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Abstract
This article revisits the problem of Bayesian shape-restricted inference in the light of a recently developed approximate
Gaussian process that admits an equivalent formulation of the shape constraints in terms of the basis coefficients. We propose
a strategy to efficiently sample from the resulting constrained posterior by absorbing a smooth relaxation of the constraint in
the likelihood and using circulant embedding techniques to sample from the unconstrained modified prior. We additionally
pay careful attention to mitigate the computational complexity arising from updating hyperparameters within the covariance
kernel of the Gaussian process. The developed algorithm is shown to be accurate and highly efficient in simulated and real
data examples.
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1 Introduction

In diverse application areas, it is often of interest to estimate a
functionnonparametrically subject only to certain constraints
on its shape. Typical examples include (but are not limited to)
monotone dose-response curves in medicine (Kelly and Rice
1990), concave utility functions in econometrics (Meyer and
Pratt 1968), increasing growth curves, non-increasing sur-
vival function or ‘U’-shaped hazard function (Reboul 2005)
in survival analysis, computed tomography (Prince andWill-
sky 1990), target reconstruction (Lele et al. 1992), image
analysis (Goldenshluger and Zeevi 2006), queuing theory
(Chen andYao 1993), and circuit design (Nicosia et al. 2008).

A Bayesian framework offers a unified probabilistic way
of incorporating various shape constraints and accordingly
there is a large literature devoted to Bayesian shape con-
strained estimation. A general approach is to expand the
unknown function in a basis and translating the functional
constraints to linear constraints in the coefficient space.
Some representative examples include piecewise linearmod-
els (Neelon and Dunson 2004; Cai and Dunson 2007),
Bernstein polynomials (Curtis and Ghosh 2011), regression
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splines (Meyer et al. 2011), penalized spines (Brezger and
Steiner 2008), cumulative distribution functions (Bornkamp
and Ickstadt 2009), and restricted splines (Shively et al. 2011)
used as the basis. Gaussian process (GP) priors have also
been employed for shape-restricted inference. Riihimäki and
Vehtari (2010) proposed a method for imposing monotonic-
ity information by including derivative observations in a GP
model. More recently, Lin and Dunson (2014) proposed an
approach based on projecting the posterior samples from an
unrestricted GP fit to the constrained space.

In this article, we focus on a recent approach due to
Maatouk and Bay (2017) who exploited a novel basis repre-
sentation to equivalently represent various shape restrictions
such as boundedness, monotonicity, convexity etc as non-
negativity constraints on the basis coefficients. Although
originally developed in the context of computer model emu-
lation, the approach of Maatouk and Bay (2017) is broadly
applicable to general shape constrained problems. Zhou et al.
(2019) adapted their approach to handle a combination of
shape constraints in a nuclear physics application to model
the electric form factor of a proton. The main idea of Maa-
touk and Bay (2017) is to expand a Gaussian process using
a first or second order exact Taylor expansion, with the
remainder term approximated using linear combinations of
compactly supported triangular basis functions. A key obser-
vation is that the resulting approximation has the unique
advantage of enforcing linear inequality constraints on the
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function space through an equivalent linear constraint on the
basis coefficients. In terms of model fitting under a standard
Gibbs sampling framework, this necessitates sampling from
a high-dimensional truncated multivariate normal (tMVN)
distribution.

The problem of sampling from a tMVN distribution is
notoriously challenging in high dimensions and a number of
solutions have been proposed in the literature. ExistingGibbs
samplers for a tMVN distribution sample the coordinates
one-at-a-time from their respective full conditional trun-
cated univariate normal distributions (Geweke1991;Kotecha
and Djuric 1999; Damien and Walker 2001; Rodriguez-Yam
et al. 2004). While the Gibbs sampling procedure is entirely
automated, such one-at-a-time updates can lead to slow mix-
ing, especially if the variables are highly correlated. More
recently, Pakman and Paninski (2014) proposed a Hamil-
tonian Monte Carlo (HMC) algorithm which has drastically
improved the speed and efficiency of sampling from tMVNs.
However, implementing this algorithm within a larger Gibbs
sampler can still lead to inefficiencies if the sample size is
large. The second and third authors of this article encoun-
tered this challenge in Zhou et al. (2019) with a sample
size greater than 1000. A related issue which contributes to
the complexity is the O(N 3) computation and O(N 2) stor-
age requirements for inverting and storing a general N × N
covariance matrix.

In this article, we propose a novel algorithm to exploit
additional structure present in the tMVN distributions aris-
ing in the aforesaid shape-constrained problems using the
basis of Maatouk and Bay (2017). Our approach is based on
a novel combination of elliptical slice sampling (ESS; Mur-
ray et al. 2010), circulant embedding techniques, and smooth
relaxations of hard constraints. We additionally use Durbin’s
recursion to efficiently update hyperparameters within the
covariance kernel of the parent Gaussian process. We ana-
lyze the per-iteration complexity of the proposed algorithm
and illustrate through simulated and real data examples that
the proposed algorithm provides significant computational
advantages while retaining the statistical accuracy. R code to
implement the proposed algorithm for monotone and con-
vex function estimation is provided at https://github.com/
raypallavi/BNP-Computations. We note that our algorithm
and code be trivially adapted to other basis functions.

The rest of the paper is organized as follows. In Sect. 2,
we revisit theBayesian shape constrained function estimation
problem and describe the novel algorithm for inference. The
algorithm is specialized to estimating monotone and convex
functions in Sect. 3. We provide a re-analysis of the pro-
ton dataset considered in Zhou et al. (2019) using our more
efficient implementation in Sect. 4 and additional numerical
illustrations on synthetic data are in Sect. 5. We conclude
with a discussion in Sect. 6. Various algorithmic and imple-
mentation details are provided in an “Appendix”.

2 Algorithm development

Consider the problem of sampling from a distribution having
the following form:

p(ξ) ∝ exp

{
− 1

2σ 2 ‖Z − �ξ‖2
}

exp

{
− 1

2τ 2
ξ TK−1ξ

}
1Cξ

(ξ), ξ ∈ R
N , (1)

where Z ∈ R
n , � ∈ R

n×N with N ≤ n, Cξ ⊂ R
N is deter-

mined by a set of linear inequality constraints on ξ , and K
is positive definite matrix. While our methodology generally
applies to any such K , we are specifically interested in sit-
uations where K arises from the evaluation of a stationary
covariance kernel on a regular grid.

The distribution (1) arises as a conditional posterior of
basis coefficients in many Bayesian nonparametric regres-
sion problems where linear shape constraints (such as mono-
tonicity, convexity, or a combination of these; Zhou et al.
2019) on the regression function are present, and a con-
strained Gaussian process prior is placed on the coefficient
vector ξ in an appropriate basis representation. Sampling
from the density (1) is then necessitated within a larger Gibbs
sampler to fit the said constrained regression model.

Specifically, suppose we observe response-covariate pairs
(yi , xi ) ∈ R ⊗ R

d for i = 1, . . . , n, related by the Gaussian
regression model

yi = f (xi ) + εi , εi ∼ N(0, σ 2), i = 1, . . . , n (2)

where the unknown regression function f is constrained to
lie in some space C f , a subset of the space of all continu-
ous functions on [0, 1]d . When C f corresponds to the space
of monotone or convex functions, Maatouk and Bay (2017)
identified a novel basis representation for f which allowed
equivalent representations of the aforesaid constraints in
terms of the basis coefficients ξ restricted to the positive
orthant:

Cξ : = CN
ξ =

{
ξ ∈ R

N : ξ j ≥ 0, j = 1, . . . , N

}
. (3)

We provide more details on their basis representation in
Sects. 3.1 and 3.2. They also considered the case where the
regression function is globally bounded between two con-
stants. See also Zhou et al. (2019) where a combination of
interpolation, monotonicity, and convexity constraints can be
equivalently expressed in terms of linear constraints on the
coefficients.

Relating the basis coefficients ξ with the function values
and (or) its derivatives, Maatouk and Bay (2017) proposed a
constrainedGaussian prior on ξ . If the function f was uncon-
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strained, then a Gaussian process (GP) prior on f induces a
Gaussian prior on ξ , aided by the fact that derivatives of GP
are again GPs provided the covariance kernel is sufficiently
smooth. A natural idea then is to restrict the induced prior on
ξ to the constrained region Cξ ,

π(ξ) ∝ N (ξ ; 0, τ 2K )1Cξ
(ξ),

which is precisely the specification of Maatouk and Bay
(2017). The density in Eq. (1) is then recognized as the con-
ditional posterior of ξ .

In what follows, we shall additionally assume that K j j ′ =
k(u j − u j ′) for a positive definite function k and a set of
uniform grid points {u j }. For example, if d = 1, we have
u j = j/N for j = 0, 1, . . . , N . This is a slight departure
from Maatouk and Bay (2017) in the monotone and convex
case. Since the derivatives of a stationary GP is generally
non-stationary, so is their induced prior on ξ from a parent
stationary GP on f .We instead directly place a stationaryGP
on an appropriate derivative of f , which results in K having
a form as above. While there is little difference between the
two approaches operationally, there is a large computational
benefit for our approach, as we shall see below.

Returning to (1), a simple calculation yields that p(ξ) is
a truncated normal distribution, specifically,

NN

(
(�T�/σ 2 + K−1/τ 2)−1�TY , (�T�/σ 2 + K−1/τ 2)−1

)
,

truncated to Cξ . While one can use off-the-shelf samplers
for tMVNs (Pakman and Paninski 2014) to sample from the
above, the intrinsic complexity of sampling from tMVNs
coupled with the computation and storage of the inverse
of the kernel matrix K contributes to the challenges of
executing this sampling step for large N . In particular,
(�T�/σ 2 + K−1/τ 2) keeps changing over each MCMC
iteration with new updates of σ and τ , which requires an
N × N matrix inversion at each iteration while applying any
of the existing algorithms. The usual Sherman–Morrison–
Woodbury matrix inversion trick does not render beneficial
in this case. Barring issues with matrix inversions, imple-
mentation of such algorithm will be expensive in terms of
storage. In addition, if there are unknown hyperparameters
in the covariance kernel that get updated at each iteration
within a larger MCMC algorithm, either the inversion has to
take place at each step, or one has to pre-store a collection of
K−1 on a fine grid for the hyperparameters.

In this article, we present a different approach to sam-
ple from the density p in (1) which entirely avoids matrix
inversions. Our approach is based on three basic building
blocks: (i) approximating the indicator function in p with a
smooth approximant, (ii) a novel use of elliptical slice sam-
pling (Murray et al. 2010) to avoid sampling from truncated
non-Gaussian distribution, and (iii) using highly efficient

samplers based on the fast Fourier transform for stationary
GPs on a regular grid (Wood and Chan 1994). We describe
the details below, starting with a brief review of elliptical
slice sampling.

The elliptical slice sampler is a general technique for sam-
pling from posterior distributions of the form,

p(ξ) ∝ L(ξ)N (ξ ; 0, �)

proportional to the product of a zero-meanmultivariateGaus-
sian prior with a general likelihood function L(·). In this
context, Metropolis–Hastings proposals

ξ ′ = ρ νe +
√
1 − ρ2 ξ, νe ∼ N (0, �)

for ρ ∈ [−1, 1] are known to possess good empirical
(Neal 1999) and theoretical (Cotter et al. 2013) proper-
ties. Such an AR(1)-type proposal preserves the mean-
zero N (0, �) prior, i.e., if ξ ∼ N (0, �) and ξ ′|ξ ∼
N (

√
1 − ρ2ξ, ρ2�) is drawn as above, then the marginal

distribution of ξ ′ is again N (0, �). Using this fact, it is
readily seen that the Metropolis–Hastings acceptance ratio

α = min
(
1, L(ξ ′)/L(ξ)

)
only depends on the likelihood

ratio and is free of ρ. The elliptical slice sampler presents an
adaptive and automated way to tune the step-size parameter
ρ which guarantees acceptance at each step. Specifically, a
new location on the randomly generated ellipse determined
by the current state ξ and the auxiliary draw νe is produced
according to

ξ ′ = νe sin θ + ξ cos θ (4)

where the angle θ is uniformly generated from a [θmin, θmax]
interval which is shrunk exponentially fast until an accept-
able state is reached. To be precise, for each such θ , a uniform
random number is drawn which compared against the likeli-
hood ratio L(ξ ′)/L(ξ). If the proposal ξ ′ is not acceptable,
one shrinks the bracket of θ , and continues this process until
acceptance; specific details of shrinking the bracket can be
found inMurray et al. (2010). Hence, to extend the ESS algo-
rithm by one step, the only requirement is to evaluate L at
arbitrary points, which renders the approach broadly appli-
cable.

Turning to (1), note however that the elliptical slice sam-
pler is not immediately applicable as we have a truncated
normal prior. As a simple fix-up, we approximate the indi-
cator function 1Cξ

(·) in (1) by a suitable smooth function.
Specifically, assuming Cξ has the same structure as in (3), we
use sigmoid-like approximations 1(0,∞)(x) ≈ (1+ e−ηx )−1

for large η > 0 to obtain a smooth approximation Jη(·) to
1Cξ

(·) as
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1Cξ
(ξ) ≈ Jη(ξ) =

N∏
j=1

eηξ j

1 + eηξ j
. (5)

With Jη(ξ) defined like this, let us define

p̃(ξ | −) ∝ exp

{
− 1

2σ 2 ‖Y − �ξ‖2
}
exp

{

− 1

2τ 2
ξ TK−1ξ

}
Jη(ξ)

=
[
exp

{
− 1

2σ 2 ‖Y − �ξ‖2
}
Jη(ξ)

]
exp

{

− 1

2τ 2
ξ TK−1ξ

}

=
[
exp

{
− 1

2σ 2 ‖Y

−�ξ‖2
} { N∏

j=1

eηξ j

1 + eηξ j

}]
exp

{
− 1

2τ 2
ξ TK−1ξ

}
.

(6)

The density p̃ defined on R
N approximates the density p.

The parameter η controls the quality of the approximation;
higher the value of η, better is the approximation. Experi-
menting across a large number of simulation scenarios, we
find that η = 50 already provides an accurate approximation
for dimensions at least up to 1000.

We now focus on sampling from p̃ (usingMCMC), which
we shall consider as approximate samples from p. There
is a growing literature on such approximate MCMC algo-
rithms; see for example Bardenet et al. (2017); Johndrow
et al. (2017) for more discussion and references. Later in
Sect. 4, we device a strategy to modify the MCMC sampler
for p̃ into an MCMC with stationary distribution p.

We apply ESS to draw samples from p̃(ξ | −), since treat-
ing the quantity in the square brackets in (6) as “redefined
likelihood”, ξ has an (untruncated) multivariate Gaussian
prior, which we call as the “working prior”. Thus, one just
needs to draw samples from the “working prior” distribu-
tion and compute the logarithm of the “redefined likelihood”
function. In our case, computing the log-likelihood func-
tion has computational cost of O(nN ) and we are to sample
νe ∼ N (0, τ 2 K ), which is usually ofO(N 3). Note that these
computational complexities correspond to a single iteration
of the MCMC sampler.

Under the assumption that the covariance matrix K is
obtained from a regular grid in [0, 1], sampling from the
“working prior” is same as simulating realizations of a sta-
tionary Gaussian Process on a regular grid in [0, 1]. Such a
covariance matrix is known to have a Toeplitz structure and
the simulation can be carried out using the sampling scheme
developed byWood andChan (1994)which reduces the over-

all complexity of the algorithm to a commendable extend.
The details of this algorithm is discussed in the following
section.

2.1 Sampling from the prior distribution of �

Sampling from the “workingprior” distribution requires sam-
pling from a stationary GP on a regular grid in [0, 1] with a
Toeplitz structure of the covariance matrix. In such settings,
the algorithm of Wood and Chan (1994) based on clever
embedding techniques can be readily applied. In particu-
lar, they exploit the discrete fast Fourier transform twice to
offer substantially reduced compared cost.We briefly discuss
some of the key ingredients of the algorithm.

The goal is to sample a random vector of the form

Z =
(
Z
(
0
)
, Z

(
1

m

)
, Z

(
2

m

)
, . . . , Z

(
m − 1

m

))T

from a mean-zero Gaussian random process on each of the
grid points

{
0,

1

m
,
2

m
, . . . ,

m − 1

m

}
≡

{
u j : u j

= j

m
; 0 ≤ j < 1

}
, m ≥ 1

with covariance function γ : R → R. Then Z ∼ Nm(0,G),
where

G =

⎡
⎢⎢⎢⎣

γ (0) γ
( 1
m

) · · · γ
(m−1

m

)
γ
( 1
m

)
γ (0) · · · γ

(m−1
m

)
...

...
. . .

...

γ
(m−1

m

)
γ
(m−2

m

) · · · γ (0)

⎤
⎥⎥⎥⎦

It is to be noted thatG is aToeplitzmatrix,which is equivalent
to τ 2K in our notation.

There are two basic steps of this method:

1 EmbeddingG in a circulant covariance matrixC of order
d × d,where d = 2g , for some integer g and d ≥
2(m−1). The circulant matrix is formed such a way that
by construction,C is symmetric and them×m submatrix
in the top left corner ofC is equal toG. For details on the
embedding technique, one can refer to Wood and Chan
(1994).

2 Using fast Fourier transform twice to generate Z =(
Z0, Z1, . . . , Zd−1

) ∼ Nd(0,C). Then due to appropri-
ate construction ofC ,

(
Z0, Z1, . . . , Zm−1

) ∼ Nm(0,G).
Note that C needs to be positive definite.

In summary, Wood and Chan (1994) essentially uses a
parameter-expansion scheme to translate the problemof sam-
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pling fromNm(0,G) to samplingNd(0,C) for some d > m.
Exploiting the fact that the covariance matrix C of the larger
Gaussian is a symmetric circulant matrix, the task of sam-
pling fromNd(0,C) can be accomplished O(d log d) steps.
This sampling scheme exploits efficient computation of the
eigenvalues ofC based on the powerful FFT algorithm; exact
details can be found in §5 of Wood and Chan (1994). Thus,
even though d > m, the above implementation can pro-
vide large speed-ups provided d � m3. This is the case we
observe throughout our numerical studies.

It is to be noted that the circulant matrix C is not guar-
anteed to be positive definite for any d ≥ 2(m − 1). We
followed the exact approach of Wood and Chan (1994) to
search for the smallest d which makes C positive definite. In
situations where such a d cannot be found or is too large to
be practicable, Wood and Chan (1994) suggested an approx-
imate scheme to make C nonnegative definite. We did not
encounter the need to pursue this approximation scheme for
the scale of problems we considered here, although this may
come handy for larger datasets.

2.2 Algorithm

We implemented our algorithmwith K as a stationaryMátern
kernel with smoothness parameter ν > 0 and length-scale
parameter � > 0. Our method takes design points X , obser-
vations Y , Mátern kernel parameters ν and �, η as in (6),
dimension of the randomcoefficients N and number of poste-
rior samples n0 as inputs and gives n0 manyposterior samples
of ξ as output.

Algorithm 1 Efficient algorithm to draw posterior samples
of ξ

Input: X , Y , ν, �, η, N , τ 2, σ 2 and n0
Using N , calculate u j = j/N , j = 0, . . . , N ;
Using X and u j ’s form basis matrix �

Using ν, � and u j ’s form covariance matrix K
Initialize : ξ (0)

for t = 1 to n0 do
Sample νe ∼ N (0, τ 2 K ) using simulation scheme by Wood and
Chan (1994).
Sample ξ (t) using νe, η and σ 2 following ESS scheme by Murray
et al. (2010).

end for
Output: Posterior samples of ξ of size n0.

The computation cost for drawing a random sample from
the prior distribution usually dominates. But that is not the
case here. Since n > N , computational cost for computing
the log-likelihood, usingESS scheme, dominateswhich leads
to computational complexity of O(

nN
)
, for each MCMC

iteration.

2.3 Updating hyperparameters

As already discussed, updating the hyperparameters present
in the covariance matrix K is computationally challenging
in the absence of any structure in K . Any likelihood-based
method for updating ν and � (e.g. Metropolis–Hastings)
requires computing K−1 which leads to O(N 3) computa-
tional steps and O(N 2) storage. Hence the computational
complexity per MCMC iteration of Algorithm 1 is always
bounded above by O(N 3).

However, substantial speed-up is possible in our case as
K is a symmetric positive-definite Toeplitz matrix. We turn
to a non-trivial but effective approach of finding K−1 utiliz-
ing inverse Cholesky factor of K using Durbin’s recursion
algorithm (Golub and van Loan 1996) which has a compu-
tational complexity of O(N 2). The columns of the inverse
Cholesky factor of K is obtained by solving Yule–Walker
systems. Durbin recursion is a procedure of recursively find-
ing the solution to a system of equations involving a Toeplitz
matrix, in particular, it is applicable to Yule–Walker systems.
Given real numbers r0, r1, . . . , rM−1 with r0 = 1 such that
T = (

r|i− j |
) ∈ R

M×M is positive definite then Durbin’s
algorithmcomputesu ∈ R

M as a solution of theYule–Walker
problem:

T u = −(r1, . . . , rM−1)
T

For more details on Durbin’s recursion for solving Yule–
Walker equation, refer to Golub and van Loan (1996).

Now suppose, we have the Cholesky factor R such that
RTR = T where R is an upper-triangular matrix and the
inverse Cholesky factor is given by R−1. Therefore, T R−1 =
RT and noting that RT is lower-triangular, it is enough to solve
only the upper-triangular part of R−1. The first h elements
of the hth column of R−1 can be found as a solution of

Th u
(h) = −r (h) , h = 1, . . . , M

where Th is the h × h principal submatrix of T , u(h) is h-
dimensional vector of solutions and r (h) = (r1, . . . , rh)T and
each of theseM equations can be solved usingDurbin’s algo-
rithm mentioned above. Note that, the hth column of R−1

denoted by (R−1)h is then given by:

(R−1)h =
[

Eh Oh×(M−h)

O(M−h)×h O(M−h)×(M−h)

] [
u(h)

O(M−h)×h

]

where Eh is an exchangematrix of order h with anti-diagonal
elements all ones and other elements are all zeros. This
approach requires O(M2) computations to find R−1.

We considered continuous uniform priors on compactly
supported intervals on both ν and �, independently of each
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Fig. 1 Posterior density plots of the hyperparameters ν (left panel) and
� (right panel) represented by solid black curves, and the prior densi-
ties given by dotted red lines. Support of ν is [0.5, 1] and that for � is

[0.1, 1]. Posterior samples were drawn using Metropolis–Hastings and
utilizing S obtained through Durbin’s recursion

other. Updating ν | ξ,− and � | ξ,− using Metropolis–
Hastings requires to compute acceptance ratiowhich involves
computation of ξ TK−1ξ and |K |−1/2 for proposal and cur-
rent combinations of (ν, �). Using Durbin’s algorithm, we
can find S such that (S−1)TS−1 = K and then ξ TK−1ξ =
(STξ)T(STξ) = ∑N

j=1 v j where v = STξ and |K |−1/2 =∏N
j=1 S j j . Evidently, computation for S dominates and

Durbin’s algorithm allows us to update the hyperparameters
in O(N 2) computations for each iteration within an MCMC
algorithm. Thus per-iteration computational complexity for
Algorithm1 combinedwith this hyperparameter update tech-
nique remains O(nN ) as before.

Figure 1 shows the posterior density plots of ν (left panel)
and � (right panel) and comparison with the uniform prior
densities. We generated 500 paired data of response and
covariate based on (2) with σ = 0.05 and the true data gener-
ating function f is monotone, given by f (x) = log(20x+1).
Posterior samples were drawn using Metropolis–Hastings
and the previouslymentioned computation scheme. Posterior
densities suggest that it is possible to learn the hyperparam-
eters through this technique. Moreover, based on numerous
simulation studies that we had conducted, the Metropolis–
Hastings sampler for the hyperparameter update attained at
least 15% acceptance probability.

3 Application to shape constrained
estimation

We now return to the constrained Gaussian regression setup
in (2), and consider applications of our sampling algorithm to
situations when f is a smooth monotone or convex function.

We first introduce some notation to define the basis functions
employed by Maatouk and Bay (2017).

Let {u j ∈ [0, 1], j = 0, 1, . . . , N } denote equally spaced
knots on [0, 1] with spacing δN = 1/N and u j = j/N . Let

h j (x) = h

(
x − u j

δN

)
, ψ j (x) =

∫ x

0
h j (t) dt, φ j (x)

=
∫ x

0

∫ t

0
h j (u) du dt; x ∈ [0, 1]

where h(x) = (1 − |x |)1[−1,1](x). The collection of func-
tions {h j } is called the interpolation basis by Maatouk and
Bay (2017), since for any continuous function f : [0, 1] →
R, the function f̃ (·) = ∑N

j=0 f (u j ) h j (·) approximates f
by linearly interpolating between the function values at the
knots {u j }.

The integrated basis {ψ j } and {φ j } take advantage of
higher-order smoothness. For example, if f is continuously
differentiable, then by the fundamental theorem of calculus,

f (x) − f (0) =
∫ x

0
f ′(t)dt .

Expanding f ′ in the interpolation basis implies the model

f (x) = ξ0 +
N∑
j=0

ξ j+1ψ j (x). (7)

Similarly, if f is twice continuously differentiable, we have

f (x) − f (0) − x f ′(0) =
∫ x

0

∫ t

0
f ′′(s) dsdt .
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Now expanding f ′ and f ′′ in the interpolation basis implies
the model

f (x) = ξ0 + ξ∗x +
N∑
j=0

ξ j+1φ j (x). (8)

Maatouk and Bay (2017) showed that under (7), f is
monotone non-decreasing if and only if ξi ≥ 0 for all
i = 1, . . . , N + 1. Similarly, under (8), f is convex non-
decreasing if and only if ξi ≥ 0 for all i = 1, . . . , N +1. This
equivalence relationship between the functional constraint
and the linear inequality constraints on the basis coefficients
is an attractive feature of the interpolation basis and is not
shared by many commonly used basis functions.

For an unrestricted f , a GP prior on f implies a
dependent Gaussian prior on the coefficient vector ξ =
(ξ1, . . . , ξN+1)

T. A natural idea is to restrict this depen-
dent prior subject to the linear restrictions on the coefficients
which results in a dependent tMVN prior. Fitting the result-
ing model using a Gibbs sampler, the full conditional of ξ

assumes the form (1), rendering our Algorithm 1 applicable.
We provide more details regarding the model and prior

for the monotone and convex cases separately. Let X =
(x1, . . . , xn)T be the vector of n design points, Y =
(y1, . . . , yn)T be the vector of corresponding responses.

3.1 Monotonicity constraint

We can express (7) in vector notation as

Y = ξ01n + �ξ + ε, ε ∼ Nn(0, σ
2In), ξ ∈ CN+1

ξ , (9)

where recall from (3) that Cmξ denotes the positive orthant in
R
m and ξ = (ξ1, . . . , ξN+1)

T. Also,� is an n×(N+1) basis
matrix with i th row �T

i where �i = (ψ0(xi ), . . . , ψN (xi ))T

and 1n denotes an n dimensional vector of all 1’s.
The parameter ξ0 ∈ R is unrestricted, and we place a

flat prior π(ξ0) ∝ 1 on ξ0. We place a tMVN prior on ξ

independently of ξ0 as p(ξ) ∝ N (ξ ; 0, τ 2 K )1Cξ
(ξ), where

K = (K j j ′) with K j j ′ = k(uj − uj ′) and k(·) the stationary
Mátern kernel with smoothness parameter ν > 0 and length-
scale parameter � > 0. To complete the prior specification,
we place improper priors π(σ 2) ∝ 1/σ 2 ; π(τ 2) ∝ 1/τ 2 on
σ 2 and τ 2, and compactly supported priors ν ∼ U(0.5, 1) and
� ∼ U(0.1, 1) on ν and �. A straightforwardGibbs sampler is
used to sample from the joint posterior of (ξ0, ξ, σ 2, τ 2, ν, �)

whose details are deferred to the Appendix. The parame-
ters σ 2, τ 2 and ξ0 have standard conditionally conjugate
updates. The key feature of our algorithm is sampling the
high-dimensional parameter ξ using Algorithm 1 and updat-
ing ν and � via Metropolis-within-Gibbs using Durbin’s
recursion as outlined in Sect. 2.3.

Before concluding this section, we comment on a sub-
tle difference in our prior specification from Maatouk and
Bay (2017), which nevertheless has important computa-
tional implications. Since the basis coefficients ξ j , j ≥ 1
target the derivatives f ′(u j ), Maatouk and Bay (2017) con-
sider a joint prior on (ξ0, ξ) obtained by computing the
induced prior on

(
f (0), f ′(u0), . . . , f ′(uN )

)
from a GP

prior on f , and then imposing the non-negativity restrictions.
Since the derivative of a sufficiently smooth GP is again
a GP, the joint distribution of

(
f (0), f ′(u0), . . . , f ′(uN )

)
can be analytically calculated. However, one downside is
that the derivative of a stationary GP is no longer station-
ary in general, and thus sampling from the joint Gaussian
prior of

(
f (0), f ′(u0), . . . , f ′(uN )

)
cannot take advantage

of the embedding techniques for a stationary GP. We instead
directly place a prior on ξ induced from a stationary GP
prior on f ′ and then imposing the necessary restrictions.
Since ξ0 is only a single real-valued parameter, we break
the dependence between ξ0 and ξ in the prior and assign
a flat prior on ξ0 independent of ξ . Although not reported
here, our simulations suggest against any loss of efficiency
in doing so, while there is a substantial computational gain
because Algorithm 1 becomes readily applicable to update ξ

with our prior. Alternatively, one may also consider a joint
prior on (ξ0, ξ) by working out the joint covariance structure
of

(
f (0), f ′(u0), . . . , f ′(uN )

)
, where f here stands for the

anti-derivative of f ′, which again follows aGaussian process.
An illustration of such a joint prior is provided in Sect. 4.

3.2 Convexity constraint

The development here proceeds in a similar fashion to the
monotone case and we only provide a brief sketch. We can
write (8) in vector notation as

Y = ξ01n + ξ∗X + �ξ + ε, ε ∼ Nn(0, σ
2In), ξ ∈ CN+1

ξ ,

(10)

where � is an n × (N + 1) basis matrix with i th row �T
i and

�i = (φ0(xi ), . . . , φN (xi ))T. The only additional parame-
ter here from the previous case is ξ∗ to which we assign a
flat prior on ξ∗ independent of everything else. For all other
parameters, the exact same prior specification is employed
as in the previous case. The details of the Gibbs sampler are
once again deferred to the Appendix.

3.3 Run-time comparison

We empirically illustrate the computational complexity of
our algorithm relative to a state-of-the-art method. We con-
sider two examples corresponding to a monotone and convex
truth respectively. For the monotone case, the true function
f (x) = log(20x + 1), also considered in Maatouk and Bay
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Fig. 2 Run-time per iteration (in seconds) against the sample size for
twoGibbs samplers which only differ in the update of ξ in themonotone
(left panel) and convex (right panel) estimation context.OurAlgorithm1

is represented by black triangles with solid black line while the tmg
sampler is in red dots with dashed red line. (Color figure online)

(2017),while in the convex case, the true f (x) = 5(x−0.5)2.
In both cases, we uniformly generated the covariates on [0, 1]
and added Gaussian noise. We fixed η = 50, the number of
knots to be half the sample-size, N = �n/2�, ν = 0.75 and �

was chosen so that the correlation at amaximumpossible sep-
aration between the covariates equals 0.05.With N = �n/2�,
the computational complexity of Algorithm 1 within a single
iteration of MCMC sampler is O(

n2
)
.

We consider an alternative Gibbs sampler which samples
ξ ∈ CN+1

ξ from its tMVN full-conditional using the Hamil-
tonianMonte Carlo (HMC) sampler of Pakman and Paninski
(2014), implemented in the R package “tmg”. Keeping the
hyperparameters fixed, all other parameters are updated in
the exact same way in either sampler. We did not consider
the rejection sampler used by Maatouk and Bay (2017) as it
becomes quite inefficientwith increasing dimension,with the
“tmg” sampler substantially more efficient than the rejection
sampler in high dimensions. The combination of Maatouk
and Bay (2017) with the “tmg” sampler does not exist in
the literature to the best of our knowledge, and thus we are
being entirely fair in constructing the best possible compet-
ing method.

Figure 2 plots the run-time per iteration (in seconds)
against the sample size n (varied between 50 and 1000) for
the two approaches, both implemented under identical condi-
tions on a quadcore Intel Core i7-2600 computer with 16 GB
RAM. Evidently, Algorithm 1 provides more pronounced
improvements for larger N .

4 Analysis of the proton puzzle problem
using an exact version of our algorithm

The “proton radius puzzle” (Pohl et al. 2010; Bernauer and
Pohl 2014; Carlson 2015) in Nuclear Physics refers to major

inconsistencies regarding the extraction of the charge radius
of a proton from different experimental procedures. The puz-
zle originated in 2010 when a newer suite of high-precision
muonic Lamb-shift experiments suggested a value of the
radius (0.8408 fm; 1 fm= 10−15 m)which is significantly (by
∼4%) different from the accepted 2010 Committee on Data
for Science and Technology (CODATA) value (0.8775 fm)
for the charge radius of the proton, arrived at using electron
scattering and atomic spectroscopy experiments. The newer
muonic measurements are known to be remarkably precise,
and hence the fact that it hinted at such a major discrepancy
caused shocking surprise.

Among a variety of approaches undertaken to explain the
puzzle, a prominent school-of-thought (Higinbotham et al.
2016; Yan et al. 2018) is that the puzzle lies in the extraction
of the radius from the old electron scattering experiments.
The proton charge radius is related to the slope of the form
factor curve at the origin, the electric form factor GE (Q2)

viewed as a function of the momentum transfer Q2. Due
to experimental limitations, the form factor curve cannot be
observed at Q2 values arbitrarily close to zero, and hence a
subtle extrapolation to Q2 = 0 is unavoidable. Therefore, the
extraction of the charge radius from scattering data becomes
a problem of estimating a curve (and its derivative) from
noisy data.

The form factor curve is constrained by physical theory
to be convex decreasing, with a known-value at the origin,
GE (Q2 = 0) = 1. Recently, Zhou et al. (2019) developed
a nonparametric Bayesian approach to model the form fac-
tor curve which obeys the above constraints and is otherwise
flexible, unlike various models like monopole, dipole, etc
previously used in this literature whichmake strong paramet-
ric assumptions. The estimated radius by Zhou et al. (2019)
strongly supported a value of the radius close to 0.84 consis-
tent with the muonic experiments; in fact, the old value of
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0.87 was not contained in their 95% credible interval. Their
analysis additionally demonstrated a substantial impact of
incorporating the physical constraints on the form factor—
without the constraints, a much wider interval is obtained
which fails to differentiate between 0.87 and 0.84 fm.

Zhou et al. (2019) considered a Gaussian model (2),
with the input variable x = Q2/Q2

max being the momen-
tum transfer Q2 scaled to lie in [0,1], where Q2

max denotes
the maximum available Q2 value. The mean function f ,
related to the form factor curve GE through the equation
GE (Q2) = f (Q2/Q2

max), is then modeled as in (8). In
this parameterization, the quantity of interest, i.e., the proton
radius rp : = √−6ξ∗/Qmax. Under the representation (8),
they proved that the multiple restrictions on the form factor
curve can be equivalently represented as linear equality and
inequality constraints on the basis coefficients as

{
ξ0 = 1, ξ∗ +

N∑
j=0

c jξ j+1 ≤ 0, ξ j+1 ≥ 0, j = 0, . . . , N

}
.

(11)

In the above display, c j = ψ j (1) for all j .
Zhou et al. (2019) fixed ξ0 = 1 and considered a tMVN

prior N (0, τ 2�) on (ξ∗, ξ) restricted to the region given by
the inequality constraints in (11). Here, � is the covariance
matrix of

(
f ′(0), f ′′(u0), . . . , f ′′(uN )

)
induced from a sta-

tionary GP on f with a Mátern kernel with the smoothness
parameter ν = 2.5 to ensure twice-differentiable sample
paths. As discussed in the third paragraph of Sect. 3.1, the
derivatives of a GP with a stationary Mátern kernel are no
longer stationary, and hence the matrix � does not inherit a
Toeplitz structure.We instead followour general prescription
in Sect. 3.1 to begin with a stationary GP (with a Mátern ker-
nel) on f ′′, with the smoothness parameter ν set to 0.5. The
induced joint distribution1 of

(
f ′(0), f ′′(u0), . . . , f ′′(uN )

)
isNN+2(0, τ 2�), where the lower (N+1)×(N+1) block of
� has a Toeplitz structure. We then finally set the joint prior
on (ξ∗, ξ) to be N (0, τ 2�) restricted to the region given by
the inequality constraints in (11). Note that unlike Sect. 3.1,
we cannot specify independent priors on ξ∗ and ξ here since
the dependence between them is already forced through the
form of the constraints. We complete the prior specification
with our default prior choices on σ 2 and τ 2 as before.

Under our prior specification, the conditional posterior of
ξ is proportional to

exp

{
− 1

2σ 2 ‖(Y − 1n)

− ξ∗X − �ξ‖2
}
p(ξ∗ | ξ)NN+1(ξ ; 0, τ 2�22)1CN+1

ξ
(ξ),

1 Here, f ′ should be interpreted as the anti-derivative of f ′′, i.e.,
f ′(x) = ∫ x

0 f ′′(t)dt .

where �22 is the lower (N + 1) × (N + 1) block of �

and p(ξ∗ | ξ) is the conditional density of ξ∗ | ξ from a
joint N (0, τ 2�) density on (ξ∗, ξ). Recall that �22 has a
Toeplitz structure due to our prior choice, so that sampling
from N (0, τ 2�22) is efficient. We can thus make the sig-
moid approximation to the indicators as before and proceed
with the elliptical slice sampling to sample ξ . The quan-
tity p(ξ∗ | ξ) is absorbed into the working likelihood; it’s
evaluation is cheap since it requires evaluation of a uni-
variate normal density with mean �12�

−1
22 ξ and variance

τ 2(�11 − �12�
−1
22 �21). The only expensive matrix opera-

tion of �12�
−1
22 can be performed once outside the MCMC

loop and reused.
Due to the very fine nature of the inference prob-

lem involved, we correct for our approximation using
a Metropolis–Hastings correction based on the following
observation.

Proposition 4.1 Let γ and γε be probability densities on Rd

with support(γ ) ⊆ support(γε). Let qε(·, ·) be a Markov
transition kernel which is reversible with respect to γε (this
in particular implies that γε is the stationary or invariant
distribution of qε). Define a new Markov transition kernel
q which given a current state x, generates a proposal x ′ ∼
qε(x, ·) and accepts it with probability

α(x, x ′) = min

{
1,

w(x ′)
w(x)

}
, w(t) = γ (t)

γε(t)
for t ∈ support(γε).

If the move is not accepted, the chain stays at x. Then, the
stationary distribution of q(·, ·) is γ .

Proof The transition kernel q can be expressed as

q(x, x ′) = α(x, x ′) qε(x, x
′) + r(x) δx (x

′), r(x)

=
∫ (

1 − α(x, x ′)
)
qε(x, x

′)dx ′.

We exhibit that q is reversible with respect to γ , i.e., the
detailed balance condition γ (x) q(x, x ′) = γ (x ′) q(x ′, x)
holds for all x, x ′ ∈ support(γ ). This follows by noting that
γ (x) r(x)δx (x ′) = γ (x ′)r(x ′)δx ′(x) is trivially true, and

γ (x) α(x, x ′) qε(x, x
′) = (

w(x) α(x, x ′)
) (

γε(x) qε(x, x
′)
) =

min{w(x ′), w(x)} (
γε(x

′) qε(x
′, x)

) = γ (x ′) α(x ′, x) qε(x
′, x).

Here we used the definition of α(·, ·) andw(·) along with the
reversibility of qε with respect to γε. The stationarity then
follows as an immediate consequence of reversibility. ��

Proposition 4.1 provides a simple algorithm to turn an
MCMC scheme to sample from γε into a sampler for γ .
Although the algorithm is valid for any choice of γε and γ sat-
isfying the assumptions, we are interested in situations where
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Table 1 Analysis of the proton data

N r̂p (in fm) CIL (in fm) CIU (in fm) Effective
sample size

MCMC stan-
dard error

Average
acceptance
rate

Run-time/iter
(in s) our
algorithm

Ratio of run-time/iter for
“tmg” versus our algo.

178 0.846 0.838 0.850 479.17 0.0001 0.997 0.02 2.50

356 0.846 0.839 0.849 479.30 0.0001 0.992 0.04 3.75

711 0.845 0.838 0.849 480.01 0.0001 0.997 0.08 13.13

Results corresponding to different choices of N using the exact version of our algorithm. r̂ p is the estimate of posterior mean, CIL and CIU give
the lower and upper limits of 95% CI, “Run-time/iter” represents run-time per MCMC iteration and are reported in seconds

γε approximates γ as ε → 0. Some immediate observa-
tions from Proposition 4.1 are in order. First, if the algorithm
is initialized inside support(γ ), then it always stays inside
support(γ ) since w(t) = 0 for t ∈ support(γε)\support(γ ).
Second, the implementation of the algorithm only requires
knowing the densities γ and γε upto normalizing constants.
Finally, the smaller the value of ε (i.e., the better the approx-
imation), the higher the acceptance rate will be on average.

For our purpose, we set γ (ξ) ∝ L(ξ)1Cξ
(ξ) e−ξT�−1

22 ξ/2

and γε(ξ) ∝ L(ξ) Jη(ξ) e−ξT�−1
22 ξ/2, where Jη(ξ) is the sig-

moid approximation defined in (5) and ε = η−1. Reversibil-
ity of the elliptical slice sampler was proved in Murray et al.
(2010), rendering Proposition 4.1 applicable. At each step of
the MCMC, we proceed exactly as before to generate a draw
ξ ′ using the ESS algorithm on γε. While in our approximate
version of the algorithm we always moved to ξ ′ from the
current state ξ , we make the move with probability α(ξ, ξ ′)
in the exact version. The acceptance ratio α(ξ, ξ ′) takes the
simple form

α(ξ, ξ ′) = min

{
1,

1Cξ
(ξ ′)/Jη(ξ

′)
1Cξ

(ξ)/Jη(ξ)

}
.

The sampling steps for the remaining univariate parameters
are straightforward and very similar to those provided in the
Appendix for the convex function case; hence we omit these
steps.

We now report our analysis for the proton puzzle problem
using the above exact version of our algorithm and the same
Mainz dataset (Bernauer and Collaboration 2011; Bernauer
et al. 2011, 2014) that Zhou et al. (2019) analyzed. We used
3 values for the number of knots N ∈ {�n/8�, �n/4�, n/2},
where n = 1422 is the number of observations. As noted
earlier, we fixed ν = 0.5 tomaintain compatibility with Zhou
et al. (2019) who used ν = 2.5; recall that their prior operates
on the original functionwhile ours is at the level of the second
derivative, thus the difference of 2 between our choice of ν

from theirs.Wefixed � = 0.33 so that the correlation between
the two farthest knot points equals 0.05.We also tried � = 0.5
as suggested by Zhou et al. (2019) based on predictive cross-

validation under their method. We omit the details for this
case as the results were very close to our choice of � = 0.33.

We ran our sampler for 110,000 MCMC iterations, the
first 10,000 of which were discarded as burn-in, and every
10th subsequent observation was stored. The second column
of Table 1 shows the point estimates for the proton radius
rp for the different choices of N , while the third and fourth
column respectively correspond to the upper and lower 95%
symmetric credible intervals. Overall, our estimates were in
close agreement with those obtained by Zhou et al. (2019) in
their Table 1, and suggest a value of the radius around 0.84
fm. Moreover, the old value of 0.87 fm wasn’t contained in
a 95% credible interval under any scenario. The estimates
also showed little sensitivity to the different choices for the
number of knots employed.

We report the effective sample sizes and the MCMC stan-
dard error for rp in the next two columns, which overall
seem reasonable. Thesewere calculated using the “mcmcse”
package using the overlapping batch mean option and the
theoretically optimal cubic root batch size. The next column
shows the average acceptance rate (across the MCMC path)
of the Metropolis correction in Proposition 4.1 to be very
close to one across all scenarios, reaffirming that η = 50
provides a very accurate approximation in (6). Also, the
acceptance probability for η = 50 is robust across various
choices of the number of knots used.

The penultimate column reports the per-iteration run-time
(in seconds) of our algorithm and the last column reports
the ratio between the per-iteration run-times of the “tmg”
sampler and ours. Zhou et al. (2019) used the R package
“TruncatedNormal” to draw samples from the tMVN
conditional posterior of ξ , which implements the exact rejec-
tion sampler due to Botev (2017). We replaced this step in
their algorithm with the faster Hamiltonian Monte Carlo
(HMC) sampler of Pakman and Paninski (2014), imple-
mented in the R package “tmg”. This step was incorporated
to constructing the best possible competing method. We see
a substantial time gain over “tmg”, in particular, more than
10-times per-iteration speed-up for N = 711. While using
the “tmg” sampler produces slightly better effective sam-
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Table 2 Results corresponding to n = 500 and N = �n/8� = 63 for different choices of � using the exact version of our algorithm (abbreviated
as “Cons”) and the unconstrained counterpart of our method (abbreviated as “unCons”)

N = 63 Coverage probability Estimated radius Ê
(|̂rp − rp|

)
Length of 95% CI Length 95% HPDI

95% CI 95% HPDI Mean SD Mean SD Mean SD

� = 0.334 Cons 0.95 0.94 0.847 0.009 0.009 0.043 0.007 0.042 0.007

unCons 0.98 0.99 0.831 0.010 0.011 0.067 0.006 0.065 0.005

� = 0.434 Cons 0.93 0.94 0.846 0.010 0.010 0.042 0.008 0.042 0.008

unCons 0.98 0.99 0.832 0.010 0.010 0.063 0.006 0.062 0.005

� = 0.831 Cons 0.94 0.94 0.844 0.010 0.008 0.043 0.008 0.042 0.007

unCons 0.97 0.98 0.833 0.009 0.009 0.055 0.006 0.054 0.006

� = 1.443 Cons 0.95 0.93 0.843 0.011 0.009 0.043 0.008 0.043 0.008

unCons 0.95 0.94 0.833 0.008 0.009 0.048 0.006 0.047 0.006

“SD” represents the standard deviation across 100 replicates. The column of Ê
(|̂rp − rp|

)
gives an estimate of E

(|̂rp − rp|
)
. “ 95% CI” and “ 95%

HPDI” represent the symmetric 95% credible interval and 95% highest posterior density interval respectively

ple sizes, the overall complexity remains substantially in our
favor for large values of N .

At present, there are efforts ongoing to collectmore data to
entirely resolve the proton puzzle. We envision our computa-
tional advancements over Zhou et al. (2019) to help analyze
the ensuing larger datasets. The computational efficiency also
permits us to perform large-scale simulations on a host of test
functions developed by physicists where the ground truth is
known. The results of such an analysis will be reported else-
where.

5 Pseudo-data analysis

In this section, we perform a replicated simulation study
mimicking the proton data analysis to compare the frequen-
tist operating characteristics of our constrained approach
with the corresponding unconstrained one. In addition to
the quality of point estimation, we are also interested in
the frequentist coverage and lengths of the symmetric and
the highest posterior density (HPD) credible intervals for the
radius for either approach.

We used a monopole function

GE (Q2) =
(
1 + r2p Q

2

6

)−1

as the true electric form factor. The monopole function
(Borkowski et al. 1975; Yan et al. 2018) is a popular para-
metric model for the electric form factor and satisfies all the
aforementioned constraints. The parameter rp plays the role
of the radius, whose true valuewe set to 0.84; a natural choice
given the analysis and background in the previous section.
We generated the momentum transfer values Q2 uniformly
between Q2

min = 0.099 and Q2
max = 1.36 obtained from

the Mainz dataset, and set x = Q2/Q2
max ∈ [0, 1] to be

the dimensionless covariate in (2). Setting a lower bound on
the Q2 ensures that we do not get observations too close to
the origin, maintaining a similar difficulty in recovering the
radius as in theMainz dataset. To obtain noisy observations y
on GE , we added mean-zero Gaussian noise with σ = 0.01.
The sample size n was set to 500 and we considered 100
simulation replicates.

We fit the constrained model with the set of constraints
(11) and prior specification exactly as in the previous section,
using the exact version of our algorithm. As a competitor,
we also considered an unconstrained version of our method
where (ξ∗, ξ) are unrestricted and assigned a MVN prior
N (0, τ 2 �) instead of the tMVN prior. We fixed ξ0 = 1 for
both the methods. The unconstrained method can be con-
sidered (a finite-rank approximation to) a GP prior on f ′′.
We considered two different choices of N ∈ {�n/8�, �n/4�}
and four different choices of the length-scale parameter
� ∈ {0.334, 0.434, 0.831, 1.443}. These values of � cor-
respond to four correlation values {0.05, 0.10, 0.30, 0.50}
between the two farthest knots, respectively.

We report a summary of our findings across the 100 repli-
cates regarding the point and interval estimates of rp inTables
2 and 3. These were obtained based on 8000 MCMC itera-
tions with a burn-in of 2000 and every third sample post
burn-in saved as posterior samples. The HPD intervals were
computed from the posterior samples for rp using R package
“HDInterval”. Across either method and all simulation
settings, little to no difference was seen between the sym-
metric 95% credible interval and the 95% HPD interval,
suggesting a symmetric shape of the posterior of rp.

The posterior mean r̂ p for rp from the constrained method
is uniformly seen to be at least as good as that from the
unconstrained method in terms of the mean absolute error
risk E|̂rp − rp| reported in the tables. This is also clearly
confirmed by Fig. 3, where we present boxplots of the poste-
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Table 3 Results corresponding to n = 500 and N = �n/4� = 125 for different choices of � using the exact version of our algorithm (abbreviated
as “Cons”) and the unconstrained counterpart of our method (abbreviated as “unCons”)

N = 125 Coverage Probability Estimated radius Ê
(|̂rp − rp|

)
Length of 95% CI Length 95% HPDI

95% CI 95% HPDI Mean SD Mean SD Mean SD

� = 0.334 Cons 0.97 0.97 0.845 0.008 0.007 0.039 0.008 0.038 0.008

unCons 0.99 1.00 0.832 0.010 0.010 0.074 0.006 0.072 0.006

� = 0.434 Cons 0.97 0.97 0.843 0.008 0.007 0.037 0.007 0.037 0.006

unCons 0.99 1.00 0.832 0.010 0.010 0.069 0.007 0.068 0.006

� = 0.831 Cons 0.99 0.98 0.842 0.008 0.006 0.039 0.007 0.038 0.007

unCons 0.98 0.99 0.833 0.009 0.009 0.058 0.007 0.057 0.006

� = 1.443 Cons 0.97 0.97 0.838 0.008 0.006 0.039 0.006 0.038 0.006

unCons 0.98 0.96 0.834 0.009 0.008 0.051 0.006 0.050 0.005

“SD” represents the standard deviation across 100 replicates. The column of Ê
(|̂rp − rp|

)
gives an estimate of E

(|̂rp − rp|
)
. “ 95% CI” and “ 95%

HPDI” represent the symmetric 95% credible interval and 95% highest posterior density interval respectively

Fig. 3 Boxplots of r̂ p obtained from both constrained and unconstrained methods corresponding to different combinations of N and �. The true rp
is represented by dashed red line. (Color figure online)

riormeans across the 100 replicates for eithermethods across
the 8 different hyperparameter choices. It is also evident from
the tables that the constrained method provides more precise
uncertainty quantification, measured in terms of the lengths
of the credible interval, while maintaining close to nomi-
nal coverage in all cases. The unconstrained method tends
to over-cover, which may contribute to the longer intervals,
which are in some cases more than double the length of that
from the constrained method. This simulation exercise thus
reinforces the importance of exploiting structural constraints
for inferential purpose.

5.1 Cost per-iteration

Our attempts to compare the run-times of our algorithm with
the “tmg” sampler as in Sect. 3.3 ran into difficulties for
this simulation setup as the “tmg” sampler often failed to
produce answers. One possible reason behind this may be
the more complicated form of the constrained region (11)
for (ξ∗, ξ), compared to the one in Sect. 3.3. Although not
shown here, but based on the cases where “tmg” was able to
run and produce answers, the per-iteration costs of the exact
version of our algorithm was significantly lower compared
to the HMC sampler.
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6 Discussion

In this article, we have developed a computationally efficient
algorithm for constrainedGaussian regression problems.Our
approach builds on the promisingmodeling framework intro-
duced by Maatouk and Bay (2017), which was later adapted
by Zhou et al. (2019) to include multiple constraints. An
important distinguishing feature of our approach is to begin
with a Gaussian process on the first or second derivative of
the function depending on the nature of the constraints,which
results in a more amenable structure of the prior covariance
matrix, facilitating prior and posterior simulations. Both the
approximate and exact versions of our algorithms are shown
to produce orders-of-magnitude speed-ups over competing
Gibbs samplers using state-of-the-art HMC samplers (Pak-
man and Paninski 2014) for sampling truncated multivariate
normals.

For functions of one variable, onemay justifiably question
the impact of the constraints in recovering the function given
a sizable amount of data. Indeed, if a global metric such
as prediction loss is considered, the improvement over an
unconstrained nonparametric approach (e.g., GP regression)
can be minimal for moderate to large sample sizes. However,
our simulation study in Sect. 5 reveals that the constraints
play a major role in delivering more precise inference for
functionals related to higher derivatives of the function. This
doesn’t seem to be broadly recognized, and it would be quite
interesting to explore this from a theoretical standpoint.

For the approximate version of the algorithm, the tun-
ing parameter η should be chosen carefully. Theoretically,
higher the value of η, better is the approximation. However,
very large values of η may lead to inaccurate results due to
numerical issues. Based on the numerous simulation studies
we have conducted, but not reported here, η = 50 gives very
accurate results. We used this value for all our simulations
and real data studies and recommend it to be a default choice
for η. We also note that η < 10 is not accurate enough, and
we suggest exercising caution against using values orders of
magnitude larger than 50, whichmay cause numerical issues.

Future work will focus on using various model selection
criterion (such as BIC or its more recent variants such as
WBIC or SBIC) to select the number of knots N and the
length-scale parameter �, which jointly control the smooth-
ness of the sample paths. Based on numerous additional
experiments not reported here, we find that the choice of
N generally has a bigger impact than that of �. One should
choose N to be large enough to provide an accurate finite
dimensional approximation to the parent GP, and at the same
time avoid overfitting by choosing too large an N . For exam-
ple, in the synthetic data analysis, choosing N close to the
sample size n showed evidence of overfitting. However, this
wasn’t the case for the real data analysis. A likely explanation
is that the monopole function employed in the simulations

can be accurately characterized by a relatively small number
of basis functions due to its simple parametric form. In gen-
eral, there is typically a large range of N values which meet
the above criterion. Once N is suitably chosen, we find that
a wide range of values of � give desirable answers.

Another interesting direction for future exploration is the
choice of the basis. The specific basis employed here was
motivated by the theoretical results in Maatouk and Bay
(2017) and Zhou et al. (2019) showing an equivalent rep-
resentation of various function constraints in terms of linear
constraints on the coefficients. While our algorithm is triv-
ially adapted to other basis, such an equivalent representation
needs to be verified in a case-by-case manner at this point,
and a more general theory guaranteeing so (or lack thereof)
would be useful.
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A Appendices

A.1 Full conditionals

Consider model (9) and the prior specified in Sect. 3.1. The
joint distribution is given by:

π(Y , ξ0, ξ, σ 2, τ 2) ∝ (
σ 2)− n

2−1

exp

{
− 1

2σ 2 ‖Y − ξ01n − �ξ‖2
}

(
τ 2

)− N+1
2 −1 exp

{
− 1

2τ 2
ξ TK−1ξ

}
1Cξ

(ξ)

Then,
ξ | Y , ξ0, σ

2, τ 2 is truncated multivariate Gaussian trun-
cated on 1Cξ

(ξ).
ξ0 | Y , ξ, σ 2, τ 2 ∼ N (Ȳ ∗, σ 2/n), where, Ȳ ∗ is average

of components of Y ∗ = Y − �ξ .
σ 2 | Y , ξ0, ξ, τ 2 ∼ IG(

n/2, ‖Y − ξ01n − �ξ‖2/2)
τ 2 | Y , ξ0, ξ, σ 2 ∼ IG(

(N + 1)/2, ξ TK−1ξ/2
)

Again, consider model (10) and the prior specified in
Sect. 3.2. The joint distribution is given by:

π(Y , ξ0, ξ∗, ξ, σ 2, τ 2) ∝ (
σ 2)− n

2−1 exp

{

− 1

2σ 2 ‖Y − ξ01n − ξ∗X − �ξ‖2
}(

τ 2
)− N+1

2 −1

exp

{
− 1

2τ 2
ξ TK−1ξ

}
1Cξ

(ξ)
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Fig. 4 Boxplots of effective sample sizes of the estimated function
value at 75 different points for the monotone function estimation exam-
ple. The effective sample sizes are calculated based on 10,000 MCMC
runs and averaged over 5 random starting points

Then,
ξ | Y , ξ0, ξ∗, σ 2, τ 2 is truncated multivariate Gaussian

truncated on 1Cξ
(ξ).

ξ0 | Y , ξ∗, ξ, σ 2, τ 2 ∼ N (Ȳ ∗, σ 2/n), Ȳ ∗ is average of
components of Y ∗ = Y − ξ∗X − �ξ .

ξ∗ | Y , ξ0, ξ, σ 2, τ 2 ∼ N (
∑n

i=1 xi y
∗∗
i /

∑n
i=1 x

2
i ,

σ 2/
∑n

i=1 x
2
i ), where Y

∗∗ = Y − ξ01n − �ξ .
σ 2 | Y , ξ0, ξ∗, ξ, τ 2 ∼ IG(

n/2, ‖Y − ξ01n − ξ0X −
�ξ‖2/2)

τ 2 | Y , ξ0, ξ∗, ξ, σ 2 ∼ IG(
(N + 1)/2, ξ TK−1ξ/2

)
Algorithm 1 was used to draw samples from the full

conditional distribution of ξ while sampling from the full
conditionals of ξ0, ξ∗, σ 2 and τ 2 are routine.

A.2 Effective sample sizes for themonotone
example in Sect. 3.3

We provide some evidence towards the mixing behavior of
our Gibbs sampler by computing the effective sample size
of the estimated function value at 75 different test points.
The effective sample size is a measure of the amount of the
autocorrelation in a Markov chain, and essentially amounts
to the number of independent samples in the MCMC path.
From an algorithmic robustness perspective, it is desirable
that the effective sample sizes remain stable across increas-
ing sample size and/or dimension, and this is the aspect we
wish to investigate here. We only report results for the mono-
tonicity constraint; similar behavior is seen for the convexity
constraint as well.

We consider 20 different values for the sample size n with
equal spacing between 50 and 1000. Note that the dimen-
sion of ξ itself grows between 25 and 500 as a result. For
each value of n, we run the Gibbs sampler for 12,000 itera-
tionswith 5 randomly chosen initializations. For each starting
point, we record the effective sample size at each of the 75
test points after discarding the first 2,000 iterations as burn-
in, and average them over the different initializations. Figure

4 shows boxplots of these averaged effective sample sizes
across n which are seen to be quite stable across growing n.

A.3 R code

We used R for the implementation of Algorithm 1 and
Durbin’s recursion to find the inverse of the Cholesky factor,
with the computation of the inverse Cholesky factor opti-
mized with Rcpp. We provide our code for implementing
the monotone and convex function estimation procedures in
Sects. 3.1 and 3.2 in the Github page mentioned in Sect. 1.
There are six different functions to perform theMCMC sam-
pling for monotone increasing, monotone decreasing, and
convex increasing functions with and without hyperparam-
eter updates. Each of these main functions take x and y as
inputs along with other available options, and return poste-
rior samples on ξ0, ξ∗, ξ , σ , τ and f along with posterior
mean and symmetric 95% credible interval of f on a user-
specified grid. A detailed description on the available input
and output options for each function can be found within the
function files.
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