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The Littlewood—Paley decomposition for functions defined on the whole space R and
related Besov space techniques have become indispensable tools in the study of many
partial differential equations (PDEs) with R? as the spatial domain. This paper intends
to develop parallel tools for the periodic domain T¢. Taking advantage of the bound-
edness and convergence theory on the square-cutoff Fourier partial sum, we define the
Littlewood—Paley decomposition for periodic functions via the square cutoff. We remark
that the Littlewood—Paley projections defined via the circular cutoff in T¢ with d > 1
in the literature do not behave well on the Lebesgue space L9 except for ¢ = 2. We
develop a complete set of tools associated with this decomposition, which would be very
useful in the study of PDEs defined on T%. As an application of the tools developed
here, we study the periodic weak solutions of the d-dimensional Boussinesq equations
with the fractional dissipation (—A)®u and without thermal diffusion. We obtain two
main results. The first assesses the global existence of L?-weak solutions for any a > 0
and the existence and uniqueness of the L2-weak solutions when o > % + % for d > 2.
The second establishes the zero thermal diffusion limit with an explicit convergence rate.
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1. Introduction

The Littlewood—Paley decomposition and Besov space techniques are important
tools in the study of solutions of partial differential equations (PDEs) defined in the
whole space R¢. This paper intends to develop parallel tools for periodic functions.
We define the Littlewood—Paley decomposition for periodic functions via the square
cutoff of the Fourier series. As we explain in Sec. 2, the definition of the Littlewood—
Paley decomposition in T¢ with d > 1 generated in terms of the circular cutoff do
not work well with the Lebesgue space L? except for ¢ = 2. We develop a complete
set of tools associated with this decomposition including Bernstein’s inequalities,
Bony’s paraproducts and the Besov spaces on periodic domains. This decomposition
and the corresponding tools are useful in the study of PDEs defined on the periodic
box T¢, and have an advantages over the classical Fourier series.

As an application of the tools developed here, we study the existence and unique-
ness of weak solutions to the d-dimensional (d-D) Boussinesq system in a periodic
domain T¢,

du+u-Vu=—v(-A)*u— VP +0ey, xcT! >0,

00 +u- VO = yug, xeT¢ t>0,
(1.1)
V-u=0, xeT¢ t>0,
(u,0)|t=0 = (uo, o), x € T¢,
where T? = [, 7T]d denotes the periodic box, and u, P and 6 represent the veloc-
ity field, the pressure and the temperature, respectively. Here v > 0 denotes the
kinematic viscosity, e; = (0,0,...,1) is the unit vector in the vertical direction,

« > 0 and v are real parameters, and ug is the dth component of u.
Here the fractional Laplacian (—A)® f is defined via the Fourier modes of f,

(ZA) f(k) = K> (k).

For f € L'(T9), the Fourier modes f(k) with k € Z? is given by

flk) = @ /Td f(x)e > gx.

More generally, for a distribution f, the kth Fourier coefficient is given by
F) = (f,e7™x).

More details can be found in [23]. Sometimes we also write A = (—A)2. When
a =1and vy =0, (1.1) becomes the standard Boussinesq system. When 6 = 0, (1.1)
reduces to the generalized Navier—Stokes equations.

The Littlewood—Paley decomposition and Besov space techniques have become
an indispensable tool for PDEs on R%. Our intention is to introduce the concept of
the Littlewood—Paley decomposition for periodic functions and derive related tools
so that the periodic case and the whole space case can be treated in the same way.
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The classical Fourier series expansion is not convenient for this purpose, especially
when we estimate the LP-norm of a series for p # 2.

In order to provide a suitable definition for the Littlewood—Paley decomposition
for functions on T?, we exam partial sums of the Fourier series given by various
kernel functions including the square Dirichlet kernel, the circular Dirichlet kernel,
general [, Dirichlet kernel with 1 < ¢ < oo, Fejér kernels and Riesz kernels. After
taking into account of the convergence and boundedness properties as well as the
easiness of being split into dyadic Fourier blocks, we choose the square cutoff to
define the dyadic Fourier blocks. More precisely, we define the following localized
Fourier projection operators as

Dof(x) = Y Fll e,

keAy

Ajfx)= Y. fl)e*, j>1, jeN,
keA;\A 1

where A;’s are the 27-sized blocks of d-dimensional integer lattice points,
Aj =1k = (ki,ka, ..., k) €Z%: |ky| <27, m=1,2,...,d}.

Since, for any f € LP(T?) with 1 < p < oo,

Sifx) =Y Anfx)= Y flke*>
m=0

kEAjfl

converges to f in LP(T%) for 1 < p < oo and almost everywhere for p = oo, we can
write the Littlewood—Paley decomposition

Fx) = Af(x).
k=0

We show that A; and S; defined above do share some of the crucial properties as
their counterparts in the whole space case such as Bernstein type inequalities

12|18 fllpoeray < 1AGA fl| poeray < 022aj+jd(575)||Ajf||Lq(1rd)-

More details can be found in Sec. 2. In addition, these operators allow us to develop
similar tools for periodic functions. We can write a standard product into parapro-
ducts and define the Besov type spaces B;yq(Td) for periodic functions. These tools
are much more convenient and flexible than the classical Fourier series when we
estimate solutions of PDEs defined in periodic domains.

The tools developed here are applied to study the solutions of (1.1) defined on
T?. We provide some background information on (1.1). The Boussinesq equations
model large scale atmospheric and oceanic flows that are responsible for cold fronts
and the jet stream (see, e.g., the books by Gill [22], Pedlosky [49] and Majda [46],
and the paper by Temam and Tribbia [54]). In addition, the Boussinesq system also
plays an important role in the study of the Rayleigh—Benard convection, one of the
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most commonly studied convection phenomena (see, e.g., [52, 13, 17, 21]). The first
equation in (1.1) reflects Newton’s second law, with the left-hand side being the
acceleration and the right-hand side being the forces due to viscosity, the pressure
gradient and the buoyancy. The term fe; models the buoyancy in the direction of
gravitational force. The temperature difference generates density difference, which
in turn generates the buoyancy force. The second equation in (1.1) simply states
that the temperature is transported by the velocity field.

(1.1) involves fractional dissipation. Although the diffusion process is normally
modeled by the standard Laplacian operator, there are geophysical circumstances
in which the Boussinesq equations with fractional Laplacian arise. Flows in the
middle atmosphere traveling upwards undergo changes due to the changes in atmo-
spheric properties, although the incompressibility and Boussinesq approximations
are applicable. The effect of kinematic and thermal diffusion is attenuated by the
thinning of atmosphere. This anomalous attenuation can be modeled using the
space fractional Laplacian (see [11, 22]).

Mathematically the Boussinesq system retains some key features of the 3D Euler
and Navier—Stokes equations such as the vortex stretching mechanism. The inviscid
2D Boussinesq equations are identical to the Euler equations for the 3D axisym-
metric swirling flows [47]. (1.1) is a partially dissipated system with no thermal
diffusion. Fundamental issues on the Boussinesq system with partial or fractional
dissipation such as the global existence, uniqueness and regularity problem have
attracted enormous interests during the last 15 years and significant progress has
been made (see, e.g., [1-4, 7, 9, 10, 14, 15, 26, 27, 29, 32, 31, 33-35, 39-45, 57, 58,
60, 61, 63, 65, 66]).

By applying the tools developed here for periodic functions, we establish two
main results for (1.1). The first is the global existence and uniqueness of weak
solutions of (1.1) with initial data uy € L%*(R%),6y € L*(R?) N Ld%(Rd). Our
key point here is the uniqueness of solutions in a very weak setting for a partially
dissipated system. The precise result is stated in the following theorem.

Theorem 1.1. Consider the d-D Boussinesq equations in (1.1) in the periodic
domain T?.

(1) Let a > 0 and (g, 0y) € L*(T?) with V-ug = 0. Let T > 0 be arbitrarily fived.
Then (1.1) has a global weak solution (u,8) on [0,T] satisfying
u e Cy([0,T]; L*) N L*(0,T; H*), 6 € Cy([0,T]; L*) N L>(0,T; L?),
where Cy, ([0, T]; L?) denotes the standard time continuous functions in the weak
L?-sense.
(2) Leta > 344, Assumeug € L*(T9) and 6, € LQ(Td)ﬂLd%(Td) with V-ug = 0.
Then (1.1) has a unique and global weak solution (u,0) satisfying

. ~ d
ue C([0,T]; L2) N L0, T; H*), ue L'(0,T;By5°),

0 € Co([0,T]; L*) N L>®(0,T; L2 N Lit2),
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~ d
where the definition of L*(0,T; 32122) can be found in Sec. 2. Especially, u
satisfies

1 /T
sup — Vu(t)||pe dt < oo.
il [Vu()]]

q>2

Theorem 1.1 assesses the global existence of weak solutions for any a > 0 and
any L? initial data, and the uniqueness when a > % + %. A special consequence
of Theorem 1.1 is the global existence of Leray—Hopf weak solutions to the d-D
generalized Navier-Stokes equations with any o > 0 and uy € L%(T¢), and the
uniqueness of weak solutions of the d-D Navier—Stokes equations with o > % + le.
Even though there is no thermal diffusion, the crucial step of passing to the limit
in the thermal convection term still goes through.

Another significant consequence of Theorem 1.1 is the global L2-stability of
the hydrostatic balance for the 2D Boussinesq equations without thermal diffusion,
namely (1.1) with d =2, @« = 1 and 7 = 0. In fluid mechanics, a fluid is said to be
in hydrostatic balance when it is at rest, or when the flow velocity is constant over
time. This occurs when external forces such as gravity are balanced by a pressure
gradient force. Our atmosphere is mainly in hydrostatic balance. Mathematically
the hydrostatic balance is represented by the steady state solution

Ue =0, Ohe=Ar3, VPi=0hkes or P,= %/\zg,
where A > 0 is a parameter. The perturbation
W=U—Uy, Q=P— P, p=0-—>0u (1.2)

satisfies

ow +w - Vw + VQ = vAw + pey,

Op+w-Vp+ Awy =0,

V-w=0;

(W, p)(x,0) = (W0, po)(x).

The global L?-stability result on (w, p) can be stated as follows.

Theorem 1.2. Consider (1.3) with (wo,po) € L?(T?). Then (1.3) has a unique
global weak solution (w, p) obeying the following uniform global bound, for anyt > 0,

t
Iw(®1Z2 + lp(OlZ= + 21//0 IVw(r)lIZ2 dr < [|(wo, po)lI7-

A special consequence is the global L?-stability for any perturbations in L?.

The stability of the hydrostatic balance is a really important topic in the study
of geophysical fluids (see, e.g., [46]). A few mathematically rigorous results are cur-
rently available (see, e.g., [18, 19, 53, 46]). The spatial domain in [18] is either a rect-
angle or more general Lipschitz domain with minor constraints. Doering et al. [18]
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established the global existence and uniqueness in the functional setting wo € H?
and pg € H'. More importantly, [18] obtained the global stability and the large-
time behavior of the perturbation. A very recent work [53] further developed the
stability theory on the hydrostatic balance by deriving the exact decay rates of the
velocity fields and the precise final buoyancy distribution.

The second application of the Littlewood—Paley approach for periodic domains
developed here is on the zero thermal diffusion limit of the Boussinesq equation
with thermal diffusion

ou 4 u . vu = —p(—A)u — VP L gMe,;, xeT? >0,
20 +u .o = A0 4y uy, xeTd t>0,
V-u =0,
(™, )|~ = (ug" 6").

(1.4)

We show that the solution of (1.4) converges strongly to the corresponding solution
of (1.1) with an explicit convergence rate as 7 — 0. Due to the weak initial setup

uén) € L¥(T9), 9(()?7) € L*(T4)n L%(T‘i), we resort to lower regularity quantities
and the Yudovich approach.

Theorem 1.3. Let d > 2 and o > % + %. Assume ug, O, u(()"), 9(()") satisfy
up,ul” € LX(T%), V-up=0, V-u” =0, 66" cL*T% nL7=(TY).

Let (u,6) and (ul, M) be the corresponding weak solutions of (1.1) and (1.4),
respectively. Then the difference (u,h) with

a=u® — u, h= i _ h, _ARM — g(n)7 “Ah =20
satisfies, for any t > 0,
1@, VR )32 < CM O~ (| (8o, Vho) 32 +nMt)* ", (1.5)

where C'is a pure constant, M = ||6o]|7. + ||0877)||2L2 and

(m)
[P gy < e,
p

t
Co=C / (1 4 A2, +
0

We summarize closely related previous results on the Boussinesq equations with-
out thermal diffusion to clarify how our theorems are different. The study of the
global well-posedness of the 2D Boussinesq equations, namely (1.1) with d = 2
and o = 1 in the whole space was initiated in the papers of Hou-Li [29] and of
Chae [12], in which the global and unique solutions were obtained for the initial
data (ug,0p) € H*(R?) with s > 2. The global existence and uniqueness of solu-
tions to (1.1) with d = 3 and a > % was investigated by several researchers (see,
e.g., [36, 50, 59, 62, 64]). The regularity assumptions on the initial data in these
papers are (ug, 6p) € H*(R?) with s > 5 (s > 2 in [36]). The 2D Boussinesq system
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in a bounded domain with the Dirichlet boundary condition was first studied by
Lai, Pan and Zhao [39] and the global existence and uniqueness was obtained in the
functional setting (ug,0y) € H?(R?). Danchin and Paicu [14] extended the Fujita-
Kato result for the Naviver—Stokes equations to the Boussinesq system and, as a
special consequence, obtained the well-posedness of the finite energy solutions for
the 2D Boussinesq equations [14]. The paper [40] seriously sought the uniqueness
of solutions of (1.1) in a weak setup. They were able to show, among many other
results, that ugp € H'(T?) and 6y € L*(T?) lead to a unique and global strong solu-
tion of (1.1). For the bounded domain 2 with Dirichlet boundary conditions, the
work of He [25] further reduced the regularity assumption to (ug,fp) € L*(2) and
still managed to show the uniqueness. There are many more interesting results on
the existence and uniqueness of the solutions to (1.1) with intermediate regularity
settings (see, e.g., [32, 31, 33, 37]). The zero thermal diffusion limit of very weak
solutions to the Boussinesq equations has not been investigated.

Due to the importance of bounded domains in practical applications, we devote
two paragraphs exclusively to the Boussinesq equations in bounded domains. The
first paragraph describes some existing well-posedness theories on the Boussinesq
equations with standard Laplacian dissipation in bounded domains. The second
paragraph outlines how one can build an existence and uniqueness theory as in
Theorem 1.1 on the Boussinesq equations with fractional dissipation in a bounded
domain with the Dirichlet boundary condition. The 2D Boussinesq equations with
only viscous dissipation in a bounded domain with the Dirichlet boundary condition
were first studied by Lai, Pan and Zhao [39]. They established the global existence
and uniqueness of solutions in the Sobolev space H?. The same Boussinesq equa-
tions with the stress-free boundary condition were considered by Doering, Wu, Zhao
and Zheng [18] and were shown to possess a unique global solution when the veloc-
ity is in H? and the temperature in H'. Zhao examined the 2D Boussinesq system
without viscous dissipation but with thermal diffusion in a bounded domain and
was able to obtain the global H? solutions [66]. He developed some very useful tools
for the Navier—Stokes equations in general domains including bounded ones such as
some new Brezis—Waigner type inequalities [25]. He then applied these tools to the
2D Boussinesq equations with viscous Laplacian dissipation in bounded domains
to obtain the existence and uniqueness on solutions in a very weak setting. Many
more interesting results on the Boussinesq equations in bounded domains can be
found in [30, 32, 31, 33, 37].

To study the Boussinesq equations with fractional viscous dissipation in a
bounded domain 2, we need to define the fractional Laplacian operator first. When
the Dirichlet boundary condition is prescribed, the fractional Laplacian operator is
defined through the eigenvalues and eigenfunctions of the classical Stokes operator
—PA (with P being the Leray projection), namely

(=) %u = X (u, w)w;,
j=1
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where \; and w; with 7 = 1,2,... are the eigenvalues and eigenfunctions, and
(u,w;) denotes the inner product in L?*($2). The existence of weak solutions can
be approached via the Galerkin approximation. After applying suitable energy esti-
mates, we will be able to establish the first part of Theorem 1.1. We also believe the
second part of Theorem 1.1 can be validated for bounded domains with the Dirich-
let boundary condition by suitably modifying the proof of Theorem 1.1 described
below. We leave the details to a future work.

The proof of Theorem 1.1 consists of two main parts. The first part is the global
existence of weak solutions for any o > 0 and (up,6p) € L?*(T¢). This is done
by showing the global existence of smooth solutions (u(”), 9(”)) to a sequence of
approximate systems, establishing global uniform bounds for (u(™, (™), obtaining
the L2-convergence for a subsequence of u(™ and passing to the limit. Due to the
lack of thermal diffusion, there is no strong convergence in ™). However, we can
still pass the limit. When o > % + %, the weak solution is unique. Due to the
weak regularity setting, u is not Lipschitz and the corresponding vorticity is not
necessarily bounded. The proof makes use of the following smoothing property of
the velocity

[[ul| gy S C(T, [uol| 2, [|oll ) (1.6)
2

_4d_
L(0,T;B, L2NLd+3

d

and a special consequence of (1.6). The definition of L*(0, T} B;;z) is provided in
Sec. 2. (1.6) is proven via the Littlewood-Paley decomposition and Besov spaces
techniques developed here for periodic domains. The proof for the coincidence of two
weak solutions (u”),9(1)) and (u®,6?) is based on the bounds for the L*norms

of the differences
[u® = u® 2 + [VAD = TR s

where h(Y) and h? satisfy
—ARD =9 =1 2

7

Due to the lack of thermal diffusion and the weak regularity of 6, it is not possible
to bound the difference [|#(Y) — #()||;>. The introduction of () and A reduce
the regularity requirements and helps facilitate the proof. Such lower regularity
variables have previously been used in [25, 40].

To prove Theorem 1.3 and compare the solutions (u(™, (M) of (1.4) and (u, §)
of (1.1), we make use of the lower regularity quantities 2(") and h satisfying

_ARM — 9(77)’ “Ah =0
and estimate the difference
(™ =) (®)|72 + (VR = Vh)(1)]|7-

via Yudovich techniques.
The rest of this paper is divided into three sections and two appendices. The
second section introduces the concept of the Littlewood—Paley decomposition for
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periodic functions, proves some crucial properties of dyadic Fourier blocks, defines
Besov type spaces and derives related properties. Section 3 proves Theorem 1.1.
Due to the length of the proof for the global existence of weak solutions, the proof
of this part is given in one of the appendices. Section 4 proves Theorem 1.3. The first
appendix proves the global existence of weak solutions while the second appendix
provides the definitions of the Littlewood-Paley decomposition for R?, the Besov
spaces and an Osgood type inequality to be used in the subsequent sections.

2. Littlewood—Paley Decomposition for Periodic Functions

The purpose of this section is to introduce the concepts of Fourier dyadic blocks and
the Littlewood—Paley decomposition for periodic functions, and develop associated
tools that are useful for the study of solutions of PDEs in T¢ with d > 2. This section
starts with a review of partial sums for the Fourier series characterized by various
kernel functions including the square Dirichlet kernel, the circular Dirichlet kernel,
general [, Dirichlet kernel with 1 < ¢ < oo, Fejér kernels and Riesz kernels. After
examining the boundedness and convergence properties for these Fourier cutoffs,
it appears that the square cutoff is the most suitable for the definition of the
Littlewood—Paley blocks. We derive the properties of the associated localization
operators such as Bernstein’s inequalities. We define Besov type spaces and identify
them with some of the standard Sobolev spaces.

Let d > 2 and d € N. Let T¢ = [—7,7]%. For f € L*(T%), the Fourier modes
f(k) with k € Z% is given by

F10 = 7 [ 1006w

More generally, for any f € S, the set of all distributions on T¢, the Fourier coeffi-
cient f(k) is defined by f(k) = (f,e~ %) (see, e.g., [23, 56]). The Fourier series of
f at x € T? is the series
> Flk)e >, (2.1)
kezd

One prominent issue is whether or not (2.1) converges. The convergence of the
Fourier series in the one-dimensional case has been thoroughly studied and the
classical convergence result is stated in the following lemma (see, e.g., [23, 56]).

Lemma 2.1. Assume f € LP(T) with 1 < p < co. Then the partial sum

Snf(x)= > flk)e™

k|<N

satisfies

ISnfllee < Cp [l fllze (2.2)

and

ISnf— fllLp =0 as N — oc. (2.3)
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Let Dy denote the Dirichlet kernel, namely

Dy (z) := Z etk — M

k<N Sin 3
The partial sum Sy f(x) can be written as the convolution of the Dirichlet kernel
with f,
1 ™
Snf(x)=o— | Dn(z—y)f(y)dy.

27 ) _,

However, the L'-norm of Dy grows at the order of log NV, more precisely,

N N
4 1 s 4 1
— — <|IDn|pimy €24+ =+ — —.
2 k:‘” Nz <2+ +7T22k
k=1 k=1
(2.2) does not trivially follow from Young’s inequality applied to Sy f = Dy * f.

(2.2) and (2.3) may not hold for p = 1 or p = oo. In fact, there exist a continuous
function f on T and an z¢ € T such that the sequence

limsup |[Dy * f|(z0) = 0.
N—o00

There are also explicit integrable functions f on T such that the corresponding
Fourier series does not converge in L*(T).

We now consider multi-dimensional partial sums. Let d > 2. the partial sum can
be defined in many ways. Two of the most natural ones are the partial sum with
square-cutoff and the partial sum with circular cutoff, namely

Svf= Y. f&)e**=Dyxf (2.4)
|k1|<N,...|ka| <N
and
Snf= 3 f(k)e™™> = Dy « f, (2.5)
|=y/kT+ RSN

where Dy denotes the d-dimensional square Dirichlet kernel and D ~ the circular
Dirichlet kernel,

Dy(x) = Z etkx, 5N(x) = Z ek,
k1| <N, k| <N K|<N

These two partial sums have different convergence properties, as stated in the fol-
lowing lemmas (see, e.g., [23, 56]). The partial sum defined via the square-cutoff is
bounded on any LP for 1 < p < oo and converges to the original function in L?.

Lemma 2.2. Let d > 1. The partial sum with the square cutoff Sy f satisfies, for
any f € LP(T%) with 1 < p < oo,

SN fllee < Cpllflle and |[Snf— fller =0 as N — . (2.6)
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(2.6) is false for p =1 and for p = co. In addition, if f € LP(T?) with 1 < p < oo,
then
Snf— f, ae. as N — oo.

The partial sum defined via the circular cutoff in T¢ with d > 2 is not bounded
on LP? except for p = 2 and is not known to converge to the original function except
for p = 2.

Lemma 2.3. Let d > 2 and f € L*(T%). Then
ISnfllze < |Ifllzz and |Snf—flzz =0 as N —oc. (2.7)
(2.7) is false if we change L* to LP with p # 2.
Other partial sums include the {9-partial sum S% f defined by

Sk)= S faoer - o [ - yirmdy. (29

keZd | [k[lia <N

where [9-Dirichlet kernel D}, is given by
PSR S
kezd | [k[lia <N
with

d G
kml®| , 1<g<o0;
[kl := <7nz—1| |>

max k|, g = oo

The following lemma tells us what we know about the convergence of [¢-partial sum
S% [, besides the convergence results stated in Lemmas 2.2 and 2.3 (see [56]).

Lemma 2.4. Let ¢ =1 or co. Assume f € LP(T?) with 1 < p < co. Then
[SXfllee < Cpllflle  and [|SXf = fllee =0 as N — oc.

We also mention the partial sums defined in terms of the Fejér and the Riesz
kernels including the Bochner-Riesz kernels. Let f € L'(T9) and let 1 < ¢ < 0.
The partial sum via the [9-Fejér kernel is given by

Kl = .
O'?Vf(x) _ Z <1 - || ]\ul ) f(k)ezk-x
kezd,|[k[[ia <N

= (271T)d /Td Fi(x—y)f(y)dy, (2.9)

where

F]%(X) = Z (1 — %) pikx.

keZ4, ||kllia <N
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For ¢ = 1 and ¢ = oo, the Fejér kernels are the arithmetic means of the (7 kernels,
=
Fi) =5 3 Sk(x).
j=0
Let 1 <y < oo and 0 < [ < oo. The partial sum via the Riesz kernels is given by

o) = Y (1 - (%)Sﬁ Tk e

keZd | [k[lia <N

- @ /w F7 2 (x —y) f(y)dy, (2.10)

where the Riesz kernels are given by

F]c#mﬁ(x) _ Z (1 B (%yf oikx

keZ4, ||kllja <N

When ¢ = v =2 and § > 0, the Riesz kernel reduces to the Bochner—Riesz kernel.
The convergence of these partial sums have been investigated by many
authors [20, 24, 28, 38, 56]) and the following results are relevant to our study.

Lemma 2.5. If ¢ = 1,00, 1 < < 0o and 3 > 0, then the L'-norm of F]‘iﬂ’ﬁ is
bounded uniformly in terms of N,

”FJ%%B”Ll(’JI‘d) <C,
where C' is independent of N. If ¢ = 2, then the same holds for 3 > %.

Lemma 2.6. Let g =1 oroco. Let 1 < < 0o and 3 > 0. Assume f € LP(T?) with
1 <p<oo. Then

1057 fllee < Collfller  and ||o%"Pf — fllr — 0 as N — oo.
_ d—1
If ¢ = 2, the same holds for 3 > %5=.

The review of the convergence results and properties above for various partial
sums of the Fourier series allows us to choose the suitable cutoff in the definition
of the Littlewood—Paley blocks (or the localized Fourier projections). The circular
cutoff defined in (2.5) is not suitable since it does not have the desired property

IS fllze < Cyll fllLe

for all 1 < p < o0. (2.2) only holds for p = 2 according to Lemma 2.3. The Fejér
cutoff defined in (2.9) and the Riesz cutoff defined in (2.10) with ¢ = 1 or ¢ = o0
have the desired boundedness properties, but it is not clear how we can split these
partial sums into dyadic blocks. Then the choices left are either the square cutoff
defined in (2.4) (or the [*°-cutoff, namely (2.8) with ¢ = c0) or the I*-cutoff, (2.8)
with ¢ = 1.
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We choose the square-cutoff defined in (2.4). We introduce a few notation first.
For an integer j > 0, we set A; to be the 27/-sized block of d-dimensional integer
lattice points,

Ay ={k = (ki,ko, ..., kq) €Z%: k| <27, m=1,2,...,d}.
We define the following localized Fourier projection operators as

Nof(x) =Y fll)e™™,

keAp

A= S Fa9eRx 21, jen
kGA]‘\A]‘—l

(2.11)

For notational convenience, we also write A; = 0 for j < 0. With a slight abuse of
notation, we set

S0 = Anf) = 3 Tl (2.12)
m=0 keA; 1

In terms of these operators, we can write the Littlewood—Paley decomposition, for
any f € LP(T) with 1 < p < oo,

F) =D Apf(x).
k=0

The following lemma presents useful basic properties of the operators defined
above.

Lemma 2.7. Let j > 0 be an integer. Let A; and S; be defined as in (2.11)
and (2.12). Then the following properties hold.

(a) If f € LP(T?) with 1 < p < oo, then
14 fllze < Cllfllee, 1S5 fllee < ClfllLe,

where C'’s are constants depending on p and d only.
(b) Let j >0 and k > 0 be integers. Assume f € LP(T?) with 1 < p < oo. Then

AjALf=0 ifj#E.
(c) Letj >0 and m >0 be integers. Assume f,g € LP(T¢) with 1 < p < co. Then

ANi(Sm—afAmg) =0 if |m—j| >d+1.

Proof. (a) Follows directly from Lemma 2.2. (b) Is almost obvious. A f contains

~

terms with Fourier modes f(m) for m € Ap\Ag_1. If j # k, then Agf does not

involve any f(m) for m € A;\A; 1 and thus A;A,f = 0. We now turn to (c).
Clearly, Sy,—afA,g contains terms of the form f(1) §(k) e*1+%)* with 1, k satisfying

i <2m=41 fori=1,2,...,d, and k& A,\A,_ 1.
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k € A, \A,,—1 implies
ki kg4 kg > 2" 41,

since at least one of the components is more than 2™~! (otherwise k € A;,—1).
Therefore,

[l + K|+l +Ko| + -+ la+ka| > ks + ko + o+ ka— (i + 1o+ + 1)
>om—ly 1 gom—d-l,
Since, for any d > 1, we have d < 297! and thus
[+ ko] + lo + ko| + -+ lg+ kg > 277 41— 2m72
>9om=2 41> gom—d-t,
On the other hand, it is clear that
Iy + Fr| + |lo + ol + -+ |lg + ka| < d2m7 9471 4 d2™ < @2m+L,

Therefore, 1+ k € A1\ Am—q—1 and A;(Sy—afApmg) = 0 if |m — j| > d+1. This
completes the proof of Lemma 2.7. O

The operators A; defined for periodic functions share many properties with
those for the whole space A;. One crucial property is the following Bernstein type
inequalities. The proof of these properties appears to be more difficult than that
for the whole space case.

Proposition 2.8. Leto >0 and 1 < q<p < 0.

(1) There exists a constant C > 0 such that
1A;A° fll Lo(ray < CQajﬂd(a_E)||Ajf||Lq(1rd) (2.13)
and
155 £ Nzocasy < C2UG2) 85l Loy, (2.14)

(2) Let1 <p < oo. There exist constants 0 < C1 < Cy (depending on p) such that,
for any integer 7 > 0,

Cl2aj||Ajf||LP(1rd) S NAGAT fll Loeray < 0220j||Ajf||Lv(1rd)- (2.15)

Proof. To prove (1), we first set ¢ = 0 and start with the case when p = oo and
q = 2. By Holder’s inequality and Plancherel’s identity,

18 Flzoomny < D |F(K)]

kEAj\Ajfl

|
[N

< > 1 S P

kGA]‘\Ajfl kEAj\Aj—l

.
< O2270|Aj fll 2 (rays



Anal. Appl. 2020.18:639-682. Downloaded from www.worldscientific.com

by UNIVERSITY OF GEORGIA on 06/30/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

The Littlewood—Paley decomposition for periodic functions 653

which is just (2.13) with p = co and ¢ = 2. Here we have used the fact that
> 1=0(d)2Y
keAN\Aj 1

for a constant C(d) depending on the dimension d. In the case when p = oo and
1 < ¢ < 2, we use the Hausdorff-Young inequality, for % + % =1, obtain

1A fll Lo (ray < Z |J?(k)|

kGA]‘\A]‘—l

Q=
3=

< ¥ S fmr

kEAj\Aj71 kEAj\Ajfl
< C2Y5 || A f |l
i1
< 29 ||Ajf||Lq('J1‘d)7

which is (2.13) with p = co and 1 < ¢ < 2. Now for 1 < ¢ < 2 < p < 00, we have,
by an interpolation inequality,

4 1—-4
185 Fllznzty < 1AGF1Fapay 1A Il aay

z il(1_a 1-2
< OIA I simay - 275 OB A

= 029G A, £ poray-

We now prove for the case 2 < ¢ < p < co. We use the duality. Let p and ¢ be the
dual indices of p and ¢, respectively, namely

1 1 1 1
—+::1, —+::1-
p p qa g

Since 2 < ¢ < p < oo, we have 1 < p < ¢ < 2 and the previous result applies.

1808 = sup | [ a0 ax

gl 5=1

= s [ 18,098,000

gl 5=1

< sup A fllzallAjgllLa

gl ,5=1

(1_ 1
< sup [|A;f)a2YF DA gl s

llgll ,5=1
< O A fl|a29G%),

where we have used the fact that ||Ajglls < Cpllgllzs < C,. This finishes the
proof of (2.13) with o = 0. (2.14) can be similarly established. Clearly, (2.13) with



Anal. Appl. 2020.18:639-682. Downloaded from www.worldscientific.com

by UNIVERSITY OF GEORGIA on 06/30/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

654 Y. Dai et al.

o > 0 is a consequence of (2.13) with o = 0 and (2). The proof of (2) follows from
the proof for the classical Bernstein’s inequalities (see, e.g., [16]). The classical
Bernstein inequality states that, for any trigonometric polynomial g,, of degree less
than or equal to n,

g7z (my < CnllgllLoo(r).- (2.16)
This inequality also holds for L'-norm (see [16, p. 101])

lgnllrcry < CnllgllLoe(r). (2.17)

The upper bound in (2.15) is obtained by following a similar approach as in the
proof of (2.16) and (2.17). To prove the lower bound part, we recall a closely related
classical result ([38, p. 55]), which states that, for any trigonometric polynomial of
the form

gl@) =Y aze”
31>n

and for any positive integer m,

n™gllzeer) < Cnllg"™ Loy,

where ¢ denotes the mth derivative of g. The lower bound part of (2.15) can be
shown in a similar fashion. This completes the proof of Proposition 2.8. O

In terms of the operators A; and S;, we can write a standard product of two
periodic functions as a sum of paraproducts, as in the whole space case (see, e.g.,
8, 5])

where

Trg=> Si-afAjg. R(f.9)=Y_ > Arfirg
J J k>j—1
with Ay = Ap_g + Agp_gy1 + -+ Dpia.
We can also define the Besov type space B q(Td) via the operators A; defined
above in the same fashion as in the whole space case. Let S denote the usual Schwarz
class and &’ the distributions.

Definition 2.9. Let f € §’. The Besov space Bf,,q(Td) with 1 < p,q < oo and
s € R consists of functions f € S'(T?) satisfying

11l s, cray = 11271185 1| Lo ll1e < o0.

We can also define the space-time spaces for periodic functions. This type of
functional settings was introduced by Chemin—Lerner for functions defined on the
whole space (see, e.g., [5]).
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Definition 2.10. For t > 0, s € R and 1 < p,q,r < oo, the space-time space
Li B, , is defined through the norm

1z, = 12708 fgeo

These Besov spaces defined above are closely related to some of the standard
spaces and share similar properties with their whole space counterparts.

Lemma 2.11. Let s € R.

(1) For 1 <p<oo and 1 < g, B, (T%) C By . (T%).

(2) H*(T%) can be identified with Bj ,(T%),
H*(T?) ~ B3 5(T7).

Proof. (1) Follows directly from the fact that, if g1 < go, then [9* C [92. (2) Follows
from Plancherel’s identity. O

3. Proof of Theorem 1.1

This section proves Theorem 1.1. A crucial smoothing estimate is obtained using
the Littlewood—Paley decomposition and Besov space techniques introduced in the
previous section. Naturally the proof is divided into two main parts. The first part
is the proof of the global existence of weak solutions of (1.1) with any « > 0. This
is stated in Proposition 3.2. Since the proof of Proposition 3.2 is lengthy, we leave
it to one of the appendices. The second part is the proof of the uniqueness of weak
solutions to (1.1) when o > % + le. In order to prove the uniqueness, we first prove
a major smoothing estimate for the velocity field in Proposition 3.3.
We start with the definition of weak solutions of (1.1) with any « > 0.

Definition 3.1. Consider (1.1) with a > 0, (uo,6p) € L*(T%) and V - ug = 0. Let
T > 0 be arbitrarily fixed. A pair (u, 8) satisfying

u e Cyu(0,T); L) N L0, T; H*), V-u=0,
6 € Cy([0,T]; L*) N L>=(0,T; L?)
is weak solution of (1.1) on [0, 7] if (a) and (b) below hold:
(a) For any ¢ € C§°(T? x [0,T)) with V- ¢ = 0 and for any t < T,

—/OtAdu-8t¢dxdT+Adu(x,t)-¢(X7t)dx_/ up(x) - ¢(x,0)dx

Td

t t
— /u-v¢udxd7+/ / (=A)*2u - (=A)2pdxdr
0 JTd 0 JTd
t

= / feq - ¢ dx dr.
o J1a
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(b) For any v € C5°(T¢ x [0,T)) and t < T,

¢
- / opldxdr + [ O(x,t)(x,t)dx — [ Op(x)1(x,0)dx
0 Td Td

’]l‘d
t t
:// u~Vw9dxdT+fy/ / ugpdxdr.
o Jrd o Jrd

For any o > 0 and (ug,fp) € L?(T%), (1.1) always has a global weak solution.
In the special case when 6 = 0, this result assesses the global existence of weak

solutions of the generalized Navier—Stokes equations with any a > 0 and ug €
L2(T9).

Proposition 3.2. Consider (1.1) with a > 0, (ug,6p) € L*(T?) and V - ug = 0.
Let T > 0 be arbitrarily fived. Then (1.1) has a global weak solution (u,0) as given
in Definition 3.1 satisfying

t
la@®lIZ= + 16172 + 2V/0 IVa(r)lffzdr < e“(J[uolZ: + [160l72)-

The proof of Proposition 3.2 is long and the details will be provided in one of the
appendices. Next we establish a smoothing estimate for the weak solution shown
in Proposition 3.2.

Proposition 3.3. Let d > 2. Consider (1.1) with o > % + le. Assume (ug, o)
satisfies

u € LA(TY), V-ug=0, 6 e L*T% L7 (TY).

Let (u,0) be the corresponding global weak solution of (1.1). Then, for any
0<t<T,

ull, g < O lluollze, 16l z2)- 3.1)

t2,2

As a special consequence,

t
sup [P g < gl 0] ) (32)
9220 Vi

Proposition 3.3 is proven via the Littlewood—Paley decomposition and Besov
space techniques for periodic functions introduced in the previous section. The
proof for the 2D case is partially different from that for the general d-D case with
d > 3. We need a lemma for the 2D case.

Lemma 3.4. Assume (ug,6) € L?(T?) with V - ug = 0. Consider the 2D Boussi-
nesq equation in (1.1) with o > 1. Let (u,0) be the corresponding weak solution.
Then u satisfies

T
/0 [a(®)[[Zodr < C(t, [[uollzz, [|6o]|2)- (3.3)
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Proof. It suffices to consider the case when a = 1. Let j > 0 and A; be as defined
n (2.11). Applying A; to the velocity equation and then dotting with Aju yields

Al + 2% | A3

=— Aju~Aj(u~Vu)dx+/ Aju-Aj(fes) dx
R2 R2

< 1Ajullz2[[Aj(u- V)| Lz + [[A a2 [ A0 -

Eliminating ||Ajul|z2 from each side and integrating in time yield

t
1A ()] 22 + v / 2% Ajul| 2 dr
0

t t
< [|1Ajuo] = + / 1A (u - V)| 2 dr + / 15612 dr.
0 0

Taking the {>-norm and identifying H® with B3 5 for s > 0, we have

sup |A;u(r)]|»

+ulullz o 6 m2)
0<r<t

12

t t
< ||uo||L2+/ Ju- V|2 dr+/ 10() | dr
0 0

< uollzz + [[Vallzzzzfallzre + 10l L2 (3.4)

By the Littlewood—Paley decomposition and the Bernstein inequalities in
Proposition 2.8, we have

t t 00 00
/||u(7)||%ood7 < / S5 2928 Ajul| | Agul o dr
0 =0 k=0
= Hi + Ho, (35)

where
t
A S
. 0

Due to |j — k| < N, the summation in H; includes the diagonal entries j = k and
2N sub-diagonal entries. Therefore,

li—k|>N

t oo
Hy :/ > 27| Apu] 2 (2N A Nl e + 27 VA vyl
0 <
7=0
+ o+ 2N A vl ) dr
<[ Zz%nA]unLﬁzQ Al + -

+ 2% Al 2o + 22U A a2 )dr
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< CN/ Z22J||A u|Zadr
= CNHVU'H%?L27
(3.6)

where we have used Holder’s inequality in the second inequality and C' is a pure
constant independent of V. The summation in Hs contains two identical parts and
thus

Hy =2 / > 2)|Asu] 228 Apul dr

j—k>N
boo j—N-1
:2/ > YlAule Y 2" Apuladr
0 j=N m=0
o j—N—1
<2y [ 322N s Ao
= Jo = 0<r<t
+ . —N—
<27 /22j||Aju||L2 dr Z gmrN S ||AmU( )2
0 m= r»

<27V ulz, ; (3.7)

12

(0,t;H?)

sup [[A5u(r)]lz2
0<r<t

where we have used Young’s inequality for sequence convolution. Combining (3.4)—
(3.7) yields

t
| @l dr < NIl
0 ,

+027 ¥  (Jluoll 2 + [ Vull gz [ull Lz poe + 0] 2222)°

%”U-HL2L°° +C(t[VulZs 2, [uol e, 6ol z2), (3.8)
where we have chosen N such that
02NV < 5
(3.8) then yields the desired global bound in (3.3). This completes the proof of
Lemma 3.4. O

Proof of Proposition 3.3. Let j € Z and j > 0. Applying A; to the first equation
of (1.1) yields

A ju+v(—A)*Aju=—A;VP+ Aj(feq) — Aj(u- Vu).
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Dotting with Aju, integrating by parts and using V- u = 0, we have

LAl v2 2 ul s < 18,0218 ull e + T,
where
I=-— » Aj(u-Vu) - Ajudx.

We estimate I. By the notion of paraproducts provided in Sec. 2,

I =—- / A Sk AL VAku) A]udx
li—k|<d
Z / j(Agu-VS,_1u) - Ajudx
li—k|<d

-y / Aj(Agu-VAgzu) - Ajudx

k>j—1
= Il + 12 + 13.
By Hoélder’s inequality, for d = 2,

1l < Azl D Sk—aullz= | VARl 2
l7—k[<d

< Cllajullcelullz= Y 28| Aul .
lj—k|<d

The estimate for d > 3 is slightly different. For d > 3, by Sobolev’s inequality,

1Ll < l1Ajuallze D> 1Sk aul| e [VARu]
li—k|<d

<Ajullge Y IATTE S qu 2 [ASTEV ARl
[j—k|<d
< ClAjul Az i) T 2PGED A e,
lj—k|<d

The estimate of I5 is similar. For d = 2,

1L < Az Y Ak 2| VSi—qul £
j—kl<d

<Clajulle > 267YSk_qu L [ Apul| 2
j—kl<d

< Clajulzlul= Y 2 |Au .
|j—k|<d

659
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For d > 3, we have

| < Az Y [Akull | s [[VSi—aull s
lj—kl<d

<ClAjullze > ATTES,_qul | ATTE Al e
|[j—k|<d

< ClajulpllAF Eul e YT 2G DR A .
li—k|<d
By the fact that V- u =0,
Z (Aru® Aku) Ajudx.
k>j—1
By Holder’s inequality, for d = 2,
Is] < ClAju)2227 > [[A;(Avu® Agu)] e

k>j—1

< Ol A2 Y (| Awul|c [ Agul e

k>5—1
< ClAjulcelulz= Y 277 28| Agul| .
E>j—1
For d > 3, by Proposition 2.8,
L] < CllAzu)r22 D 1A (Avu® Agu) e

k>j—1

< Claul? Y Akl g 1Awull |

k>5—1

; 1,d d_ 1+
< ClAju)227 Y [IA2TEAgul|ge A2 Agu e

k>j—1

< CllAjule D AT A 227 ATFE A e
E>j—1

< CllAjulze > AR Al 227 F AT Rl e,
k>j—1

Combining the bounds above yields, for d = 2,

B dt”A u||L2 + COQQOCJHA u||L2

< 14560 2l Azl 2 + Cll Ajul e ullz= D 28| ApullL:

li—k|<d

+ClAullzlullz= Y 272 | Agul|Le.

k>j—1
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For d > 3,
1d o
5 A7ullie + Co2* | Ajul7,
< [1A;0] el Al 2 + CllAjul| 2 AT a2 > 2FEFD ALl
lj—k|<d
+ O A e [ATF ) e YT 2T FATTE AL e, (3.10)

k>j—1

Eliminating ||Ajul|z2 from each side of (3.9) and (3.10) and integrating in time
yield, for d = 2,

t
1A u(t)]| > + Co2°* / A ()| p2dr
0
t t
< | Ajuollze + / 18;6(7)|| p2dr + C / [ufe Y 28| A2 dr
0 0 .
lj—k|<d

+C [l 3 2 k2N Al edr. (3.11)
0

k>j—1
For d > 3,

t
|Aju(b)]l e + Co22 / 1A u(r) | gadr
0
t
< | Ajuo] e + / 1A6(7)| 2dr
0

t
+0/ AT Su e Y0 2MGHD | Agul| 2 dr
0 .
li—k[<d

t
+0/ AT S u e > 2 7KATTE Apul| padr. (3.12)
0 E>j—1

Taking the [?-norm of the sequence in (3.11) and identifying Bg2 with L2, we
obtain, after recalling the bound for [|lu[[; 27~ in Lemma 3.4, for d =2,

t
lu(®)ll= + Co |22 / |Aju(r)| padr

12

t t
< 2lugl e + / 10() | dr + C / ()| | V()| 2dr
0 0

t
e / @)l || 3 275 2* | Apu(r)llps|| dr
0

k>j—1 2

t
< 2flugl| 2 +/ 10(T)l[L2d7 + ClIVul| gz pellul| 2 pe < oo,
0



Anal. Appl. 2020.18:639-682. Downloaded from www.worldscientific.com

by UNIVERSITY OF GEORGIA on 06/30/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

662 Y. Dai et al.

where we have used the bound, by Young’s inequality for sequence convolution,

Z VRN Apu(r)| 2| < Cl28|Aru(r)] 22l = C|Vu(r)]| 2.
k>j—1 2

We thus have obtained (3.1) for the case d = 2. For d > 3, we have, by taking the
[2-norm of the sequence in (3.12)

t
la(®)]| 2> + Co |[2%* / 1A u(7)|| p2dr

12

t t
< 2luafle+ [ 107 zedr +C [ 27 Ayl ol A adr
0 0

t
+0/ 37 2GR Apu(r) 2| AT u pedr
0

k>j—1 12

t t
< 2[uo|l 2 +/ ||9(T>||L2dT+C/ |AZ+ S u(r)|Fadr,
0 0

which is the desired global bound in (3.1). Next we show (3.1) implies (3.2). By
Proposition 2.8,

IVu|| pa(ray < Z IVAullocray < OZ2j2dj(§_5)||Aju||L2(1rd),
=0 =0

where C' is a constant independent of q. By Holder’s inequality for sequences,

t 0 t
JRAC D SER A e N
j=0

< | D2 H / 2 D3| A ju| 2
j=0 0

12

Since

N|=

R gc(/ 2—%%) SN
. 0

Jj=0

(3.1) then implies

t
| IVt < Oyl g, < OV
0 LtB2,2

where C depends on T, ||[ug|/z2 and ||0p| 2 only. We thus have shown (3.2). This
completes the proof of Proposition 3.3. O

We now prove Theorem 1.1.
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Proof. Due to Propositions 3.2 and 3.3, it suffices to show the uniqueness of
the weak solutions of (1.1). Suppose (1.1) has two weak solutions (u®,o("))
and (u®,0®?)) with the same initial data (ug,fy). We show that (u®,0(1)) and
(u®,6®) must coincide. To do so, we consider the difference (11, 6) with

ii=u® —u®, §.=00 9>,

Let P and P® be the corresponding pressure terms and P:=ph —p@ Iy
addition, we introduce the lower regularity quantities A(!) and h(? satisfying

—ARD =9 _ARZ) =)
and set
h=hM—p3),
It follows from (1.1) that (1, 6) satisfies
A+ u® . V4 - Vu® 4+ v(—A)*U+ VP = feg,
9:0 +u®) - VO + - VI =y,

N (3.13)
V.-u=0,
(ﬁa §)|t:0 =0.
Dotting the first equation of (3.13) by u and integrating by parts, we have
1d . ~ ~ ~ ~ ~
§E||u||%2 +v||A%a)2, = —/u - vu® . udx + /9- (eq - 1)dx
= K1 + Ko, (314)
where we have invoked the fact that, for o > % + %,
/ u) . va-udx =0,
Td
due to V-u¥ =0, V-u =0 and
T T o
/ . Vi - ] dxdt g/ [0 (P 2 1A () |22 dr < o,
0 J1d 0
By Holder’s and Sobolev’s inequalities, for d = 2,
(K| < (a2l Vu® e
< [l 2| VA g2l Vu®) || 2
< %llVﬁllia + O Vu®|[Fa |7 (3.15)

For d > 3,
K| < ([0 2 V@ g, 8] e,
< Ol gz |[AZH T u® | 2| AZFIG 12

< %||A%+%a||%2 + ClIAZF Eu® | 3.3 (3.16)
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By integration by parts and an interpolation inequality,

|Ko| =

/ (—AR)(eq - 0)dx
Td

< ||Vhl|z2 ]| V|2

d+

2"'||d+2

< CII VR e G E A%
< OVl e ([l = + A 6 2)
< T IAF ST, + O VRl (18] 2 + [ VA]L2). (3.17)

Dotting the second equation in (3.13) with h yields

||Vh||L2 = / u(1)~V§i~zdx+/ ﬁ~V0(2)de+7/ﬂdi~zdx
th TEL ’]rd
= K3+ K4+ K5. (318)

We estimate K4 first. The case with d = 2 is treated differently from d > 3. For
d = 2, by Holder’s inequality and Sobolev’s inequality,

K] < 0@ 2| 20 | V] o
< CVBIRIYZ IV P 100 12 | VRIS P AR
< Cp([ale + V] 2) VRl 1617
< T2Vl + &3 + Cp M3 VRIS, (3.19)

where 1 < p, q < oo satisfy

and we have used the fact that
1AR] 2 < 69| 2 + [16®)] 12 < C(T, o]l 2, [|60] £2) == VM.
For d > 3, by integration by parts, Holder’s inequality and Sobolev’s inequality,

| K4 :/ |00 - Vh| dx
Td

< N60P1 g, IVl [T s,

L d+2
< 10oll, g, VA=A 45 2
14d o 7
< 1—6||Az+4u||§2 +Cl00lI? s, VR 72- (3.20)
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Recalling § = —Ah and integrating by parts, we have

K3 = f/ uM . VAR hdx

’]l‘d
_ Wy 5 77 Wh 5 To T
_/Tda w0, 0, T hdx+/ 00,0, 10, hilx

N 7 r]rd
hoo~ o~
S /Td ) Dy, 1 O, hlx,

where the repeated indices are summed and we have used V-u") = 0. By Holder’s
inequality, for p > g and % + % =1,
|Ks| < O Va1 [ VA2,
1) s
< CIVat| e[ VA 2 " 16l
d ~ 2-4
< CIVulM || Lo M3 | Vh|[,2". (3.21)

Clearly, K5 can be similarly estimated as K3 and the bound is the same. Adding
(3.14) and (3.18) and collecting the estimates in (3.15)—(3.17), (3.19)—(3.21), we
find that, for § > 0,

Gs(t) = [at)|3> + [ VR)|[3. + 6

obeys the differential inequality, when d = 2,

Ol . .
L5t < 0 (14 1A 3 Glr) + € (1 n W) M Gy(t)
(3.22)
and, for d > 3,

(1)
oV e -
p

d 1
aGa(t) <C (1 + ||A5+%u(2)||%2) Gs(t)
(3.23)

Optimizing the quantities pM% Gs (t)l_% and pM% G(;(t)l_% with respect to p,
we obtain

are reduced to the following form:

Gs(t) < G5(0) + C/o v(8)p(Gs(s)) ds,
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where
DI
() = €+ CAr @2, ¢ o Ve oy M — ).
p

It follows from Proposition 3.1 that

T
/ ~(t) dr < 0.
0
Let

1 1
dr dr
) = - O(r) _/I r+r(lnM —1Inr)
=In(l4+InM—Inz)—In(l + In M).
It then follows from Lemma B.6 that

—Q(Gy(8)) + QG5(0)) < /O +(3)ds.

Therefore,
t
—In(1+InM —InGs(t)) + In(1 +In M — InGs(0)) < / ~(s)ds.
0

Therefore, for C(t) = fot v(s)ds,

C(t) e—é’(t)

Gs(t) < (eM)'=c " G5(0)
Letting 6 — 0 and noting that G¢(0) = 0, we obtain
Go(t) = [6(1)|2: + V(1) |22 = 0.
This completes the proof of Theorem 1.1. O

4. Proof of Theorem 1.3
This section provides the proof of Theorem 1.3.

Proof. Let (u,d) and (u("),G(j)) be the weak solutions of (1.1) and (1.4), respec-
tively. Then the difference (u, ) with

a=u" —q, 0—=pm _p

satisfies
i +u™ . Vi + - Vu+ v(—A)*0 + VP = ey,
8,0 +u™ V0 + 1 -Vl = nAd + nAb + vy,
V-u=0,
(@, 0)]t—0 = (8o, b),

where P := P — P with P and P being the corresponding pressure terms

(4.1)

of (1.1) and (1.4), respectively. We introduce the lower regularity quantities 2"
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and h satisfying
_ARM — 9(77)7 “Ah =20
and set
h=h"—h.

Dotting the first equation of (4.1) by u and integrating by parts, we have

1d, ~ - ~ ~ ~
L vl = [ w Va7 (e wax
=Ly + L. (4.2)

The two terms on the right of (4.2) can be bounded similarly as in the proof of
Theorem 1.1 and we have

14 1.,d 1,d ~
|L1| < 1—6IIA5+ZUIIiz +CAZ T2 [u]l7.
and

v 1,d 5 ~ 5
|Lo| < EIIAmuII%z + CIVA|=([all L2 + [[VA]| £2)
v 1,.d ~ 7
< EIIM“uII%z +O([al7z + VA]7e).

Dotting the second equation in (4.1) with A yields

1d, _~ ~
S IVl + 0l B3 = Ly + Ly + L + Lo, (43)

where

Ls := / u . ve iNde,
Td

Ly = / - VOhdx,
’]l‘d

Ly := —n Aﬁﬁdx,
Td

Lg := —7/ Edﬁdx.
’]l‘d
As in the proof of Theorem 1.1, L3 admits the following bound,
d ~ 2-4
|| < C|Vu || o M3 | VA"

where % + % =1andp > %. L4 can also be similarly bounded as K, in the proof
of Theorem 1.1. For d = 2,

1% - - 1 ~2(1-1)
|L4| < EIIVulliz +[al7. + CpM7||Vh|},
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and, for d > 3,

v l,d 7
|La| < 1—6||A2+4UII%2 + C||9o||2L;4_+czz IVA|Z:-
By integration by parts and Holder’s inequality,
7 NiAT n
L] < el 2 ARl < AR + 26l

The bound for Lg is the same as that for Ls. Adding (4.2) and (4.3) and incorpo-
rating the bounds for L; through Ls, we find, for 6 > 0,

Es(t) = 812 + IVR(®)]32 + 6
satisfies, for d = 2,

d
EEa(t) < g||9||2L2 +C (14 ||Aulj3:) Bs(t) + C <1 +

and, for d > 3,

(77) D 1 1
M) pMEEg(t)l_E
p

d 1 Yvu " 4
ZEs(t) < 2|l0l132 +C (1+ 1A%+ a2 ) Bs(t) +C%W%E5(t)l 5.

By following a similar procedure as in the proof of Theorem 1.1 and applying
Lemma B.6, we obtain

a(t)

Es(t) < (eM)' =" (E5(0) + nt]0]22)° (4.4)

where C(t) is the uniform bound (independent of )

IIVu(")IILv>
p

t
city=c / (1 + ATt S a2, + dr < .
0

Even though u™ is the solution of (1.4), the bound

¢ M1,
sup/ 7||Vu I dr < 00
0 p

p>2

is uniform in 7 since it only depends on || || 2. Letting § — 0 in (4.4) yields

—C(¢) e*CN'(t)

[R@)I72 + VAT < (M) ([8oll72 + [Vhol[Z2 +ntll6lI72)"

which is the desired bound (1.5). This completes the proof of Theorem 1.1. O
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Appendix A. Global Existence of Weak Solutions

This appendix provides the proof of Proposition 3.2. For readers’ convenience, we
first list several simple facts to be used in the proof. The first two lemmas are
Picard’s existence and extension results (see, e.g., [47]).

Lemma A.1 (Picard Existence and Uniqueness Theorem). Let E be a
Banach space. Let O C E be an open subset. Let F':O — E be a locally Lips-
chitz map. More precisely, for any y € O, there is a neighborhood of y, denoted by
U(y) and L = L(y,U) such that

I1F(y) = F(2)le < Llly — 2z, VzeU(y).
Then, for any yo € O, the ODE

dy

I = F(y),

Yli=o = Yo € O

has a unique local solution, namely, there is T > 0 and a unique solution y = y(t)
satisfying y € C1(0,T;0).

Lemma A.2 (Picard Extension Theorem). Assume the conditions in
Lemma A.1 hold. Let y = y(t) be the local solution. Then either y(t) is global
in time, namely, T = oo, or for a finite Ty > 0, limy_7, y(t) ¢ O.

In addition, we will also need the following Lions—Aubin compactness Lemma.

Lemma A.3 (Lions—Aubin compactness lemma). Let X1 — Xy — X3 be
three Banach spaces with the first embedding being compact and the second being
continuous. Let T > 0. For 1 < p,q < 400, let

W = {u S LP(O,T;Xl),atu € Lq(O,T,Xg)}
Then,

(i) If p < +o0, then the embedding of W into LP(0,T; Xs) is compact;
(ii) If p = +o0 and q > 1, then the embedding of W into C(0,T; X5) is compact.

Lemma A.3 states that any bounded sequence in W has a convergent subse-
quence in LP(0,T; X5) when p < co.
We are now ready to prove Proposition 3.2.

Proof of Proposition 3.2. The proof is divided into several steps. The first step
is to show the global existence of smooth solutions to a sequence of approximate
systems. The second is to establish uniform bounds for this sequence of solutions
and extract a strongly convergent subsequence. The third is to verify that the limit
of the subsequence is actually the weak solution.
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Step I: The global existence of smooth solutions to an approximate system.
Let n € N. Set

L2(T") =g e LT, gx) = Y glk)e™™
kezZd, |k|<2n

We seek a solution (u(™,0() € L? satisfying
ou™ +PS,(u™ . vu™) + v(=A)*u™ = PS, (0Me,),
80™ + S, (u™ . VO™ = S, ul",
V-ul® =0,
u™(z,0) = S,up, 0™ (z,0) = S0,

(A1)

where P denotes the standard projection operator onto divergence-free vector fields
and S, is the identity approximation operator as defined in (2.12). We remark that
functions in L2 (T9) are smooth. In fact,

L% C ﬁ H™.
m=0

We use the Picard theorem to show that (A.1) has a unique global solution in L2.
To this end, we first apply Lemma A.1 to show (A.1) has a local-in-time solution.
We can rewrite (A.1) as

dY
T =F(Y),

with
Y =™, 6")T F(Y) = (F(Y), B(Y)"
F(Y) = -PS,(u™ . vu™) — y(=A)*u™ + PS, (0 e,),
F(Y) = =8, ™ - Vo) + 48, ul".

We set E = L2 and O = E. We verify that F': E — E is locally Lipschitz. Assume
Y € L2 and show F(Y) € L2. It suffices to show that F(Y) € L?. In fact,

I (Y)llze < [[a®™ - V™| e + [p(=A) ™|z + (|00 .
< ™ pal|Va™ | o + vl ™ | oo + 072
< ™ g ™ g+ vl ™ + 160 12
< @D a2, + (22 a2 + 0] e

That is F1(Y) € L?(T9). Similarly, F»(Y) € L?(T?). Next we show F(Y) is
locally Lipschitiz. Let Y = (u™,0")7 ¢ L2 and Z = (v(",p")T ¢ L2 and
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consider
[1F2(Y) — F2(Z)| 2
= [|=Su(ut™ - V™) + 5, (v - V™) L2 + 7] ut™ — v 2
- ||_5n((u(n) _ V(n)) .vg(n)) _ S’n(v(") .v(g(n) — P(")))HL?
+ 1y ™ = v e
< ™ =) VO 2 4 [V V(O = p) g2+ |y [ut = v 2
< ™ = v 2| VO™ | Lo + [V [ V(0T = pt™)]| 2
+ ™ = v e

o) — p(n) i

< Ju™ = v 2|0 g+ VO] g
+ I u™ = v

< (@) FEF)O)]| 2 ™) — v | L2+ (270)FEHE v ][0 — p() |
+ i u™ = v

<L|Y - Z| e,

where € > 0 is a small parameter and L = (2")"F2<(||Y |2 + ) + |[y] |V 12
for ||Z — Y|| < r. Therefore F5(Y) is locally Lipschitz. Similarly, F;(Y") is locally
Lipschitz. Lemma A.1 implies (A.1) has a unique local-in-time solution in L2.

Next we use the Picard Extension Theorem, Lemma A.2 to show that the solu-
tion is global in time. It suffices to show that for any t < T', ||(u(™,8(™)]|| > < +oc.
This is done by the energy method. Dotting (A.1) by (u(™, (™) yields

1d
5 ™52 + 107 122) + | A% To=My + My + Ms + M,

where

M, = — / PS,(u™ - Vu™) . udx,
’]I‘d
M, = / PS,(0™e,) - u™dx,
Td

Mz =—[ S,(u™.vem™). oM dx
Td

My = fy/ Snu;n)e(")dx.
Td
We note that
M, = —/PS’n(u(") -vu™) uMix = —/S’n(u(") -vu™) - Pu™dx

= f/Sn(u(") -vu™) . uMix = 7/(u(") -vu™) . u™dx = 0.
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Similarly, M3 = 0. Clearly, |Ms|,|My| < C||ut™] 120 || 2. Therefore,
%(Ilu(")lliz 1001 72) + 20 A2, < C flut™|z2 07 2.
Gronwall’s inequality then implies that
™ (@)1 +2v /Ot 1A%t Fadr < e (JJuoll L2 + 160l 22)*.
Therefore, (u™,0(™) € L2 for all time ¢ < T. Then Lemma A.2 allows us to
conclude that (u(™,6(™) is global in time.

Step 2. Extraction of a strongly convergent subsequence.

This step extracts a subsequence of ul™ that converges strongly in
L?(0,T; L*(T9)) using the Lions-Aubin lemma. In order to use the Lions-Aubin
lemma, we show that

o™ e L2(0,T; H®), (A.2)

where s = max{a, 1+ % —a}. Let ¢ € H*. We take the L2-inner product of ¢ and
the velocity equation in (A.1) leads to

¢-9u"™ dx := Q1 + Qa2 + Q3,
’]I‘d
with

Q) = 7/¢~IP’Sn(u(") -vu™)dx,
Q2 = —u/qs S(=A)*uMdx,

Qs = / ¢ - PS, (0 ey)dx.
Integrating by parts, and applying Holder’s and Sobolev’s inequalities yield
(@i < 02 o [VPSnd]l, 4

OIERTCNOIE
< Clut™|[z2[[A%a™ (|72 [PSnll 1y g

< Cla™ A2 0l e g
Using integration by parts and Holder’s inequality, we have
|Qal < VIIA“G|| 2 A |12 < v]|g] o A% 2
Clearly,
1Qsl < 111l 7. 116 ] 2.

Therefore,

/¢'3tu(")dx < Ol - (1A% |22 (1 + ™[ z2) + 07 o).
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That is,
[0t || o < COA ™[ 21+ [u™] 22) + (167 L2).

Squaring and integrating in time yields

T
[ 100
0
T T
< c/ (1+ ||u<">||L2)2||Aau<n>||32dt+c/ 160712, dt
0 0
T
+C/ (L + [u™]|p2)[[A%a™ || 12|03 .dt
0

T
<C sup (14 [u™|2) / JACu™ |2, di 4 OT sup 07,2
0<t<T 0 0<t<T

+0 (7 s 105z ) - (s (o4 ) ) [ A
0<t<T 0<t<T 0
< +00.
Thus we have obtained (A.2). Since we have
u™ e L2(0,T; HY(TY)), 9u™ e L2(0,T; H*(T?)),

and the facts that H*(T¢) — L?*(T¢) is compact and L?(T¢) — H—(+d/2=a)(Td)
is continuous, we can apply the Lions-Aubin Lemma to conclude that u(™ has a
convergent subsequence in L?(0,T; L?(T¢)). Let u be the limit of u™® and 6 be the
weak limit of (). Clearly,

0 e L=(0,T; L*(T%), wue L®(0,T;L*(T%) N L2(0,T; H*(TY)).

Step 3. Passing to the limit.

This step shows that (u, ) obtained in the previous step is a weak solution
of (1.1). It is easy to see from (A.1) that, for any ¢ € C5°(T¢ % [0,T)) with V-¢ = 0,
and for any v € C§°(T? x [0,7)) and for any ¢ < T,

¢
_ (n) . (n) . _ (1) (4 .
/0 /Td u'" - Oppdxdr + /Td u' (x,t) - p(x,t)dx / uy (%) - o(x,0)dx

Td

t t
- / / u™ . V(S,p)u™dxdr +v / / A%u™ - A*pdxdt
0 JTd o Jrd

t
= / / 0Me, - S, pdxdr,
0 JTd
t

- / B0 dxdr + / 00 o) (x, t)dx — / 6" (x)1h(x, 0)dx
Td Td Td

0
t
= / / u™ . V(S,0)0"™ dxdr.
0 JTd
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The task is then to verify that, as n — oo, the terms above converge to the corre-
sponding terms in the definition of the weak solution given in Definition 3.1. We

need the strong convergence u™ — u in L?(0,T; L?). Tt suffices to consider the
convergence of the nonlinear terms. Let

—/Ot /’er u- V(S,¢)udxdr,

t
A = — / / u™ . V(S,¢)u™dxdr
0 JTd

A

and consider the difference

t
A 4 = —/ / (u™ —u) - V(S,¢)u™ dxdr
0 Jra

t
. _ (n)
—i—/o /Tdu V(Sn¢ — ¢p)u™dxdr

¢
—i—//u-V(b-(u(")—u)dxdT
o Jrd
= R1 + Ry + R3.

Using Holder’s inequality, we have
|Ra| < [0 — w2 (rax o, 1) IV Sndl| Lo (rax o, 77) 10 | L2z o,7)
< Cllut™ — ul| p2raxqo,r 19Nl 21 ¢ 1wl L2(rax o)) — 0 as n— oo
Similarly,

|Ro| < [lullz2qrax oIV (Sn® — &)l oo (raxc o 0™ | L2 rax o)

< Clluol[L2[1Sn¢ — ¢ 24 ¢ 0]l — 0 asn — o0

and, as n — oQ,

|Rs| < [[ull 2crax o, IVl oo (e o,y 0™ = ul| 2 graxo,ry) — 0.

Therefore [A™) — A| — 0 as n — oo. The convergence of the other nonlinear term
is slightly different. We do not have strong convergence in (). Define

—/Ot /T u- V(S,)0dxdr,

t
B .= — / / u™ . V(S,0)0™ dxdr
0 JTd

B :
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and consider the difference

t
B™ B = f/ / (u™ —u) - V(S,¥)0"™ dxdr
0 Td
t
+/ / u- V(S0 — )0™ dxdr
0 Td

t
+/ / u- V- (0™ — )dxdr
0 JTd
= Wi+ Wy + Wj3.
Using Holder’s inequality, we have
W] < [[ul™ =l g2ipax o IV Sntll Lo (ras o, 107 || L2 o,77)
< Clla'™ —ul|g2(raxio 1] yor g 100ll L2raxpory — 0 as n— oo.

Similarly,

(Wal < [Jull p2qraxo.m IV (Snth = )| Lo raxc o, 107 | L2(raxo,7))

< Cllaollz21Snt = Il 24 g B0l — 0 as n — oo

W3 is estimated differently from Rj3 since we do not have strong convergence in
6™ . Since L? functions can be approximated by smooth functions with compact
support, u- V) can be treated as a test function. Since () converges weakly to 6,
we have

W3 —0 asn— oc.

Hence |B(™ — B| — 0 as n — oo. Therefore, (u, ) is indeed a weak solution. This
completes the proof of Proposition 3.2. O

Appendix B. The Littlewood—Paley Decomposition in R?, Besov
Spaces and Related Facts

This appendix provides the definitions of the Littlewood—Paley decomposition in
R?, functional settings associated with the Besov spaces and related facts. The
reason that this is provided here is to make a comparsion with the Littlewood—
Paley decomposition in T¢ and the associated tools developed in Sec. 2. In addition,
an Osgood type inequality used in the previous sections is also stated here for the
convenience of readers. More details can be found in several books and many papers
(see, e.g., [5, 6, 48, 51, 55]).

To introduce the Besov spaces, we start with a few notation. S denotes the usual
Schwarz class and &’ its dual, the space of tempered distributions. Sy denotes a
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subspace of § defined by

Sy = {(;5 eS: / o(x)x7dx =0, |y] = 0,172,...}
Rd
and S denotes its dual. S} can be identified as
Sy=8/Sy =8P,
where P denotes the space of multinomials. For each j € Z, we write
A ={€ e R 2771 < |¢] < 27H1Y.

The Littlewood—Paley decomposition asserts the existence of a sequence of functions
{®;}jez € S such that

suppEI;j C Aj, </Isj(§) = 50(2_]{) or ®;(x) =279y (27x),

= o1, ifge RA{0},
2 (Dj(g)_{o, if € = 0.

and

Jj=—00
Therefore, for a general function ¥ € §, we have
D 2P =) for & € R\{0}.

j=—o00

In addition, if ¢ € Sy, then

D" Bi()v(€) = () for any £ € RY.

j=—0c0

That is, for ¢ € Sy,

D B =1

j=—o00

and hence

Y ®ixf=f feS (B.1)

j=—o0

in the sense of weak-x topology of &;. For notational convenience, we define
Byf =y f =20 [ 0(@(a —y)f0)dy. G Z.

The homogeneous Littlewood—Paley decomposition (B.1) can then be written as

f=3 Aif fes

j=—o00
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Definition B.1. For s € R and 1 < p, ¢ < oo, the homogeneous Besov space é;,q
cousists of f € ] satisfying

£y, = 1205 e o < oo

We now choose ¥ € S such that

V() =1- 8,(6), ¢er™
j=0

J
Then, for any ¢ € S,
Uirp+ Y Bjxih =1
§=0
and hence
Usf+Y Ojxf=f (B.2)
j=0
in 8§’ for any f € 8. To define the inhomogeneous Besov space, we set

0, it j < -2,
Ajif=qUsxf ifj=-1, (B.3)
C;xf, ifj=0,1,2,....
The inhomogeneous Littlewood—Paley decomposition (B.2) can then be written as
f=Y A, fes.
j=—1

Definition B.2. The inhomogeneous Besov space B, , with 1 < p,q < oo and
s € R consists of functions f € S’ satisfying

11135, = 12°118; fll oIl < oo.

The Besov spaces égﬁq and By , with s € (0,1) and 1 < p,q < oo can be
equivalently defined by the norms

T - €T p)? 1/a
e =

_ »)e 1/q
11, = 11+ ([ LD e )
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When ¢ = oo, the expressions are interpreted in the normal way. We will also use
the space-time spaces introduced by Chemin—Lerner (see, e.g., [5]).

Definition B.3. For t > 0, s € R and 1 < p,q,r < oo, the space-time spaces
LB, ,and LyB; , are defined though the norms

1Az, = 127145 Fllzgas i,

12751 A fll Ly Lol

Here L} is the abbreviation for L"(0,t). These spaces are related to the classical
space-time spaces Ly B, . and Ly B} , via the Minkowski inequality, if 7 > ¢,

10z,

LiB;, C LBy, LiB;,CLiB,

P,q’

and, if r < ¢,
L;Bs, > LiB;

p,q’

Trps r s
LyB,,> LiB,,.

Many frequently used function spaces are special cases of Besov spaces. The
following proposition lists some useful equivalence and embedding relations.

Proposition B.4. For any s € R,
H®~Bs, H*~Bj,.
For anys e R and 1 < q < o0,

> S 1 S > S
. — —
Bq,mm{q&} Wy qumax{qﬁ}'
. 20 q 50
In particular, Bq,min{q,z} — [T — Bq,max{q,z}'

Besides the Fourier localization operators Aj;, the partial sum S; is also a useful
notation. For an integer j,

where Ay is given by (B.3). For any f € &', the Fourier transform of S, f is sup-
ported on the ball of radius 27 and

8,() =290 (2a) + f(2) =29 [ W (o~ ) Fw)dy
The operators A; and S; defined above satisfy the following properties:
AjALf=0 if|[k—j]>2 and Aj(Sk—1fArf)=0 if|k—j]>3.

Bernstein’s inequalities is a useful tool on Fourier localized functions and these
inequalities trade integrability for derivatives. The following proposition provides
Bernstein type inequalities for fractional derivatives.

Proposition B.5. Let > 0. Let 1 < p < g < o0.

(1) If f satisfies
supp f C {€ € R:[¢] < K2},
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for some integer j and a constant K > 0, then
aj+jd(L—1
1(=2)* fllagray < Cr22 =D ]| gay.
(2) If [ satisfies
supp f C {€ e R K27 <|¢| < K27}

for some integer j and constants 0 < Ky < Ky, then

1

C12%|fl| Lagray < I1(=A)* fllaqay < Ca2°* D] £l oray,
where Cy and Cs are constants depending on «,p and q only.

We shall also use Bony’s notion of paraproducts to decompose a product into
three parts

where

Trg =Y Si1fA9,

J

R(f,9) = > Aflrg

J k=2j-1

with Ay = Ap_1 + Ag + Agpq. Finally, we state an Osgood type inequality to be
used in the subsequent sections (see, e.g., [5]).

Lemma B.6. Let a > 0 and 0 < tg < T'. Let p be a measurable function from
[to,T] to [0,a]. Let v(t) > 0 be a locally integrable function on [to,T]. Let ¢ > 0
be a continuous and non-decreasing function on [0, a]. Assume that p satisfies, for
some constant ¢

p(t) < c+/ v(s)p(p(s))ds for a.e. t € [to, T].

to

Then, if ¢ > 0, we have, for a.e. t € [to,T],

*MWW+M@S/VMM

to
where
@ dr
Me =[50
If c=0 and

then p(t) =0 a.e. t € [to, T].
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