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We construct examples of complex-valued singular solutions to linear, uniformly

parabolic equations with complex coefficients in dimension n ≥ 2, which are exactly

as irregular as parabolic energy estimates allow.

1 Introduction

In this paper, we consider linear uniformly parabolic equations of the form

ut − div(A(x, t)∇u) = 0. (1)

Here u : R
n+1 → C, and the coefficients are bounded measurable, complex-valued

functions satisfying

Re(Akl(x, t)pkpl) ≥ λ|p|2, |A(x, t) p|2 ≤ �2|p|2 (2)

for some constants λ, � > 0, and for all (x, t) ∈ R
n+1 and p ∈ C

n. By a solution, we mean

that u ∈ L2
loc, t(H

1
loc, x) solves (1) in the sense of distributions. We note that after writing
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2 C. Mooney

u and A in terms of their real and imaginary parts as

u = v + iw, A(x, t) = B(x, t) + iC(x, t),

Equation (1) can be viewed as the system of (real) equations

∂tv − div(B(x, t)∇v) − div(−C(x, t)∇w) = 0

∂tw − div(C(x, t)∇v) − div(B(x, t)∇w) = 0.
(3)

To motivate our results, we first discuss the elliptic case

div(A(x)∇u) = 0, (4)

where u : Rn → C. Solutions to (4) are Cα when n = 2 by work of Morrey (see [19], Ch.

5.4). (Morrey in fact considers more general elliptic systems, where the solution can take

values in R
m for any m ≥ 1.) Real-valued solutions to (4) are Cα by fundamental work

of De Giorgi [1] and Nash [20]. There are classical counterexamples to the continuity

of solutions to elliptic systems in dimension n ≥ 3 (see [2], [8], [12]). Discontinuous

solutions to (4) were first constructed in dimension n ≥ 5 [13] and later in dimension n ≥
3 [3]. In general, the best regularity we have for (4) is u ∈ W1, 2+δ

loc for some δ(n, λ, �) > 0,

which is only slightly better than the energy class of the solutions (see [6], Ch. 5 and the

references therein, in particular the higher-integrability results of Gehring [5], Meyers

[14], and Meyers-Elcrat [15]). In fact, for each γ > 2 there are solutions to (4) that are not

in W1, γ
loc (see [3]).

Interestingly, the parabolic problem (1) has resisted a similar understanding.

Real-valued solutions to (1) are Cα by Nash’s theorem [20]. In general, we have the higher-

integrability results ∇u ∈ L2+δ
loc and u ∈ L∞

loc, t(L
2+δ
loc, x) for some δ(n, λ, �) > 0 (see [21], [25]).

There are also examples of discontinuity from smooth data for (1) when n ≥ 3 (see [4]

and [24], [23] for more general parabolic systems). However, all of these examples are

in L∞
loc, t(W

1, 2+δ
loc, x ) with δ > 0 and are thus significantly more regular than the higher-

integrability results predict. When n = 2 the known results do not imply continuity of

solutions (unlike the elliptic case), which remained open for some time (see e.g., [9], [22]–

[24]). We recently settled this problem with a counterexample [16]. Still, the example in

[16] is barely irregular enough to develop a discontinuity (it is in L∞
loc, t(L

p
loc, x) for p large),

so the regularity gap between theory and examples remained large.
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Singularities of Complex-Valued Solutions 3

The purpose of this paper is to complete the picture for (1) by constructing

solutions in dimension n ≥ 2 that are exactly as irregular as the parabolic higher-

integrability results allow (see Theorem 2.2). We also prove some Liouville theorems

that explain why previous approaches only produced “elliptic” discontinuities (see

Theorems 2.4 and 2.5). Our results connect the regularity problem for (1) in R
n+1, in

parabolic geometry, to the regularity problem for the elliptic Equation (4) in R
n+2. We

discuss this connection further in the next section.

The paper is organized as follows. In Section 2, we give precise statements of

our main results, Theorems 2.2, 2.4, and 2.5. In Section 3, we prove Theorem 2.2. In

Section 4, we prove the Liouville Theorems 2.4 and 2.5. Finally, in Section 5, we discuss

a few open questions motivated by this work.

2 Results

In this section, we state our results. We will deal with “spiraling” self-similar solutions

to (1) of the form

u(x, t) = (−t)−
μ
2 e− i

2 log(−t) w
(

x

(−t)1/2

)
. (5)

Remark 2.1. Motivation for this ansatz (in the elliptic case) can be found in [13], Ch.

10.6.1, where the approach is to consider equations with constant complex coefficients

in a thin cone and then flatten the boundary.

These are invariant under the rescalings u → λμei log λu(λx, λ2t). We obtain a

solution to (1) on R
n × (−∞, 0) with coefficients A(x/(−t)1/2) if w solves the elliptic

equation

div(A(x)∇w) = 1

2
(iw + μw + x · ∇w) (6)

on R
n, and A satisfies (2) for some λ, � > 0. Furthermore, the solution defined by (5)

is smooth up to t = 0 away from x = 0 and develops a “spiraling −μ-homogeneous”

discontinuity at t = 0 provided μ ≥ 0 and

w = |x|−μg(x/|x|)e−i log |x|(1 + E(|x|−2)) on R
n\B1. (7)

Here, g ∈ C∞(Sn−1) and E is a smooth function with E(0) = 0. We can extend the solution

to positive times, for example, by solving the heat equation with initial data u(x, 0) :=
|x|−μg(x/|x|)e−i log |x|, provided μ < n.

Our 1st result is:
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4 C. Mooney

Theorem 2.2. For any n ≥ 2 and 0 ≤ 2μ < n, there exists a nontrivial solution w to a

uniformly elliptic equation of the form (6) on R
n, such that w satisfies (7).

By taking μ arbitrarily close to n
2 , we obtain as a consequence:

Corollary 2.3. For any n ≥ 2 and δ > 0, there exists a solution u to a uniformly

parabolic equation of the form (1) on R
n+1 such that u satisfies

lim
t→0− ‖u‖L2+δ

x (B1×{−t}) = ∞, lim
t→0− ‖∇u‖L2+δ(B1×(−1, −t)) = ∞.

(The ellipticity ratio λ/� degenerates as δ → 0, in accordance with the higher-

integrability results.) We conclude, as in the elliptic case, that solutions to parabolic

systems are only slightly better than their energy class.

Our remaining results are Liouville theorems for (6). It is natural to ask whether

one can construct solutions that decay any faster than we managed. Our 1st Liouville

theorem shows this is not possible:

Theorem 2.4. Assume that w ∈ H1
loc(R

n) solves (6), with |w| = O(|x|−μ) and 2μ ≥ n.

Then w ≡ 0.

There are nontrivial −μ-homogeneous solutions to elliptic systems of the form

div(A(x)∇u) = 0 in R
n provided 2μ < n − 2, and there is a Liouville theorem for −μ-

homogeneous solutions on R
n\{0} in the equality case (see [17]). Thus, Theorems 2.2

and 2.4 mirror the elliptic results in dimension n + 2. This agrees with the observation

that the parabolic energy L∞
t (L2

x) + L2
t (H1

x ) in R
n+1 and the elliptic energy H1 in R

n+2 are

invariant under the matching rescalings

u → λn/2u(λx, λ2t), resp. u → λn/2u(λx).

Theorem 2.4 is a consequence of parabolic energy estimates. We can extend it to

the “elliptic regime” 2μ ≥ n − 2 when w has the monotonicity property

(2μ + x · ∇)|w|2 ≥ 0. (8)

Theorem 2.5. Assume that w ∈ H1
loc(R

n) solves (6), with |w| = O(|x|−μ) and 2μ ≥ n − 2.

If in addition w satisfies (8), then w ≡ 0.
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Singularities of Complex-Valued Solutions 5

It is straightforward to check that previous examples ([4] and [24], [23] for

more general systems) satisfy condition (8), which explains why they have “elliptic”

discontinuities (i.e., n ≥ 3 and 2μ < n − 2).

3 Proof of Theorem 2.2

In this section, we prove Theorem 2.2. We exploit the useful observation from [3] that

if Im(A) is symmetric, then the ellipticity condition (2) is satisfied provided Re(A) is

uniformly positive definite, and |A| is bounded.

Remark 3.1. Heuristically, this structure allows strong coupling between equations

when we view (1) as the system (3). The example in [16] has skew-symmetric imaginary

coefficients (which corresponds to the symmetry of the system coefficients). In that

case, it is important to estimate the size of Im(A) because it affects the ellipticity

condition.

3.1 Reduction to system of ODEs

We first reduce (6) to an ODE system. Let r = |x| and let ν = r−1x be the radial unit

vector. We search for solutions of the form

w = ϕ(r)g(ν)e−i log r, (9)

where g is a smooth function on S
n−1. For our calculations, it will be convenient to use

the gradient and Laplace operators ∇
Sn−1 and 


Sn−1 on the sphere. When we view g as

a zero-homogeneous function on R
n\{0} (i.e., g(x) = g(ν) for x ∈ R

n\{0}), the spherical

operators and the corresponding operators ∇ and 
 on R
n\{0} are related by

∇g(x) = r−1∇
Sn−1g(ν), 
g(x) = div(∇g)(x) = r−2


Sn−1g(ν). (10)

We note that the vector ∇
Sn−1g(ν) is orthogonal to ν.

Using these relations, we first compute

∇w = ge−i log r(ϕ′(r) − ir−1ϕ)ν + ϕ(r)e−i log rr−1∇
Sn−1g. (11)

Now let

B = f (r)ν ⊗ ν + h(r)(I − ν ⊗ ν).
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6 C. Mooney

Since B ν = f (r) ν and B τ = h(r) τ for τ orthogonal to ν, it follows that:

B∇w = ge−i log rrn−1(f ϕ′ − ir−1f ϕ)
ν

rn−1 + hϕe−i log rr−1∇
Sn−1g.

We will choose ϕ such that ϕ′ and r−1ϕ are bounded. Taking the divergence of the above

identity and using that ν
rn−1 is divergence-free away from the origin, that ∇

Sn−1g is

orthogonal to ν, and the relations (10), we arrive at

div(B∇w)

= g

rn−1

[
e−i log rrn−1(f ϕ′ − ir−1f ϕ)

]′ +
(
hϕe−i log r

)
div(r−1∇

Sn−1g)

= ge−i log r
[
(rn−1f ϕ′)′

rn−1 −
(

f − 

Sn−1g

g
h
)

ϕ

r2 − i
(

(rn−2f ϕ)′

rn−1 + f ϕ′

r

)]
.

Let g be an eigenfunction of 

Sn−1 with eigenvalue −λg < 0. Then the previous

expression becomes

div(B∇w) = ge−i log r
[
(rn−1f ϕ′)′

rn−1 − (f + λgh)
ϕ

r2 − i
(rn−2f ϕ2)′

rn−1ϕ

]
.

Thus, if we take coefficients

A = αI + i(β(r)ν ⊗ ν + γ (r)(I − ν ⊗ ν)) (12)

with α > 0 constant, we obtain

div(A∇w) = ge−i log r
[
α

(
(rn−1ϕ′)′

rn−1 − (1 + λg)
ϕ

r2

)
+ (rn−2βϕ2)′

rn−1ϕ

+ i
(

(rn−1βϕ′)′

rn−1 − (β + λg γ )
ϕ

r2 − α
(rn−2ϕ2)′

rn−1ϕ

)]
.

Since
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Singularities of Complex-Valued Solutions 7

iw + μw + x · ∇w = ge−i log r(μϕ + rϕ′),

the Equation (6) becomes the ODE system

⎧⎨
⎩

(rn−2βϕ2)′
rn−1ϕ

= 1
2 (μϕ + rϕ′) + (1 + λg)α

ϕ

r2 − α
(rn−1ϕ′)′

rn−1 ,

λg γ
ϕ

r2 = −α
(rn−2ϕ2)′

rn−1ϕ
+ (rn−1βϕ′)′

rn−1 − β
ϕ

r2 .
(13)

Below we will fix an eigenfunction g of 

Sn−1 and fix ϕ and α depending on μ,

such that ϕ ∼ r−μ for r large and α > 0. Then the 1st equation determines β and the 2nd

one γ . By the remark at the beginning of the section, the point is to make choices such

that β and γ are bounded.

3.2 Solving the ODE system

To begin, we fix g to be any linear function restricted to the sphere so that

λg = n − 1.

Integrating the 1st equation in (13), we obtain

β = 1

4

(
r2 + 2μ − n

rn−2ϕ2

∫ r

0
ϕ2(s)sn−1 ds

)

+ nα

rn−2ϕ2

∫ r

0
ϕ2(s)sn−3 ds

+ α

rn−2ϕ2

∫ r

0
ϕ′2(s)sn−1 ds − α

rϕ′
ϕ

.

(14)

Remark 3.2. It follows easily that if 2μ ≥ n and ϕ = O(r−μ), then β is unbounded

(compare to Theorem 2.4).

We define

ϕ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r, 0 ≤ r < 3/4

r−μ + Cμr−μ−2, r > 1

positive and smooth, 1/2 < r < 3/2,

(15)

where Cμ ≥ 0 will be chosen later.

Remark 3.3. By Theorem 2.5, it will be necessary to take Cμ > 0 when 2μ ≥ n − 2 (and

in particular, to generate discontinuities in the case n = 2).
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8 C. Mooney

For r < 3/4, it is easy to check that β and γ are of the form c1(n, α) + c2(n, μ)r2

(with ci linear in α and μ) so we only need to analyze the solutions for r large. We divide

into three cases.

Case 1: 2μ < n − 2. We take Cμ = 0 and α = 1. It is easy to check that β and γ

have the form c1 + c2r2−n+2μ for r > 1, which is bounded.

Case 2: n − 2 < 2μ < n. Now the quantities

D :=
∫ ∞

0
(ϕ2 − s−2μ)sn−1 ds, E :=

∫ ∞

0
ϕ2sn−3 ds, F :=

∫ ∞

0
ϕ′2sn−1 ds

are bounded, for any fixed Cμ ≥ 0. The solution (14) becomes

β =
(

−n − 2μ

4
D + α(nE + F)

)
r2μ−n+2 + R(1).

Here and below, R(1) denotes any smooth function on (1, ∞) whose jth derivative is

O(r−j) as r → ∞ for each j ≥ 0. Using the definition of ϕ, we estimate

D ≥ −
∫ 1

0
sn−1−2μ ds + 2Cμ

∫ ∞

1
sn−3−2μ ds

= − 1

n − 2μ
+ 2Cμ

2μ − n + 2
.

We conclude that

−n − 2μ

4
D ≤ 1

4
− n − 2μ

2(2μ − n + 2)
Cμ < 0

provided we choose Cμ large. We may then choose α > 0 small so that

−n − 2μ

4
D + α(nE + F) = 0,

hence

β = R(1).

Solving the 2nd equation in (13) for γ gives

γ = R(1),

which completes this case.
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Singularities of Complex-Valued Solutions 9

Case 3: 2μ = n − 2. This case is similar to the case 2μ > n − 2, except to leading

order β grows logarithmically. Computing (14) gives

β =
(

−Cμ + α

(
n + 1

4
(n − 2)2

))
log r + R(1).

Choosing Cμ and α to satisfy the relation

Cμ =
(

n + 1

4
(n − 2)2

)
α

we arrive at the same conclusion as in Case 2, completing the construction.

3.3 Proof of Theorem 2.2

For 0 ≤ 2μ < n, by taking w and A as constructed above, we obtain a nontrivial solution

to the Equation (6) on R
n, such that A has the desired ellipticity properties and w has

the desired asymptotics. This proves Theorem 2.2. More precisely:

Proof of Theorem 2.2 For 0 ≤ 2μ < n, take ϕ, g, α, β, γ as constructed above. Then

the function

w = ϕ(r)g(ν)e−i log r

solves the Equation (6) in R
n with bounded coefficients

A = αI + i(β(r)ν ⊗ ν + γ (r)(I − ν ⊗ ν)).

By the choice (15) of ϕ, the function w has the asymptotics (7). Since α > 0 is constant

and Im(A) is symmetric, the coefficients satisfy the ellipticity condition (2), completing

the proof. �

Remark 3.4. In our construction, w is Lipschitz but no better at 0 and smooth but

not analytic away from 0. This is a consequence of choices we made for computational

convenience. It is not hard to modify the construction so that w is analytic on all of Rn,

for example, by taking w = ϕ(r)g(ν)e− i
2 log(1+r2) with g as above and

ϕ = r
(
(1 + r2)−

μ+1
2 + Cμ(1 + r2)−

μ+3
2

)
.

The coefficients A(x) also become analytic on all of Rn with these modifications.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/doi/10.1093/im
rn/rnaa117/5850645 by U

niversity of C
alifornia, Irvine user on 30 June 2020



10 C. Mooney

4 Liouville Theorems

In this section, we prove the Liouville theorems Theorem 2.4 and Theorem 2.5.

4.1 Proof of Theorem 2.4

Theorem 2.4 says that if w ∈ H1
loc(R

n) solves the uniformly elliptic Equation (6) on R
n,

namely

div(A(x)∇w) = 1

2
(iw + μw + x · ∇w),

and |w| = O(|x|−μ) with 2μ ≥ n, then w ≡ 0. We prove it here.

Proof. of Theorem 2.4 Let ψ ∈ C∞
0 (Rn) be real-valued. Multiplying (6) by wψ2, we

obtain

2Re
(
div(A∇w)wψ2

)
= 1

2
(2μ|w|2 + x · ∇|w|2)ψ2. (16)

Integrating by parts and using the ellipticity condition (2), we get

∫
Rn

(−λ|∇w|2ψ2 + C(λ, �)|w|2|∇ψ |2) dx

≥ 2μ − n

2

∫
Rn

|w|2ψ2 dx − 1

2

∫
Rn

|w|2x · ∇(ψ2) dx.

(17)

Since 2μ ≥ n, the 1st term on the right side is non-negative.

We now fix our choice of ψ . Let ψ1 be a smooth, radially decreasing function

supported in B2 with ψ1 ≡ 1 in B1, and let ψR := ψ1(R−1x). Take ψ = ψR. Then the 2nd

term on the right side of (17) is non-negative, so the right side is non-negative. Using

that |w|2|∇ψ |2 = O(R−2μ−2) in B2R\BR, we conclude that

∫
BR

|∇w|2 dx = O(Rn−2μ−2) = O(R−2).

By taking R → ∞, we conclude that w is constant, and by the Equation (6) this constant

is zero. �

4.2 Proof of Theorem 2.5

Theorem 2.5 says that if w ∈ H1
loc(R

n) solves (6) on R
n, with |w| = O(|x|−μ) and 2μ ≥ n−2,

and in addition w satisfies the monotonicity property (8):

(2μ + x · ∇)|w|2 ≥ 0,
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Singularities of Complex-Valued Solutions 11

then w ≡ 0. We prove it here.

Proof. of Theorem 2.5 We start again with the identity (16). By (8) the right side of (16)

is non-negative. Integrating by parts gives the Caccioppoli inequality

∫
Rn

|∇w|2ψ2 dx ≤ C(λ, �)

∫
Rn

|w|2|∇ψ |2 dx.

Choosing ψ as before, we recover the inequality

∫
BR

|∇w|2 dx = O(Rn−2μ−2),

which proves the theorem when 2μ > n − 2. In the critical case 2μ = n − 2, use instead

ψ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 inB1,

1 − log(r)/ log(R) inBR\B1,

0 inRn\BR

to obtain
∫

B√
R

|∇w|2 dx = O
(

1

log R

)
.

Again, taking R → ∞ we conclude that w is constant, and by the Equation (6) this

constant is zero. �

5 Some Questions

Our results motivate several questions about the regularity of solutions to parabolic

systems. First, the coefficients in our examples allow for strong coupling between

equations. It is natural to ask if there are structure conditions on the coefficients

that give positive regularity results, and our 1st two questions address this issue.

Second, our examples exhibit blowup at a single point. The 3rd question below concerns

the possibility of constructing solutions with larger singular sets. Finally, parabolic

systems with quasilinear structure arise naturally, and it would be interesting to

construct singular solutions to systems of that type. Our last question addresses this

problem.

1. Our examples have coefficients with symmetric imaginary part. Similar con-

structions might be possible with skew-symmetric imaginary coefficients,
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12 C. Mooney

using techniques from [16]. In this setting, the imaginary coefficients play a

role in ellipticity.

2. For elliptic systems, there is a sharp condition on the spectrum of the coeffi-

cients that guarantees continuity of solutions [11]. Sufficient conditions are

known in the parabolic case ([10], [11]). It would be interesting to investigate

how closely our counterexamples match these conditions. Similarly, it would

be interesting to optimize in our examples the dependence of the higher-

integrability exponent δ on the ellipticity ratio λ/�.

3. Solutions to parabolic systems in dimension n ≥ 3 can be discontinuous on

very large sets [22]. It is natural to ask how large the discontinuity set can

be when n = 2. Known results imply spatial continuity at almost every time,

which is false when n ≥ 3 by elliptic examples.

4. Parabolic systems with the quasilinear structure

ut − div(A(u)∇u) = 0 (18)

have a well-developed partial regularity theory and are important in applica-

tions [7]. Here, the coefficients depend smoothly on u. Constructing solutions

to (18) becomes easier when u : Rn → R
m for m large because there is more

room to “disperse u.”; [16] contains examples of discontinuity formation for

(18) when n = 2, m = 4. One can improve to n = 2, m = 3 using similar

techniques [18]. Continuity for solutions to (18) in the case n = m = 2 (in

particular, the C-valued scalar case) remains open. It seems possible in view

of Theorem 2.5 that the restrictive geometry of the target could play in favor

of regularity (see the discussion in [18]).
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