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We construct examples of complex-valued singular solutions to linear, uniformly
parabolic equations with complex coefficients in dimension n > 2, which are exactly

as irregular as parabolic energy estimates allow.

1 Introduction

In this paper, we consider linear uniformly parabolic equations of the form
u, —div(A(x, t)Vu) = 0. (1)

Here u : R™"! — C, and the coefficients are bounded measurable, complex-valued

functions satisfying
= 2 2 2,12
Re(Ay(x, Oprpp) = Alpl*,  |Ax, 1) pl® < A%|p| (2)

for some constants A, A > 0, and for all (x, t) € R**! and p € C". By a solution, we mean
that u € L2 (Hj

ivc. t Hjoe ) solves (1) in the sense of distributions. We note that after writing
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2 C. Mooney

u and A in terms of their real and imaginary parts as

u=v+iw, A(x,t)=B(x,t)+iCx,1t),

Equation (1) can be viewed as the system of (real) equations

9,v — div(B(x, t)Vv) — div(-C(x, t)Vw) =0

(3)

o,w — div(C(x, t)Vv) — div(B(x, t)Vw) = 0.

To motivate our results, we first discuss the elliptic case
div(A(x)Vu) =0, (4)

where u : R® — C. Solutions to (4) are C* when n = 2 by work of Morrey (see [19], Ch.
5.4). (Morrey in fact considers more general elliptic systems, where the solution can take
values in R™ for any m > 1.) Real-valued solutions to (4) are C* by fundamental work
of De Giorgi [1] and Nash [20]. There are classical counterexamples to the continuity
of solutions to elliptic systems in dimension n > 3 (see [2], [8], [12]). Discontinuous
solutions to (4) were first constructed in dimension n > 5[13] and later in dimension n >

3 [3]. In general, the best regularity we have for (4) is u € w2+

o for some §(n, A, A) > 0,

which is only slightly better than the energy class of the solutions (see [6], Ch. 5 and the
references therein, in particular the higher-integrability results of Gehring [5], Meyers
[14], and Meyers-Elcrat [15]). In fact, for each y > 2 there are solutions to (4) that are not
in W (see [3]).

Interestingly, the parabolic problem (1) has resisted a similar understanding.
Real-valued solutions to (1) are C* by Nash’s theorem [20]. In general, we have the higher-
integrability results Vu € L3’ and u € Lf;cyt(leot‘?X) for some 8(n, A, A) > 0 (see [21], [25]).
There are also examples of discontinuity from smooth data for (1) when n > 3 (see [4]
and [24], [23] for more general parabolic systems). However, all of these examples are

in Lo (Wk 2t

1e,t Wige.x ) With § > 0 and are thus significantly more regular than the higher-

integrability results predict. When n = 2 the known results do not imply continuity of
solutions (unlike the elliptic case), which remained open for some time (see e.g., [9], [22]-
[24]). We recently settled this problem with a counterexample [16]. Still, the example in
[16] is barely irregular enough to develop a discontinuity (it is in L;fc, t(Lﬁ) ex) for p large),
so the regularity gap between theory and examples remained large.
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Singularities of Complex-Valued Solutions 3

The purpose of this paper is to complete the picture for (1) by constructing
solutions in dimension n > 2 that are exactly as irregular as the parabolic higher-
integrability results allow (see Theorem 2.2). We also prove some Liouville theorems
that explain why previous approaches only produced “elliptic” discontinuities (see
Theorems 2.4 and 2.5). Our results connect the regularity problem for (1) in R®*!, in
parabolic geometry, to the regularity problem for the elliptic Equation (4) in R**2, We
discuss this connection further in the next section.

The paper is organized as follows. In Section 2, we give precise statements of
our main results, Theorems 2.2, 2.4, and 2.5. In Section 3, we prove Theorem 2.2. In
Section 4, we prove the Liouville Theorems 2.4 and 2.5. Finally, in Section 5, we discuss

a few open questions motivated by this work.

2 Results

In this section, we state our results. We will deal with “spiraling” self-similar solutions
to (1) of the form

— (—p) 5 o5 log(-t) X
ux,t)y=(—t)" ze 2 W((_t)l/z). (5)
Remark 2.1. Motivation for this ansatz (in the elliptic case) can be found in [13], Ch.
10.6.1, where the approach is to consider equations with constant complex coefficients

in a thin cone and then flatten the boundary.

These are invariant under the rescalings u — Atetlosry(hx, A2t). We obtain a
solution to (1) on R™ x (—oo, 0) with coefficients A(x/(—t)!/?) if w solves the elliptic

equation
1
div(A(x)Vw) = E(iw 4+ puw +x-Vw) (6)

on R", and A satisfies (2) for some A, A > 0. Furthermore, the solution defined by (5)
is smooth up to ¢t = 0 away from x = O and develops a “spiraling —u-homogeneous”

discontinuity at ¢t = 0 provided © > 0 and
w = [x]*g(x/Ix])e 81 + £(1x|7%)) on R™\B. (7)

Here, g € C*°(S™ 1) and € is a smooth function with £(0) = 0. We can extend the solution
to positive times, for example, by solving the heat equation with initial data u(x, 0) :=
Ix|“g(x/|x|)e 181Xl provided u < n.

Our 1st result is:
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4 C. Mooney

Theorem 2.2. For anyn > 2 and 0 < 2u < n, there exists a nontrivial solution w to a

uniformly elliptic equation of the form (6) on R", such that w satisfies (7).
By taking u arbitrarily close to %, we obtain as a consequence:

Corollary 2.3. For any n > 2 and § > O, there exists a solution u to a uniformly

parabolic equation of the form (1) on R**! such that u satisfies
tl_lfél— ellp2+5 g, gy = OO tl—l>I(I)1— IVUllzz+s gy x (1, ~)) = ©©-

(The ellipticity ratio /A degenerates as § — 0, in accordance with the higher-
integrability results.) We conclude, as in the elliptic case, that solutions to parabolic
systems are only slightly better than their energy class.

Our remaining results are Liouville theorems for (6). It is natural to ask whether
one can construct solutions that decay any faster than we managed. Our 1st Liouville

theorem shows this is not possible:

Theorem 2.4. Assume that w € HILC(R") solves (6), with |w| = O(Jx|™*) and 2u > n.
Then w = 0.

There are nontrivial —u-homogeneous solutions to elliptic systems of the form
div(A(x)Vu) = 0 in R" provided 24 < n — 2, and there is a Liouville theorem for —u-
homogeneous solutions on R™\{0} in the equality case (see [17]). Thus, Theorems 2.2
and 2.4 mirror the elliptic results in dimension n + 2. This agrees with the observation
that the parabolic energy L°(L2) 4+ L?(H}) in R™*! and the elliptic energy H' in R"*2 are

invariant under the matching rescalings
u — A"2u(x, A%t), resp. u— AY2u(rx).

Theorem 2.4 is a consequence of parabolic energy estimates. We can extend it to

the “elliptic regime” 2u > n — 2 when w has the monotonicity property
Q2u+x-V)|wl?>o0. (8)

Theorem 2.5. Assume that w € HZIOC(R”) solves (6), with |[w| = O(|x|™*) and 2u > n — 2.

If in addition w satisfies (8), then w = 0.
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Singularities of Complex-Valued Solutions 5

It is straightforward to check that previous examples ([4] and [24], [23] for
more general systems) satisfy condition (8), which explains why they have “elliptic”

discontinuities (i.e., n > 3 and 2u < n — 2).

3 Proof of Theorem 2.2

In this section, we prove Theorem 2.2. We exploit the useful observation from [3] that
if Im(A) is symmetric, then the ellipticity condition (2) is satisfied provided Re(4) is

uniformly positive definite, and |A| is bounded.

Remark 3.1. Heuristically, this structure allows strong coupling between equations
when we view (1) as the system (3). The example in [16] has skew-symmetric imaginary
coefficients (which corresponds to the symmetry of the system coefficients). In that
case, it is important to estimate the size of Im(A) because it affects the ellipticity

condition.

3.1 Reduction to system of ODEs
We first reduce (6) to an ODE system. Let r = |x| and let v = r~!x be the radial unit
vector. We search for solutions of the form

w = (r)g(v)e 18T, 9)

where g is a smooth function on S"~1l. For our calculations, it will be convenient to use
the gradient and Laplace operators Vg:-1 and Ags-1 on the sphere. When we view g as
a zero-homogeneous function on R™\{0} (i.e., g(x) = g(v) for x € R™\{0}), the spherical

operators and the corresponding operators V and A on R"\{0} are related by
Vg(x) = 1Vaag(v), Agx) = div(Vg)(x) = r 2Agn-1g(v). (10)

We note that the vector Vg.-1g(v) is orthogonal to v.
Using these relations, we first compute
Vw = ge 1987 (¢ (r) — ir tp)v + p(r)e 8T v, 1 g. (11)

Now let

B=f(riv®v+hrI—vQv).
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6 C. Mooney

Since Bv = f(r) v and Bt = h(r) t for t orthogonal to v, it follows that:

Vv

BYVW — ge—ilogr‘rn—l(fwl _ ir—lfq)) e

+ hge 18Ty, 1 g.

We will choose ¢ such that ¢’ and r~!¢ are bounded. Taking the divergence of the above
identity and using that r”%l is divergence-free away from the origin, that Vg:.-1g is

orthogonal to v, and the relations (10), we arrive at

div(BVw)

. ’ )
— rr;g_l [e—llogrrn—l(f¢/ _ ir_lf(p)] + (h(pe—llogr) div(r_IVS,Hg)

n—1 N/ n—2 ’ 1
:ge—ilogr|:(r o) _(f_AS”—lgh);ﬁz_i((r o) +f7(p):|

rn—l g 7-n—l

Let g be an eigenfunction of Ag.1 with eigenvalue —i;, < 0. Then the previous

expression becomes

. Lilogr [ M) g (A e?)
div(BVw) = ge™€" |:rn——1 AU LO Rt eyl £
Thus, if we take coefficients
A=al+i(BrvRv+ym@I—vv)) (12)

with « > 0 constant, we obtain

. . rn—l N r"_z 2/
div(AVw) = ge~*1°8" [“ ((rn—(f) -+ f\g);ﬁz) + & rn—ﬁz )
(gl o (M 22y
+l( yn—1 _(ﬂ+AQY)r_2_aW .

Since
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Singularities of Complex-Valued Solutions 7
iw + pw + x - Vw = ge %87 (g + r¢),

the Equation (6) becomes the ODE system

rn—2 n—1
B — L(ug +r¢) + (1 + Apay —aTole,

rh— 1¢

(13)
m 2,2 n—1
)"gyr% — _a(rn lw),_'_ r ﬂq()/)/ ﬂ(o.

Below we will fix an eigenfunction g of Agn.-1 and fix ¢ and « depending on g,
such that ¢ ~ r~* for r large and « > 0. Then the 1st equation determines 8 and the 2nd
one y. By the remark at the beginning of the section, the point is to make choices such
that 8 and y are bounded.

3.2 Solving the ODE system
To begin, we fix g to be any linear function restricted to the sphere so that
Ag=n—1.

Integrating the 1st equation in (13), we obtain

1 2u—n [T _
B = 2 (rz + 2,2 /0 9% (s)s" 1 ds)

no r
+W/ p?(s)s" 2 ds (14)
0

o r rgo/
+—/ e (s)s" lds — a—
m=2¢2 J ¢

Remark 3.2. It follows easily that if 2u > n and ¢ = O *), then B is unbounded

(compare to Theorem 2.4).

We define

r, 0<r<3/4
o) = 1r H*+ CMr_“‘z, r>1 (15)
positive and smooth, 1/2 <r < 3/2,

where C,=0 will be chosen later.

Remark 3.3. By Theorem 2.5, it will be necessary to take C,>0 when 2y > n — 2 (and

in particular, to generate discontinuities in the case n = 2).
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8 C. Mooney

For r < 3/4, it is easy to check that g and y are of the form ¢, (n, «) + ¢, (n, w)r?
(with c; linear in o and u) so we only need to analyze the solutions for r large. We divide
into three cases.

Case 1: 2u < n — 2. We take C, = 0 and o = 1. It is easy to check that g and y
have the form ¢, + ¢,r?~""2* for r > 1, which is bounded.

Case 2: n — 2 < 2u < n. Now the quantities

o o o
D:= / (p? —s2snlds, E:= / @?s"3ds, F:= / gr’s"lds
0 0 0

are bounded, for any fixed Cﬂ > 0. The solution (14) becomes

B = (_” _42“D + a(nE+F)) P L R(D).

Here and below, R(1) denotes any smooth function on (1, co) whose jth derivative is

O(r7J) as r — oo for each j > 0. Using the definition of ¢, we estimate

1 00
D> —/ st s ZCM/ sP321 g
0 1

1 ZCM
+ .
n—2u 2u—n+2

We conclude that

_n—2;,LD<1 n—2u

<--——— ¢ <0
4 4 2Qu-n+2) "

provided we choose C, large. We may then choose « > 0 small so that

n—2u

D+a(mE+F) =0,

hence

B =R(Q).

Solving the 2nd equation in (13) for y gives

y = R(D),

which completes this case.
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Singularities of Complex-Valued Solutions 9

Case 3: 2u = n — 2. This case is similar to the case 2u > n — 2, except to leading

order B grows logarithmically. Computing (14) gives

B = (—c# +a (n + }L(n - 2)2)) logr + R(1).

Choosing C, and « to satisfy the relation

1 92
CM =|{n+ L_L(n -2) )«
we arrive at the same conclusion as in Case 2, completing the construction.

3.3 Proof of Theorem 2.2

For 0 < 2u < n, by taking w and A as constructed above, we obtain a nontrivial solution
to the Equation (6) on R", such that A has the desired ellipticity properties and w has

the desired asymptotics. This proves Theorem 2.2. More precisely:

Proof of Theorem 2.2 For 0 < 2u < n, take ¢, g, «, 8, y as constructed above. Then

the function

—ilogr

w = g(rg(v)e

solves the Equation (6) in R"™ with bounded coefficients
A=aodl+i(BrvRv+yTrT—vQVv)).

By the choice (15) of ¢, the function w has the asymptotics (7). Since « > 0 is constant
and Im(A) is symmetric, the coefficients satisfy the ellipticity condition (2), completing
the proof. |

Remark 3.4. In our construction, w is Lipschitz but no better at 0 and smooth but
not analytic away from 0. This is a consequence of choices we made for computational
convenience. It is not hard to modify the construction so that w is analytic on all of R”,

for example, by taking w = (p(r)g(v)e_% log(1+7%) with g as above and
p=r ((1 +r) 7 4 c,(1+ rz)‘#) .

The coefficients A(x) also become analytic on all of R"” with these modifications.
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10 C. Mooney
4 Liouville Theorems

In this section, we prove the Liouville theorems Theorem 2.4 and Theorem 2.5.

4.1 Proof of Theorem 2.4

Theorem 2.4 says that if w € HZLC(R”) solves the uniformly elliptic Equation (6) on R”,

namely
divAx)Vw) = %(iw +uw+x-Vw),
and |w| = O(|x|™*) with 2u > n, then w = 0. We prove it here.
Proof. of Theorem 2.4 Let ¢ € C3°(R") be real-valued. Multiplying (6) by w2, we
obtain
2Re (div(AVw)wz) - %(2u|w|2 +x-Viw?y2. (16)
Integrating by parts and using the ellipticity condition (2), we get

/ (VW22 + COw M)WV (2) dx
R (17)

2u—n 1
> 2 / |w|2w2dx—§/ wi2x - V(y?) dx.
Rn R

Since 2u > n, the 1st term on the right side is non-negative.

We now fix our choice of . Let y; be a smooth, radially decreasing function
supported in B, with y; = 1 in By, and let y5 := ¥, (R"'x). Take ¢ = ¥». Then the 2nd
term on the right side of (17) is non-negative, so the right side is non-negative. Using
that |w|?|Vy|? = O(R=?*~2) in B,z\Bg, we conclude that

/ [Vwl]? dx = O(R"?*7?) = O(R™?).
Br

By taking R — oo, we conclude that w is constant, and by the Equation (6) this constant

is zero. u

4.2 Proof of Theorem 2.5

Theorem 2.5 says thatif w € HIIOC(R”) solves (6) on R, with |[w| = O(|x|™*) and 2u > n—2,

and in addition w satisfies the monotonicity property (8):

Qu+x-V)|w|* >0,
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Singularities of Complex-Valued Solutions 11

then w = 0. We prove it here.

Proof. of Theorem 2.5 We start again with the identity (16). By (8) the right side of (16)

is non-negative. Integrating by parts gives the Caccioppoli inequality
/ IVw|?y? dx < C(2, A)/ w2V | dx.
R" R"
Choosing ¢ as before, we recover the inequality
/ IVw|? dx = O(R""2+72),
Bgr

which proves the theorem when 2 > n — 2. In the critical case 2u = n — 2, use instead

1 inBy,
¥ =11 —log(r)/log(R) inBR\B,,
0 inR™\Bg

to obtain

1
/ |Vw|2dX=O( )
B g logR

Again, taking R — oo we conclude that w is constant, and by the Equation (6) this

constant is zero. [ |

5 Some Questions

Our results motivate several questions about the regularity of solutions to parabolic
systems. First, the coefficients in our examples allow for strong coupling between
equations. It is natural to ask if there are structure conditions on the coefficients
that give positive regularity results, and our 1st two questions address this issue.
Second, our examples exhibit blowup at a single point. The 3rd question below concerns
the possibility of constructing solutions with larger singular sets. Finally, parabolic
systems with quasilinear structure arise naturally, and it would be interesting to
construct singular solutions to systems of that type. Our last question addresses this

problem.

1. Our examples have coefficients with symmetric imaginary part. Similar con-

structions might be possible with skew-symmetric imaginary coefficients,
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12 C. Mooney

using techniques from [16]. In this setting, the imaginary coefficients play a
role in ellipticity.

2. For elliptic systems, there is a sharp condition on the spectrum of the coeffi-
cients that guarantees continuity of solutions [11]. Sufficient conditions are
known in the parabolic case ([10], [11]). It would be interesting to investigate
how closely our counterexamples match these conditions. Similarly, it would
be interesting to optimize in our examples the dependence of the higher-
integrability exponent § on the ellipticity ratio A/A.

3. Solutions to parabolic systems in dimension n > 3 can be discontinuous on
very large sets [22]. It is natural to ask how large the discontinuity set can
be when n = 2. Known results imply spatial continuity at almost every time,
which is false when n > 3 by elliptic examples.

4. Parabolic systems with the quasilinear structure

u, — div(A(u)Vu) =0 (18)

have a well-developed partial regularity theory and are important in applica-
tions [7]. Here, the coefficients depend smoothly on u. Constructing solutions
to (18) becomes easier when u : R" — R™ for m large because there is more
room to “disperse u.”; [16] contains examples of discontinuity formation for
(18) when n = 2, m = 4. One can improve to n = 2, m = 3 using similar
techniques [18]. Continuity for solutions to (18) in the case n = m = 2 (in
particular, the C-valued scalar case) remains open. It seems possible in view
of Theorem 2.5 that the restrictive geometry of the target could play in favor

of regularity (see the discussion in [18]).
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