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Abstract—With the widespread use of information technologies, information networks are becoming increasingly popular to capture
complex relationships across various disciplines, such as social networks, citation networks, telecommunication networks, and
biological networks. Analyzing these networks sheds light on different aspects of social life such as the structure of societies,
information diffusion, and communication patterns. In reality, however, the large scale of information networks often makes network
analytic tasks computationally expensive or intractable. Network representation learning has been recently proposed as a new learning
paradigm to embed network vertices into a low-dimensional vector space, by preserving network topology structure, vertex content,
and other side information. This facilitates the original network to be easily handled in the new vector space for further analysis. In this
survey, we perform a comprehensive review of the current literature on network representation learning in the data mining and machine
learning field. We propose new taxonomies to categorize and summarize the state-of-the-art network representation learning
techniques according to the underlying learning mechanisms, the network information intended to preserve, as well as the algorithmic
designs and methodologies. We summarize evaluation protocols used for validating network representation learning including
published benchmark datasets, evaluation methods, and open source algorithms. We also perform empirical studies to compare the

performance of representative algorithms on common datasets, and analyze their computational complexity. Finally, we suggest

promising research directions to facilitate future study.

Index Terms—Information networks, graph mining, network representation learning, network embedding

1 INTRODUCTION

NFORMATION networks are becoming ubiquitous across a

large spectrum of real-world applications in forms of
social networks, citation networks, telecommunication net-
works and biological networks, efc. The scale of these net-
works ranges from hundreds to millions or even billions of
vertices [1]. Analyzing information networks plays a crucial
role in a variety of emerging applications across many disci-
plines. For example, in social networks, classifying users into
meaningful social groups is useful for many important tasks,
such as user search, targeted advertising and recommenda-
tions; in communication networks, detecting community
structures can help better understand the rumor spreading
process; in biological networks, inferring interactions
between proteins can facilitate new treatments for diseases.
Nevertheless, efficient analysis of these networks heavily
relies on the ways how networks are represented. Often, a
discrete adjacency matrix is used to represent a network,
which only captures neighboring relationships between ver-
tices. Indeed, this simple representation cannot embody
more complex, higher-order structure relationships, such as
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paths, frequent substructure, etc. As a result, such a
traditional routine often makes many network analytic tasks
computationally expensive and intractable over large-scale
networks. Taking community detection as an example,
most existing algorithms involve calculating the spectral
decomposition of a matrix [2] with at least quadratic time
complexity with respect to the number of vertices. This
computational overhead makes algorithms hard to scale to
large-scale networks with millions of vertices.

Recently, network representation learning (NRL) has
aroused a lot of research interest. NRL aims to learn latent,
low-dimensional representations of network vertices, while
preserving network topology structure, vertex content, and
other side information. After new vertex representations are
learned, network analytic tasks can be easily and efficiently
carried out by applying conventional vector-based machine
learning algorithms to the new representation space. This
obviates the necessity for deriving complex algorithms that
are applied directly on the original network.

Earlier work related to network representation learning
dates back to the early 2000s, when researchers proposed
graph embedding algorithms as part of dimensionality
reduction techniques. Given a set of i.i.d. (independent and
identically distributed) data points as input, graph embed-
ding algorithms first calculate the similarity between pair-
wise data points to construct an affinity graph, e.g., the
k-nearest neighbor graph, and then embed the affinity graph
into a new space having much lower dimensionality. The
idea is to find a low-dimensional manifold structure hidden
in the high-dimensional data geometry reflected by the con-
structed graph, so that connected vertices are kept closer to
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each other in the new embedding space. Isomap [3], Locally
Linear Embedding (LLE) [4] and Laplacian Eigenmap [5] are
examples of algorithms based on this rationale. However,
graph embedding algorithms are designed on ii.d. data
mainly for dimensionality reduction purpose. Most of these
algorithms usually have at least quadratic time complexity
with respect to the number of vertices, so the scalability is a
major issue when they are applied to large-scale networks.

Since 2008, significant research efforts have shifted to the
development of effective and scalable representation learning
techniques that are directly designed for complex informa-
tion networks. Many NRL algorithms, e.g., [6], [7], [8], [9],
have been proposed to embed existing networks, showing
promising performance for various applications. These algo-
rithms embed a network into a latent, low-dimensional space
that preserves structure proximity and attribute affinity, such
that the original vertices of the network can be represented as
low-dimensional vectors. The resulting compact, low-dimen-
sional vector representations can be then taken as features to
any vector-based machine learning algorithms. This paves
the way for a wide range of network analytic tasks to be easily
and efficiently tackled in the new vector space, such as node
classification [10], [11], link prediction [12], [13], clustering [2],
recommendation [14], [15], similarity search [16], and visuali-
zation [17]. Using vector representation to represent complex
networks has now been gradually advanced to many other
domains, such as point-of-interest recommendation in urban
computing [15], and knowledge graph search [18] in knowl-
edge engineering and database systems.

1.1 Challenges

Despite its great potential, network representation learning
is inherently difficult and is confronted with several key
challenges that we summarize as follows.

Structure-Preserving. To learn informative vertex repre-
sentations, network representation learning should preserve
network structure, such that vertices similar/close to each
other in the original structure space should also be repre-
sented similarly in the learned vector space. However, as
stated in [19], [20], the structure-level similarity between
vertices is reflected not only at the local neighborhood struc-
ture but also at the more global community structure.
Therefore, the local and global structure should be simulta-
neously preserved in network representation learning.

Content-Preserving. Besides structure information, verti-
ces of many networks are attached with rich content on
attributes. Vertex attributes not only exert huge impacts on
the forming of networks, but also provide direct evidence to
measure attribute-level similarity between vertices. There-
fore, if properly imported, attribute content can compensate
network structure to render more informative vertex repre-
sentations. However, due to heterogeneity of the two infor-
mation sources, how to effectively leverage vertex attributes
and make them compensate rather than deteriorate network
structure is an open research problem.

Data Sparsity. For many real-world information net-
works, due to the privacy or legal restrictions, the problem
of data sparsity exists in both network structure and vertex
content. At the structure level, only very limited links are
sometimes observed, making it difficult to discover the
structure-level relatedness between vertices that are not
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explicitly connected. At the vertex content level, many val-
ues of vertex attributes are usually missing, which increases
the difficulty of measuring content-level vertex similarity.
Thus, it is challenging for network representation learning
to overcome the data sparsity problem.

Scalability. Real-world networks, social networks in par-
ticular, consist of millions or billions of vertices. The large
scale of the networks challenges not only the traditional net-
work analytic tasks but also the newborn network represen-
tation learning task. Without special concern, learning
vertex representations for large-scale networks with limited
computing resources may cost months of time, which is
practically infeasible, especially for the case involving a
large number of trails for tuning parameters. Therefore, it is
necessary to design NRL algorithms that can learn vertex
representations efficiently and meanwhile guarantee the
effectiveness for large-scale networks.

1.2 Our Contribution

This survey provides a comprehensive up-to-date review of
the state-of-the-art network representation learning techni-
ques, with a focus on the learning of vertex representations.
It covers not only early work on preserving network struc-
ture, but also a new surge of recent studies that incorporate
vertex content and /or vertex labels as auxiliary information
into the learning process of network embedding. By doing
so, we hope to provide a useful guideline for the research
community to better understand (1) new taxonomies of net-
work representation learning methods, (2) the characteris-
tics, uniqueness, and the niche of different types of network
embedding methods, and (3) the resources and future chal-
lenges to stimulate research in the area. In particular, this
survey has four major contributions:

e We propose new taxonomies to categorize existing
network representation learning techniques accord-
ing to the underlying learning mechanisms, the net-
work information intended to preserve, as well as
the algorithmic designs and methodologies. As a
result, this survey provides new angles to better
understand the existing work.

e We provide a detailed and thorough study of the
state-of-the-art network representation learning algo-
rithms. Compared to the existing graph embedding
surveys, we not only review a more comprehensive
set of research work on network representation
learning, but also provide multifaceted algorithmic
perspectives to understand the advantages and dis-
advantages of different algorithms.

e We summarize evaluation protocols used for vali-
dating network representation learning techniques,
including published benchmark datasets, evaluation
methods, and open source algorithms. We also per-
form empirical studies to compare the performance
of representative algorithms, along with a detailed
analysis of computational complexity.

e To foster future research, we suggest six promising
future research directions for network representation
learning, and summarize the limitations of current
research work and propose new research ideas for
each direction.
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TABLE 1
A Summary of Common Notations

G The given information network

\%4 Set of vertices in the given information network

E Set of edges in the given information network

4 Number of vertices

|E| Number of edges

m Number of vertex attributes

d Dimension of learned vertex representations
X ¢ RIVIxm The vertex attribute matrix

Yy Set of vertex labels

Y] Number of vertex labels
Yy e RIVIXTY] The vertex label matrix

1.3 Related Surveys and Differences

A few graph embedding and representation learning related
surveys exist in the recent literature. The first is [21], which
reviews a few representative methods for network represen-
tation learning and visits some key concepts around the
idea of representation learning and its connections to other
related field such as dimensionality reduction, deep learn-
ing, and network science. [22] categorizes representative
network embedding algorithms from a methodology per-
spective. [23] reviews a few representation learning methods
for embedding individual vertices as well as subgraphs,
especially those inspired by deep learning, within an
encoder-decoder framework. Yet, the majority of embedding
algorithms reviewed by these surveys primarily preserve
network structure. Recently, [24], [25] extend to cover work
leveraging other side information, such as vertex attributes
and/or vertex labels, to harness representation learning.

In summary, existing surveys have the following limita-
tions. First, they typically focus on one single taxonomy to
categorize the existing work. None of them provides a multi-
faceted view to analyze the state-of-the-art network represen-
tation learning techniques and to compare their advantages
and disadvantages. Second, existing surveys do not have in-
depth analysis of algorithm complexity and optimization
methods, or they do not provide empirical results to compare
the performance of different algorithms. Third, there is a lack
of summary on available resources, such as publicly available
datasets and open source algorithms, to facilitate future
research. In this work, we provide the most comprehensive
survey to bridge the gap. We believe that this survey will ben-
efit both researchers and practitioners to gain a deep under-
standing of different approaches, and provide rich resources
to foster future research in the field.

1.4 Organization of the Survey

The rest of this survey is organized as follows. In Section 2,
we provide preliminaries and definitions required to under-
stand the problem and the models discussed next. Section 3
proposes new taxonomies to categorize the existing network
representation learning techniques. Sections 4 and 5 review
representative algorithms in two categories, respectively. A
list of successful applications of network representation
learning are discussed in Section 6. In Section 7, we summa-
rize the evaluation protocols used to validate network repre-
sentation learning, along with a comparison of algorithm
performance and complexity. We discuss potential research
directions in Section 8, and conclude the survey in Section 9.

2 NOTATIONS AND DEFINITIONS

In this section, as preliminaries, we first define important
terminologies that are used to discuss the models next, fol-
lowed by a formal definition of the network representation
learning problem. For ease of presentation, we first define a
list of common notations that will be used throughout the
survey, as shown in Table 1.

Definition 1 (Information Network). An information net-
work is defined as G = (V, E, X,Y), where V denotes a set of
vertices, and |V | denotes the number of vertices in network G.
E C(V x V) denotes a set of edges connecting the vertices.
X € RVI™ s the vertex attribute matrix, where m is the num-
ber of attributes, and the element X;; is the value of the ith vertex
on the jth attribute. Y € RV is the vertex label matrix with
Y being a set of labels. If the ith vertex has the kth label, the ele-
ment Yy, = 1; otherwise, Yy, = —1. Due to privacy concern or
information access difficulty, vertex attribute matrix X is often
sparse and vertex label matrix Y is usually unobserved or par-
tially observed. For each (v;,v;) € E, if information network G
is undirected, we have (v;,v;) € E; if G is directed, (v;,v;)
unnecessarily belongs to E." Each edge (v;,v;) € F is also asso-
ciated to a weight w;;, which is equal to 1, if the information net-
work is binary (unweighted).

Intuitively, the generation of information networks is not
groundless, but guided or dominated by certain latent
mechanisms. Although the latent mechanisms are hardly
known, they can be reflected by some network properties
that widely exist in information networks. Hence, the com-
mon network properties are essential for the learning of ver-
tex representations that are informative to accurately
interpret information networks. Below, we introduce sev-
eral common network properties.

Definition 2 (First-order Proximity). The first-order proxim-
ity is the local pairwise proximity between two connected vertices
[1]. For each vertex pair (v;,v;), if (v;,v;) € E, the first-order
proximity between v; and v; is wy;; otherwise, the first-order
proximity between v; and v; is 0. The first-order proximity cap-
tures the direct neighbor relationships between vertices.

Definition 3 (Second-order Proximity and High-order
Proximity). The second-order proximity captures the 2-step
relations between each pair of vertices [1]. For each vertex pair
(vi,v;), the second order proximity is determined by the number
of common neighbors shared by the two vertices, which can also
be measured by the 2-step transition probability from v; to v;
equivalently. Compared with the second-order proximity, the
high-order proximity [26] captures more global structure, which
explores k-step (k > 3) relations between each pair of vertices.
For each vertex pair (v;,v;), the higher-order proximity is mea-
sured by the k-step (k > 3) transition probability from vertex v;
to vertex v;, which can also be reflected by the number of k-step
(k > 3) paths from v; to v;. The second-order and high-order
proximity capture the similarity between a pair of, indirectly
connected, vertices with similar structural contexts.

Definition 4 (Structural Role Proximity). The structural
role proximity depicts similarity between vertices serving as the

1. Without any specific declaration, the networks discussed in this
survey are assumed to be undirected.
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Fig. 1. An illustrative example of structural role proximity. Vertex 4 and
vertex 12 have similar structural roles, but are located far away from
each other.

similar roles in their neighborhood, such as edge of a chain, cen-
ter of a star, and a bridge between two communities. In commu-
nication and traffic networks, vertices’ structural roles are
important to characterize their properties. Different from the first-
order, second-order and high-order proximity, which capture the
similarity between vertices close to each other in the network, the
structural role proximity tries to discover the similarity between
distant vertices while sharing the equivalent structural roles. As
is shown in Fig. 1, vertex 4 and vertex 12 are located far away
from each other, while they serve as the same structural role, cen-
ter of a star. Thus, they have high structural role proximity.

Definition 5 (Intra-community Proximity). The intra-
community proximity is the pairwise proximity between verti-
ces in a same community. Many networks have community
structure, where vertex-vertex connections within the same
community are dense, but connections to vertices outside the
community are sparse [27]. As cluster structure, a community
preserves certain kinds of common properties of vertices within
it. For example, in social networks, communities might repre-
sent social groups by interest or background; in citation net-
works, communities might represent related papers on a same
topic. The intra-community proximity captures such cluster
structure by preserving the common property shared by vertices
within a same community [28].

Vertex Attribute. In addition to network structure, vertex
attributes can provide direct evidence to measure content-
level similarity between vertices. As shown in [7], [20], [29],
vertex attributes and network structure can help each other
filter out noisy information and compensate each other to
jointly learn informative vertex representations.

Vertex Label. Vertex labels provide direct information
about the semantic categorization of each network vertex to
certain classes or groups. Vertex labels are strongly influ-
enced by and inherently correlated to both network struc-
ture and vertex attributes [30]. Though vertex labels are
usually partially observed, when coupled with network
structure and vertex attributes, they encourage a network
structure and vertex attribute consistent labeling, and help
learn informative and discriminative vertex representations.

Definition 6 (Network Representation Learning). Given
an information network G = (V, E, X,Y), by integrating net-
work structure in I, vertex attributes in X and vertex labels in
Y (if available), the task of network representation learning is
to learn a mapping function f : v—r, € RY, where r, is the
learned vector representation of vertex v, and d is the dimension
of the learned representation. The transformation f preserves
the original network information, such that two vertices similar
in the original network should also be represented similarly in
the learned vector space.
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(a) Input: Information Network (b) Output: Vertex Representations

Fig. 2. A conceptual view of network representation learning. Vertices in
(a) are indexed using their ID and color coded based on their community
information. The network representation learning in (b) transforms all
vertices into a two-dimensional vector space, such that vertices with
structural proximity are close to each other in the new embedding space.

The learned vertex representations should satisfy the
following conditions: (1) low-dimensional, ie., d < |V/|, in
other words, the dimension of learned vertex representa-
tions should be much smaller than the dimension of the origi-
nal adjacency matrix representation for memory efficiency
and the scalability of subsequent network analytic tasks;
(2) informative, i.e., the learned vertex representations should
preserve vertex proximity reflected by network structure, ver-
tex attributes, and vertex labels (if available); (3) continuous,
i.e., the learned vertex representations should have continu-
ous real values to support subsequent network analytic tasks,
like vertex classification, vertex clustering, or anomaly detec-
tion, and have smooth decision boundaries to ensure the
robustness of these tasks.

Fig. 2 demonstrates a conceptual view of network represen-
tation learning, using a toy network. In this case, only network
structure is considered to learn vertex representations. Given
an information network shown in Fig. 2a, the objective of NRL
is to embed all network vertices into a low-dimensional space,
as depicted in Fig. 2b. In the embedding space, vertices with
structural proximity are represented closely to each other.
For example, as vertex 7 and vertex 8 are directly connected,
the first-order proximity enforces them close to each other in
the embedding space. Though vertex 2 and vertex 5 are not
directly connected, they are also embedded closely to each
other because they have high second-order proximity, which
is reflected by 4 common neighbors shared by these two verti-
ces. Vertex 20 and vertex 25 are not directly connected, nor do
they share common direct neighbors. However, they are con-
nected by many k-step paths (k > 3), which proves that they
have high-order proximity. Thus, vertex 20 and vertex 25 also
have close embeddings. Different from other vertices, vertex
10-16 clearly belong to the same community in the original
network. This intra-community proximity guarantees the
images of these vertices also exhibit a clear cluster structure in
the embedding space.

3 CATEGORIZATION

In this section, we propose a new taxonomy to categorize
existing network representation learning techniques in the
literature, as shown in Fig. 3. The first layer of the taxonomy
is based on whether vertex labels are provided for learning.
According to this, we categorize network representation
learning into two groups: unsupervised network representation
learning and semi-supervised network representation learning.
Unsupervised Network Representation Learning. In this
setting, there are no labeled vertices provided for learning
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Fig. 3. The proposed taxonomy to summarize network representation learning techniques. We categorize network representation learning into two
groups, unsupervised network representation learning and semi-supervised network representation learning, depending on whether vertex labels
are available for learning. For each group, we further categorize methods into two subgroups, depending on whether the representation learning is
based on network topology structure only, or augmented with information from node content.

vertex representations. Network representation learning is
therefore considered as a generic task independent of subse-
quent learning, and vertex representations are learned in
an unsupervised manner.

Most of the existing NRL algorithms fall into this cate-
gory. After vertex representations are learned in a new
embedding space, they are taken as features to any vector-
based algorithms for various learning tasks. Unsupervised
NRL algorithms can be further divided into two subgroups
based on the type of network information available for
learning: unsupervised structure preserving methods that
preserve only network structure, and unsupervised content
augmented methods that incorporate vertex attributes and
network structure to learn joint vertex embeddings.

Semi-Supervised Network Representation Learning. In this
case, there exist some labeled vertices for representation
learning. Because vertex labels play an essential role in
determining the categorization of each vertex with strong
correlations to network structure and vertex attributes,
semi-supervised network representation learning is pro-
posed to take advantage of vertex labels available in the net-
work for seeking more effective joint vector representations.

In this setting, network representation learning is cou-
pled with supervised learning tasks such as vertex classifi-
cation. A unified objective function is often formulated to
simultaneously optimize the learning of vertex representa-
tions and the classification of network vertices. Therefore,
the learned vertex representations can be both informative
and discriminative with respect to different categories.
Semi-supervised NRL algorithms can also be categorized
into two subgroups, semi-supervised structure preserving
methods and semi-supervised content augmented methods.

Table 2 summarizes all NRL algorithms, according to the
information sources that they use for representation learn-
ing. In general, there are three main types of information
sources: network structure, vertex attributes, and vertex
labels. Most of the unsupervised NRL algorithms focus
on preserving network structure for learning vertex

representations, and only a few algorithms (e.g., TADW [7],
HSCA [8]) attempt to leverage vertex attributes. By contrast,
under the semi-supervised learning setting, half of the algo-
rithms intend to couple vertex attributes with network
structure and vertex labels to learn vertex representations.
On both settings, most of the algorithms focus on preserving
microscopic structure, while very few algorithms (e.g., M-
NMEF [28], DP [41], HARP [42]) attempt to take advantage of
the mesoscopic and macroscopic structure.

Approaches to network representation learning in the
above two different settings can be summarized into five
categories from algorithmic perspectives.

(1) Matrix factorization based methods. Matrix factoriza-
tion based methods represent the connections
between network vertices in the form of a matrix
and use matrix factorization to obtain the embed-
dings. Different types of matrices are constructed to
preserve network structure, such as the k-step transi-
tion probability matrix, the modularity matrix, or the
vertex-context matrix [7]. By assuming that such
high-dimensional vertex representations are only
affected by a small quantity of latent factors, matrix
factorization is used to embed the high-dimensional
vertex representations into a latent, low-dimensional
structure preserving space.

Factorization strategies vary across different algo-
rithms according to their objectives. For example, in
the Modularity Maximization method [31], eigen
decomposition is performed on the modularity
matrix to learn community indicative vertex repre-
sentations [53]; in the TADW algorithm [7], inductive
matrix factorization [54] is carried out on the vertex-
context matrix to simultaneously preserve vertex
textual features and network structure in the learn-
ing of vertex representations. Although matrix fac-
torization based methods have been proved effective
in learning informative vertex representations, the
scalability is a major bottleneck because carrying out
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TABLE 2
A Summary of NRL Algorithms According to the Information Sources They Use for Learning

Network Structure

Category Algorithms

Mesoscopic

Vertex Attributes | Vertex Labels

Microscopic

Structural Role

Proximity

Intra-community

Macroscopic

Proximity

Social Dim. [31], [32], [33]

v

DeepWalk [6]

LINE [1]

GraRep [26]

DNGR [9]

SDNE [19]

node2vec [34]

HOPE [35]

APP [36]

Unsupervised M-NMF [28]

NENNNNNANNAE

GraphGAN [37]

struct2vec [38]

GraphWave [39]

<

SNS [40]

DP [41]

HARP [42]

TADW [7]

HSCA [8]

PRBM [29]

UPP-SNE [43]

PPNE [44]

ANENENENEN

DDRW [45]

MMDW [46]

TLINE [47]

GENE [48]

SemiNE [49]

Semi-supervised
TriDNR [50]

LDE [51]

DMEF [8]

Planetoid [52]

SN ESENENENENENENEN ENENENENEN ENENENEN

LANE [30]

NSNS

ANENENENEN

()

factorization on a matrix with millions of rows and
columns is memory intensive and computationally
expensive or, sometime, even infeasible.

Random walk based methods. For scalable vertex repre-
sentation learning, random walk is exploited to cap-
ture structural relationships between vertices. By
performing truncated random walks, an information
network is transformed into a collection of vertex
sequences, in which, the occurrence frequency of a
vertex-context pair measures the structural distance
between them. Borrowing the idea of word represen-
tation learning [55], [56], vertex representations are
then learned by using each vertex to predict its con-
texts. DeepWalk [6] is the pioneer work in using ran-
dom walks to learn vertex representations. node2vec
[34] further exploits a biased random walk strategy
to capture more flexible contextual structure.

As the extensions of the structure only preserving
version, algorithms like DDRW [45], GENE [48]
and SemiNE [49] incorporate vertex labels with net-
work structure to harness representation learning,

3)

PPNE [44] imports vertex attributes, and Tri-DNR
[50] enforces the model with both vertex labels and
attributes. As these models can be trained in an on-
line manner, they have great potential to scale up.

Edge modeling based methods. Different from approaches
that use matrix or random walk to capture network
structure, the edge modeling based methods directly
learn vertex representations from vertex-vertex con-
nections. For capturing the first-order and second-
order proximity, LINE [1] models a joint probability
distribution and a conditional probability distribution,
respectively, on connected vertices. To learn the repre-
sentations of linked documents, LDE [51] models the
document-document relationships by maximizing the
conditional probability between connected docu-
ments. pRBM [29] adapts the RBM [57] model to
linked data by making the hidden RBM representa-
tions of connected vertices similar to each other.
GraphGAN [37] adopts Generative Adversarial Nets
(GAN) [58] to accurately model the vertex connectivity
probability. Edge modeling based methods are more
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TABLE 3
A Categorization of NRL Algorithms from Methodology Perspectives

Methodology Algorithms

Advantage Disadvantage

Matrix Factorization
MMDW [46], DMF [8], LANE [30]

Social Dim. [31], [32], GraRep [26], HOPE [35],
GraphWave [39], M-NMF [28], TADW [7], HSCA [20],

capture global structure | high time and memory cost

Random Walk
SNS [40], PPNE [44], SemiNE [49]

DeepWalk [6], node2vec [34], APP [36], DDRW [45],
GENE [48], TriDNR [50], UPP-SNE [43], struct2vec [38],

relatively efficient only capture local structure

Edge Modeling GraphGAN [37]

LINE [1], TLINE [47], LDE [51], pRBM [29],

efficient only capture local structure

Deep Learning DNGR [9], SDNE [19]

capture non-linearity high time cost

Hybrid DP [41], HARP [42], Planetoid [52]

capture global structure

efficient compared to matrix factorization and random
walk based methods. However, these methods cannot
capture global network structure as they only consider
observable vertex connectivity information.
Deep learning based methods. To extract complex struc-
ture features and learn deep, highly non-linear vertex
representations, deep learning techniques [59], [60]
are also applied to network representation learning.
For example, DNGR [9] applies the stacked denoising
autoencoders (SDAE) [60] on the high-dimensional
matrix representations to learn deep low-dimensional
vertex representations. SDNE [19] uses a semi-super-
vised deep autoencoder model [59] to model non-lin-
earity in network structure. Deep learning based
methods have the ability to capture non-linearity in
networks, but their computational time cost is usually
high. Traditional deep learning architectures are
designed for 1D, 2D, or 3D euclidean structured data,
but efficient solutions need to be developed on non-
euclidean structured data like graphs.
Hybrid methods. Some other methods make use of a
mixture of above methods to learn vertex representa-
tions. For example, DP [41] enhances spectral embed-
ding [5] and DeepWalk [6] with the degree penalty
principle to preserve the macroscopic scale-free prop-
erty. HARP [42] takes advantage of random walk
based methods (DeepWalk [6] and node2vec [34])
and edge modeling based method (LINE [1]) to learn
vertex representations from small sampled networks
to the original network.

We summarize all five categories of network representa-
tion learning techniques and compare their advantages and
disadvantages in Table 3.

4)

%)

4 UNSUPERVISED NETWORK REPRESENTATION
LEARNING

In this section, we review unsupervised network represen-
tation learning methods by separating them into two sec-
tions, as outlined in Fig. 3. After that, we summarize key
characteristics of the methods and compare their differences
across the two categories.

4.1 Unsupervised Structure Preserving Network
Representation Learning

Structure preserving network representation learning refers
to methods that intend to preserve network structure, in the
sense that vertices close to each other in the original

network space should be represented similarly in the new
embedding space. In this category, research efforts have
been focused on designing various models to capture struc-
ture information conveyed by the original network as much
as possible.

We summarize network structure considered for learn-
ing vertex representations into three types: (i) microscopic
structure, which includes local closeness proximity, i.e., the
first-order, second-order, and high-order proximity, (ii)
mesoscopic structure, which captures structural role proxim-
ity and the intra-community proximity, and (iii) macroscopic
structure, which captures global network properties, such as
the scale-free property or small world property. The follow-
ing sections are organized according to our categorization
of network structure, as depicted in Fig. 4 .

4.1.1  Microscopic Structure Preserving NRL

This category of NRL algorithms aim to preserve local struc-
ture information among directly or indirectly connected
vertices in their neighborhood, including first-order, sec-
ond-order, and high-order proximity. The first-order prox-
imity captures the homophily, i.e., directly connected
vertices tend to be similar to each other, while the second-
order and high-order proximity captures the similarity
between vertices sharing common neighbors. Most of struc-
ture preserving NRL algorithms fall into this category.
DeepWalk. DeepWalk [6] generalizes the idea of the Skip-
Gram model [55], [56] that utilizes word context in senten-
ces to learn latent representations of words, to the learning
of latent vertex representations in networks, by making an
analogy between natural language sentence and short ran-
dom walk sequence. The workflow of DeepWalk is given in
Fig. 5. Given a random walk sequence with length L,
{v1,v9,...,v1}, following Skip-Gram, DeepWalk learns the
representation of vertex v; by using it to predict its context
vertices, which is achieved by the optimization problem

’ Network Structure ‘

—1 Microscopic Structure ‘ (Sec. 4.1.1)

—{ Mesoscopic Structure ‘

Structural Role Proximity ‘ (Sec. 4.1.2)

Intra-community Proximity ‘ (Sec. 4.1.3)

—1 Macroscopic Structure ‘ (Sec. 4.1.4)

Fig. 4. Categorization of network structure.
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Fig. 5. The workflow of DeepWalk. It first generates random walk
sequences from a given network, and then applies the Skip-Gram model
to learn vertex representations.

Vit ) \il f(v3), 1

where {v;_y,..., v+ }\v; are the context vertices of vertex v;
within ¢ window size. Making conditional independence
assumption, the probability Pr({vi_,...,vi}\vi|f(vi)) is
approximated as

Pr({vi_s, ..

m}n —log Pr({vi—t,. ..

i+t

H Pr(vj|f(v;)). (2

J=i—tj#i

Uz+t}\vz|f

Following the DeepWalk’s learning architecture, vertices
that share similar context vertices in random walk sequen-
ces should be represented closely in the new embedding
space. Considering the fact that context vertices in random
walk sequences describe neighborhood structure, Deep-
Walk actually represents vertices sharing similar neighbors
(direct or indirect) closely in the embedding space, so the
second-order and high-order proximity is preserved.

Large-Scale Information Network Embedding (LINE). Instead
of exploiting random walks to capture network structure,
LINE [1] learns vertex representations by explicitly model-
ing the first-order and second-order proximity. To preserve
the first-order proximity, LINE minimizes the following
objective:

O =d(pi(+,),p1(-5))- (3)

For each vertex pair v; and v; with (v;,v;) € E, p1(-,-) is the
joint distribution modeled by their latent embeddings r,,
and Ty D1 (vi, v;) is the empirical distribution between them
d(-,-)i is the distance between two distributions.
To preserve the second-order proximity, LINE minimizes
the following objective:

02 =" Nd(pa(-|vi), pa(-lvy), @)

v eV

where ps(-|v;) is the context conditional distribution for each
v; € V modeled by vertex embeddings, p-(-|v;) is the empiri-
cal conditional distribution and ); is the prestige of vertex
v;. Here, vertex context is determined by its neighbors, i.e.,
for each vj, v; is v;’s context, if and only if (v;,v;) € E.

By minimizing these two objectives, LINE learns two
kinds of vertex representations that preserve the first-order
and second-order proximity, and takes their concatenation
as the final vertex representation.

GraRep. Following the idea of DeepWalk [6], GraRep [26]
extends the skip-gram model to capture the high-order
proximity, i.e., vertices sharing common k-step neighbors
(k > 1) should have similar latent representations. Specifi-
cally, for each vertex, GraRep defines its k-step neighbors
(k> 1) as context vertices, and for each 1 < k < K, to learn
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k-step vertex representations, GraRep employs the matrix
factorization version of skip-gram

[U"’,Ek, V"} — SVD(X¥), )

where X" is the log k-step transition probability matrix. The
k-step representatlon1 for vertex v; is constructed as the ith
row of matrix U%(35)2, where U} is the first-d columns of U*
and 3% o is the diagonal matrix composed of the top d singu-
lar values. After k-step vertex representations are learned,
GraRep concatenates them together as the final vertex
representations.

Deep Neural Networks for Graph Representations (DNGR).
To overcome the weakness of truncated random walks in
exploiting vertex contextual information, i.e., the difficulty
in capturing correct contextual information for vertices at
the boundary of sequences and the difficulty in determining
the walk length and the number of walks, DNGR [9] utilizes
the random surfing model to capture contextual relatedness
between each pair of vertices and preserves them into
|V|-dimensional vertex representations X. To extract com-
plex features and model non-linearities, DNGR applies the
stacked denoising autoencoders [60] to the high-dimensional
vertex representations X to learn deep low-dimensional
vertex representations.

Structural Deep Network Embedding (SDNE). SDNE [19] is
a deep learning based approach that uses a semi-supervised
deep autoencoder model to capture non-linearity in net-
work structure. In the unsupervised component, SDNE
learns the second-order proximity preserving vertex repre-
sentations via reconstructing the |V|-dimensional vertex
adjacent matrix representations, which tries to minimize

V]

Lana =317

where ") = S, is the input representation and #" is the
reconstructed representation. b; is a weight vector used to
penalize construction error more on non-zero elements of S.

In the supervised component, SDNE imports the first-
order proximity by penalizing the distance between con-
nected vertices in the embedding space. The loss function
for this objective is defined as

") © b3, (©)

0) —

Vi

Lia= > Sylr®0
ij=1

where /) is the Kth layer representation of vertex v;, with
K bemg the number of hidden layers.
In all, SDNE minimizes the joint objective function

=1, M

L= Lopg+alig+ V£Tf3g7 ®

where L,., is a regularization term to prevent overfitting.
After solving the minimization of (8), for vertex v;, the Kth
layer representation r“‘ is taken as its representation r,,.
node2vec. In contrast to the rigid strategy of defining neigh-
borhood (context) for each vertex, node2vec [34] designs a
flexible neighborhood sampling strategy, i.e., biased random
walk, which smoothly interpolates between two extreme
sampling strategies, i.e., Breadth-first Sampling (BFS) and
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Fig. 6. Two different neighborhood sampling strategies considered by
node2vec: BFS and DFS.

Depth-first Sampling (DFS), as illustrated in Fig. 6. The
biased random walk exploited in node2vec can better pre-
serve both the second-order and high-order proximity.
Following the skip-gram architecture, given the set of
neighbor vertices N(v;) generated by biased random walk,
node2vec learns the vertex representation f(v;) by optimiz-
ing the occurrence probability of neighbor vertices N(v;)
conditioned on the representation of vertex v;, f(v;)

max > log Pr(N (v;)] f(vi)). )

v; eV

High-Order  Proximity Preserved Embedding (HOPE).
HOPE [35] learns vertex representations that capture the
asymmetric high-order proximity in directed networks. In
undirected networks, the transitivity is symmetric, but it is
asymmetric in directed networks. For example, in an
directed network, if there is a directed link from vertex v; to
vertex v; and from vertex v; to vertex vy, it is more likely to
have a directed link from v; to v, but not from v;. to v;.

To preserve the asymmetric transitivity, HOPE learns
two vertex embedding vectors U*, U’ € RV*?, which is
called source and target embedding vectors, respectively.
After constructing the high-order proximity matrix S from
four proximity measures, i.e., Katz Index [61], Rooted Pag-
eRank [62], Common Neighbors and Adamic-Adar. HOPE
learns vertex embeddings by solving the following matrix
factorization problem:

min ||S—U* - U |2 (10)
Us, Ut

Asymmetric Proximity Preserving Graph Embedding (APP).
APP [36] is another NRL algorithm designed to capture
asymmetric proximity, by using a Monte Carlo approach to
approximate the asymmetric Rooted PageRank proxim-
ity [62]. Similar to HOPE, APP has two representations for
each vertex 1}1, the one as a source role . and the other as a
target role r, . For each sampled path startlng from v; and
ending with v], the representatlons are learned by maximiz-
ing the target vertex v;’s occurrence probability conditioned
on the source vertex v;

exp(ry - 7;,)
D vev exp(ry, 1)

GraphGAN. GraphGAN [37] learns vertex representa-
tions by modeling the connectivity behavior through an
adversarial learning framework. Inspired by Generative
Adversarial Nets [58], GraphGAN works through two com-
ponents: (i) Generator G(v|v.), which fits the distribution of

PI"(U]'|U7;) = (11)

11

TABLE 4
A Summary of Microscopic Structure
Preserving NRL Algorithms

Algorithms First-order | Second-order | High-order
Proximity Proximity Proximity
DeepWalk [6] VG v
LINE [1] v v
GraRep [26] v %
DNGR [9] v %
SDNE [19] v v
node2vec [34] v %
HOPE [35] v %
APP [36] v %
GraphGAN [37] v

the vertices connected to v, across V and generates the likely
connected vertices, and (ii) Discriminator D(v,v.), which
outputs a connecting probability for the vertex pair (v, v.),
to differentiate the vertex pairs generated by G(v|v,) from
the ground truth. G(v|v.) and D(v, v.) compete in a way that
G(v|v,) tries to fit the true connecting distribution as much
as possible and generates fake connected vertex pairs to fool
D(v,v.), while D(v,v.) tries to increase its discriminative
power to distinguish the vertex pairs generated by G(v|v.)
from the ground truth. The competition is achieved by the
following minimax game:

ming,, maxe, Z (B omPrypue (oo [10g D(v,ve; 0p)]
veeV

(12)
+ Ev~G(<|vc;0(;) [lOg (1 - D(Ua Ucs GD))])

Here, G(v|v.; 0¢) and D(v, v.;0p) are defined as following:
exp(g, - 8,,)
Glelvesbo) = 5= efp(gg 8,)
# Ve ) e (13)
D(Ua Ves QD) =

where g, € R* and d, € R is the representation vector for
generator and discriminator, respectively, and 6p = {d,},
0c = {g,}. After the minimax game in Eq. (12) is solved, g,
serves as the final vertex representations.

Summary. The proximity preserved by microscopic struc-
ture preserving NRL algorithms is summarized in Table 4.
Most algorithms in this category preserve the second-order
and high-order proximity, whereas only LINE [1], SDNE
[19] and GraphGAN [37] consider the first-order proximity.
From the methodology perspective, DeepWalk [6], node2-
vec [34] and APP [36] employ random walks to capture ver-
tex neighborhood structure. GraRep [26] and HOPE [35] are
realized by performing factorization on a |V]| x |V]| scale
matrix, making them hard to scale up. LINE [1] and Graph-
GAN [37] directly model the connectivity behavior, while
deep learning based methods (DNGR [9] and SDNE [19])
learn non-linear vertex representations.

4.1.2 Structural Role Proximity Preserving NRL

Besides local connectivity patterns, vertices often share sim-
ilar structural roles at a mesoscopic level, such as centers of
stars or members of cliques. Structural role proximity
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preserving NRL aims to embed vertices that are far away
from each other but share similar structural roles close to
each other. This not only facilitates the downstream struc-
tural role dependent tasks but also enhances microscopic
structure preserving NRL.

struct2vec. struct2vec [38] first encodes the vertex struc-
tural role similarity into a multilayer graph, where the
weights of edges at each layer are determined by the struc-
tural role difference at the corresponding scale. Deep-
Walk [6] is then performed on the multilayer graph to learn
vertex representations, such that vertices close to each other
in the multilayer graph (with high structural role similarity)
are embedded closely in the new representation space.

For each vertex pair (v;,v;), considering their k-hop
neighborhood formed by their neighbors within k steps,
their structural distance at scale k, Dy (v;, v;), is defined as

Dy (vi,vj) = Di-1(vi, v;) + g(s(Re(vi)), s(Ri(vy))),  (14)
where Rj(v;) is the set of vertices in v;’s k-hop neighbor-
hood, s(Ry(v;)) is the ordered degree sequence of the verti-
ces in Ry(v;), and g¢(s(Ry(v;)),s(Ri(v;))) is the distance
between the ordered degree sequences s(Rj(v;)) and
s(Ri(vj)). When k=0, Dy(v;,v;) is the degree difference
between vertex v; and v;.

GraphWave. By making use of the spectral graph wavelet
diffusion patterns, GraphWave [39] embeds vertex neigh-
borhood structure into a low-dimensional space and pre-
serves the structural role proximity. The assumption is that,
if two vertices residing distantly in the network share simi-
lar structural roles, the graph wavelets starting at them will
diffuse similarly across their neighbors.

For vertex vy, its spectral graph wavelet coefficients W}, is
defined as

Wy, = UDiag(gs (M), - - gs(Aw)))U 8, (15)
where U is the eigenvector matrix of the graph Laplacian
L and A, ..., Ay are the eigenvalues, g,(\) = exp(—As) is
the heat kernel, and §; is the one-hot vector for k. By
taking W, as a probability distribution, the spectral wave-
let distribution pattern in W; is then encoded into its
empirical characteristic function

Vi

L i
#i(t) = G Z e tWim

n=1

(16)

Then v;,’s low-dimensional representation is then obtained
by sampling the 2-dimensional parametric function of ¢y (t)
at d evenly separated points ¢, s, ...,t; as

f(vr) = [Re(¢y(t1)), - - ., Re(gy.(ta)),

Im(¢(t1)), - - ., Im(epy.(¢a))]. an

Structural and Neighborhood Similarity Preserving Network
Embedding (SNS). SNS [40] enhances a random walk based
method with structural role proximity. To preserve vertex
structural roles, SNS represents each vertex as a Graphlet
Degree Vector with each element being the number of times
the given vertex is touched by the corresponding orbit of
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graphlets. The Graphlet Degree Vector is used to measure the
vertex structural role similarity.

Given a vertex v;, SNS uses its context vertices C(v;) and
structurally similar vertices S(v;) to predict its existence,
which is achieved by maximizing the following probability:

exp(r’, - hy,
p(r), - h,) (18)

Zuev exp(r), - hy,) 7

Pr(vi|C(vi), S(vi)) =

where 1, is the output representation of v; and h,, is the
hidden layer representation for predicting v;, which is
aggregated from the input representations r,, for each u in
C(v;) and S(v;).

Summary. struct2vec [38] and GraphWave [39] take advan-
tage of structural role proximity to learn vertex representa-
tions that facilitate specific structural role dependent tasks,
e.g., vertex classification in traffic networks, while SNS [40]
enhances a random walk based microscopic structure pre-
serving NRL algorithm with structural role proximity. Tech-
nically, random walk is employed by struct2vec and SNS,
while matrix factorization is adopted by GraphWave.

4.1.3 Intra-Community Proximity Preserving NRL

Another interesting feature that real-world networks exhibit
is the community structure, where vertices are densely con-
nected to each other within the same community, but
sparsely connected to vertices from other communities. For
example, in social networks, people from the same interest
group or affiliation often form a community. In citation net-
works, papers on similar research topics tend to frequently
cite each other. Intra-community preserving NRL aims to
leverage the community structure that characterizes key ver-
tex properties to learn informative vertex representations.

Learning Latent Social Dimensions. The social dimension
based NRL algorithms try to construct social actors” embed-
dings through their membership or affiliation to a number
of social dimensions. To infer these latent social dimensions,
the phenomenon of “community” in social networks is con-
sidered, stating that social actors sharing similar properties
often form groups with denser within-group connections.
Thus, the problem boils down to one classical network ana-
lytic task—community detection—that aims to discover a
set of communities with denser within-group connections
than between-group connections. Three clustering techni-
ques, including modularity maximization [31], spectral clus-
tering [32] and edge clustering [33] are employed to
discover latent social dimensions. Each social dimension
describes the likelihood of a vertex belonging to a plausible
affiliation. These methods preserve the global community
structure, but neglect local structure properties, e.g., the
first-order and second-order proximity.

Modularized Nonnegative Matrix Factorization (M-NMF).
M-NMF [28] augments the second-order and high-order
proximity with broader community structure to learn more
informative vertex embeddings U € RIV1*? using the follow-
ing objective:

. _ T2 T2 T
1[rrUuIrJlCHS MU w4+ o||H —UC* || — Btr(H" BH)

st., M>0,U>0H>0C>0,tr(H' H) = |V|,

19)
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where vertex embedding U is learned by minimizing
|S — MUT|[;, with S € RVl being the vertex pairwise
proximity matrix, which captures the second-order and the
high-order proximity when taken as representations. The
community indicative vertex embedding H is learned by
maximizing tr(HT BH), which is essentially the objective of
modularity maximization with B being the modularity
matrix. The minimization on ||[H — UCT||3, makes these two
embeddings consistent with each other by importing a com-
munity representation matrix C'

Summary. The algorithms of learning latent social dimen-
sions [31], [32], [33] only consider the community structure
to learn vertex representation, while M-NMF [28] integrates
microscopic structure (the second-order and high-order
proximity) with the intra-community proximity. These
methods primarily rely on matrix factorization to detect
community structure, making them hard to scale up.

4.1.4 Macroscopic Structure Preserving NRL

Macroscopic structure preserving methods aim to preserve
certain global network properties in a macroscopic view.
Only very few recent studies are developed for this
purpose.

Degree Penalty Principle (DP). Many real-world networks
present the macroscopic scale-free property, which depicts
the phenomenon that vertex degree follows a long-tailed
distribution, i.e., most vertices are sparsely connected and
only few vertices have dense edges. To capture the scale-
free property, [41] proposes the degree penalty principle:
penalizing the proximity between high-degree vertices.
This principle is then coupled with two NRL algorithms
(i.e., spectral embedding [5] and DeepWalk [6]) to learn
scale-free property preserving vertex representations.

Hierarchical Representation Learning for Networks (HARP).
To capture the global patterns in networks, HARP [42] sam-
ples small networks to approximate the global structure.
The vertex representations learned from sampled networks
are taken as the initialization for inferring the vertex repre-
sentations of the original network. In this way, global struc-
ture is preserved in the final representations. To obtain
smooth solutions, a series of smaller networks are succes-
sively sampled from the original network by coalescing
edges and vertices, and the vertex representations are hier-
archically inferred back from the smallest network to the
original network. In HARP, DeepWalk [6] and LINE [1] are
used to learn vertex representations.

Summary. DP [41] and HARP [42] are both realized by
adapting the existing NRL algorithms to capture the macro-
scopic structure. The former tries to preserve the scale-free
property, while the latter makes the learned vertex repre-
sentations respect the global network structure.

4.2 Unsupervised Content Augmented Network
Representation Learning

Besides network structure, real-world networks are often
attached with rich content as vertex attributes, such as
webpages in webpages networks, papers in citation net-
works, and user metadata in social networks. Vertex
attributes provide direct evidence to measure content-
level similarity between vertices. Therefore, network
representation learning can be significantly improved if
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vertex attribute information is properly incorporated into
the learning process. Recently, several content augmented
NRL algorithms have been proposed to incorporate net-
work structure and vertex attributes to reinforce the net-
work representation learning.

4.2.1 Text-Associated DeepWalk (TADW)

TADW [7] first proves the equivalence between Deep-
Walk [6] and the following matrix factorization:

A

. 2 2 2
min [|M — WEH|[p + 5 (W + [ HIl), (20)
where W and H are learned latent embeddings and } is the
vertex-context matrix carrying transition probability between
each vertex pair within & steps. Then, textual features are
imported through inductive matrix factorization [54]

. A
%}%1|\M—WTHT|\§+§(|\W|\§+ IH|7), @1
where T is vertex textual feature matrix. After (21) is solved,
the final vertex representations are formed by taking the
concatenation of W and HT.

4.2.2 Homophily, Structure, and Content Augmented
Network Representation Learning (HSCA)

Despite its ability to incorporate textural features,
TADW [7] only considers structural context of network ver-
tices, i.e., the second-order and high-order proximity, but
ignores the important homophily property (the first-order
proximity) in its learning framework. HSCA [20] is pro-
posed to simultaneously integrates homophily, structural
context, and vertex content to learn effective network
representations.

For TADW, the learned representation for the ith vertex

T
v; s {W;f, (HTl)T} , where W,; and T ; is the ith column of
W and T, respectively. To enforce the first-order proximity,

HSCA introduces a regularization term to enforce homo-
phily between directly connected nodes in the embedding

space, which is formulated as
Wil | W,
HT; HT;

where S is the adjacent matrix. The objective of HSCA is

VI
1
R(W, H) = > 8

J=1

2
(22)

)
2

. A
win || M = WEHT| + 5 (W5 + [ HI5) + wROV, H), (23)
where A and p are the trade-off parameters. After solving

the above optimization problem, the concatenation of W
and HT is taken as the final vertex representations.

4.2.3 Paired Restricted Boltzmann Machine (pRBM)

By leveraging the strength of Restricted Boltzmann Machine
(RBM) [57], [29] designs a novel model called Paired RBM
(pRBM) to learn vertex representations by combining vertex
attributes and link information. The pRBM considers the
networks with vertices associated with binary attributes.
For each edge (v;,v;) € E, the attributes for v; and v; are v(®)
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and vV € {0,1}", and their hidden representations are h”
and h') € {0,1}". Vertex hidden representations are learned
by maximizing the joint probability of pPRBM defined over
v v, h and b

Pr(vi), v, h®, b0, w,;6)
L (24)
- exp(—E(v“), v h® ho), wij))/ Z,

where = {W € R”™ b € R>! ¢ € R™1 M € R™?} is the
parameter set and Z is the normalization term. To model
the joint probability, the energy function is defined as
E(V(i>, vl m® Ko, w;j)
= —w;;(hD)"MhY) — (WD) "Wy — Ty — pTh(
— (h9)TWv) — Ty — pTHO),

(25)

where w;;(h™)"MhV forces the latent representations of v;
and v; to be close and w;; is the weight of edge (v;, v;).

4.2.4  User Profile Preserving Social Network
Embedding (UPP-SNE)

UPP-SNE [43] leverages user profile features to enhance the
embedding learning of users in social networks. Compared
with textural content features, user profiles have two unique
properties: (1) user profiles are noisy, sparse and incomplete
and (2) different dimensions of user profile features are
topic-inconsistent. To filter out noise and extract useful infor-
mation from user profiles, UPP-SNE constructs user repre-
sentations by performing a non-linear mapping on user
profile features, which is guided by network structure.

The approximated kernel mapping [63] is used in UPP-
SNE to construct user embedding from user profile features

) = pl@) = Jeleos ), costufm),

. . T
sin (u,lT:I;,;), ..., sin (ﬂg$7)] ,

where z; is the user profile feature vector of vertex v; and p;
is the corresponding coefficient vector.

To supervise the learning of the non-linear mapping and
make user profiles and network structure complement each
other, the objective of DeepWalk [6] is used

m}n —log Pr({vi—t, ..., vize P\ il f(v3)), 27
where {v;_,...,v;1¢}\v; is the context vertices of vertex v;

within ¢ window size in the given random walk sequence.

4.2.5 Property Preserving Network Embedding (PPNE)

To learn content augmented vertex representations,
PPNE [44] jointly optimizes two objectives: (i) the structure-
driven objective and (ii) the attribute-driven objective.

Following DeepWalk, the structure-driven objective aims
to make vertices sharing similar context vertices repre-
sented closely. For a given random walk sequence S, the
structure-driven objective is formulated as

min Dy = H H Pr(u|v).

vES uecontext(v)

(28)
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The attribute-driven objective aims to make the vertex rep-
resentations learned by Eq. (28) respect the vertex attribute
similarity. A realization of the attribute-driven objective is

minDN:Z Z

vES uepos(v)Uneg(v)

P(v,u)d(v,u), (29)

where P(u,v) is the attribute similarity between v and v,
d(u,v) is the distance between v and v in the embedding
space, and pos(v) and neg(v) is the set of top-k similar and
dissimilar vertices according to P(u,v), respectively.
Summary. The above unsupervised content augmented
NRL algorithms incorporate vertex content features in three
ways. The first, used by TADW [7] and HSCA [20], is to cou-
ple the network structure with vertex content features via
inductive matrix factorization [54]. This process can be con-
sidered as a linear transformation on vertex attributes con-
strained by network structure. The second is to perform a
non-linear mapping to construct new vertex embeddings
that respect network structure. For example, RBM [57] and
the approximated kernel mapping [63] is used by pRBM [29]
and UPP-SNE [43], respectively, to achieve this goal. The
third used by PPNE [44] is to add an attribute preserving
constraint to the structure preserving optimization objective.

5 SEMI-SUPERVISED NETWORK REPRESENTATION
LEARNING

Label information attached with vertices directly indicates
vertices’ group or class affiliation. Such labels have strong
correlations, although not always consistent, to network
structure and vertex attributes, and are always helpful in
learning informative and discriminative network represen-
tations. Semi-supervised NRL algorithms are developed
along this line to make use of vertex labels available in the
network for seeking more effective vertex representations.

5.1 Semi-Supervised Structure Preserving NRL

The first group of semi-supervised NRL algorithms aim to
simultaneously optimize the representation learning that
preserves network structure and discriminative learning.
As a result, the information derived from vertex labels can
help improve the representative and discriminative power
of the learned vertex representations.

5.1.1  Discriminative Deep Random Walk (DDRW)

Inspired by the discriminative representation learning [64],
[65], DDRW [45] proposes to learn discriminative network
representations through jointly optimizing the objective of
DeepWalk [6] together with the following L2-loss Support
Vector Classification objective

V]
1
L.=C ;(a(l = Yih'r)" + 5B, (30)
where o(z) = z,if > 0 and otherwise o(z) = 0.
The joint objective of DDRW is thus defined as
L=nLpw + L.. 31)

where Lpy is the objective function of Deekwalk. The objec-
tive (31) aims to learn discriminative vertex representations
for binary classification for the kth class. DDRW is
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generalized to handle multi-class classification by using the
one-against-rest strategy [66].

5.1.2 Max-Margin DeepWalk (MMDW)

Similarly, MMDW [46] couples the objective of the matrix
factorization version DeepWalk [7] with the following multi-
class Support Vector Machine objective with {(r,,Y:.),...,
(rop, Y7:)} training set

1o L
min Lsyas = min= [|[W]|; + C is
nin Lovy = ming IW1l5 ;:1 3 (32)

s.t. WET'UL — w;-rrw > e'g — &, Vi, 7,
where [; = kwith Y, =1, e{ =1forY; =
Y =1

The joint objective of MMDW is

—1,and ¢/ = 0 for

‘WHQ + ngu

min £ = nun EDu +
UH.W

UH,W.¢ (33)

T j
St Wy Ty, — wj Ty > e — &, Vi, j.

where Lpy is the objective of the matrix factorization ver-
sion of DeepWalk.

5.1.3 Transductive LINE (TLINE)

Along similar lines, TLINE [47] is proposed as a semi-super-
vised extension of LINE [1] that simultaneously learns
LINE’s vertex representations and an SVM classifier. Given
a set of labeled and unlabeled vertices {v;,vs,...,v.} and
{vr+1,..., vy}, TLINE trains a multi-class SVM classifier on
{v1,v9,...,0 L} by optimizing the objective
K
Ogpm = Zmax (0,1 — YikwkTrvi) + )\||W;¢||§
=1 k=1

(3

(34)

Based on LINE’s formulations that preserve the first-
order and second-order proximity, TLINE optimizes two
objective functions

Olmel + 509177L7
Olmd + /3051)m

(35)
(36)

OTLINE 1st)
OTL[ NE(2nd)

Inheriting LINE’s ability to deal with large-scale networks,
TLINE is claimed to be able to learn discriminative vertex
representations for large-scale networks with low time and
memory cost.

5.1.4  Group Enhanced Network Embedding (GENE)

GENE [48] integrates group (label) information with net-
work structure in a probabilistic manner. GENE assumes
that vertices should be embedded closely in low-dimen-
sional space, if they share similar neighbors or join similar
groups. Inspired by DeepWalk [6] and document modeling
[67], [68], the mechanism of GENE for learning group label
informed vertex representations is achieved by maximizing
the following log probability:

v = Z [oz Z Z log Pr(v;|vj_y, . ..

9V | Wewy, vew

s Ujtts g7)
37
+B Y log Pr(ﬁjlgi)] :

ey,
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where ) is the set of different groups, W, is the set of ran-
dom walk sequences labeled with g;, W 1s the set of verti-
ces randomly sampled from group g;.

5.1.5 Semi-Supervised Network Embedding (SemiNE)

SemiNE [49] learns semi-supervised vertex representations
in two stages. In the first stage, SemiNE exploits the Deep-
Walk [6] framework to learn vertex representations in an
unsupervised manner. It points out that DeepWalk does not
consider the order information of context vertex, i.e., the
distance between the context vertex and the central vertex,
when using the context vertex v;, ; to predict the central ver-
tex v;. Thus, SemiNE encodes the order information into
DeepWalk by modeling the probability Pr(vi;|v;) with
j-dependent parameters

exp(P(v;) - ¥;(visj))
ey exp(P(v) - Wi(u))’

where ®(-) is the vertex representation and W;(-) is the
parameter for calculating Pr(v;;|v;).

In the second stage, SemiNE learns a neural network that
tunes the learned unsupervised vertex representations to fit
vertex labels.

Pr(w+j|w) = (38)

5.2 Semi-Supervised Content Augmented NRL
Recently, more research efforts have shifted to the develop-
ment of label and content augmented NRL algorithms that
investigate the use of vertex content and labels to assist
with network representation learning. With content infor-
mation incorporated, the learned vertex representations are
expected to be more informative, and with label information
considered, the learned vertex representations can be highly
customized for the underlying classification task.

5.2.1 Tri-Party Deep Network Representation (TriDNR)

Using a coupled neural network framework, TriDNR [50]
learns vertex representations from three information sour-
ces: network structure, vertex content and vertex labels. To
capture the vertex content and label information, TriDNR
adapts the Paragraph Vector model [67] to describe the ver-
tex-word correlation and the label-word correspondence by
maximizing the following objective:

4

ZlogPr w_p : wple;) +ZlogPr w_p  wylv;), (39)
i€l i=1

where {w_; : w,} is a sequence of words inside a contextual
window of length 2b, ¢; is the class label of vertex v;, and L
is the set of indices of labeled vertices.

TriDNR is then realized by coupling the Paragraph Vec-
tor objective with DeepWalk objective

max (1 —a)Lpw + aLpy, (40)

where Lpy is the DeepWalk maximization objective func-

tion and « is the trade-off parameter.

5.2.2 Linked Document Embedding (LDE)

LDE [51] is proposed to learn representations for linked
documents, which are actually the vertices of citation or
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webpage networks. Similar to TriDNR [50], LDE learns ver-
tex representations by modeling three kinds of relations,
i.e., word-word-document relations, document-document
relations, and document-label relations. LDE is realized by
solving the following optimization problem:

S

| ‘(uz,' wj,dy,)EP

|E|Z Z 10gPrd|d)

Z log Pr(y;|d;)

ly‘ iy, €Y

+ (W5 + IDl7 + Y 1[7)-

min —

log Pr(w;|w;, dj
i o8 Pr(w;fuw;, dy)

(41)

Here, the probability Pr(w;|w;,d;) is used to model word-
word-document relations, which means the probability that
in document d;, word w; is a neighboring word of w;. To
capture word-word-document relations, triplets (w;,w;, dy.)
are extracted, with the word-neighbor pair (w;,w;) occur-
ring in document d;.. The set of triplets (w;, w;, d) is denoted
by P. The document-document relations are captured by the
conditional probability between linked document pairs
(d;, d;), Pr(d;|d;). The document-label relations are also con-
sidered by modeling Pr(y;|d;), the probability for the occur-
rence of class label y; conditioned on document d;. In (41),
W, D and Y is the embedding matrix for words, documents
and labels, respectively.

5.2.3 Discriminative Matrix Factorization (DMF)

To empower vertex representations with discriminative
ability, DMF [8] enforces the objective of TADW (21) with
an empirical loss minimization for a linear classifier trained
on labeled vertices

Vi

(M;; — w! Ht;)
=1

Z(Ynl 77 xn

min —
J TIE,C

W.Hn 2 (42)

A A
+ 5 (I + ) + 5 W
where w; is the ith column of vertex representation matrix
W and t; is jth column of vertex textual feature matrix 7',
and L is the set of indices of labeled vertices. DMF considers
binary-class classification, i.e.,, ) = {4+1,—1}. Hence, Y, is
used to denote the class label of vertex v,,.

DMF constructs vertex representations from W rather
that W and HT. This is based on empirical findings that W
contains sufficient information for vertex representations. In
the objective of (42), z,, is set to [w?, 1]T, which incorporates
the intercept term b of the linear classifier into 5. The optimi-
zation problem (42) is solved by optimizing W, H and n
alternately. Once the optimization problem is solved, the
discriminative and informative vertex representations
together with the linear classifier are learned, and work
together to classify unlabeled vertices in networks.

5.2.4 Predictive Labels and Neighbors with
Embeddings Transductively or Inductively from
Data (Planetoid)

Planetoid [52] leverages network embedding together with
vertex attributes to carry out semi-supervised learning.
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Planetoid learns vertex embeddings by minimizing the loss
for predicting structural context, which is formulated as

L,=—E;.ploga(ywle;), (43)
where (i, ¢) is the index for vertex context pair (v;,v.), €; is
the embedding of vertex v;, w, is the parameter vector for
context vertex v., and y € {+1,—1} indicates whether the
sampled vertex context pair (i,c) is positive or negative.
The triple (i, ¢, y) is sampled according to both the network
structure and vertex labels.

Planetoid then maps the learned vertex representations e
and vertex attributes x to hidden layer space via deep neu-
ral network, and concatenates these two hidden layer repre-
sentations together to predict vertex labels, by minimizing
the following classification loss:

1 L
£, =7 logp(ylx, e, (40
i=1

To integrate network structure, vertex attributes and ver-
tex labels together, Planetoid jointly minimizes the two
objectives (43) and (44) to learn vertex embedding e with
deep neural networks.

5.2.5 Label Informed Attribute Network
Embedding (LANE)

LANE [30] learns vertex representations by embedding the
network structure proximity, attribute affinity, and label
proximity into a unified latent representation. The learned
representations are expected to capture both network struc-
ture and vertex attribute information, and label information if
provided. The embedding learning in LANE is carried out in
two stages. During the first stage, vertex proximity in network
structure and attribute information are mapped into latent
representations U®) and U, then U™ is incorporated into
U'® by maximizing their correlations. In the second stage,
LANE employs the joint proximity (determined by U@) to
smooth label information and uniformly embeds them into
another latent representation UY), and then embeds U,
¢ and UY) into a unified embedding representation H.

5.3 Summary
We now summarize and compare the discriminative learn-
ing strategies used by semi-supervised NRL algorithms in
Table 5 in terms of their advantages and disadvantages.

Three strategies are used to achieve discriminative learn-
ing. The first strategy (i.e., DDRW [45], MMDW [46],
TLINE [47], DMF [8], SemilNE [49]) is to enforce classifica-
tion loss minimization on vertex representations, i.e., fitting
the vertex representations to a classifier. This provides a
direct way to separate vertices of different categories from
each other in the new embedding space. The second strat-
egy (used by GENE [48], TriDNR [50], LDE [51] and Planet-
oid [52]) is achieved by modeling vertex label relation, such
that vertices with same labels have similar vector represen-
tations. The third strategy used by LANE [30] is to jointly
embed vertices and labels into a common space.

Fitting vertex representations to a classifier can take
advantage of the discriminative power in vertex labels. Algo-
rithms using this strategy only require a small number of
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TABLE 5
A Summary of Semi-Supervised NRL Algorithms
Discriminative Learning Strategy | Algorithm | Loss function Advantage Disadvantage
DDRW [45] hinge loss
MMDW [46] hinge loss irectl mize classification 1
fitting a classifier TLINE [47] hinge loss a) directly optimize classification loss; prone to overfitting
b) perform better in sparsely labeled scenarios
DMF [8] square loss
SemiNE [49] logistic loss
GENE [48] | likelihood loss
modeling vertex label relation TADNR [50] | likelihood loss b i imi
g LDE [51] likelihood Toss a) better captgre 1'ntra—class proximity; require more labeled data
b) generalization to other tasks
Planetoid [52] | likelihood loss
joint vertex label embedding LANE [30] | correlation loss

labeled vertices (e.g., 10 percent) to achieve significant per-
formance gain over their unsupervised counterparts. They
are thus more effective for discriminative learning in
sparsely labeled scenarios. However, fitting vertex represen-
tations to a classifier is more prone to overfitting. Regulariza-
tion and DropOut [69] are often introduced to overcome this
problem. By contrast, modeling vertex label relation and
joint vertex embedding requires more vertex labels to make
vertex representations more discriminative, but they can bet-
ter capture intra-class proximity, i.e., vertices belonging to
the same class are kept closer to each other in the new
embedding space. This allows them to have generalized ben-
efits on tasks like vertex clustering or visualization.

6 APPLICATIONS

Once new vertex representations are learned via network
representation learning techniques, traditional vector-based
algorithms can be used to solve important analytic tasks,
such as vertex classification, link prediction, clustering,
visualization, and recommendation. The effectiveness of the
learned representations can also be validated through
assessing their performance on these tasks.

6.1 Vertex Classification
Vertex classification is one of the most important tasks in net-
work analytic research. Often in networks, vertices are asso-
ciated with semantic labels characterizing certain aspects of
entities, such as beliefs, interests, or affiliations. In citation
networks, a publication may be labeled with topics or
research areas, while the labels of entities in social network
may indicate individuals’ interests or political beliefs. Often,
because network vertices are partially or sparsely labeled
due to high labeling costs, a large portion of vertices in net-
works have unknown labels. The problem of vertex classifi-
cation aims to predict the labels of unlabeled vertices given a
partially labeled network [10], [11]. Since vertices are not
independent but connected to each other in the form of a net-
work via links, vertex classification should exploit these
dependencies for jointly classifying the labels of vertices.
Among others, collective classification proposes to construct
a new set of vertex features that summarize label dependen-
cies in the neighborhood, which has been shown to be most
effective in classifying many real-world networks [70], [71].
Network representation learning follows the same princi-
ple that automatically learns vertex features based on network
structure. Existing studies have evaluated the discriminative
power of the learned vertex representations under two

settings: unsupervised settings (e.g., [1], [6], [7], [20], [34]),
where vertex representations are learned separately, followed
by applying discriminative classifiers like SVM or logistic
regression on the new embeddings, and semi-supervised
settings (e.g., [8], [30], [45], [46], [47]), where representation
learning and discriminative learning are simultaneously tack-
led, so that discriminative power inferred from labeled verti-
ces can directly benefit the learning of informative vertex
representations. These studies have proved that better vertex
representations can contribute to high classification accuracy.

6.2 Link Prediction

Another important application of network representation
learning is link prediction [13], [72], which aims to infer the
existence of new relationships or emerging interactions
between pairs of entities based on the currently observed
links and their properties. The approaches developed to
solve this problem can enable the discovery of implicit or
missing interactions in the network, the identification of
spurious links, as well as understanding the network evolu-
tion mechanism. Link prediction techniques are widely
applied in social networks to predict unknown connections
among people, which can be used to recommend friendship
or identify suspicious relationships. Most of the current
social networking systems are using link prediction to auto-
matically suggest friends with a high degree of accuracy. In
biological networks, link prediction methods have been
developed to predict previously unknown interactions
between proteins, thus significantly reducing the costs of
empirical approaches. Readers can refer to the survey
papers [12], [73] for the recent progress in this field.

Good network representations should be able to capture
explicit and implicit connections between network vertices
thus enabling application to link prediction. [19] and [35]
predict missing links based on the learned vertex represen-
tations on social networks. [34] also applies network repre-
sentation learning to collaboration networks and protein-
protein interaction networks. They demonstrate that on
these networks links predicted using the learned represen-
tations achieve better performance than traditional similar-
ity-based link prediction approaches.

6.3 Clustering

Network clustering refers to the task of partitioning network
vertices into a set of clusters, such that vertices are densely
connected to each other within the same cluster, but con-
nected to few vertices from other clusters [74]. Such cluster
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structures, or communities widely occur in a wide spectrum
of networked systems from bioinformatics, computer science,
physics, sociology, etc., and have strong implications. For
example, in biology networks, clusters may correspond to a
group of proteins having the same function; in the network of
webpages, clusters are likely pages having similar topics or
related content; in social networks, clusters may indicate
groups of people having similar interests or affiliations.

Researchers have proposed a large body of network clus-
tering algorithms based on various metrics of similarity or
strength of connection between vertices. Min-max cut and
normalized cut methods [75], [76] seek to recursively parti-
tion a graph into two clusters that maximize the number of
intra-cluster connections and minimize the number of inter-
cluster connections. Modularity-based methods (e.g., [77],
[78]) aim to maximize the modularity of a clustering, which
is the fraction of intra-cluster edges minus the expected frac-
tion assuming the edges were randomly distributed. A net-
work partitioning with high modularity would have dense
intra-cluster connections but sparse inter-cluster connec-
tions. Some other methods (e.g., [79]) try to identify nodes
with similar structural roles like bridges and outliers.

Recent NRL methods (e.g., GraRep [26], DNGR [9], M-
NMEF [28], and pRBM [29]) used the clustering performance to
evaluate the quality of the learned network representations
on different networks. Intuitively, better representations
would lead to better clustering performance. These works fol-
lowed the common approach that first applies an unsuper-
vised NRL algorithm to learn vertex representations, and then
performs k-means clustering on the learned representations
to cluster the vertices. In particular, pRBM [29] showed that
NRL methods outperform the baseline that uses original fea-
tures for clustering without learning representations. This
suggests that effective representation learning can improve
the clustering performance.

6.4 Visualization

Visualization techniques play critical roles in managing,
exploring, and analyzing complex networked data. [80] sur-
veys a range of methods used to visualize graphs from an
information visualization perspective. This work compares
various traditional layouts used to visualize graphs, such as
tree-, 3D-, and hyperbolic-based methods, and shows that
classical visualization techniques are proved effective for
small or intermediate sized networks; they however con-
front a big challenge when applied to large-scale networks.
Few systems can claim to deal effectively with thousands of
vertices, although networks with this order of magnitude
often occur in a wide variety of applications. Consequently,
a first step in the visualization process is often to reduce the
size of the network to display. One common approach is
essentially to find an extremely low-dimensional represen-
tation of a network that preserves the intrinsic structure,
i.e., keeping similar vertices close and dissimilar vertices far
apart, in the low-dimensional space [17].

Network representation learning has the same objective
that embeds a large network into a new latent space of low
dimensionality. After new embeddings are obtained in the
vector space, popular methods such as t-distributed sto-
chastic neighbor embedding (¢-SNE) [81] can be applied to
visualize the network in a 2-D or 3-D space. By taking the
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learned vertex representations as input, LINE [1] used the
t-SNE package to visualize the DBLP co-author network
after the authors are mapped into a 2-D space, and showed
that LINE is able to cluster authors in the same field to the
same community. HSCA [20] illustrated the advantages
of the content-augmented NRL algorithm by visualizing
citation networks. Semi-supervised algorithms (e.g.,
TLINE [47], TriDNR [50], and DMF [8]) demonstrated that
the visualization results have better clustering structures
with vertex labels properly imported.

6.5 Recommendation

In addition to structure, content, and vertex label informa-
tion, many social networks also include geographical and
spatial-temporal information, and users can share their expe-
riences online with their friends for point of interest (POI)
recommendation, e.g., transportation, restaurant, and sight-
seeing landmark, etc. Examples of such location-based social
networks (LBSN) include Foursquare, Yelp, Facebook Places,
and many others. For these types of social networks, POl rec-
ommendation intends to recommend user interested objects,
depending on their own context, such as the geographic loca-
tion of the users and their interests. Traditionally, this is
solved by using approaches, such as collaborative filtering,
to leverage spatial and temporal correlation between user
activities and geographical distance [82]. However, because
each user’s check-in records are very sparse, finding similar
users or calculating transition probability between users and
locations is a significant challenge.

Recently, spatial-temporal embedding [14], [15], [83]
has emerged to learn low-dimensional dense vectors to
represent users, locations, and point-of-interests efc. As a
result, each user, location, and POI can be represented as
a low-dimensional vector, respectively, for similarity
search and many other analysis. An inherent advantage
of such spatial-temporal aware embedding is that it alle-
viates the data sparsity problem, because the learned low
dimensional vector is typically much more dense than the
original representation. As a result, it makes query tasks,
such as top-k POI search, much more accurate than tradi-
tional approaches.

6.6 Knowledge Graph
Knowledge graphs represent a new type of data structure in
database systems which encode structured information of bil-
lions of entities and their rich relations. A knowledge graph
typically contains a rich set of heterogeneous objects and dif-
ferent types of entity relationships. Such networked entities
form a gigantic graph and is now powering many commercial
search engines to find similar objects online. Traditionally,
knowledge graph search is carried out through database
driven approaches to explore schema mapping between
entities, including entity relationships. Recent advancement
in network representation learning has inspired structured
embeddings of knowledge bases [84]. Such embedding meth-
ods learn a low-dimensional vector representation for knowl-
edge graph entities, such that generic database queries, such
as top-k search, can be carried out by comparing vector repre-
sentation of the query object and objects in the database.

In addition to using vector representation to represent
knowledge graph entities, researchers have also proposed
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TABLE 6
A Summary of Benchmark Datasets for Evaluating Network Representation Learning
Category Dataset Type V| |E| |Y] | Multi-label | Vertex attr.
BlogCatalog" undirected, binary 10,312 333,983 39 Yes No
Flickr” undirected, binary 80,513 5,899,882 195 Yes No
YouTube” undirected, binary 1,138,499 2,990,443 47 Yes No
Social Network Facebo;)kf undirected, binary 4,039 88,234 4 No Yes
Ambherst® [86] undirected, binary 2,021 81,492 15 No Yes
Hamilton? [86] undirected, binary 2,118 87,486 15 No Yes
Mich? [86] undirected, binary 2,933 54,903 13 No Yes
Rochester [86] undirected, binary 4,145 145,305 19 No Yes
Language Network Wikipedia [1] undirected, weighted | 1,985,098 | 1,000,924,086 | N/A N/A No
DBLP (PaperCitation) [1], [87] directed, binary 781,109 4,191,677 7 No Yes
DBLP (AuthorCitation) [1], [87] directed, weighted 524,061 20,580,238 7 No No
Citation Network Cora® , directed, binary 2,708 5,429 7 No Yes
Citeseer’ directed, binary 3,312 4,732 6 No Yes
PubMed® directed, binary 19,717 44,338 3 No Yes
Citeseer-M10" directed, binary 10,310 77,218 10 No Yes
Collaboration network Arxiv GR-QC [88] undirected, binary 5,242 28,980 N/A N/A No
Wikipedia® directed, binary 2,405 17,981 20 No Yes
Webpage Network WebKB* directed, binary 877 1,608 5 No Yes
Political Blog [89] directed, binary 1,222 16,715 2 No No
Biological Network Protein-Protein Interaction [90] undirected, binary 4,777 184,812 40 Yes No
Communication Network Enron Email Network?® undirected, binary 36,692 183,831 7 No No
Traffic Network European Airline Networks” undirected, binary N/A N/A 4 No No

“http:/ /www.public.asu.edu/~Itang9/

Yhttp:/ /socialnetworks.mpi-sws.org/data-imc2007.html
‘https:/ /snap.stanford.edu/data/egonets-Facebook.html
dhttps:/ /escience.rpi.edu/data/DA/fb100/

¢https:/ /lings.soe.ucsc.edu/data

fhttp:/ /citeseerx.ist.psu.edu/

Shttps:/ /snap.stanford.edu/data/email-Enron.html
"http:/ /complex.unizar.es/~atnmultiplex/

to use such representation to further enhance and complete
the knowledge graph itself. For example, knowledge graph
completion intends to discover complete relationships
between entities, and a recent work [85] has proposed to
use graph context to find missing links between entities.
This is similar to link prediction in social networks, but the
entities are typically heterogeneous and a pair of entities
may also have different types of relationships.

7 EVALUATION PROTOCOLS

In this section, we discuss evaluation protocols for validat-
ing the effectiveness of network representation learning.
This includes a summary of commonly used benchmark
datasets and evaluation methods, followed by a comparison
of algorithm performance and complexity.

7.1 Benchmark Datasets

Benchmark datasets play an important role for the research
community to evaluate the performance of newly devel-
oped NRL algorithms as compared to the existing baseline
methods. A handful of network datasets have been made
publicly available to facilitate the evaluation of NRL algo-
rithms across different tasks. We summarize a list of net-
work datasets used by most of the published network
representation learning papers in Table 6.

Table 6 summarizes the main characteristics of the pub-
licly available benchmark datasets, including the type of
network (directed or undirected, binary or weighted), num-
ber of vertices |V|, number of edges |E|, number of labels
||, whether the network is multi-labeled or not, as well as

whether network vertices are attached with attributes. In
Table 6, according to the property of information networks,
we classify benchmark datasets into eight different types:
Social Network. The BlogCatalog, Flickr and YouTube
datasets are formed by users of the corresponding online
social network platforms. For the three datasets, vertex
labels are defined by user interest groups but user attributes
are unavailable. The Facebook network is a combination
of 10 Facebook ego-networks, where each vertex contains
user profile attributes. The Amherst, Hamilton, Mich and
Rochester [86] datasets are the Facebook networks formed
by users from the corresponding US universities, where
each user has six user profile features. Often, user profile
features are noisy, incomplete, and long-tail distributed.
Language Network. The language network Wikipedia [1] is
a word co-occurrence network constructed from the entire
set of English Wikipedia pages. There is no class label on this
network. The word embeddings learned from this network
are evaluated by word analogy and document classification.
Citation Network. The citation networks are directed infor-
mation networks formed by author-author citation rela-
tionships or paper-paper citation relationships. They are
collected from different databases of academic papers, such
as DBLP and Citeseer. Among the commonly used citation
networks, DBLP (AuthorCitation) [1] is a weighted citation
network between authors with the edge weight defined by
the number of papers written by one author and cited by the
other author, while DBLP (PaperCitation) [1], Cora, Citeseer,
PubMed and Citeseer-M10 are the binary paper citation net-
works, which are also attached with vertex text attributes as
the content of papers. Compared with user profile features
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in social networks, the vertex text features here are more
topic-centric, informative and can better complement net-
work structure to learn effective vertex representations.

Collaboration Network. The collaboration network Arxiv
GR-QC [88] describes the co-author relationships for papers
in the research field of General Relativity and Quantum
Cosmology. In this network, vertices represent authors and
edges indicate co-author relationships between authors.
Because there is no category information for vertices, this
network is used for the link prediction task to evaluate the
quality of learned vertex representations.

Webpage Network. Webpage networks (Wikipedia,
WebKB and Political Blog [89]) are composed of real-world
webpages and hyperlinks between them, where the vertex
represents a webpage and the edge indicates that there is a
hyperlink from one webpage to another. Webpage text con-
tent is often collected as vertex features.

Biological Network. As a typical biological network, the
Protein-Protein Interaction network [90] is a subgraph of the
PPI network for Homo Sapiens. The vertex here represents a
protein and the edge indicates that there is an interaction
between proteins. The labels of vertices are obtained from
the hallmark gene sets [91] and represent biological states.

Communication Network. The Enron Email Network is
formed by the Email communication between Enron employ-
ees, with vertices being employees and edges representing
the email communicated between employees. Employees are
labeled as 7 roles (e.g., CEO, president and manager), accord-
ing to their functions.

Traffic Network. European Airline Networks used in [39]
are constructed from 6 airlines operating flights between
European airports: 4 commercial airlines (Air France, Easy-
jet, Lufthansa, and RyanAir) and 2 cargo airlines (TAP Por-
tugal, and European Airline Transport). For each airline
network, vertices are airports and edges represent the direct
flights between airports. In all, 45 airports are labeled as
hub airports, regional hubs, commercial hubs, and focus cit-
ies, according to their structural roles.

7.2 Evaluation Methods

It is difficult to directly compare the quality of the vertex
representations learned by different NRL algorithms, due to
the unavailability of ground truth. Alternatively, in order to
evaluate the effectiveness of NRL algorithms on learned
vertex representations, several network analytic tasks are
commonly used for comparison studies.

Network Reconstruction. The aim of network reconstruc-
tion is to reconstruct the original network from the learned
vertex representations by predicting the links between verti-
ces based on the inner product or similarity between vertex
representations. The known links in the original network
serve as the ground truth for evaluating reconstruction per-
formance. precision@k and MAP [19] are often used as eval-
uation metrics. This evaluation method can check whether
the learned vertex representations well preserve network
structure and support network formation.

Vertex Classification. As an evaluation method for NRL,
vertex classification is conducted by taking learned vertex
representations as features to train a classifier on labeled
vertices. The classification performance on unlabeled verti-
ces is used to evaluate the quality of the learned vertex
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representations. Different vertex classification settings,
including binary-class classification, multi-class classifica-
tion, and multi-label classification, are often carried out,
depending on the underlying network characteristics. For
binary-class classification, F} score is used as the evaluation
criterion. For multi-class and multi-label classification,
Micro-Fy and Macro-F; are adopted as evaluation criteria.

Vertex Clustering. To validate the effectiveness of NRL
algorithms, vertex clustering is also carried out by applying
k-means clustering algorithm to the learned vertex represen-
tations. Communities in networks are served as the ground
truth to assess the quality of clustering results, which is mea-
sured by Accuracy and NMI (normalized mutual informa-
tion) [92]. The hypothesis is that, if the learned vertex
representations are indeed informative, vertex clustering on
learned vertex representations should be able to discover
community structures. That is, good vertex representations
are expected to generate good clustering results.

Link Prediction. Link prediction can be used to evaluate
whether the learned vertex representations are informative
to support the network evolution mechanism. To perform
link prediction on a network, a portion of edges are first
removed, and vertex representations are learned from the
remaining network. Finally, the removed edges are predicted
with the learned vertex representations. The performance of
link prediction is measured by AUC and precisionQk.

Visualization. Visualization provides a straightforward
way to visually evaluate the quality of the learned vertex rep-
resentations. Often, t-distributed stochastic neighbor embed-
ding (t-SNE) [81] is applied to project the learned vertex
representation vectors into a 2-D space, where the distribu-
tion of vertex 2-D mappings can be easily visualized. If ver-
tex representations are of good quality, in the 2-D space,
vertices within a same class or community should be embed-
ded closely, and the 2-D mappings of vertices in different
classes or communities should be far apart from each other.

In Table 7, we summarize the type of information net-
works and network analytic tasks used to evaluate the qual-
ity of vertex representations learned by existing NRL
algorithms. We also provide hyperlinks for the codes of
respective NRL algorithms if available to help interested
readers to further study these algorithms or run experiments
for comparison. Overall, social networks and citation net-
works are frequently used as benchmark datasets, and vertex
classification is most commonly used as the evaluation
method in both unsupervised and semi-supervised settings.

7.3 Empirical Results

We observe from the literature that empirical evaluation is
often carried out on different datasets under different set-
tings. There is a lack of consistency on empirical results to
determine the best performing algorithms and their circum-
stances. Therefore, we perform benchmark experiments to
fairly compare the performance of several representative
NRL algorithms on the same set of datasets. Note that,
because semi-supervised NRL algorithms are task-
dependent: the target task may be binary or multi-class, or
multi-label classification, or because they use different clas-
sification strategies, it would be difficult to assess the effec-
tiveness of network embedding under the same settings.
Therefore, our empirical study focuses on comparing seven
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A Summary of NRL Algorithms with Respect to the Evaluation Methodology

Category

Algorithm

Network Type

Evaluation Method

Code Link

Unsupervised

Social Dim. [31], [32], [33]

Social Network

Vertex Classification

DeepWalk [6]

Social Network

Vertex Classification

https:/ /github.com/phanein/deepwalk

LINE [1]

Citation Network
Language Network
Social Network

Vertex Classification
Visualization

https:/ /github.com/tangjianpku/LINE

GraRep [26]

Citation Network
Language Network

Vertex Classification
Vertex Clustering

https:/ /github.com/ShelsonCao/GraRep

Social Network Visualization
Vertex Clustering e
DNGR [9] Language Network Visualization https://github.com/ShelsonCao/DNGR
Collaboration Network N%:;?;f g?gﬁi;g;on
SDNE [19] Language Network s https:/ / github.com/suanrong/SDNE

Social Network

Link Prediction
Visualization

node2vec [34]

Biological Network
Language Network
Social Network

Vertex Classification
Link Prediction

https://github.com/aditya-grover/node2vec

Social Network

Network Reconstruction

HOPE [35] Citation Network Link Prediction
Social Network
APP [36] Citation Network Link Prediction

Collaboration Network

GraphGAN [37]

Citation Network
Language Network
Social Network

Vertex Classification
Link Prediction

M-NMF [28]

Social Network

Vertex Classification

http:// git.thumedia.org/embedding /M-NMF

Webpage Network Vertex Clustering
struct2vec [38] Traffic Network Vertex Classification
Traffic Network Vertex Clustering

GraphWave [39]

Communication Network

Visualization

http://snap.stanford.edu/graphwave

Social Network

SNS [40] Language Network Vertex Classification
Biological Network
Social Network Network Reconstruction
DP [41] Citation Network Link Prediction
Collaboration Network Vertex Classification
Social Network Vertex Classification
HARP [42] Collaboration Network Visualization
Citation Network ¢
TADW [7] Citation Network Vertex Classification https://github.com/thunlp /tadw
Webpage Network 78 ) P
HSCA [20] V?/:l:;l:;el\lileet::v(g;( Vert\e];;l(]:allaiszs;g(c;hon https:/ / github.com/daokunzhang /HSCA
PRBM [29] Social Network Vertex Clustering

UPP-SNE [43]

Social Network

Vertex Classification
Vertex Clustering

Social Network

Vertex Classification

Semi-supervised

PPNE [44] Citation Network Link Prediction
Webpage network
DDRW [45] Social Network Vertex Classification
Citation Network Vertex Classification .
MMDW [46] Webpage Network Visualization https:/ / github.com/thunlp/MMDW
Citation Network Vertex Classification
TLINE [47] Collaboration Network Visualization
GENE [48] Social Network Vertex Classification

SemiNE [49]

Social Network

Network Reconstruction
Vertex Classification
Link prediction

Vertex Classification

TriDNR [50] Citation Network Visualization https://github.com/shiruipan/TriDNR
LDE [51] Csi?actiianI\eI:;Vv(v)(r}:k Vertex Classification
DMF [8] Citation Network Vert\e];;f;iis;fii(c’iti()n https://github.com/daokunzhang /DMF_CC
Planetoid [52] Citation Network Vertsixsfalﬁszs;fii(c;tion https:/ /github.com/kimiyoung/planetoid

LANE [30]

Social Network

Vertex Classification

unsupervised NRL algorithms (DeepWalk [6], LINE [1],
node2vec [34], M-NMF [28], TADW [7], HSCA [20], UPP-
SNE [43]) on vertex classification and vertex clustering,
which are the two most commonly used evaluation meth-

ods in the literature.

Our empirical studies are based on seven benchmark
datasets: Ambherst, Hamilton, Mich, Rochester, Citeseer,
Cora and Facebook. Following [28], for Amherst, Hamilton,
Mich and Rochester, only the network structure is used and
the attribute “year” is used as class label, which is a good
indicator of community structure. For Citeseer and Cora,
the research area is used as the class label. The class label of
Facebook dataset is given by the attribute “education type”.

7.3.1

Experimental Setup

For random walk based methods, DeepWalk, node2vec and
UPP-SNE, we uniformly set the number of walks, walk
length and window size as 10, 80, 10, respectively. For UPP-
SNE, we use the implementation that is optimized by sto-
chastic gradient descent. The parameter p and ¢ of node2vec
are set to 1, as the default setting. For M-NMF, we set « and
B as 1. For all algorithms, the dimension of learned vertex
representations is set to 256. For LINE, we learn 128-dimen-
sional vertex representations with the first-order proximity
preserving version and the second-order proximity preserv-
ing version respectively and concatenate them together to
obtain 256-dimensional vertex representations. The other
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TABLE 8
Vertex Classification Results on Seven Datasets
Method Training ratio = 5% Training ratio = 50%
Ambherst Hamilton Mich Rochester Citeseer Cora Facebook Amherst Hamilton Mich Rochester Citeseer Cora Facebook
DeepWalk  0.7168 0.7127  0.3933  0.6795 0.5061 0.7333  0.6839 0.8106 0.8188  0.4829 0.7822 0.5927 0.8292 0.6782
LINE 0.7351 0.7367  0.4101  0.7163 0.3842 0.5625  0.6832 0.8240 0.8415 0.5046  0.8067 0.5353  0.7572 0.6848
node2vec  0.7528 0.7622  0.4163  0.7018 0.5135 0.7395  0.6911 0.8063 0.8239  0.4900 0.7625 0.5936 0.8126 0.6944
Micro-Fy ~ M-NMF 0.7325 0.7471  0.3865  0.7047 0.4070 0.5704  0.6875 0.8280 0.8476  0.4827  0.8076 0.5979  0.7635 0.6849
TADW 0.6206 0.7257  0.7260 0.7379  0.8648 0.8748
HSCA 0.6309 0.7737  0.6827 0.7396  0.8693 0.6955
UPP-SNE 0.6579 0.7745  0.8467 0.7105 0.8429 0.8711
DeepWalk  0.3372 02829 0.1726  0.1925 0.4487 0.7103  0.2431 0.4628 0.3838 0.2249  0.2549 0.5281 0.8203 0.2529
LINE 0.3420 02912  0.1823  0.2043 0.3456 0.5321  0.2350 0.4107 0.3487  0.2395  0.2540 0.4851 0.7504 0.2460
node2vec  0.3158 0.2912  0.1825  0.1893 0.4577 0.7193  0.2231 0.3568 0.3211  0.2214  0.2207 0.5370  0.8035 0.2207
Macro-Fy  M-NMF 0.3206 0.2951 0.1774  0.2050 0.3665 0.5377  0.2183 0.3895 0.3684  0.2341  0.2540 0.5494 0.7554 0.2362
TADW 0.5614 0.7031  0.2926 0.6920 0.8527 0.4425
HSCA 0.5712  0.7544  0.2219 0.6909 0.8571 0.2459
UPP-SNE 0.5847 0.7451  0.4177 0.6509 0.8277 0.4355

parameters of the above algorithms are all set to their
default values.

Taking the learned vertex representations as input,
we carry out vertex classification and vertex clustering
experiments to evaluate the quality of learned vertex repre-
sentations. For vertex classification, we randomly select 5
and 50 percent samples to train an SVM classifier (with the
LIBLINEAR implementation [66]) and test it on the remain-
ing samples. We repeat this process 10 times and report the
averaged Micro-Fy and Macro-F values. We adopt k-means
to perform vertex clustering. To reduce the variance caused
by random initialization, we repeat the clustering process for
20 times and report the averaged Accuracy and NMI values.

7.3.2 Performance Comparison

Tables 8 and 9 compare the performance of different algo-
rithms on vertex classification and vertex clustering. For
each dataset, the best performing method across all base-
lines is bold-faced. For the attributed networks (Citeseer,
Cora and Facebook), the underlined results indicate the best
performer among the structure only preserving NRL algo-
rithms (DeepWalk, LINE, node2vec and M-NMF).

Table 8 shows that among structure only preserving NRL
algorithms, when the training ratio is 5 percent, node2vec
achieves the best classification performance overall, and
when the training ratio is 50 percent, M-NMF performs best
in terms of Micro-F; while DeepWalk is the winner of
Macro-F. Here, M-NMF does not exhibit significant advan-
tage over DeepWalk, LINE and node2vec. This is probably
due to that the parameter o and g of N-NMF are not opti-
mally tuned; their values must be carefully chosen so as to
achieve a good trade-off between different components. On
attributed networks (Citeseer, Cora and Facebook), the con-
tent augmented NRL performs much better than the struc-
ture only preserving NRL algorithms. This proves that
vertex attributes can largely contribute to learning more
informative vertex representations. When training ratio is 5
percent, UPP-SNE is the best performer. This indicates that
the UPP-SNE’s non-linear mapping provides a better way
to construct vertex representations from vertex attributes

than the linear mapping, as is done in TADW and HSCA.
When training ratio is 50 percent, TADW achieves the best
overall classification performance, although in some cases,
it is slightly outperformed by HSCA. On citation networks
(Citeseer and Cora), HSCA performs better than TADW,
while it yields worse performance than TADW on Face-
book. This might be caused by the fact that the homophily
property of Facebook social network is weaker than that of
citation networks. The homophily preserving objective
should be weighted less to make HSCA achieve satisfactory
performance on Facebook.

Table 9 shows that LINE achieves the best clustering per-
formance on Amherst, Hamilton, Mich and Rochester. As
LINE’s vertex representations capture both the first-order
and second-order proximity, it can better preserve the com-
munity structure, leading to good clustering performance.
On Citeseer, Cora and Facebook, the content augmented
NRL algorithm UPP-SNE performs best. As UPP-SNE con-
structs vertex representations from vertex attributes via a
non-linear mapping, the well preserved content information
favors the best clustering performance. On Citeseer and
Cora, node2vec performs much better than other structure
only preserving NRL algorithms, including its equivalent
version DeepWalk. For each vertex context pair (v;, v;), Deep-
Walk and node2vec use two different strategies to approxi-
mate the probability Pr(v;|v;): hierarchical softmax [93], [94]
and negative sampling [95]. The better clustering perfor-
mance of node2vec over DeepWalk proves the advantage of
negative sampling over hierarchical softmax, which is consis-
tent with the word embedding results as reported in [67].

7.4 Complexity Analysis

To better understand the existing NRL algorithms, we pro-
vide a detailed analysis of their time complexity and under-
lying optimization methods in Table 10. A new notation / is
introduced to represent the number of iterations and we use
nnz(-) to denote the number of non-zero entries of a matrix.
In a nutshell, four kinds of solutions are used to optimize
the objectives of the existing NRL algorithms: (1) eigen
decomposition that involves finding top-d eigenvectors of a

Authorized licensed use limited to: Florida Atlantic University. Downloaded on June 30,2020 at 14:44:59 UTC from |IEEE Xplore. Restrictions apply.



ZHANG ET AL.: NETWORK REPRESENTATION LEARNING: A SURVEY 23
TABLE 9
Vertex Clustering Results on Seven Datasets
Method Ambherst Hamilton Mich Rochester Citeseer Cora Facebook
DeepWalk 0.6257 0.6273 0.3944 0.5593 0.3365 0.5062 0.6953
LINE 0.6908 0.6718 0.4127 0.6070 0.2806 0.3905 0.6952
node2vec 0.6662 0.6328 0.4114 0.5777 0.4574 0.6216 0.6952
Accuracy M-NMF 0.6545 0.6374 0.3279 0.5071 0.2379 0.3640 0.6952
TADW 0.2778 0.4731 0.6953
HSCA 0.2794 0.4594 0.6957
UPP-SNE 0.5748 0.6832 0.8328
DeepWalk 0.4873 0.4390 0.1897 0.3468 0.0896 0.3308 0.0142
LINE 0.5030 0.4529 0.1858 0.3547 0.0511 0.1639 0.0113
node2vec 0.4742 0.4144 0.1824 0.3193 0.2027 0.4333 0.0162
NMI M-NMF 0.4696 0.4330 0.1304 0.2971 0.0464 0.1201 0.0176
TADW 0.0845 0.3001 0.0651
HSCA 0.0902 0.3148 0.0151
UPP-SNE 0.3005 0.4911 0.2095

matrix, (2) alternative optimization that optimizes one vari-
able with the remaining variables fixed alternately, (3) gradi-
ent descent that updates all parameters at each iteration for
optimizing the overall objective, and (4) stochastic gradient
descent that optimizes the partial objective stochastically in
an on-line mode.

Both unsupervised and semi-supervised NRL algorithms
mainly adopt stochastic gradient descent to solve their opti-
mization problems. The time complexity of these algorithms
is often linear with respect to the number of vertices/edges,
which makes them scalable to large-scale networks. By con-
trast, other optimization strategies usually involve higher
time complexity, which is quadratic with regards to the
number of vertices, or even higher with the scale of the
number of vertices times the number of edges. The corre-
sponding NRL algorithms usually perform factorization on
a |V| x |V| structure preserving matrix, which is quite time-
consuming. Efforts have been made to reduce the complex-
ity of matrix factorization. For example, TADW [7], DMF [8]
and HSCA [20] take advantage of the sparsity of the original
vertex-context matrix. HOPE [35] and GraphWave [39]
adopt advanced techniques [96], [97] to perform matrix
eigen decomposition.

8 FUTURE RESEARCH DIRECTIONS

In this section, we summarize six potential research direc-
tions and future challenges to stimulate research on net-
work representation learning.

Task-Dependence. To date, most existing NRL algorithms
are task-independent, and task-specific NRL algorithms
have primarily focused on vertex classification under the
semi-supervised setting. Only very recently, a few studies
have started to design task-specific NRL algorithms for link
prediction [35], community detection [98], [99], [100], [101],
class imbalance learning [102], active learning [103], and
information retrieval [104]. The advantage of using network
representation learning as an intermediate layer to solve the
target task is that the best possible information preserved in
the new representation can further benefit the subsequent
task. Thus, a desirable task-specific NRL algorithm must
preserve information critical to the specific task in order to
optimize its performance.

Theory. Although the effectiveness of the existing NRL
algorithms has been empirically proved through experi-
ments, the underlying working mechanism has not been
well understood. There is a lack of theoretical analysis with
regard to properties of algorithms and what contributes to
good empirical results. To better understand DeepWalk [6],
LINE [1], and node2vec [34], [105] discovers their theoreti-
cal connections to graph Laplacians. However, in-depth
theoretical analysis about network representation learning
is necessary, as it provides a deep understanding of algo-
rithms and helps interpret empirical results.

Dynamics. Current research on network representation
learning has mainly concerned static networks. However, in
real-life scenarios, networks are not always static. The
underlying network structure may evolve over time, i.e.,
new vertices/edges appear while some old vertices/edges
disappear. The vertices/edges may also be described by
some time-varying information. Dynamic networks have
unique characteristics that make static network embedding
fail to work: (i) vertex content features may drift over time;
(ii) the addition of new vertices/edges requires learning or
updating vertex representations to be efficient; and (iii) net-
work size is not fixed. The work on dynamic network
embedding is rather limited; the majority of existing
approaches (e.g., [106], [107], [108]) assume that the node
set is fixed and deal with the dynamics caused by the dele-
tion/addition of edges only. However, a more challenging
problem is to predict the representations of new added ver-
tices, which is referred to as “out-of-sample” problem. A
few attempts such as [52], [109], [110] are made to exploit
inductive learning to address this issue. They learn an
explicit mapping function from a network at a snapshot,
and use this function to infer the representations of out-of-
sample vertices, based on their available information such
as attributes or neighborhood structure. However, they
have not considered how to incrementally update the exist-
ing mapping function. How to design effective and efficient
representation learning algorithms in complex dynamic
domains still requires further exploration.

Scalability. The scalability is another driving factor to
advance the research on network representation learning.
Several NRL algorithms have made attempts to scale up to
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TABLE 10

Complexity Analysis

Category Algorithm Complexity Optimization Method
Social Dim. [31], [32], [33] o(d|V|?)
GraRep [26] oW ‘El +dVI®) Eigen Decomposition
HOPE [35] O(d*1|E|)
GraphWave [39] O(|E|)
DeepWalk [6] O(d|V|log |V])
LINE [1] O(d|E|)
SDNE [19] o(dI|V|?)
node2vec [34] o(d|v])
Unsupervised APP [36] oV Stochastic Gradient Descent
GraphGAN [37] O(|V]log|V])
struct2vec [38] o(V]?)
SNS [40] od|Vv))
PRBM [29] o(dmlI|V])
PPNE [44] o(d|Vv])
M-NMF [28] o@dI|V|?)
TADW [7] O(|V||E| + dI|E| + dmI|V| + d?I|V|) | Alternative Optimization
HSCA [8] O(|V||E| 4+ dI|E| + dmI|V| + d*I|V])
UPP-SNE [43] O(I|E|-nnz(X)) Gradient Descent
DDRW [45] O(d|V|log |V])
TLINE [47] O(d|E|)
SemiNE [49] o(d|v]) Stochastic Gradient Descent
Semi-supervised TriDNR [50] O(d - nnz(X)logm + d|V|log |V])
LDE [51] O(dI - nnz(X) + dI|E| + dI|Y||V])
DMEF [8] OUVIIE| + dI|E| + dmlI|V| + d*T|V]) Alternative Optimization
LANE [30] O(m|V|? +dI|V|?)

large-scale networks with linear time complexity with
respect to the number of vertices/edges. Nevertheless, the
scalability still remains a major challenge. Our findings on
complexity analysis show that random walk and edge
modeling based methods that adopt stochastic gradient
descent optimization are much more efficient than matrix
factorization based methods that are solved by eigen
decomposition and alternative optimization. Matrix factori-
zation based methods have shown great promise in incor-
porating vertex attributes and discovering community
structures, but their scalability needs to be improved to han-
dle networks with millions or billions of vertices. Deep
learning based methods can capture non-linearity in net-
works, but their computational cost is usually high. Tradi-
tional deep learning architectures take advantage of GPU to
speed up training on euclidean structured data [111]. How-
ever, networks do not have such a structure, and therefore
require new solutions to improve the scalability [112].
Heterogeneity and Semantics. Representation learning for
heterogeneous information networks (HIN) is one promis-
ing research direction. The vast amounts of existing work
has focused on homogeneous network embedding, where
all vertices are of the same type and edges represent a single
relation. However, there is an increasing need to study het-
erogeneous information networks with different types of
vertices and edges, such as DBLP, DBpedia, and Flickr. An
HIN is composed of different types of entities, such as text,
images, or videos, and the interdependencies between enti-
ties are very complex. This makes it very difficult to mea-
sure rich semantics and proximity between vertices and
seek a common and coherent embedding space. Recent
studies by [16], [113], [114], [115], [116], [117], [118], [119],
[120], [121] have investigated the use of various descriptors
(e.g., metapath or meta structure) to capture semantic

proximity between distant HIN vertices for representation
learning. However, the research along this line is still at
early stage. Further research requires to investigate better
ways for capturing the proximity between cross-modal
data, and their interplay with network structure.

Another interesting direction is to investigate edge
semantics in signed networks, where vertices have both
positive and negative relationships. Signed networks are
ubiquitous in social networks, such as Epinions and Slash-
dot, that allow users to form positive or negative friend-
ship/trust connection to other users. The existence of
negative links makes the traditional homophily based net-
work representation learning algorithms unable to be
directly applied. Some studies [122], [123], [124] tackle
signed network representation learning through directly
modeling the polar of links. How to fully encode network
structure and vertex attributes for signed network embed-
ding remains an open question.

Robustness. Real-world networks are often noisy and
uncertain, which makes traditional NRL algorithms unable
to produce stable and robust representations. Adversarial
Network Embedding (ANE) [125] and Adversarially Regu-
larized Graph Autoencoder (ARGA) [126] learn robust ver-
tex representations via enforcing an adversarial learning
regularizer [58]. To deal with the uncertainty in the exis-
tence of edges, Uncertain Graph Embedding (URGE) [127]
encodes the edge existence probability into the vertex repre-
sentation learning process. It is of great importance to have
more research efforts on enhancing the robustness of net-
work representation learning.

9 CONCLUSION

This survey provides a comprehensive review of the state-
of-the-art network representation learning algorithms in the
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data mining and machine learning field. We propose a tax-
onomy to summarize existing techniques into two settings:
unsupervised setting and semi-supervised settings. Accord-
ing to the information sources they use and the methodolo-
gies they employ, we further categorize different methods
at each setting into subgroups, review representative algo-
rithms in each subgroup, and compare their advantages
and disadvantages. We summarize evaluation protocols
used for validating existing NRL algorithms, compare their
empirical performance and complexity, as well as point out
a few emerging research directions and the promising
extensions. Our categorization and analysis not only help
researchers to gain a comprehensive understanding of exist-
ing methods in the field, but also provide rich resources to
advance the research on network representation learning.
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