 | 96.57 | 97.62 | 98.08 | 98.01 98.14 98.02
sonar 79.6 | 76.46 | 71.1 | 77.39 | 80.6 | 81.78 | 79.99 | 82.44 82.43 82.06

LSVT voice rehab. 81.41 | 83.86 | 76.22 | 80.73 | 84.23 | 84.58 | 82.24 | 81.54 83.2 83.03
parkinsons 92.15 | 86.85 | 85.6 | 88.62 | 86.24 | 90.36 | 89.96 | 89.55 89.24 89.85
fertility 86.44 | 88.08 | 83.12 | 85.93 | 88.08 | 88.08 | 83.22 | 83.02 86.97 84.45
waveform 82.08 | 86.89 | 75.26 | 82.5 | 86.17 | 86.24 | 85.09 | 84.25 85.25 86.18

leaf 67.29 | 54.98 | 63.43 | 69.47 | 60.72 | 57.63 | 68.45 | 73.12 66.55 71.28

Average Accuracy | 81.62 | 81.06 | 78.9 | 83.22 | 78.16 | 82.45 | 83.22 | 84.23 84.26 84.49

probability values. The CNN deep-learning method contains two convolutional layers of size
[32,16] followed by a max pooling layer and the filter size of each convolutional layer is set to
2. Features extracted by CNN are further fed into a two hidden layer NN of size [32,16] to classify
test data. For the A-LSTM deep-learning model, we take the output of the last layer of the LSTM
as the input of the attention layer, and then the outputs of the attention layer are connected to a
softmax layer to produce the correctly normalized probability values.

The results are reported in Table 5, where CNN, GeLSTM, and A-LSTM mean using CNN, LSTM,
and attention-based LSTM as the deep learning model, respectively.

Our experiments and comparison on 20 generic datasets show that the performance gain of A-
LSTM (84.49%) is marginally better than that of GeLSTM (84.26%), and LSTM (84.26%) also slightly
outperforms CNN (84.23%). This is consistent with the literature which shows that attention mech-
anism can help improve the performance of the LSTM model.

Meanwhile, the results show that LSTM and its subtypes are slightly more suitable to deal with
the “synthetic sentence” compared to the CNN, partially because that CNNs are more suitable
for images which have spatial correlation, whereas LSTM’s recurrent model is more effective for
sequences. Because GeLSTM converts original instances as “synthetic sentences,” it makes GeL-
STM'’s outputs more suitable for LSTM based deep-learning modules. Meanwhile, because LSTM
and its subtypes (including attention-based LSTM) belong to the same type of deep-learning model,
and our research focuses on investigating whether the “synthetic sentence” can be utilized by such
type of deep-learning model to improve the classification performance, we mainly utilize the LSTM
as the deep-learning model for validation.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

13:20 H. Han et al.

| shapelet based i i
i i Time Series i | N A Loccoolioo o |
L

\u\ | ,H\ ‘\l \\‘

\\ “
\I‘\H WH“\‘

\'V\‘

il \ |
M“\ W. “‘

beetle

f” y !Ml'} M

Fig.7. Comparisons between original time mean features vs. LSTM features learned from GeLSTM converted
sentence for the instances from different classes (“beetle” vs. “fly”). The data on time series curve is obtained
from UCR time series archive [14] which are mapped from the outline of the image, and then extract the
64-dimensional mean features from the time series to obtain the data on the mean feature curve. After that,
by applying GeLSTM method to convert mean represented instances, data on the synthetic sequence curve
is available, which are further fed into the LSTM model to learn LSTM feature. Finally, we employ the t-SNE
tool [52] to make a comparison between the original mean features and the LSTM learned features to further
explain the benefits of our proposed GeLSTM method.

The results from Table 5 show that the performance of the methods of using LSTM and attention-
based LSTM after GeLSTM are much higher than those of the conventional machine methods.
Specifically, the accuracy gains of CNN are 2.61%, 3.17%, 5.33%, 1.01%, 6.07%, 1.78%, and 1.01%
accordingly. The performance gains of GeLSTM are 2.64%, 3.2%, 5.36%, 1.04%, 6.1%, 1.81%, and
1.04%, and the accuracy gains of A-LSTM are 2.87%, 3.43%, 5.69%, 1.27%, 6.33%, 2.04%, and 1.27%,
respectively. This means that converting each instance from the generic dataset into a synthetic
sentence format by utilizing the GeLSTM, and then apply LSTM or other deep-learning models to
the converted data, will improve the classification accuracy for generic dataset.

5.6 GeLSTM Learning Case Study

In this subsection, we comparatively study the original features and features learned from GeLSTM
converted synthetic sentence. This study aims to describe what can be learned when feeding the
converted synthetic sentence into the LSTM model.

In our experiments, we use two time series datasets (i.e., Beetle/Fly and Bird/Chicken) from the
UCR time series archive [14], and extract 64-dimensional mean features as original features to
represent each time series. After that, the synthetic sequence represented instances are obtained
by applying GeLSTM method to convert mean represented instances, and are fed into the LSTM
model to learn LSTM feature. Because these two datasets are mapped from the outlines of Beetle/
Fly and Bird/Chicken images accordingly, we report the corresponding images, in the article, to
visualize the algorithm performance. It is understandable that mean features might not be the best
features to represent time series data. However, our goal in this study is to describe how GeLSTM
converted synthetic sentence works for the LSTM model instead of finding effective features for
better classification. Hence, we utilize mean features as the original feature in the case study.

The workflow of the case study is shown in Figures 7-10. First, the mean features are extracted
from time series which are mapped from the outlines of the corresponding images. Next, the mean

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

Generalizing Long Short-Term Memory Network for Deep Learning from Generic Data 13:21

i shapelet hased ! i
L_._™ag . | Time Series i [I nbiminp b L Tt A Lo o i

NN \i i
>\ \ / J |- ‘r‘l‘w‘i '|‘ \{ M i J\w‘\ ! | ‘\H’H‘W “‘“h“w‘

Fig.8. Comparisons between original time mean features vs. LSTM features learned from GeLSTM converted
sentence for the instances from different classes (“bird” vs. “chicken’).

CTTn T i shapelet based v
1 . M
L._._]?fe.t_l?_._.j :_ Time Series i [N A LoDl i

i ‘\;\""‘j‘,‘w"‘,‘ N -Gz Il
pEE O =l)

Fig.9. Comparisons between original time mean features vs. LSTM features learned from GeLSTM converted
sentences for the instances without image rotation from the same classes (“beetle”).

features are fed into our proposed GeLSTM method to output a synthetic sentence. Then, we input
the synthetic sentence into an LSTM model to learn new features fit for classification. Finally, the
t-SNE tool [52] is utilized to visualize the difference between original features and LSTM-learned
features (For LSTM model, we use two LSTM layers with 64 hidden nodes).

Figures 7 and 8 show that the original mean features are rather less discriminative to differentiate
“Beetle” vs. “Fly” in Figure 7 and “Bird” vs. “Chicken” in Figure 8, noticing high similarity in mean
feature curve. The reason is that the outline of Beetle (Bird) image is similar to that of Fly (Chicken)
image. The synthetic sentence, converted by our proposed GeLSTM method, illustrates a better
distinctiveness of “Beetle” vs. “Fly” in Figure 7 and “Bird” vs. “Chicken” in Figure 8. Then, the LSTM
utilizes this difference to learn discriminative features to classify “Beetle” vs. “Fly” in Figure 7 and
“Bird” vs. “Chicken” in Figure 8, noticing high discrimination in LSTM feature curve. In other
words, the results from Figures 7 and 8 show that, compared to the original mean feature, the
features learned by LSTM is more discriminative to differentiate “Beetle” vs. “Fly” in Figure 7 and
“Bird” vs. “Chicken” in Figure 8.

Figures 9-12 show that, the mean feature of instances in the same class vary from each other.
After applying GeLSTM to convert each mean represented instance into synthetic sentence, the
synthetic sentence shows the similarity among instances in the same class. This is further captured

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

13:22 H. Han et al.

i shapelet hased ' !
Lo _5 ' Time Series i [It bl L Tt AR Looooio oo i

Ml m r

Yﬁ ‘h \ T 1 = “m
WV TV *'\“'wh I 2l ﬂ,_““
L. A Lk ‘l“\l

i HI; \m

‘-»;; \W =3\ =1 1’“ “w.‘w I 2l M \‘HMM\
iV B S VA L 1 WY

Fig. 10. Comparisons between original time mean features vs. LSTM features learned from GeLSTM con-
verted sentences for same class images with rotation (“bird”).

1
! : shapelet based ! Mean feature i ! Synthetlc sequence ! LSTM feature '

R A Time Series i L S A A Lol !
L

\ M"I | u“\

=
- h H‘l b“\‘u
e

l
|

[L v‘,
e f| \\""‘\H“ \‘\“‘i

\M I \‘\"

\ \l H’ Mm\

\I\‘

Fig. 11. Comparisons between original time mean features vs. LSTM features learned from GeLSTM con-
verted sentence for same class images with rotation (“fly”).

by the LSTM model to learn the similarity among instances in the same class. More specifically,
Figures 9 and 10 compare the original time mean feature vs. LSTM feature in the same class without
image rotation for “beetle” and “bird” accordingly. Through the mean features are different for the
same class, the LSTM model learns the similarity from the synthetic sentence represented instance
converted by our GeLSTM method (noting the high similarity in LSTM feature curve). In addition,
Figures 11 and 12 compare the original time mean feature vs. LSTM feature in the same class with
image rotation for “fly” and “chicken” accordingly. The synthetic sentence represented instance
converted by our GeLSTM method can still preserve the similarity in the same class, which is
further captured by the LSTM model to learn the similarity in the same class.

Figures 13 and 14 illustrate the feature representation learning results of original mean features
and the GeLSTM converted features for Beetle/Fly and Bird/Chicken, respectively, by utilizing
the t—SNE tool. The results show that LSTM features have a relatively better discrimination
capability, than mean features, to separate two types of samples. This indicates that GeLSTM
converted features are more suitable to the LSTM for classification, compared to the original mean
features.

Table 6 compare the GeLSTM to different machine-learning methods for “Beetle vs. Fly” and
“Bird wvs. Chicken” classification tasks. Compared to KNN, SVM, DT, RF, NN-1, and NN-2, the
performance gains of GeLSTM are 40%, 10%, 25%, 25%, 10%, and 5% for “Beetle vs. Fly” classification
task, and 35%, 25%, 5%, 20%, 20%, and 5% for “Bird vs. Chicken” classification task.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

Generalizing Long Short-Term Memory Network for Deep Learning from Generic Data 13:23

i shapelet based i i i
i Time Series ; (I L A Locicimm i lmo, i

NETNE M ml f-z=- 3l

lm Ll

,\\

- - I ‘;1‘”‘“\“»'\.‘ ‘ML

l

'l
Fig. 12. Comparisons between original time mean features vs. LSTM features learned from GeLSTM con-
verted sentences for same class images with rotation (“chicken”). The results show that mean features are
sensitive to rotation, whereas LSTM features learned from GeLSTM converged sentences is robust to the
rotation, and both images show similar LSTM features.

il ‘Ml

N \“w‘ w“w
W

Mean feature LSTM feature
400 + + fly . + fly
. « beetle 150 o beetle
300
100
200 +
. s0d *+
100 + . + . .
+
[+ + [
+
+
-100
-50 . +
+
-200 * *
-100
-300 .
-150
-400 -300 -200 -100 0 100 200 300 400 -150 -100 -50 0 50 100

Fig. 13. Comparisons between original features (mean) vs. GeLSTM learned LSTM features (“Beetle” vs.
“Fly”). Instances are color-and-shape coded, according to their labels. The plot on the left panel shows the
instances with respect to the original features, and the plot on the right panel shows the GeLSTM learned
LSTM features. Both plots are produced using t—SNE feature visualization tool [52].

Mean feature LSTM feature
+ + chicken 100 . + + chicken
40 . « bird « bird
20 *
* 50
0 +
+ +
* +
20 0
+ +
+
—40 + +
50 +
-60
+
-80
. -100
+
-100
—60 —40 -20 0 20 40 60 80 -100 =50 0 50 100

Fig. 14. Comparisons between original features (mean) vs. GeLSTM learned LSTM features (“Bird” vs
“Chicken”). Similar to Figure 13, both plots are produced using t—SNE feature visualization tool.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

13:24 H. Han et al.

Table 6. Classification Accuracy Comparisons between Different Learning Methods
on the “Beetle vs. Fly” and “Bird vs. Chicken” Classification Tasks
(the Results are Reported in Percentage)

Classification Tasks k-NN SVM DT RF NN-1 NN-2 GeLSTM
Beetle vs. Fly 55 85 70 70 85 90 95
Bird vs. Chicken 50 60 80 60 65 80 85

6 CONCLUSION

In this article, we proposed to generalize LSTM to generic machine-learning tasks where data are
represented in instance-feature tabular format. Our goal is to convert each instance into an LSTM
compatible three-dimensional tensor representation, such that LSTM can be directly applied to the
converted data to learn new features to improve classification accuracy, compared to the classifier
learned from the original instances. To this end, we proposed to reorder features of each instance
as a synthetic sentence format with sequential correlations. The horizontal and vertical feature al-
iment creates maximized feature correlations, through which LSTM can learn new feature values.
Experiments and comparisons on 20 generic datasets confirm that generalizing LSTM to generic
datasets can improve the classification accuracy of conventional machine learning methods, in-
cluding random forests, XGBoost, K-NN, and the like.

APPENDICES
A THE PROOF OF EQUATION (5)(a)
PrRooOF. Since w; = [Wi1,....Wik,....,Wim]and wi_y = [Wi—1,1, ..., Wi—1,ks . - ., Wi—1,m] are not

genuine words, we cannot derive p(w;|w;_1) using text corpus. Alternatively, w;_; can be regarded
as the received codewords considering the discrete memoryless channel (DMC) in the wireless
communication system, and w; € C can be regarded as the likely transmitted codewords where C
stands for the available codewords set. In addition, we use wy = [w; 1,...,Wr ks..., Wr.m] € C to
denote the transmitted codewords. w; , wi_; x and w; i are the k' h codeword in codewords w;,
w;_1 and w; accordingly. The relationship between these three kinds of codewords is shown in Fig-
ure 15. Specifically, the transmitter, such as the smartphone, generates the transmitted codewords
w; € C. Then, w; passes through the DMC, and DMC outputs the received codewords w;_;. For
such system, by utilizing the likely transmitted codeword w; and the received codeword w;_ f,
the maximum a posterior probability (MAP) decoder estimates the k" transmitted codeword (the
estimated result is denoted by w;, «)- We can utilize MAP channel decoding rule to justify Equa-
tion (5)(a).

Transmitted codewords Received codewords
W =W W, s W] e :[w,.,,‘,,...,WHV,(,...,mil’T]
L |
Vi Wik k=12,3,m
MAP [«

W;,I: =argmax p(w,, | w,,)
Wy eC

Fig. 15. A conceptual view of communication system considering the discrete memoryless channel (DMC)
and the maximum a posterior probability (MAP) decoder: The transmitted codewords w; € C passes through
the DMC, and DMC outputs the received codewords w;—1. By utilizing the likely transmitted codeword w; i
and the received codeword w;_ i, the MAP decoder estimates the kth transmitted codeword (the estimated
result is denoted by W;,k)'

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

Generalizing Long Short-Term Memory Network for Deep Learning from Generic Data 13:25

By utilizing the feature of the DMC, Equation (5) can be rewritten as [3]

arg max p(wilwi_1)
wi=[Wi 1, Wi 2, ... Wi m]
= arg max P(Wit, Wiy oo s Wi Wisi,1, Wic1,2, -+ - Wis1m)
wi=[Wi 1, Wi 2, ..o Wi m] (12)

m
= arg max np(w,-,k|w,~_1,k).
Wi=[Wi 1, Wi 2, Wi m] k=1
Given the received codeword w;_; k, the MAP decoding rule regards the most likely transmitted

codeword w; g, as the estimated codeword w} ,, as shown in Figure 15 [3].

W, = argmax p(wi k| wi-1,k) (13)
Wik eC

Then, based on the Bayesian formula p(w;_; x|w; x) = pwik l‘;"("i; _k])f;(wi‘l’k)

transmitted with the same probability, the MAP p(w; r|w;_1 k) is equivalent to the maximum like-
lihood (MLD) p(wj_1, kWi k), i.e.,

, if the codewords are

max p(w; kw1 k) = max p(wi_y k|w;) (14)

where the symbol “=” means equivalent. Our feature reordering mechanism satisfies this con-
dition in the sense that the feature reordering mechanism ensures the fairness between features.
Next, considering the white noise o2, the MLD can be written as [3]

(d(wi1,k» Wi,k))
exp | ——————

o2

(15)

(Wi lWie) = —
PWi—1,kIWik) =

V2o
where d(w; i, wi_1 k) stands for the Euclidean distance between w; y and w;_1 .

We can see from Equation (15) that max p(w;_1 k|w; k) is equivalent to finding the minimum dis-
tance between w; r and w;_q (i.e, max p(w;_q k|w; r) = min d(w;_q k, Wi k)). Due to the fact that
“max p(wi k|wi_1,x) = max p(wi_1,k|wi k)", we have “max p(w; r|wi_1 k) = min d(wj_1 x, wi)™
Furthermore, the smaller the distance between w;; and w;_;k, the stronger the correla-
tion between w;; and w;_yx (ie, min d(w;_i, wir) = max M., , w,,) Hence, we have
“max p(wi k[wi—1,k) = max My, w, . - Then, Equation (12) can be rewritten as

arg max p(wilwi—1)
wi=[Wi 1, Wiz, .o Wi m]
= arg max P(Wi1, Wig,s o s Wi | Wis1,1, Wis1,25 -« s Wit m)
Wi=[Wi 1, Wi 2,0 Wi, m]
_ (16)
= arg max

Wi=[Wi 1, Wi 2, s Wi, m]

P(Wiklwiz1 k)

=~ arg max
Wi=[Wi 1, Wi 2,0 Wi, m]

MWi—l,k»Wi,k’

T

o~
1l

1

Hence, Equation (5)(a) holds. O

B AN EXAMPLE OF EQUATION (5)(a)

Example. We use the channel decoding as an example to justify assumption that
“max p(w; k|wi_1,x) = max My, , w, . The details are described as follows.

We assume that the available transmitted codewords set is C = [Cy,Cy,C3] where C; =
[100000111000], C, = [101100101000], and C; = [100000100000]. For the k" codeword, we

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

13:26 H. Han et al.

Table 7. The Euclidean Distance between w;_; j and w; . and
their Correlation Coefficient for the Toy Example

Likely transmitted codeword | d(w;_1k, Wik) | M, | towis
wik =C; 1.414 0.6325
Wik = Cs 1.732 0.5292
Wik = Cs 2 0.4472

assume that the received codeword is w;_; = [100000100000], and the transmitted codeword is
w; k= C3 = [100000100000].

Given the received codeword w;_; i, the MAP decoder estimates the transmitted codeword,
according to w;’k =argmax,, cc P(wi klWi—1.k)-

Note that max p(w; k|w;_1,k) is equivalent to finding the minimum Euclidean distance between
wi,k and w;_q r. The Euclidean distance between w;_; r and w; i is reported in Table 7. In order to
observe the relationship between p(w; x|w;-1x) and M,,_, , w, ., We also calculate their correla-
tion coefficient in Table 7.

We can see from Table 7 that a lower d(w;_y i, w;) value results in a relatively higher
My, .. - Hence, based on “max p(w; x|w;_1 k) = mind(w;_y &, wi k)", we can derive that the
higher the conditional probability value p(w; |w;_1 k), the higher the correlation between them

is. In other words, we have “max p(w; x|wi-1,x) = max My, w, - o

ACKNOWLEDGMENT

This research is supported by the US National Science Foundation (NSF) through Grant Nos. IIS-
1763452 and CNS-1828181.

REFERENCES

[1] M. Abadi, A. Agarwal, and P. Barham. 2015. Tensorflow: Large-scale machine learning on heterogeneous systems. 1
(2015). Softwareavailablefromtensorflow.org.
[2] A. Adam Pauls and D. Klein. 2011. Faster and smaller n-gram language models. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics. 258-267.
[3] S. Al-Semari, F. Alajaji, and T. E. Fuja. 1999. Sequence MAP decoding of trellis codes for Gaussian and Rayleigh
channels. IEEE Transactions on Vehicular Technology 48, 4 (1999), 1130-1140.
[4] K. G. Anil. 2006. On optimum choice of k in nearest neighbour classification. Computational Statistics and Data
Analysis 50, 11 (2006), 3113-3123.
[5] Y.Bengio, A. Courville, and P. Vincent. 2013. Representation learning: A review and new perspectives. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 35, 8 (2013), 1798-1828.
[6] Y. Bengio, O. Delalleau, and N. Le Roux. 2005. The curse of highly variable functions for local kernel machines. In
Proceedings of the Advances in Neural Information Processing Systems, British Columbia, Canada. MIT Press, 107-114.
[7] Y.Bengio and P. Simard. 1994. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions
on Neural Networks 5, 2 (1994), 157-166.
[8] Mairead L. Bermingham, Ricardo Pong-Wong, Athina Spiliopoulou, et al. 2015. Application of high-dimensional fea-
ture selection: Evaluation for genomic prediction in man. Scientific Reports 5, 10312 (2015).
[9] A.L.BlumandP.Langley. 1997. Selection of relevant features and examples in machine learning. Artificial Intelligence
97, 1-2 (1997), 245-271.
[10] C.E.Brodley and P. E. Utgoff. 1995. Multivariate decision trees. Machine Learning 19, 1 (1995), 45-77.
[11] Xiaojun Chang, Feiping Nie, Yi Yang, Chengqi Zhang, and Heng Huang. 2016. Convex sparse PCA for unsupervised
feature learning. ACM Transactions on Knowledge Discovery from Data 11, 1 (2016), 3:1-3:16.
[12] L. Changki and L. G. Geunbae. 2006. Information gain and divergence-based feature selection for machine learning-
based text categorization. Information Processing & Management 42, 1 (2006), 155-165.
[13] T. Chen and C. Guestrin. 2016. XGBoost: A scalable tree boosting System. In Proceedings of the Conference on Knowl-
edge Discovery and Data Mining.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

http://www.Softwareavailablefromtensorflow.org

Generalizing Long Short-Term Memory Network for Deep Learning from Generic Data 13:27

(14]
[15]
(16]

(17]
(18]

Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, and Gustavo Batista.
2015. The UCR Time Series Classification Archive. Retrieved from www.cs.ucr.edu/~eamonn/time_series_data/.
Dan Ciresan, U. Meier, and J. Schmidhuber. 2012. Multi-column deep neural networks for image classification. In
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. 3642-3649.

C. M. Bishop. 1995. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, UK.

C. Cortes and V. Vapnik. 1995. Support-vector networks. Machine Learning 20, 3 (1995), 273-297.

R. A. Dunne and N. A. Campbel. 1997. On the pairing Of the softmax activation and cross entropy penalty func-
tions and the derivation of the softmax activation function. In Proceedings of the 8th Australian Conference on Neural
Networks. 181-185.

M. Federico and M. Cettolo. 2007. Efficient handling of n-gram language models for statistical machine translation.
In Proceedings of the Second Workshop on Statistical Machine Translation. 88—95.

F. Gers, N. Schraudolph, and J. Schmidhuber. 2002. Learning precise timing with LSTM recurrent networks. Journal
of Machine Learning Research 3, 1 (2002), 115-143.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. The MIT Press, Cambridge, MA.

A. Graves, A. Mohamed, and G. Hinton. 2013. Speech recognition with deep recurrent neural networks. In Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing. 6645-6649.

A. Graves, A. R. Mohamed, and G. Hinton. 2013. Speech recognition with deep recurrent neural networks. In Proceed-
ings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada. 6645-6649.
A. Graves and J. Schmidhuber. 2005. Framewise phoneme classification with bidirectional Istm and other neural
network architectures. Neural Networks 18, 5 (2005), 602—610.

I. Guyon and A. Elisseeff. 2003. An introduction to variable and feature selection. Journal of Machine Learning Research
3, 6 (2003), 1157-1182.

M. F. A. Hady and F. Schwenker. 2013. Semi-supervised Learning,in Handbook on Neural Information Processing.
Springer, Berlin, Germany.

H. Han, Y. Li, and X. Zhu. 2019. Convolutional neural network learning for generic data classification. Information
Sciences 477 (2019), 448-465.

H. Han, X. Zhu, and Y. Li. 2018. EDLT: Enabling deep learning for generic data classification. In Proceedings of the
IEEE International Conference on Data Mining.

J. Hauke and T. Kossowski. 2011. Comparison of values of Pearson’s and Spearman’s correlation coefficient on the
same sets of data. Quaestiones Geographicae 31, 2 (2011), 87-93.

S. Hochreiter and J. Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 3 (1997), 1735-1780.

Kurt Hornik. 1991. Approximation capabilities of multilayer feedforward networks. Neural Networks 4, 2 (1991), 251-
257.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An Introduction to Statistical Learning.
Springer.

Adebayo Kolawole John, Luigi Di Caro, and Guido Boella. 2016. ImageNet classification with deep convolutional
neural networks. In Proceedings of the 12th International Conference on Semantic Systems.

D. Kingma and J. Ba. 2015. Adam: A method for stochastic optimization. In Proceedings of the International Conference
on Learning Representations.

R. Kohavi and G. H. John. 1997. Wrappers for feature subset selection. Artificial Intelligent 97, 12 (1997), 273-324.
Alex Krizhevsky, Ilya Sutskever, and Geoffry Hinton. 2012. ImageNet classification with deep convolutional neural
networks. In Proceedings of the 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe, Nevada.
L. Ladla and T. Deepa. 2011. Feature selection methods and algorithms. International Journal on Computer Science and
Engineering 3, 5 (2011), 1787-1797.

P. Langley. 1994. Selection of relevant features in machine learning. In Proceedings of the AAAI Fall Symposium on
Relevance, New Orleans, Louisiana. 140—144.

Y. LeCun, G. Bengio, and Y. Hinton. 2015. Deep learning. Nature 521 (2015), 436—444.

Y. LeCun, G. Bengio, and Y. Hinton. 2019. Fast video frame correlation analysis for vehicular networks by using
CVS-CNN. [EEE Transactions on Vehicular Technology 68, 7 (2019), 6286—6296.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. 1990. Handwritten digit
recognition with a back-propagation network. In Proceedings of the Advances in Neural Information Processing Systems,
Vancouver, Canada. MIT Press, 396—404.

Huan Liu and Hiroshi Motoda. 1998. Feature Extraction, Construction and Selection: A Data Mining Perspective. Kluwer
Academic Publishers.

H. Liu and R. Setiono. 1995. Chi2: Feature selection and discretization of numeric attributes. In Proceedings of the 7th
IEEE International Conference on Tools with Artificial Intelligence.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

www.cs.ucr.edu/'334eamonn/time_series_data/

13:28 H. Han et al.

[44]
[45]

[46]

(47]
(48]
[49]
[50]
[51]
[52]
(53]
[54]
[55]
[56]
[57]
(58]

[59]

D. Lunga, S. Prasad, M. M. Crawford, and O. Ersoy. 2014. Manifold learning-based feature extraction for classification
of hyperspectral data: A review of advances in manifold learning. IEEE Signal Processing Magazine 31, 1 (2014), 55-66.
Nasser M. Nasrabadi. 2007. Pattern recognition and machine learning. Journal of Electronic Imaging 16, 4 (2007),
049901.

D. Newman, S. Hettich, C. Blake, and C. Merz. 1998. UCI repository of machine learning databases, Irvine. Univer-
sity of California, Department of Information and Computer Science, CA. Retrieved from http://www.ics.uci.edu/~
mlearn/MLRepository.html.

F. Pedregosa, G. Varoquaux, A. Gramfort, and V. Michel. 2011. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research 12, 10 (2011), 2825-2830.

V. Rokhlin, A. Szlam, and M. Tygert. 2009. A randomized algorithm for principal component analysis. SIAM Journal
on Matrix Analysis and Applications 31, 3 (2009), 1100-1124.

H. Sak et al. 2014. Long short-term memory recurrent neural network architectures for large scale acoustic modeling.
In Proceedings of the Annual Conference of the International Speech Communication Association. 338-342.

J. Schmidhuber. 2015. Deep learning in neural networks: An overview. Neural Networks 61, 1 (2015), 85-117.

B. Scholkopft and K.-R. Mullert. 1999. Neural Networks for Signal Processing. Springer.

L. J. P. van der Maaten and G. E. Hinton. 2008. Visualizing High-dimensional data using t-SNE. Journal of Machine
Learning Research 9, 12 (2008), 2579-2605.

Y. Wang, M. Huang, L. Zhao, and X. Zhu. 2016. Attention-based Istm for aspect-level sentiment classification. In
Proceedings of the Conference on Conference on Empirical Methods in Natural Language Processing.

Man Wu, Shirui Pan, Xingquan Zhu, Chuan Zhou, and Lei Pan. 2019. Domain-adversarial graph neural networks for
text classification. In Proceedings of the IEEE International Conference on Data Mining.

Y. Wu, S. Hio, T. Mei, and N. Yu. 2017. Large-scale online feature selection for ultra-high dimensional sparse data.
ACM Transactions on Knowledge Discovery from Data 11, 4 (2017), 48:1-48:22.

Kui Yu, Xindong Wu, Wei Ding, and Jian Pei. 2016. Scalable and accurate online feature selection for big data. ACM
Transactions on Knowledge Discovery from Data 11, 2 (2016), 16:1-16:39.

D. Zhang, J. Wang, F. Wang, and C. Zhang. 2008. Semi-supervised classification with universum. In Proceedings of the
SIAM International Conference on Data Mining, San Diego, CA. 323-333.

Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. 2018. Network representation learning: A survey. IEEE
Transactions on Big Data (2018). DOI : https://doi.org/10.1109/TBDATA.2018.2850013

X. Zhu. 2011. Cross-domain semi-supervised learning using feature formulation. IEEE Transactions on Systems, Man,
and Cybernetics, Part B 41, 6 (2011), 1627-1638.

Received December 2018; revised August 2019; accepted October 2019

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 13. Publication date: February 2020.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
https://doi.org/10.1109/TBDATA.2018.2850013

