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Shear sheltering is defined as the effect of the mean flow velocity profile in a boundary 
layer on the turbulence caused by an imposed gust. It has been studied extensively in 
applications involving boundary layer transition, where the primary concern is flow 
instabilities that are enhanced by turbulence in the flow outside the boundary layer. In 
aeroacoustic applications turbulent boundary layers interacting with blade trailing edges or 
roughness elements are an important source of sound, and the effect of shear sheltering on 
these noise sources has not been studied in detail.  Since the surface pressure spectrum below 
the boundary layer is the primary driver of trailing edge and roughness noise, we will consider 
the effect that shear sheltering has on the surface pressure spectrum below a boundary layer. 
We will model the incoming turbulence as vortex sheets at specified heights above the surface 
and show, using classical boundary layer profiles and approximations to numerical results, 
how the mean flow velocity can be manipulated to alter the surface pressure spectrum and 
hence the radiated trailing edge noise. 

I. Introduction 
 Trailing edge noise occurs when turbulent flows within a boundary layer pass over a sharp trailing edge and is 
important in many applications, such as wind turbines, fan noise and airframe noise. Recent studies have demonstrated 
that trailing edge noise attenuation is possible using trailing edge devices such as those described by Clark et al. 
(2017). Numerical calculations related to the Clark et al experiment, such as the studies from Gonzalez et al. (2019) 
or Shi and Lee (2018), have shown that devices such as those used in Clark’s experiments have a large impact on the 
mean velocity profile next to the surface. We will demonstrate in this paper that the mean velocity profile can be 
manipulated to reduce the surface pressure fluctuations at certain frequencies beneath a turbulent boundary layer, and 
hence reduce the associated radiated noise from trailing edges or surface roughness elements. 

 In the following sections we will first review past canopy flow studies that have shown that placing fine structures 
underneath the boundary layer of an incoming flow have an important effect on its mean velocity profile. We will 
then review the concept of shear sheltering and we will show that by imposing the condition that the velocity 
fluctuations for a fully developed turbulent boundary layer are stationary in time, and homogeneous in the streamwise 
and spanwise directions, the solutions to the Orr-Sommerfeld (OS) equation are effectively driven by a distribution of 
uncorrelated vortex sheets. Using this approach, we then use the solution to the OS equation to relate the surface 
pressure spectrum to a vorticity wavenumber spectrum and the mean flow velocity profile. The effect of shear 
sheltering can then be demonstrated using classical boundary layer profiles as well as an approximation of the modified 
boundary layer profiles that were calculated by Gonzalez et al (2019) and compare their pressure fluctuations against 
the pressure fluctuations from a linear mean velocity profile showing regions in the flow of high sensitivity and regions 
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 In Amiet’s model the surface pressure was taken to be the superposition of waves with the time and space 
dependence exp(-it+ik1x1+ik3x3) and it is shown in Glegg and Devenport (2017), section 15.2, that the far field sound 
in the plane normal to the span is determined solely by the wavenumber component k3=0. Since this is the direction 
of maximum sound radiation it follows that, in order to study trailing edge noise, we can simply consider the surface 
pressure fluctuation being of the type exp(-it+ik1x1). Therefore, we can model the flow as two dimensional.  To 
verify that this argument is valid, we consider the Navier Stokes equations for a flow that has an unsteady velocity 

1 1i t ik x
iu e − + and a mean flow U(x2) in the streamwise direction x1. If the mean flow terms are subtracted, the momentum 

equations yield  
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          (1) 

where a prime represents a differentiation with respect to x2, p is the pressure,  is the mean density,   is the kinematic 
viscosity and /oD Dt is the convective derivative linearized about the mean flow and for the harmonic gust defined 
above, yields 1 2 1 2/ ( ) ( ( ) )oD Dt i ik U y ik U y c − + = − ,where c=k1 is the phase speed of the gust. The terms on the 
right side of these equations, qi, represent the non-linear terms and in linearized models these are set to zero. From the 
results in Eq. (1), we can state that the pressure fluctuations are only dependent on the spanwise unsteady velocity of 
the flow through the non linear terms. Therefore, if we ignore the nonlinear terms, a two dimensional model for the 
surface pressure is valid, even if the spanwise unsteady velocity is not zero. 

B. Vorticity and Vortex Sheets 
For the harmonic gust defined above, the continuity equation yields 

1 1 2 0ik u u + =  
It follows from this that the unsteady velocity components and the spanwise vorticity are completely described by 

a stream function  defined such that 

( )2
1 2 1 3 1                      u u ik k     = = − = − −           (2) 

and the vorticity equation yields 

( )2
1 3 2 3 1 3 3( )ik U c u U k w   − − − − =            (3) 

where the non-linear terms have been compacted to w3.  
In the linearized form of the vorticity equation we ignore both the viscous and non linear terms. This approximation 

is valid for high Reynolds number flows, for which the unsteady velocity u is small compared to the mean velocity. 
However, this approximation breaks down close to the wall and at the critical layer where the mean flow speed matches 
the phase speed so U=c. 

Therefore, in the critical layer at a height yc above the wall, we will model the non linear term using a vortex sheet 
located just above yc at x2=yc+d, where d tends to zero. Since the layer is very thin, it will be modeled as a vortex 
sheet of strength ( )( )2c cx y d − + that represents the viscous and non linear terms in Eq. (3) in the limit that d tends 
to zero. This disturbance, which drives the unsteadiness in the rest of the boundary layer at this frequency and 
wavenumber, is convected at the local flow speed that is equal to the phase speed 1/ k c = , and so is convected 
without amplification or distortion by the mean shear. 

C. The Orr Sommerfeld Equation and its solution 
To find a solution for the unsteady flow of an arbitrary mean flow profile we must eliminate the vorticity from Eq. 

(3) making use of the stream function, defined in Eq. (2) and replacing the vorticity and velocity terms. This leads to 

the well known Orr-Sommerfeld equation  

( ) ( )2 2 4
2 1 2 1 1 3

1

( ( ) ) '' ( ) '''' 2 ''U x c k U x k k w
ik


     − − − = − + +       (4) 

D
ow

nl
oa

de
d 

by
 S

te
w

ar
t G

le
gg

 o
n 

Ju
ne

 2
2,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

6.
20

20
-2

51
5 



4 
 

In the high Reynolds number limit =0, so we can ignore the viscous terms, and if we assume the non linear terms 

w3 are modeled by the vortex sheet, so ( ) ( )3 2c cw U c x y= −  − , obtaining the inviscid form of this equation defined 

as, 

( )2
1 2c c

U'''' k x y
U c

  
 

− + =  − 
− 

                                                        (5) 

where yc is the vortex sheet height in the limit that d tends to zero. 
If we require the velocity to tend to zero at x2=∞ and u2=0 on x2=0, the solutions to this inviscid form of the OS 

equation are given by the Green’s function 
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                                                    (6)    

where i is the inner solution that satisfies the homogeneous and inviscid form of the OS equation and the boundary 
condition ( )0 0i = . The function ( )2o x  is the outer solution and W is the Wronskian defined as

( )2 i o o iW x ' '  = −  which is a constant . The outer solution ( )2o x matches the boundary condition as 2x → . 

If ( ) 0U ''  → , this requires that 1 2k x
o Ae − or 1o o' k = −  as 2x → . 

The homogeneous solutions i  and o are solutions to  

2
1 0i ,o i ,o

U '''' k
U c

 
 

− + = 
− 

                                             (7) 

This equation has a singularity at cy where ( )cU y c= and the two solutions in the vicinity of the singularity are 
known as the Tollmien’s solutions ,as shown by Drazin and Reid (1981), and which are given by the expansion in 
powers of ( )2 cx y−  as linear combinations of the two functions 
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                                   (8) 

where ( )2 cx y = − and c c cU ',U '',U '''  are derivatives of the velocity profile at 2 cx y= . 
If the radius of convergence for this expansion extends to 2 0x = , the inner solution must yield 

( ) ( ) ( ) ( )1 2 2 1i c cy y      = − − −                                                                 (9) 
so that the boundary condition is met at the wall.  

For the outer solution, we choose a location  =  where we require 1o o' k = −  and solve 

( ) ( )1 2o    = −                                                (10) 
for the constant  at the outer location, giving 

1 1 1

2 1 2

' k
' k

 

 


 
=

 +
=  

+ 
                                          (11) 

Therefore, we have all the parameters needed to calculate the Greens function defined in Eq. (6) that determines 
the total unsteady velocity of the flow  . 

For the numerical computation, we start by calculating the coefficient 
U ''

U c−
from the OS equation. We then 

compute the first, second and third derivative that are needed for the analytical Tollmien’s solution from Eq. (8). We 
then use the analytical Tollmien’s solution in Eq. (8) for the unsteady velocity in the region close to the vortex sheet 
as the initial conditions for the numerical integration that uses Euler’s method going inwards and outwards from the 
critical layer computing 1  and 2 , and then use Eqs. (9)-(11) to obtain i and o . 
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